Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // PBQP Graph class. |
||
10 | // |
||
11 | //===----------------------------------------------------------------------===// |
||
12 | |||
13 | #ifndef LLVM_CODEGEN_PBQP_GRAPH_H |
||
14 | #define LLVM_CODEGEN_PBQP_GRAPH_H |
||
15 | |||
16 | #include "llvm/ADT/STLExtras.h" |
||
17 | #include <algorithm> |
||
18 | #include <cassert> |
||
19 | #include <iterator> |
||
20 | #include <limits> |
||
21 | #include <vector> |
||
22 | |||
23 | namespace llvm { |
||
24 | namespace PBQP { |
||
25 | |||
26 | class GraphBase { |
||
27 | public: |
||
28 | using NodeId = unsigned; |
||
29 | using EdgeId = unsigned; |
||
30 | |||
31 | /// Returns a value representing an invalid (non-existent) node. |
||
32 | static NodeId invalidNodeId() { |
||
33 | return std::numeric_limits<NodeId>::max(); |
||
34 | } |
||
35 | |||
36 | /// Returns a value representing an invalid (non-existent) edge. |
||
37 | static EdgeId invalidEdgeId() { |
||
38 | return std::numeric_limits<EdgeId>::max(); |
||
39 | } |
||
40 | }; |
||
41 | |||
42 | /// PBQP Graph class. |
||
43 | /// Instances of this class describe PBQP problems. |
||
44 | /// |
||
45 | template <typename SolverT> |
||
46 | class Graph : public GraphBase { |
||
47 | private: |
||
48 | using CostAllocator = typename SolverT::CostAllocator; |
||
49 | |||
50 | public: |
||
51 | using RawVector = typename SolverT::RawVector; |
||
52 | using RawMatrix = typename SolverT::RawMatrix; |
||
53 | using Vector = typename SolverT::Vector; |
||
54 | using Matrix = typename SolverT::Matrix; |
||
55 | using VectorPtr = typename CostAllocator::VectorPtr; |
||
56 | using MatrixPtr = typename CostAllocator::MatrixPtr; |
||
57 | using NodeMetadata = typename SolverT::NodeMetadata; |
||
58 | using EdgeMetadata = typename SolverT::EdgeMetadata; |
||
59 | using GraphMetadata = typename SolverT::GraphMetadata; |
||
60 | |||
61 | private: |
||
62 | class NodeEntry { |
||
63 | public: |
||
64 | using AdjEdgeList = std::vector<EdgeId>; |
||
65 | using AdjEdgeIdx = AdjEdgeList::size_type; |
||
66 | using AdjEdgeItr = AdjEdgeList::const_iterator; |
||
67 | |||
68 | NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {} |
||
69 | |||
70 | static AdjEdgeIdx getInvalidAdjEdgeIdx() { |
||
71 | return std::numeric_limits<AdjEdgeIdx>::max(); |
||
72 | } |
||
73 | |||
74 | AdjEdgeIdx addAdjEdgeId(EdgeId EId) { |
||
75 | AdjEdgeIdx Idx = AdjEdgeIds.size(); |
||
76 | AdjEdgeIds.push_back(EId); |
||
77 | return Idx; |
||
78 | } |
||
79 | |||
80 | void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) { |
||
81 | // Swap-and-pop for fast removal. |
||
82 | // 1) Update the adj index of the edge currently at back(). |
||
83 | // 2) Move last Edge down to Idx. |
||
84 | // 3) pop_back() |
||
85 | // If Idx == size() - 1 then the setAdjEdgeIdx and swap are |
||
86 | // redundant, but both operations are cheap. |
||
87 | G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx); |
||
88 | AdjEdgeIds[Idx] = AdjEdgeIds.back(); |
||
89 | AdjEdgeIds.pop_back(); |
||
90 | } |
||
91 | |||
92 | const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; } |
||
93 | |||
94 | VectorPtr Costs; |
||
95 | NodeMetadata Metadata; |
||
96 | |||
97 | private: |
||
98 | AdjEdgeList AdjEdgeIds; |
||
99 | }; |
||
100 | |||
101 | class EdgeEntry { |
||
102 | public: |
||
103 | EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs) |
||
104 | : Costs(std::move(Costs)) { |
||
105 | NIds[0] = N1Id; |
||
106 | NIds[1] = N2Id; |
||
107 | ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx(); |
||
108 | ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx(); |
||
109 | } |
