Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 14 | pmbaty | 1 | //===- RDFGraph.h -----------------------------------------------*- C++ -*-===// | 
| 2 | // | ||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| 6 | // | ||
| 7 | //===----------------------------------------------------------------------===// | ||
| 8 | // | ||
| 9 | // Target-independent, SSA-based data flow graph for register data flow (RDF) | ||
| 10 | // for a non-SSA program representation (e.g. post-RA machine code). | ||
| 11 | // | ||
| 12 | // | ||
| 13 | // *** Introduction | ||
| 14 | // | ||
| 15 | // The RDF graph is a collection of nodes, each of which denotes some element | ||
| 16 | // of the program. There are two main types of such elements: code and refe- | ||
| 17 | // rences. Conceptually, "code" is something that represents the structure | ||
| 18 | // of the program, e.g. basic block or a statement, while "reference" is an | ||
| 19 | // instance of accessing a register, e.g. a definition or a use. Nodes are | ||
| 20 | // connected with each other based on the structure of the program (such as | ||
| 21 | // blocks, instructions, etc.), and based on the data flow (e.g. reaching | ||
| 22 | // definitions, reached uses, etc.). The single-reaching-definition principle | ||
| 23 | // of SSA is generally observed, although, due to the non-SSA representation | ||
| 24 | // of the program, there are some differences between the graph and a "pure" | ||
| 25 | // SSA representation. | ||
| 26 | // | ||
| 27 | // | ||
| 28 | // *** Implementation remarks | ||
| 29 | // | ||
| 30 | // Since the graph can contain a large number of nodes, memory consumption | ||
| 31 | // was one of the major design considerations. As a result, there is a single | ||
| 32 | // base class NodeBase which defines all members used by all possible derived | ||
| 33 | // classes. The members are arranged in a union, and a derived class cannot | ||
| 34 | // add any data members of its own. Each derived class only defines the | ||
| 35 | // functional interface, i.e. member functions. NodeBase must be a POD, | ||
| 36 | // which implies that all of its members must also be PODs. | ||
| 37 | // Since nodes need to be connected with other nodes, pointers have been | ||
| 38 | // replaced with 32-bit identifiers: each node has an id of type NodeId. | ||
| 39 | // There are mapping functions in the graph that translate between actual | ||
| 40 | // memory addresses and the corresponding identifiers. | ||
| 41 | // A node id of 0 is equivalent to nullptr. | ||
| 42 | // | ||
| 43 | // | ||
| 44 | // *** Structure of the graph | ||
| 45 | // | ||
| 46 | // A code node is always a collection of other nodes. For example, a code | ||
| 47 | // node corresponding to a basic block will contain code nodes corresponding | ||
| 48 | // to instructions. In turn, a code node corresponding to an instruction will | ||
| 49 | // contain a list of reference nodes that correspond to the definitions and | ||
| 50 | // uses of registers in that instruction. The members are arranged into a | ||
| 51 | // circular list, which is yet another consequence of the effort to save | ||
| 52 | // memory: for each member node it should be possible to obtain its owner, | ||
| 53 | // and it should be possible to access all other members. There are other | ||
| 54 | // ways to accomplish that, but the circular list seemed the most natural. | ||
| 55 | // | ||
| 56 | // +- CodeNode -+ | ||
| 57 | // |            | <---------------------------------------------------+ | ||
| 58 | // +-+--------+-+                                                     | | ||
| 59 | //   |FirstM  |LastM                                                  | | ||
| 60 | //   |        +-------------------------------------+                 | | ||
| 61 | //   |                                              |                 | | ||
| 62 | //   V                                              V                 | | ||
| 63 | //  +----------+ Next +----------+ Next       Next +----------+ Next  | | ||
| 64 | //  |          |----->|          |-----> ... ----->|          |----->-+ | ||
| 65 | //  +- Member -+      +- Member -+                 +- Member -+ | ||
| 66 | // | ||
| 67 | // The order of members is such that related reference nodes (see below) | ||
| 68 | // should be contiguous on the member list. | ||
| 69 | // | ||
| 70 | // A reference node is a node that encapsulates an access to a register, | ||
| 71 | // in other words, data flowing into or out of a register. There are two | ||
| 72 | // major kinds of reference nodes: defs and uses. A def node will contain | ||
| 73 | // the id of the first reached use, and the id of the first reached def. | ||
| 74 | // Each def and use will contain the id of the reaching def, and also the | ||
| 75 | // id of the next reached def (for def nodes) or use (for use nodes). | ||
| 76 | // The "next node sharing the same reaching def" is denoted as "sibling". | ||
| 77 | // In summary: | ||
| 78 | // - Def node contains: reaching def, sibling, first reached def, and first | ||
| 79 | // reached use. | ||
| 80 | // - Use node contains: reaching def and sibling. | ||
| 81 | // | ||
| 82 | // +-- DefNode --+ | ||
| 83 | // | R2 = ...    | <---+--------------------+ | ||
| 84 | // ++---------+--+     |                    | | ||
| 85 | //  |Reached  |Reached |                    | | ||
| 86 | //  |Def      |Use     |                    | | ||
