Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file provides an interface for customizing the standard MachineScheduler |
||
10 | // pass. Note that the entire pass may be replaced as follows: |
||
11 | // |
||
12 | // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) { |
||
13 | // PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID); |
||
14 | // ...} |
||
15 | // |
||
16 | // The MachineScheduler pass is only responsible for choosing the regions to be |
||
17 | // scheduled. Targets can override the DAG builder and scheduler without |
||
18 | // replacing the pass as follows: |
||
19 | // |
||
20 | // ScheduleDAGInstrs *<Target>PassConfig:: |
||
21 | // createMachineScheduler(MachineSchedContext *C) { |
||
22 | // return new CustomMachineScheduler(C); |
||
23 | // } |
||
24 | // |
||
25 | // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list |
||
26 | // scheduling while updating the instruction stream, register pressure, and live |
||
27 | // intervals. Most targets don't need to override the DAG builder and list |
||
28 | // scheduler, but subtargets that require custom scheduling heuristics may |
||
29 | // plugin an alternate MachineSchedStrategy. The strategy is responsible for |
||
30 | // selecting the highest priority node from the list: |
||
31 | // |
||
32 | // ScheduleDAGInstrs *<Target>PassConfig:: |
||
33 | // createMachineScheduler(MachineSchedContext *C) { |
||
34 | // return new ScheduleDAGMILive(C, CustomStrategy(C)); |
||
35 | // } |
||
36 | // |
||
37 | // The DAG builder can also be customized in a sense by adding DAG mutations |
||
38 | // that will run after DAG building and before list scheduling. DAG mutations |
||
39 | // can adjust dependencies based on target-specific knowledge or add weak edges |
||
40 | // to aid heuristics: |
||
41 | // |
||
42 | // ScheduleDAGInstrs *<Target>PassConfig:: |
||
43 | // createMachineScheduler(MachineSchedContext *C) { |
||
44 | // ScheduleDAGMI *DAG = createGenericSchedLive(C); |
||
45 | // DAG->addMutation(new CustomDAGMutation(...)); |
||
46 | // return DAG; |
||
47 | // } |
||
48 | // |
||
49 | // A target that supports alternative schedulers can use the |
||
50 | // MachineSchedRegistry to allow command line selection. This can be done by |
||
51 | // implementing the following boilerplate: |
||
52 | // |
||
53 | // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) { |
||
54 | // return new CustomMachineScheduler(C); |
||
55 | // } |
||
56 | // static MachineSchedRegistry |
||
57 | // SchedCustomRegistry("custom", "Run my target's custom scheduler", |
||
58 | // createCustomMachineSched); |
||
59 | // |
||
60 | // |
||
61 | // Finally, subtargets that don't need to implement custom heuristics but would |
||
62 | // like to configure the GenericScheduler's policy for a given scheduler region, |
||
63 | // including scheduling direction and register pressure tracking policy, can do |
||
64 | // this: |
||
65 | // |
||
66 | // void <SubTarget>Subtarget:: |
||
67 | // overrideSchedPolicy(MachineSchedPolicy &Policy, |
||
68 | // unsigned NumRegionInstrs) const { |
||
69 | // Policy.<Flag> = true; |
||
70 | // } |
||
71 | // |
||
72 | //===----------------------------------------------------------------------===// |
||
73 | |||
74 | #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H |
||
75 | #define LLVM_CODEGEN_MACHINESCHEDULER_H |
||
76 | |||
77 | #include "llvm/ADT/APInt.h" |
||
78 | #include "llvm/ADT/ArrayRef.h" |
||
79 | #include "llvm/ADT/BitVector.h" |
||
80 | #include "llvm/ADT/STLExtras.h" |
||
81 | #include "llvm/ADT/SmallVector.h" |
||
82 | #include "llvm/ADT/StringRef.h" |
||
83 | #include "llvm/ADT/Twine.h" |
||
84 | #include "llvm/CodeGen/MachineBasicBlock.h" |
||
85 | #include "llvm/CodeGen/MachinePassRegistry.h" |
||
86 | #include "llvm/CodeGen/RegisterPressure.h" |
||
87 | #include "llvm/CodeGen/ScheduleDAG.h" |
||
88 | #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
||
89 | #include "llvm/CodeGen/ScheduleDAGMutation.h" |
||
90 | #include "llvm/CodeGen/TargetSchedule.h" |
||
91 | #include "llvm/Support/CommandLine.h" |
||
92 | #include "llvm/Support/ErrorHandling.h" |
||
93 | #include <algorithm> |
||
94 | #include <cassert> |
||
95 | #include <memory> |
||
96 | #include <string> |
||
97 | #include <vector> |
||
98 | |||
99 | namespace llvm { |
||
100 | |||
101 | extern cl::opt<bool> ForceTopDown; |
||
102 | extern cl::opt<bool> ForceBottomUp; |
||
103 | extern cl::opt<bool> VerifyScheduling; |
||
104 | #ifndef NDEBUG |
||
105 | extern cl::opt<bool> ViewMISchedDAGs; |
||
106 | extern cl::opt<bool> PrintDAGs; |
||
107 | #else |
||
108 | extern const bool ViewMISchedDAGs; |
||
109 | extern const bool PrintDAGs; |
||
110 | #endif |
||
111 | |||
112 | class AAResults; |
||
113 | class LiveIntervals; |
||
114 | class MachineDominatorTree; |
||
115 | class MachineFunction; |
||
116 | class MachineInstr; |
||
117 | class MachineLoopInfo; |
||
118 | class RegisterClassInfo; |
||
119 | class SchedDFSResult; |
||
120 | class ScheduleHazardRecognizer; |
||
121 | class TargetInstrInfo; |
||
122 | class TargetPassConfig; |
||
123 | class TargetRegisterInfo; |
||
124 | |||
125 | /// MachineSchedContext provides enough context from the MachineScheduler pass |
||
126 | /// for the target to instantiate a scheduler. |
||
127 | struct MachineSchedContext { |
||
128 | MachineFunction *MF = nullptr; |
||
129 | const MachineLoopInfo *MLI = nullptr; |
||
130 | const MachineDominatorTree *MDT = nullptr; |
||
131 | const TargetPassConfig *PassConfig = nullptr; |
||
132 | AAResults *AA = nullptr; |
||
133 | LiveIntervals *LIS = nullptr; |
||
134 | |||
135 | RegisterClassInfo *RegClassInfo; |
||
136 | |||
137 | MachineSchedContext(); |
||
138 | virtual ~MachineSchedContext(); |
||
139 | }; |
||
140 | |||
141 | /// MachineSchedRegistry provides a selection of available machine instruction |
||
142 | /// schedulers. |