||
110 | |||
111 | void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) { |
||
112 | assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() && |
||
113 | "Edge already connected to NIds[NIdx]."); |
||
114 | NodeEntry &N = G.getNode(NIds[NIdx]); |
||
115 | ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId); |
||
116 | } |
||
117 | |||
118 | void connect(Graph &G, EdgeId ThisEdgeId) { |
||
119 | connectToN(G, ThisEdgeId, 0); |
||
120 | connectToN(G, ThisEdgeId, 1); |
||
121 | } |
||
122 | |||
123 | void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) { |
||
124 | if (NId == NIds[0]) |
||
125 | ThisEdgeAdjIdxs[0] = NewIdx; |
||
126 | else { |
||
127 | assert(NId == NIds[1] && "Edge not connected to NId"); |
||
128 | ThisEdgeAdjIdxs[1] = NewIdx; |
||
129 | } |
||
130 | } |
||
131 | |||
132 | void disconnectFromN(Graph &G, unsigned NIdx) { |
||
133 | assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() && |
||
134 | "Edge not connected to NIds[NIdx]."); |
||
135 | NodeEntry &N = G.getNode(NIds[NIdx]); |
||
136 | N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]); |
||
137 | ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx(); |
||
138 | } |
||
139 | |||
140 | void disconnectFrom(Graph &G, NodeId NId) { |
||
141 | if (NId == NIds[0]) |
||
142 | disconnectFromN(G, 0); |
||
143 | else { |
||
144 | assert(NId == NIds[1] && "Edge does not connect NId"); |
||
145 | disconnectFromN(G, 1); |
||
146 | } |
||
147 | } |
||
148 | |||
149 | NodeId getN1Id() const { return NIds[0]; } |
||
150 | NodeId getN2Id() const { return NIds[1]; } |
||
151 | |||
152 | MatrixPtr Costs; |
||
153 | EdgeMetadata Metadata; |
||
154 | |||
155 | private: |
||
156 | NodeId NIds[2]; |
||
157 | typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2]; |
||
158 | }; |
||
159 | |||
160 | // ----- MEMBERS ----- |
||
161 | |||
162 | GraphMetadata Metadata; |
||
163 | CostAllocator CostAlloc; |
||
164 | SolverT *Solver = nullptr; |
||
165 | |||
166 | using NodeVector = std::vector<NodeEntry>; |
||
167 | using FreeNodeVector = std::vector<NodeId>; |
||
168 | NodeVector Nodes; |
||
169 | FreeNodeVector FreeNodeIds; |
||
170 | |||
171 | using EdgeVector = std::vector<EdgeEntry>; |
||
172 | using FreeEdgeVector = std::vector<EdgeId>; |
||
173 | EdgeVector Edges; |
||
174 | FreeEdgeVector FreeEdgeIds; |
||
175 | |||
176 | Graph(const Graph &Other) {} |
||
177 | |||
178 | // ----- INTERNAL METHODS ----- |
||
179 | |||
180 | NodeEntry &getNode(NodeId NId) { |
||
181 | assert(NId < Nodes.size() && "Out of bound NodeId"); |
||
182 | return Nodes[NId]; |
||
183 | } |
||
184 | const NodeEntry &getNode(NodeId NId) const { |
||
185 | assert(NId < Nodes.size() && "Out of bound NodeId"); |
||
186 | return Nodes[NId]; |
||
187 | } |
||
188 | |||
189 | EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; } |
||
190 | const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; } |
||
191 | |||
192 | NodeId addConstructedNode(NodeEntry N) { |
||
193 | NodeId NId = 0; |
||
194 | if (!FreeNodeIds.empty()) { |
||
195 | NId = FreeNodeIds.back(); |
||
196 | FreeNodeIds.pop_back(); |
||
197 | Nodes[NId] = std::move(N); |
||
198 | } else { |
||
199 | NId = Nodes.size(); |
||
200 | Nodes.push_back(std::move(N)); |
||
201 | } |
||
202 | return NId; |
||
203 | } |
||
204 | |||
205 | EdgeId addConstructedEdge(EdgeEntry E) { |
||
206 | assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() && |
||
207 | "Attempt to add duplicate edge."); |
||
208 | EdgeId EId = 0; |
||
209 | if (!FreeEdgeIds.empty()) { |
||
210 | EId = FreeEdgeIds.back(); |
||
211 | FreeEdgeIds.pop_back(); |
||
212 | Edges[EId] = std::move(E); |