| 87 | //  |         |        |Reaching            |Reaching | ||
| 88 | //  |         V        |Def                 |Def | ||
| 89 | //  |      +-- UseNode --+ Sib  +-- UseNode --+ Sib       Sib | ||
| 90 | //  |      | ... = R2    |----->| ... = R2    |----> ... ----> 0 | ||
| 91 | //  |      +-------------+      +-------------+ | ||
| 92 | //  V | ||
| 93 | // +-- DefNode --+ Sib | ||
| 94 | // | R2 = ...    |----> ... | ||
| 95 | // ++---------+--+ | ||
| 96 | //  |         | | ||
| 97 | //  |         | | ||
| 98 | // ...       ... | ||
| 99 | // | ||
| 100 | // To get a full picture, the circular lists connecting blocks within a | ||
| 101 | // function, instructions within a block, etc. should be superimposed with | ||
| 102 | // the def-def, def-use links shown above. | ||
| 103 | // To illustrate this, consider a small example in a pseudo-assembly: | ||
| 104 | // foo: | ||
| 105 | //   add r2, r0, r1   ; r2 = r0+r1 | ||
| 106 | //   addi r0, r2, 1   ; r0 = r2+1 | ||
| 107 | //   ret r0           ; return value in r0 | ||
| 108 | // | ||
| 109 | // The graph (in a format used by the debugging functions) would look like: | ||
| 110 | // | ||
| 111 | //   DFG dump:[ | ||
| 112 | //   f1: Function foo | ||
| 113 | //   b2: === %bb.0 === preds(0), succs(0): | ||
| 114 | //   p3: phi [d4<r0>(,d12,u9):] | ||
| 115 | //   p5: phi [d6<r1>(,,u10):] | ||
| 116 | //   s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):] | ||
| 117 | //   s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):] | ||
| 118 | //   s14: ret [u15<r0>(d12):] | ||
| 119 | //   ] | ||
| 120 | // | ||
| 121 | // The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the | ||
| 122 | // kind of the node (i.e. f - function, b - basic block, p - phi, s - state- | ||
| 123 | // ment, d - def, u - use). | ||
| 124 | // The format of a def node is: | ||
| 125 | //   dN<R>(rd,d,u):sib, | ||
| 126 | // where | ||
| 127 | //   N   - numeric node id, | ||
| 128 | //   R   - register being defined | ||
| 129 | //   rd  - reaching def, | ||
| 130 | //   d   - reached def, | ||
| 131 | //   u   - reached use, | ||
| 132 | //   sib - sibling. | ||
| 133 | // The format of a use node is: | ||
| 134 | //   uN<R>[!](rd):sib, | ||
| 135 | // where | ||
| 136 | //   N   - numeric node id, | ||
| 137 | //   R   - register being used, | ||
| 138 | //   rd  - reaching def, | ||
| 139 | //   sib - sibling. | ||
| 140 | // Possible annotations (usually preceding the node id): | ||
| 141 | //   +   - preserving def, | ||
| 142 | //   ~   - clobbering def, | ||
| 143 | //   "   - shadow ref (follows the node id), | ||
| 144 | //   !   - fixed register (appears after register name). | ||
| 145 | // | ||
| 146 | // The circular lists are not explicit in the dump. | ||
| 147 | // | ||
| 148 | // | ||
| 149 | // *** Node attributes | ||
| 150 | // | ||
| 151 | // NodeBase has a member "Attrs", which is the primary way of determining | ||
| 152 | // the node's characteristics. The fields in this member decide whether | ||
| 153 | // the node is a code node or a reference node (i.e. node's "type"), then | ||
| 154 | // within each type, the "kind" determines what specifically this node | ||
| 155 | // represents. The remaining bits, "flags", contain additional information | ||
| 156 | // that is even more detailed than the "kind". | ||
| 157 | // CodeNode's kinds are: | ||
| 158 | // - Phi:   Phi node, members are reference nodes. | ||
| 159 | // - Stmt:  Statement, members are reference nodes. | ||
| 160 | // - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt). | ||
| 161 | // - Func:  The whole function. The members are basic block nodes. | ||
| 162 | // RefNode's kinds are: | ||
| 163 | // - Use. | ||
| 164 | // - Def. | ||
| 165 | // | ||
| 166 | // Meaning of flags: | ||
| 167 | // - Preserving: applies only to defs. A preserving def is one that can | ||
| 168 | //   preserve some of the original bits among those that are included in | ||
| 169 | //   the register associated with that def. For example, if R0 is a 32-bit | ||
| 170 | //   register, but a def can only change the lower 16 bits, then it will | ||
| 171 | //   be marked as preserving. | ||
| 172 | // - Shadow: a reference that has duplicates holding additional reaching | ||
| 173 | //   defs (see more below). | ||
| 174 | // - Clobbering: applied only to defs, indicates that the value generated | ||
| 175 | //   by this def is unspecified. A typical example would be volatile registers | ||
| 176 | //   after function calls. | ||
| 177 | // - Fixed: the register in this def/use cannot be replaced with any other | ||
| 178 | //   register. A typical case would be a parameter register to a call, or | ||
| 179 | //   the register with the return value from a function. | ||
| 180 | // - Undef: the register in this reference the register is assumed to have | ||
| 181 | //   no pre-existing value, even if it appears to be reached by some def. | ||
| 182 | //   This is typically used to prevent keeping registers artificially live | ||
| 183 | //   in cases when they are defined via predicated instructions. For example: | ||
| 184 | //     r0 = add-if-true cond, r10, r11                (1) | ||
| 185 | //     r0 = add-if-false cond, r12, r13, implicit r0  (2) | ||
| 186 | //     ... = r0                                       (3) | ||
| 187 | //   Before (1), r0 is not intended to be live, and the use of r0 in (3) is | ||
| 188 | //   not meant to be reached by any def preceding (1). However, since the | ||