||
143 | class MachineSchedRegistry |
||
144 | : public MachinePassRegistryNode< |
||
145 | ScheduleDAGInstrs *(*)(MachineSchedContext *)> { |
||
146 | public: |
||
147 | using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *); |
||
148 | |||
149 | // RegisterPassParser requires a (misnamed) FunctionPassCtor type. |
||
150 | using FunctionPassCtor = ScheduleDAGCtor; |
||
151 | |||
152 | static MachinePassRegistry<ScheduleDAGCtor> Registry; |
||
153 | |||
154 | MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C) |
||
155 | : MachinePassRegistryNode(N, D, C) { |
||
156 | Registry.Add(this); |
||
157 | } |
||
158 | |||
159 | ~MachineSchedRegistry() { Registry.Remove(this); } |
||
160 | |||
161 | // Accessors. |
||
162 | // |
||
163 | MachineSchedRegistry *getNext() const { |
||
164 | return (MachineSchedRegistry *)MachinePassRegistryNode::getNext(); |
||
165 | } |
||
166 | |||
167 | static MachineSchedRegistry *getList() { |
||
168 | return (MachineSchedRegistry *)Registry.getList(); |
||
169 | } |
||
170 | |||
171 | static void setListener(MachinePassRegistryListener<FunctionPassCtor> *L) { |
||
172 | Registry.setListener(L); |
||
173 | } |
||
174 | }; |
||
175 | |||
176 | class ScheduleDAGMI; |
||
177 | |||
178 | /// Define a generic scheduling policy for targets that don't provide their own |
||
179 | /// MachineSchedStrategy. This can be overriden for each scheduling region |
||
180 | /// before building the DAG. |
||
181 | struct MachineSchedPolicy { |
||
182 | // Allow the scheduler to disable register pressure tracking. |
||
183 | bool ShouldTrackPressure = false; |
||
184 | /// Track LaneMasks to allow reordering of independent subregister writes |
||
185 | /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks() |
||
186 | bool ShouldTrackLaneMasks = false; |
||
187 | |||
188 | // Allow the scheduler to force top-down or bottom-up scheduling. If neither |
||
189 | // is true, the scheduler runs in both directions and converges. |
||
190 | bool OnlyTopDown = false; |
||
191 | bool OnlyBottomUp = false; |
||
192 | |||
193 | // Disable heuristic that tries to fetch nodes from long dependency chains |
||
194 | // first. |
||
195 | bool DisableLatencyHeuristic = false; |
||
196 | |||
197 | // Compute DFSResult for use in scheduling heuristics. |
||
198 | bool ComputeDFSResult = false; |
||
199 | |||
200 | MachineSchedPolicy() = default; |
||
201 | }; |
||
202 | |||
203 | /// MachineSchedStrategy - Interface to the scheduling algorithm used by |
||
204 | /// ScheduleDAGMI. |
||
205 | /// |
||
206 | /// Initialization sequence: |
||
207 | /// initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots |
||
208 | class MachineSchedStrategy { |
||
209 | virtual void anchor(); |
||
210 | |||
211 | public: |
||
212 | virtual ~MachineSchedStrategy() = default; |
||
213 | |||
214 | /// Optionally override the per-region scheduling policy. |
||
215 | virtual void initPolicy(MachineBasicBlock::iterator Begin, |
||
216 | MachineBasicBlock::iterator End, |
||
217 | unsigned NumRegionInstrs) {} |
||
218 | |||
219 | virtual void dumpPolicy() const {} |
||
220 | |||
221 | /// Check if pressure tracking is needed before building the DAG and |
||
222 | /// initializing this strategy. Called after initPolicy. |
||
223 | virtual bool shouldTrackPressure() const { return true; } |
||
224 | |||
225 | /// Returns true if lanemasks should be tracked. LaneMask tracking is |
||
226 | /// necessary to reorder independent subregister defs for the same vreg. |
||
227 | /// This has to be enabled in combination with shouldTrackPressure(). |
||
228 | virtual bool shouldTrackLaneMasks() const { return false; } |
||
229 | |||
230 | // If this method returns true, handling of the scheduling regions |
||
231 | // themselves (in case of a scheduling boundary in MBB) will be done |
||
232 | // beginning with the topmost region of MBB. |
||
233 | virtual bool doMBBSchedRegionsTopDown() const { return false; } |
||
234 | |||
235 | /// Initialize the strategy after building the DAG for a new region. |
||
236 | virtual void initialize(ScheduleDAGMI *DAG) = 0; |
||
237 | |||
238 | /// Tell the strategy that MBB is about to be processed. |
||
239 | virtual void enterMBB(MachineBasicBlock *MBB) {}; |
||
240 | |||
241 | /// Tell the strategy that current MBB is done. |
||
242 | virtual void leaveMBB() {}; |
||
243 | |||
244 | /// Notify this strategy that all roots have been released (including those |
||
245 | /// that depend on EntrySU or ExitSU). |
||
246 | virtual void registerRoots() {} |
||
247 | |||
248 | /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to |
||
249 | /// schedule the node at the top of the unscheduled region. Otherwise it will |
||
250 | /// be scheduled at the bottom. |
||
251 | virtual SUnit *pickNode(bool &IsTopNode) = 0; |
||
252 | |||
253 | /// Scheduler callback to notify that a new subtree is scheduled. |
||
254 | virtual void scheduleTree(unsigned SubtreeID) {} |
||
255 | |||
256 | /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an |
||
257 | /// instruction and updated scheduled/remaining flags in the DAG nodes. |
||
258 | virtual void schedNode(SUnit *SU, bool IsTopNode) = 0; |
||
259 | |||
260 | /// When all predecessor dependencies have been resolved, free this node for |
||
261 | /// top-down scheduling. |
||
262 | virtual void releaseTopNode(SUnit *SU) = 0; |
||
263 | |||
264 | /// When all successor dependencies have been resolved, free this node for |
||
265 | /// bottom-up scheduling. |
||
266 | virtual void releaseBottomNode(SUnit *SU) = 0; |
||
267 | }; |
||
268 | |||
269 | /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply |
||
270 | /// schedules machine instructions according to the given MachineSchedStrategy |
||
271 | /// without much extra book-keeping. This is the common functionality between |
||
272 | /// PreRA and PostRA MachineScheduler. |
||