||
213 | } else { |
||
214 | EId = Edges.size(); |
||
215 | Edges.push_back(std::move(E)); |
||
216 | } |
||
217 | |||
218 | EdgeEntry &NE = getEdge(EId); |
||
219 | |||
220 | // Add the edge to the adjacency sets of its nodes. |
||
221 | NE.connect(*this, EId); |
||
222 | return EId; |
||
223 | } |
||
224 | |||
225 | void operator=(const Graph &Other) {} |
||
226 | |||
227 | public: |
||
228 | using AdjEdgeItr = typename NodeEntry::AdjEdgeItr; |
||
229 | |||
230 | class NodeItr { |
||
231 | public: |
||
232 | using iterator_category = std::forward_iterator_tag; |
||
233 | using value_type = NodeId; |
||
234 | using difference_type = int; |
||
235 | using pointer = NodeId *; |
||
236 | using reference = NodeId &; |
||
237 | |||
238 | NodeItr(NodeId CurNId, const Graph &G) |
||
239 | : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) { |
||
240 | this->CurNId = findNextInUse(CurNId); // Move to first in-use node id |
||
241 | } |
||
242 | |||
243 | bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; } |
||
244 | bool operator!=(const NodeItr &O) const { return !(*this == O); } |
||
245 | NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; } |
||
246 | NodeId operator*() const { return CurNId; } |
||
247 | |||
248 | private: |
||
249 | NodeId findNextInUse(NodeId NId) const { |
||
250 | while (NId < EndNId && is_contained(FreeNodeIds, NId)) { |
||
251 | ++NId; |
||
252 | } |
||
253 | return NId; |
||
254 | } |
||
255 | |||
256 | NodeId CurNId, EndNId; |
||
257 | const FreeNodeVector &FreeNodeIds; |
||
258 | }; |
||
259 | |||
260 | class EdgeItr { |
||
261 | public: |
||
262 | EdgeItr(EdgeId CurEId, const Graph &G) |
||
263 | : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) { |
||
264 | this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id |
||
265 | } |
||
266 | |||
267 | bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; } |
||
268 | bool operator!=(const EdgeItr &O) const { return !(*this == O); } |
||
269 | EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; } |
||
270 | EdgeId operator*() const { return CurEId; } |
||
271 | |||
272 | private: |
||
273 | EdgeId findNextInUse(EdgeId EId) const { |
||
274 | while (EId < EndEId && is_contained(FreeEdgeIds, EId)) { |
||
275 | ++EId; |
||
276 | } |
||
277 | return EId; |
||
278 | } |
||
279 | |||
280 | EdgeId CurEId, EndEId; |
||
281 | const FreeEdgeVector &FreeEdgeIds; |
||
282 | }; |
||
283 | |||
284 | class NodeIdSet { |
||
285 | public: |
||
286 | NodeIdSet(const Graph &G) : G(G) {} |
||
287 | |||
288 | NodeItr begin() const { return NodeItr(0, G); } |
||
289 | NodeItr end() const { return NodeItr(G.Nodes.size(), G); } |
||
290 | |||
291 | bool empty() const { return G.Nodes.empty(); } |
||
292 | |||
293 | typename NodeVector::size_type size() const { |
||
294 | return G.Nodes.size() - G.FreeNodeIds.size(); |
||
295 | } |
||
296 | |||
297 | private: |
||
298 | const Graph& G; |
||
299 | }; |
||
300 | |||
301 | class EdgeIdSet { |
||
302 | public: |
||
303 | EdgeIdSet(const Graph &G) : G(G) {} |
||
304 | |||
305 | EdgeItr begin() const { return EdgeItr(0, G); } |
||
306 | EdgeItr end() const { return EdgeItr(G.Edges.size(), G); } |
||
307 | |||
308 | bool empty() const { return G.Edges.empty(); } |
||
309 | |||
310 | typename NodeVector::size_type size() const { |
||
311 | return G.Edges.size() - G.FreeEdgeIds.size(); |
||
312 | } |
||
313 | |||
314 | private: |
||
315 | const Graph& G; |
||
316 | }; |
||
317 | |||
318 | class AdjEdgeIdSet { |
||
319 | public: |
||
320 | AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {} |
||
321 | |||
322 | typename NodeEntry::AdjEdgeItr begin() const { |
||