| 189 | //   defs in (1) and (2) are both preserving, these properties alone would | ||
| 190 | //   imply that the use in (3) may indeed be reached by some prior def. | ||
| 191 | //   Adding Undef flag to the def in (1) prevents that. The Undef flag | ||
| 192 | //   may be applied to both defs and uses. | ||
| 193 | // - Dead: applies only to defs. The value coming out of a "dead" def is | ||
| 194 | //   assumed to be unused, even if the def appears to be reaching other defs | ||
| 195 | //   or uses. The motivation for this flag comes from dead defs on function | ||
| 196 | //   calls: there is no way to determine if such a def is dead without | ||
| 197 | //   analyzing the target's ABI. Hence the graph should contain this info, | ||
| 198 | //   as it is unavailable otherwise. On the other hand, a def without any | ||
| 199 | //   uses on a typical instruction is not the intended target for this flag. | ||
| 200 | // | ||
| 201 | // *** Shadow references | ||
| 202 | // | ||
| 203 | // It may happen that a super-register can have two (or more) non-overlapping | ||
| 204 | // sub-registers. When both of these sub-registers are defined and followed | ||
| 205 | // by a use of the super-register, the use of the super-register will not | ||
| 206 | // have a unique reaching def: both defs of the sub-registers need to be | ||
| 207 | // accounted for. In such cases, a duplicate use of the super-register is | ||
| 208 | // added and it points to the extra reaching def. Both uses are marked with | ||
| 209 | // a flag "shadow". Example: | ||
| 210 | // Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap: | ||
| 211 | //   set r0, 1        ; r0 = 1 | ||
| 212 | //   set r1, 1        ; r1 = 1 | ||
| 213 | //   addi t1, t0, 1   ; t1 = t0+1 | ||
| 214 | // | ||
| 215 | // The DFG: | ||
| 216 | //   s1: set [d2<r0>(,,u9):] | ||
| 217 | //   s3: set [d4<r1>(,,u10):] | ||
| 218 | //   s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):] | ||
| 219 | // | ||
| 220 | // The statement s5 has two use nodes for t0: u7" and u9". The quotation | ||
| 221 | // mark " indicates that the node is a shadow. | ||
| 222 | // | ||
| 223 | |||
| 224 | #ifndef LLVM_CODEGEN_RDFGRAPH_H | ||
| 225 | #define LLVM_CODEGEN_RDFGRAPH_H | ||
| 226 | |||
| 227 | #include "RDFRegisters.h" | ||
| 228 | #include "llvm/ADT/SmallVector.h" | ||
| 229 | #include "llvm/MC/LaneBitmask.h" | ||
| 230 | #include "llvm/Support/Allocator.h" | ||
| 231 | #include "llvm/Support/MathExtras.h" | ||
| 232 | #include <cassert> | ||
| 233 | #include <cstdint> | ||
| 234 | #include <cstring> | ||
| 235 | #include <map> | ||
| 236 | #include <memory> | ||
| 237 | #include <set> | ||
| 238 | #include <unordered_map> | ||
| 239 | #include <utility> | ||
| 240 | #include <vector> | ||
| 241 | |||
| 242 | // RDF uses uint32_t to refer to registers. This is to ensure that the type | ||
| 243 | // size remains specific. In other places, registers are often stored using | ||
| 244 | // unsigned. | ||
| 245 | static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal"); | ||
| 246 | |||
| 247 | namespace llvm { | ||
| 248 | |||
| 249 | class MachineBasicBlock; | ||
| 250 | class MachineDominanceFrontier; | ||
| 251 | class MachineDominatorTree; | ||
| 252 | class MachineFunction; | ||
| 253 | class MachineInstr; | ||
| 254 | class MachineOperand; | ||
| 255 | class raw_ostream; | ||
| 256 | class TargetInstrInfo; | ||
| 257 | class TargetRegisterInfo; | ||
| 258 | |||
| 259 | namespace rdf { | ||
| 260 | |||
| 261 | using NodeId = uint32_t; | ||
| 262 | |||
| 263 | struct DataFlowGraph; | ||
| 264 | |||
| 265 | struct NodeAttrs { | ||
| 266 | enum : uint16_t { | ||
| 267 | None = 0x0000, // Nothing | ||
| 268 | |||
| 269 |       // Types: 2 bits | ||
| 270 | TypeMask = 0x0003, | ||
| 271 | Code = 0x0001, // 01, Container | ||
| 272 | Ref = 0x0002, // 10, Reference | ||
| 273 | |||
| 274 |       // Kind: 3 bits | ||
| 275 | KindMask = 0x0007 << 2, | ||
| 276 | Def = 0x0001 << 2, // 001 | ||
| 277 | Use = 0x0002 << 2, // 010 | ||
| 278 | Phi = 0x0003 << 2, // 011 | ||
| 279 | Stmt = 0x0004 << 2, // 100 | ||
| 280 | Block = 0x0005 << 2, // 101 | ||
| 281 | Func = 0x0006 << 2, // 110 | ||
| 282 | |||
| 283 |       // Flags: 7 bits for now | ||
| 284 | FlagMask = 0x007F << 5, | ||
| 285 | Shadow = 0x0001 << 5, // 0000001, Has extra reaching defs. | ||
| 286 | Clobbering = 0x0002 << 5, // 0000010, Produces unspecified values. | ||
| 287 | PhiRef = 0x0004 << 5, // 0000100, Member of PhiNode. | ||
| 288 | Preserving = 0x0008 << 5, // 0001000, Def can keep original bits. | ||
| 289 | Fixed = 0x0010 << 5, // 0010000, Fixed register. | ||
| 290 | Undef = 0x0020 << 5, // 0100000, Has no pre-existing value. | ||
| 291 | Dead = 0x0040 << 5, // 1000000, Does not define a value. | ||
| 292 | }; | ||
| 293 | |||
| 294 | static uint16_t type(uint16_t T) { return T & TypeMask; } | ||
| 295 | static uint16_t kind(uint16_t T) { return T & KindMask; } | ||
| 296 | static uint16_t flags(uint16_t T) { return T & FlagMask; } | ||
| 297 | |||
| 298 | static uint16_t set_type(uint16_t A, uint16_t T) { | ||
| 299 | return (A & ~TypeMask) | T; | ||
| 300 |     } | ||
| 301 | |||
| 302 | static uint16_t set_kind(uint16_t A, uint16_t K) { | ||
| 303 | return (A & ~KindMask) | K; | ||
| 304 |     } | ||
| 305 | |||
| 306 | static uint16_t set_flags(uint16_t A, uint16_t F) { | ||
| 307 | return (A & ~FlagMask) | F; | ||
| 308 |     } | ||