273 | class ScheduleDAGMI : public ScheduleDAGInstrs { |
||
274 | protected: |
||
275 | AAResults *AA; |
||
276 | LiveIntervals *LIS; |
||
277 | std::unique_ptr<MachineSchedStrategy> SchedImpl; |
||
278 | |||
279 | /// Ordered list of DAG postprocessing steps. |
||
280 | std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; |
||
281 | |||
282 | /// The top of the unscheduled zone. |
||
283 | MachineBasicBlock::iterator CurrentTop; |
||
284 | |||
285 | /// The bottom of the unscheduled zone. |
||
286 | MachineBasicBlock::iterator CurrentBottom; |
||
287 | |||
288 | /// Record the next node in a scheduled cluster. |
||
289 | const SUnit *NextClusterPred = nullptr; |
||
290 | const SUnit *NextClusterSucc = nullptr; |
||
291 | |||
292 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
293 | /// The number of instructions scheduled so far. Used to cut off the |
||
294 | /// scheduler at the point determined by misched-cutoff. |
||
295 | unsigned NumInstrsScheduled = 0; |
||
296 | #endif |
||
297 | |||
298 | public: |
||
299 | ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S, |
||
300 | bool RemoveKillFlags) |
||
301 | : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA), |
||
302 | LIS(C->LIS), SchedImpl(std::move(S)) {} |
||
303 | |||
304 | // Provide a vtable anchor |
||
305 | ~ScheduleDAGMI() override; |
||
306 | |||
307 | /// If this method returns true, handling of the scheduling regions |
||
308 | /// themselves (in case of a scheduling boundary in MBB) will be done |
||
309 | /// beginning with the topmost region of MBB. |
||
310 | bool doMBBSchedRegionsTopDown() const override { |
||
311 | return SchedImpl->doMBBSchedRegionsTopDown(); |
||
312 | } |
||
313 | |||
314 | // Returns LiveIntervals instance for use in DAG mutators and such. |
||
315 | LiveIntervals *getLIS() const { return LIS; } |
||
316 | |||
317 | /// Return true if this DAG supports VReg liveness and RegPressure. |
||
318 | virtual bool hasVRegLiveness() const { return false; } |
||
319 | |||
320 | /// Add a postprocessing step to the DAG builder. |
||
321 | /// Mutations are applied in the order that they are added after normal DAG |
||
322 | /// building and before MachineSchedStrategy initialization. |
||
323 | /// |
||
324 | /// ScheduleDAGMI takes ownership of the Mutation object. |
||
325 | void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { |
||
326 | if (Mutation) |
||
327 | Mutations.push_back(std::move(Mutation)); |
||
328 | } |
||
329 | |||
330 | MachineBasicBlock::iterator top() const { return CurrentTop; } |
||
331 | MachineBasicBlock::iterator bottom() const { return CurrentBottom; } |
||
332 | |||
333 | /// Implement the ScheduleDAGInstrs interface for handling the next scheduling |
||
334 | /// region. This covers all instructions in a block, while schedule() may only |
||
335 | /// cover a subset. |
||
336 | void enterRegion(MachineBasicBlock *bb, |
||
337 | MachineBasicBlock::iterator begin, |
||
338 | MachineBasicBlock::iterator end, |
||
339 | unsigned regioninstrs) override; |
||
340 | |||
341 | /// Implement ScheduleDAGInstrs interface for scheduling a sequence of |
||
342 | /// reorderable instructions. |
||
343 | void schedule() override; |
||
344 | |||
345 | void startBlock(MachineBasicBlock *bb) override; |
||
346 | void finishBlock() override; |
||
347 | |||
348 | /// Change the position of an instruction within the basic block and update |
||
349 | /// live ranges and region boundary iterators. |
||
350 | void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos); |
||
351 | |||
352 | const SUnit *getNextClusterPred() const { return NextClusterPred; } |
||
353 | |||
354 | const SUnit *getNextClusterSucc() const { return NextClusterSucc; } |
||
355 | |||
356 | void viewGraph(const Twine &Name, const Twine &Title) override; |
||
357 | void viewGraph() override; |
||
358 | |||
359 | protected: |
||
360 | // Top-Level entry points for the schedule() driver... |
||
361 | |||
362 | /// Apply each ScheduleDAGMutation step in order. This allows different |
||
363 | /// instances of ScheduleDAGMI to perform custom DAG postprocessing. |
||
364 | void postprocessDAG(); |
||
365 | |||
366 | /// Release ExitSU predecessors and setup scheduler queues. |
||
367 | void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots); |
||
368 | |||
369 | /// Update scheduler DAG and queues after scheduling an instruction. |
||
370 | void updateQueues(SUnit *SU, bool IsTopNode); |
||
371 | |||
372 | /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues. |
||
373 | void placeDebugValues(); |
||
374 | |||
375 | /// dump the scheduled Sequence. |
||
376 | void dumpSchedule() const; |
||
377 | |||
378 | // Lesser helpers... |
||
379 | bool checkSchedLimit(); |
||
380 | |||
381 | void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, |
||
382 | SmallVectorImpl<SUnit*> &BotRoots); |
||
383 | |||
384 | void releaseSucc(SUnit *SU, SDep *SuccEdge); |
||
385 | void releaseSuccessors(SUnit *SU); |
||
386 | void releasePred(SUnit *SU, SDep *PredEdge); |
||
387 | void releasePredecessors(SUnit *SU); |
||
388 | }; |
||
389 | |||
390 | /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules |
||
391 | /// machine instructions while updating LiveIntervals and tracking regpressure. |
||
392 | class ScheduleDAGMILive : public ScheduleDAGMI { |
||
393 | protected: |
||
394 | RegisterClassInfo *RegClassInfo; |
||
395 | |||
396 | /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees |
||
397 | /// will be empty. |
||
398 | SchedDFSResult *DFSResult = nullptr; |
||
399 | BitVector ScheduledTrees; |
||
400 | |||
401 | MachineBasicBlock::iterator LiveRegionEnd; |
||
402 | |||
403 | /// Maps vregs to the SUnits of their uses in the current scheduling region. |
||
404 | VReg2SUnitMultiMap VRegUses; |
||
405 | |||
406 | // Map each SU to its summary of pressure changes. This array is updated for |
||