323 | return NE.getAdjEdgeIds().begin(); |
||
324 | } |
||
325 | |||
326 | typename NodeEntry::AdjEdgeItr end() const { |
||
327 | return NE.getAdjEdgeIds().end(); |
||
328 | } |
||
329 | |||
330 | bool empty() const { return NE.getAdjEdgeIds().empty(); } |
||
331 | |||
332 | typename NodeEntry::AdjEdgeList::size_type size() const { |
||
333 | return NE.getAdjEdgeIds().size(); |
||
334 | } |
||
335 | |||
336 | private: |
||
337 | const NodeEntry &NE; |
||
338 | }; |
||
339 | |||
340 | /// Construct an empty PBQP graph. |
||
341 | Graph() = default; |
||
342 | |||
343 | /// Construct an empty PBQP graph with the given graph metadata. |
||
344 | Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {} |
||
345 | |||
346 | /// Get a reference to the graph metadata. |
||
347 | GraphMetadata& getMetadata() { return Metadata; } |
||
348 | |||
349 | /// Get a const-reference to the graph metadata. |
||
350 | const GraphMetadata& getMetadata() const { return Metadata; } |
||
351 | |||
352 | /// Lock this graph to the given solver instance in preparation |
||
353 | /// for running the solver. This method will call solver.handleAddNode for |
||
354 | /// each node in the graph, and handleAddEdge for each edge, to give the |
||
355 | /// solver an opportunity to set up any requried metadata. |
||
356 | void setSolver(SolverT &S) { |
||
357 | assert(!Solver && "Solver already set. Call unsetSolver()."); |
||
358 | Solver = &S; |
||
359 | for (auto NId : nodeIds()) |
||
360 | Solver->handleAddNode(NId); |
||
361 | for (auto EId : edgeIds()) |
||
362 | Solver->handleAddEdge(EId); |
||
363 | } |
||
364 | |||
365 | /// Release from solver instance. |
||
366 | void unsetSolver() { |
||
367 | assert(Solver && "Solver not set."); |
||
368 | Solver = nullptr; |
||
369 | } |
||
370 | |||
371 | /// Add a node with the given costs. |
||
372 | /// @param Costs Cost vector for the new node. |
||
373 | /// @return Node iterator for the added node. |
||
374 | template <typename OtherVectorT> |
||
375 | NodeId addNode(OtherVectorT Costs) { |
||
376 | // Get cost vector from the problem domain |
||
377 | VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); |
||
378 | NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts)); |
||
379 | if (Solver) |
||
380 | Solver->handleAddNode(NId); |
||
381 | return NId; |
||
382 | } |
||
383 | |||
384 | /// Add a node bypassing the cost allocator. |
||
385 | /// @param Costs Cost vector ptr for the new node (must be convertible to |
||
386 | /// VectorPtr). |
||
387 | /// @return Node iterator for the added node. |
||
388 | /// |
||
389 | /// This method allows for fast addition of a node whose costs don't need |
||
390 | /// to be passed through the cost allocator. The most common use case for |
||
391 | /// this is when duplicating costs from an existing node (when using a |
||
392 | /// pooling allocator). These have already been uniqued, so we can avoid |
||
393 | /// re-constructing and re-uniquing them by attaching them directly to the |
||
394 | /// new node. |
||
395 | template <typename OtherVectorPtrT> |
||
396 | NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) { |
||
397 | NodeId NId = addConstructedNode(NodeEntry(Costs)); |
||
398 | if (Solver) |
||
399 | Solver->handleAddNode(NId); |
||
400 | return NId; |
||
401 | } |
||
402 | |||
403 | /// Add an edge between the given nodes with the given costs. |
||
404 | /// @param N1Id First node. |
||
405 | /// @param N2Id Second node. |
||
406 | /// @param Costs Cost matrix for new edge. |
||
407 | /// @return Edge iterator for the added edge. |
||
408 | template <typename OtherVectorT> |
||
409 | EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) { |