| 309 | |||
| 310 |     // Test if A contains B. | ||
| 311 | static bool contains(uint16_t A, uint16_t B) { | ||
| 312 | if (type(A) != Code) | ||
| 313 | return false; | ||
| 314 | uint16_t KB = kind(B); | ||
| 315 | switch (kind(A)) { | ||
| 316 | case Func: | ||
| 317 | return KB == Block; | ||
| 318 | case Block: | ||
| 319 | return KB == Phi || KB == Stmt; | ||
| 320 | case Phi: | ||
| 321 | case Stmt: | ||
| 322 | return type(B) == Ref; | ||
| 323 |       } | ||
| 324 | return false; | ||
| 325 |     } | ||
| 326 | }; | ||
| 327 | |||
| 328 | struct BuildOptions { | ||
| 329 | enum : unsigned { | ||
| 330 | None = 0x00, | ||
| 331 | KeepDeadPhis = 0x01, // Do not remove dead phis during build. | ||
| 332 | }; | ||
| 333 | }; | ||
| 334 | |||
| 335 | template <typename T> struct NodeAddr { | ||
| 336 | NodeAddr() = default; | ||
| 337 | NodeAddr(T A, NodeId I) : Addr(A), Id(I) {} | ||
| 338 | |||
| 339 |     // Type cast (casting constructor). The reason for having this class | ||
| 340 |     // instead of std::pair. | ||
| 341 | template <typename S> NodeAddr(const NodeAddr<S> &NA) | ||
| 342 | : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {} | ||
| 343 | |||
| 344 | bool operator== (const NodeAddr<T> &NA) const { | ||
| 345 | assert((Addr == NA.Addr) == (Id == NA.Id)); | ||
| 346 | return Addr == NA.Addr; | ||
| 347 |     } | ||
| 348 | bool operator!= (const NodeAddr<T> &NA) const { | ||
| 349 | return !operator==(NA); | ||
| 350 |     } | ||
| 351 | |||
| 352 | T Addr = nullptr; | ||
| 353 | NodeId Id = 0; | ||
| 354 | }; | ||
| 355 | |||
| 356 | struct NodeBase; | ||
| 357 | |||
| 358 |   // Fast memory allocation and translation between node id and node address. | ||
| 359 |   // This is really the same idea as the one underlying the "bump pointer | ||
| 360 |   // allocator", the difference being in the translation. A node id is | ||
| 361 |   // composed of two components: the index of the block in which it was | ||
| 362 |   // allocated, and the index within the block. With the default settings, | ||
| 363 |   // where the number of nodes per block is 4096, the node id (minus 1) is: | ||
| 364 |   // | ||
| 365 |   // bit position:                11             0 | ||
| 366 |   // +----------------------------+--------------+ | ||
| 367 |   // | Index of the block         |Index in block| | ||
| 368 |   // +----------------------------+--------------+ | ||
| 369 |   // | ||
| 370 |   // The actual node id is the above plus 1, to avoid creating a node id of 0. | ||
| 371 |   // | ||
| 372 |   // This method significantly improved the build time, compared to using maps | ||
| 373 |   // (std::unordered_map or DenseMap) to translate between pointers and ids. | ||
| 374 | struct NodeAllocator { | ||
| 375 |     // Amount of storage for a single node. | ||
| 376 | enum { NodeMemSize = 32 }; | ||
| 377 | |||
| 378 | NodeAllocator(uint32_t NPB = 4096) | ||
| 379 | : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)), | ||
| 380 | IndexMask((1 << BitsPerIndex)-1) { | ||
| 381 | assert(isPowerOf2_32(NPB)); | ||
| 382 |     } | ||
| 383 | |||
| 384 | NodeBase *ptr(NodeId N) const { | ||
| 385 | uint32_t N1 = N-1; | ||
| 386 | uint32_t BlockN = N1 >> BitsPerIndex; | ||
| 387 | uint32_t Offset = (N1 & IndexMask) * NodeMemSize; | ||
| 388 | return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset); | ||
| 389 |     } | ||
| 390 | |||
| 391 | NodeId id(const NodeBase *P) const; | ||
| 392 | NodeAddr<NodeBase*> New(); | ||
| 393 | void clear(); | ||
| 394 | |||
| 395 | private: | ||
| 396 | void startNewBlock(); | ||
| 397 | bool needNewBlock(); | ||
| 398 | |||
| 399 | uint32_t makeId(uint32_t Block, uint32_t Index) const { | ||
| 400 |       // Add 1 to the id, to avoid the id of 0, which is treated as "null". | ||
| 401 | return ((Block << BitsPerIndex) | Index) + 1; | ||
| 402 |     } | ||
| 403 | |||
| 404 | const uint32_t NodesPerBlock; | ||
| 405 | const uint32_t BitsPerIndex; | ||
| 406 | const uint32_t IndexMask; | ||
| 407 | char *ActiveEnd = nullptr; | ||
| 408 | std::vector<char*> Blocks; | ||
| 409 | using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>; | ||
| 410 |     AllocatorTy MemPool; | ||
| 411 | }; | ||
| 412 | |||
| 413 | using RegisterSet = std::set<RegisterRef>; | ||
| 414 | |||
| 415 | struct TargetOperandInfo { | ||
| 416 | TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {} | ||
| 417 | virtual ~TargetOperandInfo() = default; | ||
| 418 | |||
| 419 | virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const; | ||
| 420 | virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const; | ||
| 421 | virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const; | ||
| 422 | |||
| 423 | const TargetInstrInfo &TII; | ||
| 424 | }; | ||
| 425 | |||
| 426 |   // Packed register reference. Only used for storage. | ||
| 427 | struct PackedRegisterRef { | ||
| 428 |     RegisterId Reg; | ||
| 429 | uint32_t MaskId; | ||
| 430 | }; | ||
| 431 | |||
| 432 | struct LaneMaskIndex : private IndexedSet<LaneBitmask> { | ||
| 433 | LaneMaskIndex() = default; | ||
| 434 | |||
| 435 | LaneBitmask getLaneMaskForIndex(uint32_t K) const { | ||
| 436 | return K == 0 ? LaneBitmask::getAll() : get(K); | ||
| 437 |     } | ||
| 438 | |||
| 439 | uint32_t getIndexForLaneMask(LaneBitmask LM) { | ||
| 440 | assert(LM.any()); | ||
| 441 | return LM.all() ? 0 : insert(LM); | ||
| 442 |     } | ||
| 443 | |||
| 444 | uint32_t getIndexForLaneMask(LaneBitmask LM) const { | ||