407 | // liveness during bottom-up scheduling. Top-down scheduling may proceed but |
||
408 | // has no affect on the pressure diffs. |
||
409 | PressureDiffs SUPressureDiffs; |
||
410 | |||
411 | /// Register pressure in this region computed by initRegPressure. |
||
412 | bool ShouldTrackPressure = false; |
||
413 | bool ShouldTrackLaneMasks = false; |
||
414 | IntervalPressure RegPressure; |
||
415 | RegPressureTracker RPTracker; |
||
416 | |||
417 | /// List of pressure sets that exceed the target's pressure limit before |
||
418 | /// scheduling, listed in increasing set ID order. Each pressure set is paired |
||
419 | /// with its max pressure in the currently scheduled regions. |
||
420 | std::vector<PressureChange> RegionCriticalPSets; |
||
421 | |||
422 | /// The top of the unscheduled zone. |
||
423 | IntervalPressure TopPressure; |
||
424 | RegPressureTracker TopRPTracker; |
||
425 | |||
426 | /// The bottom of the unscheduled zone. |
||
427 | IntervalPressure BotPressure; |
||
428 | RegPressureTracker BotRPTracker; |
||
429 | |||
430 | public: |
||
431 | ScheduleDAGMILive(MachineSchedContext *C, |
||
432 | std::unique_ptr<MachineSchedStrategy> S) |
||
433 | : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false), |
||
434 | RegClassInfo(C->RegClassInfo), RPTracker(RegPressure), |
||
435 | TopRPTracker(TopPressure), BotRPTracker(BotPressure) {} |
||
436 | |||
437 | ~ScheduleDAGMILive() override; |
||
438 | |||
439 | /// Return true if this DAG supports VReg liveness and RegPressure. |
||
440 | bool hasVRegLiveness() const override { return true; } |
||
441 | |||
442 | /// Return true if register pressure tracking is enabled. |
||
443 | bool isTrackingPressure() const { return ShouldTrackPressure; } |
||
444 | |||
445 | /// Get current register pressure for the top scheduled instructions. |
||
446 | const IntervalPressure &getTopPressure() const { return TopPressure; } |
||
447 | const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; } |
||
448 | |||
449 | /// Get current register pressure for the bottom scheduled instructions. |
||
450 | const IntervalPressure &getBotPressure() const { return BotPressure; } |
||
451 | const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; } |
||
452 | |||
453 | /// Get register pressure for the entire scheduling region before scheduling. |
||
454 | const IntervalPressure &getRegPressure() const { return RegPressure; } |
||
455 | |||
456 | const std::vector<PressureChange> &getRegionCriticalPSets() const { |
||
457 | return RegionCriticalPSets; |
||
458 | } |
||
459 | |||
460 | PressureDiff &getPressureDiff(const SUnit *SU) { |
||
461 | return SUPressureDiffs[SU->NodeNum]; |
||
462 | } |
||
463 | const PressureDiff &getPressureDiff(const SUnit *SU) const { |
||
464 | return SUPressureDiffs[SU->NodeNum]; |
||
465 | } |
||
466 | |||
467 | /// Compute a DFSResult after DAG building is complete, and before any |
||
468 | /// queue comparisons. |
||
469 | void computeDFSResult(); |
||
470 | |||
471 | /// Return a non-null DFS result if the scheduling strategy initialized it. |
||
472 | const SchedDFSResult *getDFSResult() const { return DFSResult; } |
||
473 | |||
474 | BitVector &getScheduledTrees() { return ScheduledTrees; } |
||
475 | |||
476 | /// Implement the ScheduleDAGInstrs interface for handling the next scheduling |
||
477 | /// region. This covers all instructions in a block, while schedule() may only |
||
478 | /// cover a subset. |
||
479 | void enterRegion(MachineBasicBlock *bb, |
||
480 | MachineBasicBlock::iterator begin, |
||
481 | MachineBasicBlock::iterator end, |
||
482 | unsigned regioninstrs) override; |
||
483 | |||
484 | /// Implement ScheduleDAGInstrs interface for scheduling a sequence of |
||
485 | /// reorderable instructions. |
||
486 | void schedule() override; |
||
487 | |||
488 | /// Compute the cyclic critical path through the DAG. |
||
489 | unsigned computeCyclicCriticalPath(); |
||
490 | |||
491 | void dump() const override; |
||
492 | |||
493 | protected: |
||
494 | // Top-Level entry points for the schedule() driver... |
||
495 | |||
496 | /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking |
||
497 | /// enabled. This sets up three trackers. RPTracker will cover the entire DAG |
||
498 | /// region, TopTracker and BottomTracker will be initialized to the top and |
||
499 | /// bottom of the DAG region without covereing any unscheduled instruction. |
||
500 | void buildDAGWithRegPressure(); |
||
501 | |||
502 | /// Release ExitSU predecessors and setup scheduler queues. Re-position |
||
503 | /// the Top RP tracker in case the region beginning has changed. |
||
504 | void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots); |
||
505 | |||
506 | /// Move an instruction and update register pressure. |
||
507 | void scheduleMI(SUnit *SU, bool IsTopNode); |
||
508 | |||
509 | // Lesser helpers... |
||
510 | |||
511 | void initRegPressure(); |
||
512 | |||
513 | void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses); |
||
514 | |||
515 | void updateScheduledPressure(const SUnit *SU, |
||
516 | const std::vector<unsigned> &NewMaxPressure); |
||
517 | |||
518 | void collectVRegUses(SUnit &SU); |
||
519 | }; |
||
520 | |||
521 | //===----------------------------------------------------------------------===// |
||
522 | /// |
||
523 | /// Helpers for implementing custom MachineSchedStrategy classes. These take |
||
524 | /// care of the book-keeping associated with list scheduling heuristics. |
||
525 | /// |
||
526 | //===----------------------------------------------------------------------===// |
||
527 | |||
528 | /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience |
||
529 | /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified |
||
530 | /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in. |
||
531 | /// |
||
532 | /// This is a convenience class that may be used by implementations of |
||
533 | /// MachineSchedStrategy. |