||
410 | assert(getNodeCosts(N1Id).getLength() == Costs.getRows() && |
||
411 | getNodeCosts(N2Id).getLength() == Costs.getCols() && |
||
412 | "Matrix dimensions mismatch."); |
||
413 | // Get cost matrix from the problem domain. |
||
414 | MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); |
||
415 | EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts)); |
||
416 | if (Solver) |
||
417 | Solver->handleAddEdge(EId); |
||
418 | return EId; |
||
419 | } |
||
420 | |||
421 | /// Add an edge bypassing the cost allocator. |
||
422 | /// @param N1Id First node. |
||
423 | /// @param N2Id Second node. |
||
424 | /// @param Costs Cost matrix for new edge. |
||
425 | /// @return Edge iterator for the added edge. |
||
426 | /// |
||
427 | /// This method allows for fast addition of an edge whose costs don't need |
||
428 | /// to be passed through the cost allocator. The most common use case for |
||
429 | /// this is when duplicating costs from an existing edge (when using a |
||
430 | /// pooling allocator). These have already been uniqued, so we can avoid |
||
431 | /// re-constructing and re-uniquing them by attaching them directly to the |
||
432 | /// new edge. |
||
433 | template <typename OtherMatrixPtrT> |
||
434 | NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id, |
||
435 | OtherMatrixPtrT Costs) { |
||
436 | assert(getNodeCosts(N1Id).getLength() == Costs->getRows() && |
||
437 | getNodeCosts(N2Id).getLength() == Costs->getCols() && |
||
438 | "Matrix dimensions mismatch."); |
||
439 | // Get cost matrix from the problem domain. |
||
440 | EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs)); |
||
441 | if (Solver) |
||
442 | Solver->handleAddEdge(EId); |
||
443 | return EId; |
||
444 | } |
||
445 | |||
446 | /// Returns true if the graph is empty. |
||
447 | bool empty() const { return NodeIdSet(*this).empty(); } |
||
448 | |||
449 | NodeIdSet nodeIds() const { return NodeIdSet(*this); } |
||
450 | EdgeIdSet edgeIds() const { return EdgeIdSet(*this); } |
||
451 | |||
452 | AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); } |
||
453 | |||
454 | /// Get the number of nodes in the graph. |
||
455 | /// @return Number of nodes in the graph. |
||
456 | unsigned getNumNodes() const { return NodeIdSet(*this).size(); } |
||
457 | |||
458 | /// Get the number of edges in the graph. |
||
459 | /// @return Number of edges in the graph. |
||
460 | unsigned getNumEdges() const { return EdgeIdSet(*this).size(); } |
||
461 | |||
462 | /// Set a node's cost vector. |
||
463 | /// @param NId Node to update. |
||
464 | /// @param Costs New costs to set. |
||
465 | template <typename OtherVectorT> |
||
466 | void setNodeCosts(NodeId NId, OtherVectorT Costs) { |
||
467 | VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); |
||
468 | if (Solver) |
||
469 | Solver->handleSetNodeCosts(NId, *AllocatedCosts); |
||
470 | getNode(NId).Costs = AllocatedCosts; |
||
471 | } |
||
472 | |||
473 | /// Get a VectorPtr to a node's cost vector. Rarely useful - use |
||
474 | /// getNodeCosts where possible. |
||
475 | /// @param NId Node id. |
||
476 | /// @return VectorPtr to node cost vector. |
||
477 | /// |
||
478 | /// This method is primarily useful for duplicating costs quickly by |
||
479 | /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer |
||
480 | /// getNodeCosts when dealing with node cost values. |
||
481 | const VectorPtr& getNodeCostsPtr(NodeId NId) const { |
||
482 | return getNode(NId).Costs; |
||
483 | } |
||
484 | |||
485 | /// Get a node's cost vector. |
||
486 | /// @param NId Node id. |
||
487 | /// @return Node cost vector. |