| 445 | assert(LM.any()); | ||
| 446 | return LM.all() ? 0 : find(LM); | ||
| 447 |     } | ||
| 448 | }; | ||
| 449 | |||
| 450 | struct NodeBase { | ||
| 451 | public: | ||
| 452 |     // Make sure this is a POD. | ||
| 453 | NodeBase() = default; | ||
| 454 | |||
| 455 | uint16_t getType() const { return NodeAttrs::type(Attrs); } | ||
| 456 | uint16_t getKind() const { return NodeAttrs::kind(Attrs); } | ||
| 457 | uint16_t getFlags() const { return NodeAttrs::flags(Attrs); } | ||
| 458 | NodeId getNext() const { return Next; } | ||
| 459 | |||
| 460 | uint16_t getAttrs() const { return Attrs; } | ||
| 461 | void setAttrs(uint16_t A) { Attrs = A; } | ||
| 462 | void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); } | ||
| 463 | |||
| 464 |     // Insert node NA after "this" in the circular chain. | ||
| 465 | void append(NodeAddr<NodeBase*> NA); | ||
| 466 | |||
| 467 |     // Initialize all members to 0. | ||
| 468 | void init() { memset(this, 0, sizeof *this); } | ||
| 469 | |||
| 470 | void setNext(NodeId N) { Next = N; } | ||
| 471 | |||
| 472 | protected: | ||
| 473 | uint16_t Attrs; | ||
| 474 | uint16_t Reserved; | ||
| 475 | NodeId Next; // Id of the next node in the circular chain. | ||
| 476 |     // Definitions of nested types. Using anonymous nested structs would make | ||
| 477 |     // this class definition clearer, but unnamed structs are not a part of | ||
| 478 |     // the standard. | ||
| 479 | struct Def_struct { | ||
| 480 | NodeId DD, DU; // Ids of the first reached def and use. | ||
| 481 | }; | ||
| 482 | struct PhiU_struct { | ||
| 483 | NodeId PredB; // Id of the predecessor block for a phi use. | ||
| 484 | }; | ||
| 485 | struct Code_struct { | ||
| 486 | void *CP; // Pointer to the actual code. | ||
| 487 | NodeId FirstM, LastM; // Id of the first member and last. | ||
| 488 | }; | ||
| 489 | struct Ref_struct { | ||
| 490 | NodeId RD, Sib; // Ids of the reaching def and the sibling. | ||
| 491 | union { | ||
| 492 |         Def_struct Def; | ||
| 493 |         PhiU_struct PhiU; | ||
| 494 | }; | ||
| 495 | union { | ||
| 496 | MachineOperand *Op; // Non-phi refs point to a machine operand. | ||
| 497 | PackedRegisterRef PR; // Phi refs store register info directly. | ||
| 498 | }; | ||
| 499 | }; | ||
| 500 | |||
| 501 |     // The actual payload. | ||
| 502 | union { | ||
| 503 |       Ref_struct Ref; | ||
| 504 |       Code_struct Code; | ||
| 505 | }; | ||
| 506 | }; | ||
| 507 |   // The allocator allocates chunks of 32 bytes for each node. The fact that | ||
| 508 |   // each node takes 32 bytes in memory is used for fast translation between | ||
| 509 |   // the node id and the node address. | ||
| 510 | static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize, | ||
| 511 | "NodeBase must be at most NodeAllocator::NodeMemSize bytes"); | ||
| 512 | |||
| 513 | using NodeList = SmallVector<NodeAddr<NodeBase *>, 4>; | ||
| 514 | using NodeSet = std::set<NodeId>; | ||
| 515 | |||
| 516 | struct RefNode : public NodeBase { | ||
| 517 | RefNode() = default; | ||
| 518 | |||
| 519 | RegisterRef getRegRef(const DataFlowGraph &G) const; | ||
| 520 | |||
| 521 | MachineOperand &getOp() { | ||
| 522 | assert(!(getFlags() & NodeAttrs::PhiRef)); | ||
| 523 | return *Ref.Op; | ||
| 524 |     } | ||
| 525 | |||
| 526 | void setRegRef(RegisterRef RR, DataFlowGraph &G); | ||
| 527 | void setRegRef(MachineOperand *Op, DataFlowGraph &G); | ||
| 528 | |||
| 529 | NodeId getReachingDef() const { | ||
| 530 | return Ref.RD; | ||
| 531 |     } | ||
| 532 | void setReachingDef(NodeId RD) { | ||
| 533 | Ref.RD = RD; | ||
| 534 |     } | ||
| 535 | |||
| 536 | NodeId getSibling() const { | ||
| 537 | return Ref.Sib; | ||
| 538 |     } | ||
| 539 | void setSibling(NodeId Sib) { | ||
| 540 | Ref.Sib = Sib; | ||
| 541 |     } | ||
| 542 | |||
| 543 | bool isUse() const { | ||
| 544 | assert(getType() == NodeAttrs::Ref); | ||
| 545 | return getKind() == NodeAttrs::Use; | ||
| 546 |     } | ||
| 547 | |||
| 548 | bool isDef() const { | ||
| 549 | assert(getType() == NodeAttrs::Ref); | ||
| 550 | return getKind() == NodeAttrs::Def; | ||
| 551 |     } | ||
| 552 | |||
| 553 | template <typename Predicate> | ||
| 554 | NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly, | ||
| 555 | const DataFlowGraph &G); | ||
| 556 | NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G); | ||
| 557 | }; | ||
| 558 | |||
| 559 | struct DefNode : public RefNode { | ||
| 560 | NodeId getReachedDef() const { | ||
| 561 | return Ref.Def.DD; | ||
| 562 |     } | ||
| 563 | void setReachedDef(NodeId D) { | ||
| 564 | Ref.Def.DD = D; | ||
| 565 |     } | ||
| 566 | NodeId getReachedUse() const { | ||
| 567 | return Ref.Def.DU; | ||
| 568 |     } | ||
| 569 | void setReachedUse(NodeId U) { | ||
| 570 | Ref.Def.DU = U; | ||
| 571 |     } | ||
| 572 | |||
| 573 | void linkToDef(NodeId Self, NodeAddr<DefNode*> DA); | ||
| 574 | }; | ||
| 575 | |||
| 576 | struct UseNode : public RefNode { | ||
| 577 | void linkToDef(NodeId Self, NodeAddr<DefNode*> DA); | ||
| 578 | }; | ||
| 579 | |||
| 580 | struct PhiUseNode : public UseNode { | ||
| 581 | NodeId getPredecessor() const { | ||
| 582 | assert(getFlags() & NodeAttrs::PhiRef); | ||
| 583 | return Ref.PhiU.PredB; | ||
| 584 |     } | ||
| 585 | void setPredecessor(NodeId B) { | ||
| 586 | assert(getFlags() & NodeAttrs::PhiRef); | ||
| 587 | Ref.PhiU.PredB = B; | ||
| 588 |     } | ||
| 589 | }; | ||
| 590 | |||