||
534 | class ReadyQueue { |
||
535 | unsigned ID; |
||
536 | std::string Name; |
||
537 | std::vector<SUnit*> Queue; |
||
538 | |||
539 | public: |
||
540 | ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {} |
||
541 | |||
542 | unsigned getID() const { return ID; } |
||
543 | |||
544 | StringRef getName() const { return Name; } |
||
545 | |||
546 | // SU is in this queue if it's NodeQueueID is a superset of this ID. |
||
547 | bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); } |
||
548 | |||
549 | bool empty() const { return Queue.empty(); } |
||
550 | |||
551 | void clear() { Queue.clear(); } |
||
552 | |||
553 | unsigned size() const { return Queue.size(); } |
||
554 | |||
555 | using iterator = std::vector<SUnit*>::iterator; |
||
556 | |||
557 | iterator begin() { return Queue.begin(); } |
||
558 | |||
559 | iterator end() { return Queue.end(); } |
||
560 | |||
561 | ArrayRef<SUnit*> elements() { return Queue; } |
||
562 | |||
563 | iterator find(SUnit *SU) { return llvm::find(Queue, SU); } |
||
564 | |||
565 | void push(SUnit *SU) { |
||
566 | Queue.push_back(SU); |
||
567 | SU->NodeQueueId |= ID; |
||
568 | } |
||
569 | |||
570 | iterator remove(iterator I) { |
||
571 | (*I)->NodeQueueId &= ~ID; |
||
572 | *I = Queue.back(); |
||
573 | unsigned idx = I - Queue.begin(); |
||
574 | Queue.pop_back(); |
||
575 | return Queue.begin() + idx; |
||
576 | } |
||
577 | |||
578 | void dump() const; |
||
579 | }; |
||
580 | |||
581 | /// Summarize the unscheduled region. |
||
582 | struct SchedRemainder { |
||
583 | // Critical path through the DAG in expected latency. |
||
584 | unsigned CriticalPath; |
||
585 | unsigned CyclicCritPath; |
||
586 | |||
587 | // Scaled count of micro-ops left to schedule. |
||
588 | unsigned RemIssueCount; |
||
589 | |||
590 | bool IsAcyclicLatencyLimited; |
||
591 | |||
592 | // Unscheduled resources |
||
593 | SmallVector<unsigned, 16> RemainingCounts; |
||
594 | |||
595 | SchedRemainder() { reset(); } |
||
596 | |||
597 | void reset() { |
||
598 | CriticalPath = 0; |
||
599 | CyclicCritPath = 0; |
||
600 | RemIssueCount = 0; |
||
601 | IsAcyclicLatencyLimited = false; |
||
602 | RemainingCounts.clear(); |
||
603 | } |
||
604 | |||
605 | void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); |
||
606 | }; |
||
607 | |||
608 | /// Each Scheduling boundary is associated with ready queues. It tracks the |
||
609 | /// current cycle in the direction of movement, and maintains the state |
||
610 | /// of "hazards" and other interlocks at the current cycle. |
||
611 | class SchedBoundary { |
||
612 | public: |
||
613 | /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) |
||
614 | enum { |
||
615 | TopQID = 1, |
||
616 | BotQID = 2, |
||
617 | LogMaxQID = 2 |
||
618 | }; |
||
619 | |||
620 | ScheduleDAGMI *DAG = nullptr; |
||
621 | const TargetSchedModel *SchedModel = nullptr; |
||
622 | SchedRemainder *Rem = nullptr; |
||
623 | |||
624 | ReadyQueue Available; |
||
625 | ReadyQueue Pending; |
||
626 | |||
627 | ScheduleHazardRecognizer *HazardRec = nullptr; |
||
628 | |||
629 | private: |
||
630 | /// True if the pending Q should be checked/updated before scheduling another |
||
631 | /// instruction. |
||
632 | bool CheckPending; |
||
633 | |||
634 | /// Number of cycles it takes to issue the instructions scheduled in this |
||
635 | /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. |
||
636 | /// See getStalls(). |
||
637 | unsigned CurrCycle; |
||
638 | |||
639 | /// Micro-ops issued in the current cycle |
||
640 | unsigned CurrMOps; |
||
641 | |||
642 | /// MinReadyCycle - Cycle of the soonest available instruction. |
||
643 | unsigned MinReadyCycle; |
||
644 | |||
645 | // The expected latency of the critical path in this scheduled zone. |
||
646 | unsigned ExpectedLatency; |
||
647 | |||
648 | // The latency of dependence chains leading into this zone. |
||
649 | // For each node scheduled bottom-up: DLat = max DLat, N.Depth. |
||
650 | // For each cycle scheduled: DLat -= 1. |
||
651 | unsigned DependentLatency; |
||
652 | |||
653 | /// Count the scheduled (issued) micro-ops that can be retired by |
||
654 | /// time=CurrCycle assuming the first scheduled instr is retired at time=0. |
||
655 | unsigned RetiredMOps; |
||
656 | |||
657 | // Count scheduled resources that have been executed. Resources are |
||
658 | // considered executed if they become ready in the time that it takes to |
||
659 | // saturate any resource including the one in question. Counts are scaled |
||
660 | // for direct comparison with other resources. Counts can be compared with |
||
661 | // MOps * getMicroOpFactor and Latency * getLatencyFactor. |
||
662 | SmallVector<unsigned, 16> ExecutedResCounts; |
||
663 | |||
664 | /// Cache the max count for a single resource. |
||
665 | unsigned MaxExecutedResCount; |
||
666 | |||
667 | // Cache the critical resources ID in this scheduled zone. |
||
668 | unsigned ZoneCritResIdx; |
||
669 | |||
670 | // Is the scheduled region resource limited vs. latency limited. |
||
671 | bool IsResourceLimited; |
||
672 | |||
673 | // Record the highest cycle at which each resource has been reserved by a |
||
674 | // scheduled instruction. |
||
675 | SmallVector<unsigned, 16> ReservedCycles; |
||
676 | |||
677 | /// For each PIdx, stores first index into ReservedCycles that corresponds to |
||
678 | /// it. |
||
679 | /// |
||
680 | /// For example, consider the following 3 resources (ResourceCount = |
||
681 | /// 3): |
||
682 | /// |
||
683 | /// +------------+--------+ |
||
684 | /// |ResourceName|NumUnits| |
||
685 | /// +------------+--------+ |
||
686 | /// | X | 2 | |
||
687 | /// +------------+--------+ |
||
688 | /// | Y | 3 | |
||
689 | /// +------------+--------+ |
||
690 | /// | Z | 1 | |
||
691 | /// +------------+--------+ |
||
692 | /// |
||
693 | /// In this case, the total number of resource instances is 6. The |
||