||
488 | const Vector& getNodeCosts(NodeId NId) const { |
||
489 | return *getNodeCostsPtr(NId); |
||
490 | } |
||
491 | |||
492 | NodeMetadata& getNodeMetadata(NodeId NId) { |
||
493 | return getNode(NId).Metadata; |
||
494 | } |
||
495 | |||
496 | const NodeMetadata& getNodeMetadata(NodeId NId) const { |
||
497 | return getNode(NId).Metadata; |
||
498 | } |
||
499 | |||
500 | typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const { |
||
501 | return getNode(NId).getAdjEdgeIds().size(); |
||
502 | } |
||
503 | |||
504 | /// Update an edge's cost matrix. |
||
505 | /// @param EId Edge id. |
||
506 | /// @param Costs New cost matrix. |
||
507 | template <typename OtherMatrixT> |
||
508 | void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) { |
||
509 | MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); |
||
510 | if (Solver) |
||
511 | Solver->handleUpdateCosts(EId, *AllocatedCosts); |
||
512 | getEdge(EId).Costs = AllocatedCosts; |
||
513 | } |
||
514 | |||
515 | /// Get a MatrixPtr to a node's cost matrix. Rarely useful - use |
||
516 | /// getEdgeCosts where possible. |
||
517 | /// @param EId Edge id. |
||
518 | /// @return MatrixPtr to edge cost matrix. |
||
519 | /// |
||
520 | /// This method is primarily useful for duplicating costs quickly by |
||
521 | /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer |
||
522 | /// getEdgeCosts when dealing with edge cost values. |
||
523 | const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const { |
||
524 | return getEdge(EId).Costs; |
||
525 | } |
||
526 | |||
527 | /// Get an edge's cost matrix. |
||
528 | /// @param EId Edge id. |
||
529 | /// @return Edge cost matrix. |
||
530 | const Matrix& getEdgeCosts(EdgeId EId) const { |
||
531 | return *getEdge(EId).Costs; |
||
532 | } |
||
533 | |||
534 | EdgeMetadata& getEdgeMetadata(EdgeId EId) { |
||
535 | return getEdge(EId).Metadata; |
||
536 | } |
||
537 | |||
538 | const EdgeMetadata& getEdgeMetadata(EdgeId EId) const { |
||
539 | return getEdge(EId).Metadata; |
||
540 | } |
||
541 | |||
542 | /// Get the first node connected to this edge. |
||
543 | /// @param EId Edge id. |
||
544 | /// @return The first node connected to the given edge. |
||
545 | NodeId getEdgeNode1Id(EdgeId EId) const { |
||
546 | return getEdge(EId).getN1Id(); |
||
547 | } |
||
548 | |||
549 | /// Get the second node connected to this edge. |
||
550 | /// @param EId Edge id. |
||
551 | /// @return The second node connected to the given edge. |
||
552 | NodeId getEdgeNode2Id(EdgeId EId) const { |
||
553 | return getEdge(EId).getN2Id(); |
||
554 | } |
||
555 | |||
556 | /// Get the "other" node connected to this edge. |
||
557 | /// @param EId Edge id. |
||
558 | /// @param NId Node id for the "given" node. |
||
559 | /// @return The iterator for the "other" node connected to this edge. |
||
560 | NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) { |
||
561 | EdgeEntry &E = getEdge(EId); |
||
562 | if (E.getN1Id() == NId) { |
||
563 | return E.getN2Id(); |
||
564 | } // else |
||
565 | return E.getN1Id(); |
||
566 | } |
||
567 | |||
568 | /// Get the edge connecting two nodes. |
||
569 | /// @param N1Id First node id. |
||
570 | /// @param N2Id Second node id. |
||
571 | /// @return An id for edge (N1Id, N2Id) if such an edge exists, |
||
572 | /// otherwise returns an invalid edge id. |
||
573 | EdgeId findEdge(NodeId N1Id, NodeId N2Id) { |
||
574 | for (auto AEId : adjEdgeIds(N1Id)) { |
||
575 | if ((getEdgeNode1Id(AEId) == N2Id) || |
||
576 | (getEdgeNode2Id(AEId) == N2Id)) { |
||
577 | return AEId; |
||
578 | } |
||
579 | } |
||
580 | return invalidEdgeId(); |
||
581 | } |
||