| 591 | struct CodeNode : public NodeBase { | ||
| 592 | template <typename T> T getCode() const { | ||
| 593 | return static_cast<T>(Code.CP); | ||
| 594 |     } | ||
| 595 | void setCode(void *C) { | ||
| 596 | Code.CP = C; | ||
| 597 |     } | ||
| 598 | |||
| 599 | NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const; | ||
| 600 | NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const; | ||
| 601 | void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G); | ||
| 602 | void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, | ||
| 603 | const DataFlowGraph &G); | ||
| 604 | void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G); | ||
| 605 | |||
| 606 | NodeList members(const DataFlowGraph &G) const; | ||
| 607 | template <typename Predicate> | ||
| 608 | NodeList members_if(Predicate P, const DataFlowGraph &G) const; | ||
| 609 | }; | ||
| 610 | |||
| 611 | struct InstrNode : public CodeNode { | ||
| 612 | NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G); | ||
| 613 | }; | ||
| 614 | |||
| 615 | struct PhiNode : public InstrNode { | ||
| 616 | MachineInstr *getCode() const { | ||
| 617 | return nullptr; | ||
| 618 |     } | ||
| 619 | }; | ||
| 620 | |||
| 621 | struct StmtNode : public InstrNode { | ||
| 622 | MachineInstr *getCode() const { | ||
| 623 | return CodeNode::getCode<MachineInstr*>(); | ||
| 624 |     } | ||
| 625 | }; | ||
| 626 | |||
| 627 | struct BlockNode : public CodeNode { | ||
| 628 | MachineBasicBlock *getCode() const { | ||
| 629 | return CodeNode::getCode<MachineBasicBlock*>(); | ||
| 630 |     } | ||
| 631 | |||
| 632 | void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G); | ||
| 633 | }; | ||
| 634 | |||
| 635 | struct FuncNode : public CodeNode { | ||
| 636 | MachineFunction *getCode() const { | ||
| 637 | return CodeNode::getCode<MachineFunction*>(); | ||
| 638 |     } | ||
| 639 | |||
| 640 | NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB, | ||
| 641 | const DataFlowGraph &G) const; | ||
| 642 | NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G); | ||
| 643 | }; | ||
| 644 | |||
| 645 | struct DataFlowGraph { | ||
| 646 | DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, | ||
| 647 | const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, | ||
| 648 | const MachineDominanceFrontier &mdf); | ||
| 649 | DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, | ||
| 650 | const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, | ||
| 651 | const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi); | ||
| 652 | |||
| 653 | NodeBase *ptr(NodeId N) const; | ||
| 654 | template <typename T> T ptr(NodeId N) const { | ||
| 655 | return static_cast<T>(ptr(N)); | ||
| 656 |     } | ||
| 657 | |||
| 658 | NodeId id(const NodeBase *P) const; | ||
| 659 | |||
| 660 | template <typename T> NodeAddr<T> addr(NodeId N) const { | ||
| 661 | return { ptr<T>(N), N }; | ||
| 662 |     } | ||
| 663 | |||
| 664 | NodeAddr<FuncNode*> getFunc() const { return Func; } | ||
| 665 | MachineFunction &getMF() const { return MF; } | ||
| 666 | const TargetInstrInfo &getTII() const { return TII; } | ||
| 667 | const TargetRegisterInfo &getTRI() const { return TRI; } | ||
| 668 | const PhysicalRegisterInfo &getPRI() const { return PRI; } | ||
| 669 | const MachineDominatorTree &getDT() const { return MDT; } | ||
| 670 | const MachineDominanceFrontier &getDF() const { return MDF; } | ||
| 671 | const RegisterAggr &getLiveIns() const { return LiveIns; } | ||
| 672 | |||
| 673 | struct DefStack { | ||
| 674 | DefStack() = default; | ||
| 675 | |||
| 676 | bool empty() const { return Stack.empty() || top() == bottom(); } | ||
| 677 | |||
| 678 | private: | ||
| 679 | using value_type = NodeAddr<DefNode *>; | ||
| 680 | struct Iterator { | ||
| 681 | using value_type = DefStack::value_type; | ||
| 682 | |||
| 683 | Iterator &up() { Pos = DS.nextUp(Pos); return *this; } | ||
| 684 | Iterator &down() { Pos = DS.nextDown(Pos); return *this; } | ||
| 685 | |||
| 686 | value_type operator*() const { | ||
| 687 | assert(Pos >= 1); | ||
| 688 | return DS.Stack[Pos-1]; | ||
| 689 |         } | ||
| 690 | const value_type *operator->() const { | ||
| 691 | assert(Pos >= 1); | ||
| 692 | return &DS.Stack[Pos-1]; | ||
| 693 |         } | ||
| 694 | bool operator==(const Iterator &It) const { return Pos == It.Pos; } | ||
| 695 | bool operator!=(const Iterator &It) const { return Pos != It.Pos; } | ||
| 696 | |||
| 697 | private: | ||
| 698 | friend struct DefStack; | ||
| 699 | |||
| 700 | Iterator(const DefStack &S, bool Top); | ||
| 701 | |||
| 702 |         // Pos-1 is the index in the StorageType object that corresponds to | ||
| 703 |         // the top of the DefStack. | ||
| 704 | const DefStack &DS; | ||
| 705 | unsigned Pos; | ||
| 706 | }; | ||
| 707 | |||
| 708 | public: | ||
| 709 | using iterator = Iterator; | ||
| 710 | |||
| 711 | iterator top() const { return Iterator(*this, true); } | ||
| 712 | iterator bottom() const { return Iterator(*this, false); } | ||
| 713 | unsigned size() const; | ||
| 714 | |||
| 715 | void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); } | ||
| 716 | void pop(); | ||
| 717 | void start_block(NodeId N); | ||
| 718 | void clear_block(NodeId N); | ||
| 719 | |||
| 720 | private: | ||
| 721 | friend struct Iterator; | ||
| 722 | |||
| 723 | using StorageType = std::vector<value_type>; | ||
| 724 | |||
| 725 | bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const { | ||