694 | /// vector \ref ReservedCycles will have a slot for each instance. The |
||
695 | /// vector \ref ReservedCyclesIndex will track at what index the first |
||
696 | /// instance of the resource is found in the vector of \ref |
||
697 | /// ReservedCycles: |
||
698 | /// |
||
699 | /// Indexes of instances in ReservedCycles |
||
700 | /// 0 1 2 3 4 5 |
||
701 | /// ReservedCyclesIndex[0] = 0; [X0, X1, |
||
702 | /// ReservedCyclesIndex[1] = 2; Y0, Y1, Y2 |
||
703 | /// ReservedCyclesIndex[2] = 5; Z |
||
704 | SmallVector<unsigned, 16> ReservedCyclesIndex; |
||
705 | |||
706 | // For each PIdx, stores the resource group IDs of its subunits |
||
707 | SmallVector<APInt, 16> ResourceGroupSubUnitMasks; |
||
708 | |||
709 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
710 | // Remember the greatest possible stall as an upper bound on the number of |
||
711 | // times we should retry the pending queue because of a hazard. |
||
712 | unsigned MaxObservedStall; |
||
713 | #endif |
||
714 | |||
715 | public: |
||
716 | /// Pending queues extend the ready queues with the same ID and the |
||
717 | /// PendingFlag set. |
||
718 | SchedBoundary(unsigned ID, const Twine &Name): |
||
719 | Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") { |
||
720 | reset(); |
||
721 | } |
||
722 | |||
723 | ~SchedBoundary(); |
||
724 | |||
725 | void reset(); |
||
726 | |||
727 | void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, |
||
728 | SchedRemainder *rem); |
||
729 | |||
730 | bool isTop() const { |
||
731 | return Available.getID() == TopQID; |
||
732 | } |
||
733 | |||
734 | /// Number of cycles to issue the instructions scheduled in this zone. |
||
735 | unsigned getCurrCycle() const { return CurrCycle; } |
||
736 | |||
737 | /// Micro-ops issued in the current cycle |
||
738 | unsigned getCurrMOps() const { return CurrMOps; } |
||
739 | |||
740 | // The latency of dependence chains leading into this zone. |
||
741 | unsigned getDependentLatency() const { return DependentLatency; } |
||
742 | |||
743 | /// Get the number of latency cycles "covered" by the scheduled |
||
744 | /// instructions. This is the larger of the critical path within the zone |
||
745 | /// and the number of cycles required to issue the instructions. |
||
746 | unsigned getScheduledLatency() const { |
||
747 | return std::max(ExpectedLatency, CurrCycle); |
||
748 | } |
||
749 | |||
750 | unsigned getUnscheduledLatency(SUnit *SU) const { |
||
751 | return isTop() ? SU->getHeight() : SU->getDepth(); |
||
752 | } |
||
753 | |||
754 | unsigned getResourceCount(unsigned ResIdx) const { |
||
755 | return ExecutedResCounts[ResIdx]; |
||
756 | } |
||
757 | |||
758 | /// Get the scaled count of scheduled micro-ops and resources, including |
||
759 | /// executed resources. |
||
760 | unsigned getCriticalCount() const { |
||
761 | if (!ZoneCritResIdx) |
||
762 | return RetiredMOps * SchedModel->getMicroOpFactor(); |
||
763 | return getResourceCount(ZoneCritResIdx); |
||
764 | } |
||
765 | |||
766 | /// Get a scaled count for the minimum execution time of the scheduled |
||
767 | /// micro-ops that are ready to execute by getExecutedCount. Notice the |
||
768 | /// feedback loop. |
||
769 | unsigned getExecutedCount() const { |
||
770 | return std::max(CurrCycle * SchedModel->getLatencyFactor(), |
||
771 | MaxExecutedResCount); |
||
772 | } |
||
773 | |||
774 | unsigned getZoneCritResIdx() const { return ZoneCritResIdx; } |
||
775 | |||
776 | // Is the scheduled region resource limited vs. latency limited. |
||
777 | bool isResourceLimited() const { return IsResourceLimited; } |
||
778 | |||
779 | /// Get the difference between the given SUnit's ready time and the current |
||
780 | /// cycle. |
||
781 | unsigned getLatencyStallCycles(SUnit *SU); |
||
782 | |||
783 | unsigned getNextResourceCycleByInstance(unsigned InstanceIndex, |
||
784 | unsigned Cycles); |
||
785 | |||
786 | std::pair<unsigned, unsigned> getNextResourceCycle(const MCSchedClassDesc *SC, |
||
787 | unsigned PIdx, |
||
788 | unsigned Cycles); |
||
789 | |||
790 | bool isUnbufferedGroup(unsigned PIdx) const { |
||
791 | return SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin && |
||
792 | !SchedModel->getProcResource(PIdx)->BufferSize; |
||
793 | } |
||
794 | |||
795 | bool checkHazard(SUnit *SU); |
||
796 | |||
797 | unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs); |
||
798 | |||
799 | unsigned getOtherResourceCount(unsigned &OtherCritIdx); |
||
800 | |||
801 | /// Release SU to make it ready. If it's not in hazard, remove it from |
||
802 | /// pending queue (if already in) and push into available queue. |
||
803 | /// Otherwise, push the SU into pending queue. |
||
804 | /// |
||
805 | /// @param SU The unit to be released. |
||
806 | /// @param ReadyCycle Until which cycle the unit is ready. |
||
807 | /// @param InPQueue Whether SU is already in pending queue. |
||
808 | /// @param Idx Position offset in pending queue (if in it). |
||
809 | void releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, |
||
810 | unsigned Idx = 0); |
||
811 | |||
812 | void bumpCycle(unsigned NextCycle); |
||
813 | |||
814 | void incExecutedResources(unsigned PIdx, unsigned Count); |
||
815 | |||
816 | unsigned countResource(const MCSchedClassDesc *SC, unsigned PIdx, |
||
817 | unsigned Cycles, unsigned ReadyCycle); |
||
818 | |||
819 | void bumpNode(SUnit *SU); |
||
820 | |||
821 | void releasePending(); |
||
822 | |||
823 | void removeReady(SUnit *SU); |
||
824 | |||
825 | /// Call this before applying any other heuristics to the Available queue. |
||
826 | /// Updates the Available/Pending Q's if necessary and returns the single |
||
827 | /// available instruction, or NULL if there are multiple candidates. |
||
828 | SUnit *pickOnlyChoice(); |
||
829 | |||
830 | /// Dump the state of the information that tracks resource usage. |
||
831 | void dumpReservedCycles() const; |