582 | |||
583 | /// Remove a node from the graph. |
||
584 | /// @param NId Node id. |
||
585 | void removeNode(NodeId NId) { |
||
586 | if (Solver) |
||
587 | Solver->handleRemoveNode(NId); |
||
588 | NodeEntry &N = getNode(NId); |
||
589 | // TODO: Can this be for-each'd? |
||
590 | for (AdjEdgeItr AEItr = N.adjEdgesBegin(), |
||
591 | AEEnd = N.adjEdgesEnd(); |
||
592 | AEItr != AEEnd;) { |
||
593 | EdgeId EId = *AEItr; |
||
594 | ++AEItr; |
||
595 | removeEdge(EId); |
||
596 | } |
||
597 | FreeNodeIds.push_back(NId); |
||
598 | } |
||
599 | |||
600 | /// Disconnect an edge from the given node. |
||
601 | /// |
||
602 | /// Removes the given edge from the adjacency list of the given node. |
||
603 | /// This operation leaves the edge in an 'asymmetric' state: It will no |
||
604 | /// longer appear in an iteration over the given node's (NId's) edges, but |
||
605 | /// will appear in an iteration over the 'other', unnamed node's edges. |
||
606 | /// |
||
607 | /// This does not correspond to any normal graph operation, but exists to |
||
608 | /// support efficient PBQP graph-reduction based solvers. It is used to |
||
609 | /// 'effectively' remove the unnamed node from the graph while the solver |
||
610 | /// is performing the reduction. The solver will later call reconnectNode |
||
611 | /// to restore the edge in the named node's adjacency list. |
||
612 | /// |
||
613 | /// Since the degree of a node is the number of connected edges, |
||
614 | /// disconnecting an edge from a node 'u' will cause the degree of 'u' to |
||
615 | /// drop by 1. |
||
616 | /// |
||
617 | /// A disconnected edge WILL still appear in an iteration over the graph |
||
618 | /// edges. |
||
619 | /// |
||
620 | /// A disconnected edge should not be removed from the graph, it should be |
||
621 | /// reconnected first. |
||
622 | /// |
||
623 | /// A disconnected edge can be reconnected by calling the reconnectEdge |
||
624 | /// method. |
||
625 | void disconnectEdge(EdgeId EId, NodeId NId) { |
||
626 | if (Solver) |
||
627 | Solver->handleDisconnectEdge(EId, NId); |
||
628 | |||
629 | EdgeEntry &E = getEdge(EId); |
||
630 | E.disconnectFrom(*this, NId); |
||
631 | } |
||
632 | |||
633 | /// Convenience method to disconnect all neighbours from the given |
||
634 | /// node. |
||
635 | void disconnectAllNeighborsFromNode(NodeId NId) { |
||
636 | for (auto AEId : adjEdgeIds(NId)) |
||
637 | disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId)); |
||
638 | } |
||
639 | |||
640 | /// Re-attach an edge to its nodes. |
||
641 | /// |
||
642 | /// Adds an edge that had been previously disconnected back into the |
||
643 | /// adjacency set of the nodes that the edge connects. |
||
644 | void reconnectEdge(EdgeId EId, NodeId NId) { |
||
645 | EdgeEntry &E = getEdge(EId); |
||
646 | E.connectTo(*this, EId, NId); |
||
647 | if (Solver) |
||
648 | Solver->handleReconnectEdge(EId, NId); |
||
649 | } |
||
650 | |||
651 | /// Remove an edge from the graph. |
||
652 | /// @param EId Edge id. |
||
653 | void removeEdge(EdgeId EId) { |
||
654 | if (Solver) |
||
655 | Solver->handleRemoveEdge(EId); |
||
656 | EdgeEntry &E = getEdge(EId); |
||
657 | E.disconnect(); |
||
658 | FreeEdgeIds.push_back(EId); |
||
659 | Edges[EId].invalidate(); |
||
660 | } |
||
661 | |||
662 | /// Remove all nodes and edges from the graph. |
||
663 | void clear() { |
||
664 | Nodes.clear(); |
||
665 | FreeNodeIds.clear(); |
||
666 | Edges.clear(); |
||
667 | FreeEdgeIds.clear(); |
||
668 | } |
||
669 | }; |
||
670 | |||
671 | } // end namespace PBQP |
||
672 | } // end namespace llvm |
||
673 | |||
674 | #endif // LLVM_CODEGEN_PBQP_GRAPH_H |