| 726 | return (P.Addr == nullptr) && (N == 0 || P.Id == N); | ||
| 727 |       } | ||
| 728 | |||
| 729 | unsigned nextUp(unsigned P) const; | ||
| 730 | unsigned nextDown(unsigned P) const; | ||
| 731 | |||
| 732 |       StorageType Stack; | ||
| 733 | }; | ||
| 734 | |||
| 735 |     // Make this std::unordered_map for speed of accessing elements. | ||
| 736 |     // Map: Register (physical or virtual) -> DefStack | ||
| 737 | using DefStackMap = std::unordered_map<RegisterId, DefStack>; | ||
| 738 | |||
| 739 | void build(unsigned Options = BuildOptions::None); | ||
| 740 | void pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM); | ||
| 741 | void markBlock(NodeId B, DefStackMap &DefM); | ||
| 742 | void releaseBlock(NodeId B, DefStackMap &DefM); | ||
| 743 | |||
| 744 | PackedRegisterRef pack(RegisterRef RR) { | ||
| 745 | return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) }; | ||
| 746 |     } | ||
| 747 | PackedRegisterRef pack(RegisterRef RR) const { | ||
| 748 | return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) }; | ||
| 749 |     } | ||
| 750 | RegisterRef unpack(PackedRegisterRef PR) const { | ||
| 751 | return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId)); | ||
| 752 |     } | ||
| 753 | |||
| 754 | RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const; | ||
| 755 | RegisterRef makeRegRef(const MachineOperand &Op) const; | ||
| 756 | |||
| 757 | NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA, | ||
| 758 | NodeAddr<RefNode*> RA) const; | ||
| 759 | NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA, | ||
| 760 | NodeAddr<RefNode*> RA, bool Create); | ||
| 761 | NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA, | ||
| 762 | NodeAddr<RefNode*> RA) const; | ||
| 763 | |||
| 764 | NodeList getRelatedRefs(NodeAddr<InstrNode*> IA, | ||
| 765 | NodeAddr<RefNode*> RA) const; | ||
| 766 | |||
| 767 | NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) const { | ||
| 768 | return BlockNodes.at(BB); | ||
| 769 |     } | ||
| 770 | |||
| 771 | void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) { | ||
| 772 | unlinkUseDF(UA); | ||
| 773 | if (RemoveFromOwner) | ||
| 774 | removeFromOwner(UA); | ||
| 775 |     } | ||
| 776 | |||
| 777 | void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) { | ||
| 778 | unlinkDefDF(DA); | ||
| 779 | if (RemoveFromOwner) | ||
| 780 | removeFromOwner(DA); | ||
| 781 |     } | ||
| 782 | |||
| 783 |     // Some useful filters. | ||
| 784 | template <uint16_t Kind> | ||
| 785 | static bool IsRef(const NodeAddr<NodeBase*> BA) { | ||
| 786 | return BA.Addr->getType() == NodeAttrs::Ref && | ||
| 787 | BA.Addr->getKind() == Kind; | ||
| 788 |     } | ||
| 789 | |||
| 790 | template <uint16_t Kind> | ||
| 791 | static bool IsCode(const NodeAddr<NodeBase*> BA) { | ||
| 792 | return BA.Addr->getType() == NodeAttrs::Code && | ||
| 793 | BA.Addr->getKind() == Kind; | ||
| 794 |     } | ||
| 795 | |||
| 796 | static bool IsDef(const NodeAddr<NodeBase*> BA) { | ||
| 797 | return BA.Addr->getType() == NodeAttrs::Ref && | ||
| 798 | BA.Addr->getKind() == NodeAttrs::Def; | ||
| 799 |     } | ||
| 800 | |||
| 801 | static bool IsUse(const NodeAddr<NodeBase*> BA) { | ||
| 802 | return BA.Addr->getType() == NodeAttrs::Ref && | ||
| 803 | BA.Addr->getKind() == NodeAttrs::Use; | ||
| 804 |     } | ||
| 805 | |||
| 806 | static bool IsPhi(const NodeAddr<NodeBase*> BA) { | ||
| 807 | return BA.Addr->getType() == NodeAttrs::Code && | ||
| 808 | BA.Addr->getKind() == NodeAttrs::Phi; | ||
| 809 |     } | ||
| 810 | |||
| 811 | static bool IsPreservingDef(const NodeAddr<DefNode*> DA) { | ||
| 812 | uint16_t Flags = DA.Addr->getFlags(); | ||
| 813 | return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef); | ||
| 814 |     } | ||
| 815 | |||
| 816 | private: | ||
| 817 | void reset(); | ||
| 818 | |||
| 819 | RegisterSet getLandingPadLiveIns() const; | ||
| 820 | |||
| 821 | NodeAddr<NodeBase*> newNode(uint16_t Attrs); | ||
| 822 | NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B); | ||
| 823 | NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner, | ||
| 824 | MachineOperand &Op, uint16_t Flags = NodeAttrs::None); | ||
| 825 | NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner, | ||
| 826 | RegisterRef RR, NodeAddr<BlockNode*> PredB, | ||
| 827 | uint16_t Flags = NodeAttrs::PhiRef); | ||
| 828 | NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner, | ||
| 829 | MachineOperand &Op, uint16_t Flags = NodeAttrs::None); | ||
| 830 | NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner, | ||
| 831 | RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef); | ||
| 832 | NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner); | ||
| 833 | NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner, | ||
| 834 | MachineInstr *MI); | ||
| 835 | NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner, | ||
| 836 | MachineBasicBlock *BB); | ||
| 837 | NodeAddr<FuncNode*> newFunc(MachineFunction *MF); | ||
| 838 | |||
| 839 | template <typename Predicate> | ||
| 840 | std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> | ||
| 841 | locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, | ||
| 842 | Predicate P) const; | ||
| 843 | |||
| 844 | using BlockRefsMap = std::map<NodeId, RegisterSet>; | ||
| 845 | |||
| 846 | void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In); | ||
| 847 | void recordDefsForDF(BlockRefsMap &PhiM, NodeAddr<BlockNode*> BA); | ||