||
832 | void dumpScheduledState() const; |
||
833 | }; |
||
834 | |||
835 | /// Base class for GenericScheduler. This class maintains information about |
||
836 | /// scheduling candidates based on TargetSchedModel making it easy to implement |
||
837 | /// heuristics for either preRA or postRA scheduling. |
||
838 | class GenericSchedulerBase : public MachineSchedStrategy { |
||
839 | public: |
||
840 | /// Represent the type of SchedCandidate found within a single queue. |
||
841 | /// pickNodeBidirectional depends on these listed by decreasing priority. |
||
842 | enum CandReason : uint8_t { |
||
843 | NoCand, Only1, PhysReg, RegExcess, RegCritical, Stall, Cluster, Weak, |
||
844 | RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, |
||
845 | TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; |
||
846 | |||
847 | #ifndef NDEBUG |
||
848 | static const char *getReasonStr(GenericSchedulerBase::CandReason Reason); |
||
849 | #endif |
||
850 | |||
851 | /// Policy for scheduling the next instruction in the candidate's zone. |
||
852 | struct CandPolicy { |
||
853 | bool ReduceLatency = false; |
||
854 | unsigned ReduceResIdx = 0; |
||
855 | unsigned DemandResIdx = 0; |
||
856 | |||
857 | CandPolicy() = default; |
||
858 | |||
859 | bool operator==(const CandPolicy &RHS) const { |
||
860 | return ReduceLatency == RHS.ReduceLatency && |
||
861 | ReduceResIdx == RHS.ReduceResIdx && |
||
862 | DemandResIdx == RHS.DemandResIdx; |
||
863 | } |
||
864 | bool operator!=(const CandPolicy &RHS) const { |
||
865 | return !(*this == RHS); |
||
866 | } |
||
867 | }; |
||
868 | |||
869 | /// Status of an instruction's critical resource consumption. |
||
870 | struct SchedResourceDelta { |
||
871 | // Count critical resources in the scheduled region required by SU. |
||
872 | unsigned CritResources = 0; |
||
873 | |||
874 | // Count critical resources from another region consumed by SU. |
||
875 | unsigned DemandedResources = 0; |
||
876 | |||
877 | SchedResourceDelta() = default; |
||
878 | |||
879 | bool operator==(const SchedResourceDelta &RHS) const { |
||
880 | return CritResources == RHS.CritResources |
||
881 | && DemandedResources == RHS.DemandedResources; |
||
882 | } |
||
883 | bool operator!=(const SchedResourceDelta &RHS) const { |
||
884 | return !operator==(RHS); |
||
885 | } |
||
886 | }; |
||
887 | |||
888 | /// Store the state used by GenericScheduler heuristics, required for the |
||
889 | /// lifetime of one invocation of pickNode(). |
||
890 | struct SchedCandidate { |
||
891 | CandPolicy Policy; |
||
892 | |||
893 | // The best SUnit candidate. |
||
894 | SUnit *SU; |
||
895 | |||
896 | // The reason for this candidate. |
||
897 | CandReason Reason; |
||
898 | |||
899 | // Whether this candidate should be scheduled at top/bottom. |
||
900 | bool AtTop; |
||
901 | |||
902 | // Register pressure values for the best candidate. |
||
903 | RegPressureDelta RPDelta; |
||
904 | |||
905 | // Critical resource consumption of the best candidate. |
||
906 | SchedResourceDelta ResDelta; |
||
907 | |||
908 | SchedCandidate() { reset(CandPolicy()); } |
||
909 | SchedCandidate(const CandPolicy &Policy) { reset(Policy); } |
||
910 | |||
911 | void reset(const CandPolicy &NewPolicy) { |
||
912 | Policy = NewPolicy; |
||
913 | SU = nullptr; |
||
914 | Reason = NoCand; |
||
915 | AtTop = false; |
||
916 | RPDelta = RegPressureDelta(); |
||
917 | ResDelta = SchedResourceDelta(); |
||
918 | } |
||
919 | |||
920 | bool isValid() const { return SU; } |
||
921 | |||
922 | // Copy the status of another candidate without changing policy. |
||
923 | void setBest(SchedCandidate &Best) { |
||
924 | assert(Best.Reason != NoCand && "uninitialized Sched candidate"); |
||
925 | SU = Best.SU; |
||
926 | Reason = Best.Reason; |
||
927 | AtTop = Best.AtTop; |
||
928 | RPDelta = Best.RPDelta; |
||
929 | ResDelta = Best.ResDelta; |
||
930 | } |
||
931 | |||
932 | void initResourceDelta(const ScheduleDAGMI *DAG, |
||
933 | const TargetSchedModel *SchedModel); |
||
934 | }; |
||
935 | |||
936 | protected: |
||
937 | const MachineSchedContext *Context; |
||
938 | const TargetSchedModel *SchedModel = nullptr; |
||
939 | const TargetRegisterInfo *TRI = nullptr; |
||
940 | |||
941 | SchedRemainder Rem; |
||
942 | |||
943 | GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {} |
||
944 | |||
945 | void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone, |
||
946 | SchedBoundary *OtherZone); |
||
947 | |||
948 | #ifndef NDEBUG |
||
949 | void traceCandidate(const SchedCandidate &Cand); |
||
950 | #endif |
||
951 | |||
952 | private: |
||
953 | bool shouldReduceLatency(const CandPolicy &Policy, SchedBoundary &CurrZone, |
||
954 | bool ComputeRemLatency, unsigned &RemLatency) const; |
||
955 | }; |
||
956 | |||
957 | // Utility functions used by heuristics in tryCandidate(). |
||
958 | bool tryLess(int TryVal, int CandVal, |
||
959 | GenericSchedulerBase::SchedCandidate &TryCand, |
||
960 | GenericSchedulerBase::SchedCandidate &Cand, |
||
961 | GenericSchedulerBase::CandReason Reason); |
||
962 | bool tryGreater(int TryVal, int CandVal, |
||
963 | GenericSchedulerBase::SchedCandidate &TryCand, |
||
964 | GenericSchedulerBase::SchedCandidate &Cand, |
||
965 | GenericSchedulerBase::CandReason Reason); |
||
966 | bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, |
||
967 | GenericSchedulerBase::SchedCandidate &Cand, |
||
968 | SchedBoundary &Zone); |
||
969 | bool tryPressure(const PressureChange &TryP, |
||
970 | const PressureChange &CandP, |
||
971 | GenericSchedulerBase::SchedCandidate &TryCand, |
||
972 | GenericSchedulerBase::SchedCandidate &Cand, |
||
973 | GenericSchedulerBase::CandReason Reason, |
||
974 | const TargetRegisterInfo *TRI, |
||
975 | const MachineFunction &MF); |
||
976 | unsigned getWeakLeft(const SUnit *SU, bool isTop); |
||
977 | int biasPhysReg(const SUnit *SU, bool isTop); |
||
978 | |||