| 848 | void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, | ||
| 849 | NodeAddr<BlockNode*> BA); | ||
| 850 | void removeUnusedPhis(); | ||
| 851 | |||
| 852 | void pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DM); | ||
| 853 | void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM); | ||
| 854 | template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA, | ||
| 855 | NodeAddr<T> TA, DefStack &DS); | ||
| 856 | template <typename Predicate> void linkStmtRefs(DefStackMap &DefM, | ||
| 857 | NodeAddr<StmtNode*> SA, Predicate P); | ||
| 858 | void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA); | ||
| 859 | |||
| 860 | void unlinkUseDF(NodeAddr<UseNode*> UA); | ||
| 861 | void unlinkDefDF(NodeAddr<DefNode*> DA); | ||
| 862 | |||
| 863 | void removeFromOwner(NodeAddr<RefNode*> RA) { | ||
| 864 | NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this); | ||
| 865 | IA.Addr->removeMember(RA, *this); | ||
| 866 |     } | ||
| 867 | |||
| 868 |     // Default TOI object, if not given in the constructor. | ||
| 869 | std::unique_ptr<TargetOperandInfo> DefaultTOI; | ||
| 870 | |||
| 871 | MachineFunction &MF; | ||
| 872 | const TargetInstrInfo &TII; | ||
| 873 | const TargetRegisterInfo &TRI; | ||
| 874 | const PhysicalRegisterInfo PRI; | ||
| 875 | const MachineDominatorTree &MDT; | ||
| 876 | const MachineDominanceFrontier &MDF; | ||
| 877 | const TargetOperandInfo &TOI; | ||
| 878 | |||
| 879 |     RegisterAggr LiveIns; | ||
| 880 | NodeAddr<FuncNode*> Func; | ||
| 881 |     NodeAllocator Memory; | ||
| 882 |     // Local map:  MachineBasicBlock -> NodeAddr<BlockNode*> | ||
| 883 | std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes; | ||
| 884 |     // Lane mask map. | ||
| 885 |     LaneMaskIndex LMI; | ||
| 886 | }; // struct DataFlowGraph | ||
| 887 | |||
| 888 | template <typename Predicate> | ||
| 889 | NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P, | ||
| 890 | bool NextOnly, const DataFlowGraph &G) { | ||
| 891 |     // Get the "Next" reference in the circular list that references RR and | ||
| 892 |     // satisfies predicate "Pred". | ||
| 893 | auto NA = G.addr<NodeBase*>(getNext()); | ||
| 894 | |||
| 895 | while (NA.Addr != this) { | ||
| 896 | if (NA.Addr->getType() == NodeAttrs::Ref) { | ||
| 897 | NodeAddr<RefNode*> RA = NA; | ||
| 898 | if (RA.Addr->getRegRef(G) == RR && P(NA)) | ||
| 899 | return NA; | ||
| 900 | if (NextOnly) | ||
| 901 | break; | ||
| 902 | NA = G.addr<NodeBase*>(NA.Addr->getNext()); | ||
| 903 | } else { | ||
| 904 |         // We've hit the beginning of the chain. | ||
| 905 | assert(NA.Addr->getType() == NodeAttrs::Code); | ||
| 906 | NodeAddr<CodeNode*> CA = NA; | ||
| 907 | NA = CA.Addr->getFirstMember(G); | ||
| 908 |       } | ||
| 909 |     } | ||
| 910 |     // Return the equivalent of "nullptr" if such a node was not found. | ||
| 911 | return NodeAddr<RefNode*>(); | ||
| 912 |   } | ||
| 913 | |||
| 914 | template <typename Predicate> | ||
| 915 | NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const { | ||
| 916 |     NodeList MM; | ||
| 917 | auto M = getFirstMember(G); | ||
| 918 | if (M.Id == 0) | ||
| 919 | return MM; | ||
| 920 | |||
| 921 | while (M.Addr != this) { | ||
| 922 | if (P(M)) | ||
| 923 | MM.push_back(M); | ||
| 924 | M = G.addr<NodeBase*>(M.Addr->getNext()); | ||
| 925 |     } | ||
| 926 | return MM; | ||
| 927 |   } | ||
| 928 | |||
| 929 | template <typename T> | ||
| 930 | struct Print { | ||
| 931 | Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {} | ||
| 932 | |||
| 933 | const T &Obj; | ||
| 934 | const DataFlowGraph &G; | ||
| 935 | }; | ||
| 936 | |||
| 937 | template <typename T> Print(const T &, const DataFlowGraph &) -> Print<T>; | ||
| 938 | |||
| 939 | template <typename T> | ||
| 940 | struct PrintNode : Print<NodeAddr<T>> { | ||
| 941 | PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g) | ||
| 942 | : Print<NodeAddr<T>>(x, g) {} | ||
| 943 | }; | ||
| 944 | |||
| 945 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P); | ||
| 946 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P); | ||
| 947 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<DefNode *>> &P); | ||
| 948 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<UseNode *>> &P); | ||
| 949 | raw_ostream &operator<<(raw_ostream &OS, | ||
| 950 | const Print<NodeAddr<PhiUseNode *>> &P); | ||
| 951 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<RefNode *>> &P); | ||
| 952 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P); | ||
| 953 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P); | ||
| 954 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<PhiNode *>> &P); | ||
| 955 | raw_ostream &operator<<(raw_ostream &OS, | ||
| 956 | const Print<NodeAddr<StmtNode *>> &P); | ||
| 957 | raw_ostream &operator<<(raw_ostream &OS, | ||
| 958 | const Print<NodeAddr<InstrNode *>> &P); | ||
| 959 | raw_ostream &operator<<(raw_ostream &OS, | ||
| 960 | const Print<NodeAddr<BlockNode *>> &P); | ||
| 961 | raw_ostream &operator<<(raw_ostream &OS, | ||
| 962 | const Print<NodeAddr<FuncNode *>> &P); | ||
| 963 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P); | ||
| 964 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P); | ||
| 965 | raw_ostream &operator<<(raw_ostream &OS, | ||
| 966 | const Print<DataFlowGraph::DefStack> &P); | ||
| 967 | |||
| 968 | } // end namespace rdf | ||
| 969 | |||
| 970 | } // end namespace llvm | ||
| 971 | |||
| 972 | #endif // LLVM_CODEGEN_RDFGRAPH_H |