979 | /// GenericScheduler shrinks the unscheduled zone using heuristics to balance |
||
980 | /// the schedule. |
||
981 | class GenericScheduler : public GenericSchedulerBase { |
||
982 | public: |
||
983 | GenericScheduler(const MachineSchedContext *C): |
||
984 | GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"), |
||
985 | Bot(SchedBoundary::BotQID, "BotQ") {} |
||
986 | |||
987 | void initPolicy(MachineBasicBlock::iterator Begin, |
||
988 | MachineBasicBlock::iterator End, |
||
989 | unsigned NumRegionInstrs) override; |
||
990 | |||
991 | void dumpPolicy() const override; |
||
992 | |||
993 | bool shouldTrackPressure() const override { |
||
994 | return RegionPolicy.ShouldTrackPressure; |
||
995 | } |
||
996 | |||
997 | bool shouldTrackLaneMasks() const override { |
||
998 | return RegionPolicy.ShouldTrackLaneMasks; |
||
999 | } |
||
1000 | |||
1001 | void initialize(ScheduleDAGMI *dag) override; |
||
1002 | |||
1003 | SUnit *pickNode(bool &IsTopNode) override; |
||
1004 | |||
1005 | void schedNode(SUnit *SU, bool IsTopNode) override; |
||
1006 | |||
1007 | void releaseTopNode(SUnit *SU) override { |
||
1008 | if (SU->isScheduled) |
||
1009 | return; |
||
1010 | |||
1011 | Top.releaseNode(SU, SU->TopReadyCycle, false); |
||
1012 | TopCand.SU = nullptr; |
||
1013 | } |
||
1014 | |||
1015 | void releaseBottomNode(SUnit *SU) override { |
||
1016 | if (SU->isScheduled) |
||
1017 | return; |
||
1018 | |||
1019 | Bot.releaseNode(SU, SU->BotReadyCycle, false); |
||
1020 | BotCand.SU = nullptr; |
||
1021 | } |
||
1022 | |||
1023 | void registerRoots() override; |
||
1024 | |||
1025 | protected: |
||
1026 | ScheduleDAGMILive *DAG = nullptr; |
||
1027 | |||
1028 | MachineSchedPolicy RegionPolicy; |
||
1029 | |||
1030 | // State of the top and bottom scheduled instruction boundaries. |
||
1031 | SchedBoundary Top; |
||
1032 | SchedBoundary Bot; |
||
1033 | |||
1034 | /// Candidate last picked from Top boundary. |
||
1035 | SchedCandidate TopCand; |
||
1036 | /// Candidate last picked from Bot boundary. |
||
1037 | SchedCandidate BotCand; |
||
1038 | |||
1039 | void checkAcyclicLatency(); |
||
1040 | |||
1041 | void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, |
||
1042 | const RegPressureTracker &RPTracker, |
||
1043 | RegPressureTracker &TempTracker); |
||
1044 | |||
1045 | virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, |
||
1046 | SchedBoundary *Zone) const; |
||
1047 | |||
1048 | SUnit *pickNodeBidirectional(bool &IsTopNode); |
||
1049 | |||
1050 | void pickNodeFromQueue(SchedBoundary &Zone, |
||
1051 | const CandPolicy &ZonePolicy, |
||
1052 | const RegPressureTracker &RPTracker, |
||
1053 | SchedCandidate &Candidate); |
||
1054 | |||
1055 | void reschedulePhysReg(SUnit *SU, bool isTop); |
||
1056 | }; |
||
1057 | |||
1058 | /// PostGenericScheduler - Interface to the scheduling algorithm used by |
||
1059 | /// ScheduleDAGMI. |
||
1060 | /// |
||
1061 | /// Callbacks from ScheduleDAGMI: |
||
1062 | /// initPolicy -> initialize(DAG) -> registerRoots -> pickNode ... |
||
1063 | class PostGenericScheduler : public GenericSchedulerBase { |
||
1064 | protected: |
||
1065 | ScheduleDAGMI *DAG = nullptr; |
||
1066 | SchedBoundary Top; |
||
1067 | SmallVector<SUnit*, 8> BotRoots; |
||
1068 | |||
1069 | public: |
||
1070 | PostGenericScheduler(const MachineSchedContext *C): |
||
1071 | GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {} |
||
1072 | |||
1073 | ~PostGenericScheduler() override = default; |
||
1074 | |||
1075 | void initPolicy(MachineBasicBlock::iterator Begin, |
||
1076 | MachineBasicBlock::iterator End, |
||
1077 | unsigned NumRegionInstrs) override { |
||
1078 | /* no configurable policy */ |
||
1079 | } |
||
1080 | |||
1081 | /// PostRA scheduling does not track pressure. |
||
1082 | bool shouldTrackPressure() const override { return false; } |
||
1083 | |||
1084 | void initialize(ScheduleDAGMI *Dag) override; |
||
1085 | |||
1086 | void registerRoots() override; |
||
1087 | |||
1088 | SUnit *pickNode(bool &IsTopNode) override; |
||
1089 | |||
1090 | void scheduleTree(unsigned SubtreeID) override { |
||
1091 | llvm_unreachable("PostRA scheduler does not support subtree analysis."); |
||
1092 | } |
||
1093 | |||
1094 | void schedNode(SUnit *SU, bool IsTopNode) override; |
||
1095 | |||
1096 | void releaseTopNode(SUnit *SU) override { |
||
1097 | if (SU->isScheduled) |
||
1098 | return; |
||
1099 | Top.releaseNode(SU, SU->TopReadyCycle, false); |
||
1100 | } |
||
1101 | |||
1102 | // Only called for roots. |
||
1103 | void releaseBottomNode(SUnit *SU) override { |
||
1104 | BotRoots.push_back(SU); |
||
1105 | } |
||
1106 | |||
1107 | protected: |
||
1108 | virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand); |
||
1109 | |||
1110 | void pickNodeFromQueue(SchedCandidate &Cand); |
||
1111 | }; |
||
1112 | |||
1113 | /// Create the standard converging machine scheduler. This will be used as the |
||
1114 | /// default scheduler if the target does not set a default. |
||
1115 | /// Adds default DAG mutations. |
||
1116 | ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C); |
||
1117 | |||
1118 | /// Create a generic scheduler with no vreg liveness or DAG mutation passes. |
||
1119 | ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C); |
||
1120 | |||
1121 | std::unique_ptr<ScheduleDAGMutation> |
||
1122 | createLoadClusterDAGMutation(const TargetInstrInfo *TII, |
||
1123 | const TargetRegisterInfo *TRI); |
||
1124 | |||
1125 | std::unique_ptr<ScheduleDAGMutation> |
||
1126 | createStoreClusterDAGMutation(const TargetInstrInfo *TII, |
||
1127 | const TargetRegisterInfo *TRI); |
||
1128 | |||
1129 | std::unique_ptr<ScheduleDAGMutation> |
||
1130 | createCopyConstrainDAGMutation(const TargetInstrInfo *TII, |
||
1131 | const TargetRegisterInfo *TRI); |
||
1132 | |||
1133 | } // end namespace llvm |
||
1134 | |||
1135 | #endif // LLVM_CODEGEN_MACHINESCHEDULER_H |