Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- MachinePipeliner.h - Machine Software Pipeliner Pass -------------===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. |
||
10 | // |
||
11 | // Software pipelining (SWP) is an instruction scheduling technique for loops |
||
12 | // that overlap loop iterations and exploits ILP via a compiler transformation. |
||
13 | // |
||
14 | // Swing Modulo Scheduling is an implementation of software pipelining |
||
15 | // that generates schedules that are near optimal in terms of initiation |
||
16 | // interval, register requirements, and stage count. See the papers: |
||
17 | // |
||
18 | // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, |
||
19 | // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996 |
||
20 | // Conference on Parallel Architectures and Compilation Techiniques. |
||
21 | // |
||
22 | // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. |
||
23 | // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE |
||
24 | // Transactions on Computers, Vol. 50, No. 3, 2001. |
||
25 | // |
||
26 | // "An Implementation of Swing Modulo Scheduling With Extensions for |
||
27 | // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at |
||
28 | // Urbana-Champaign, 2005. |
||
29 | // |
||
30 | // |
||
31 | // The SMS algorithm consists of three main steps after computing the minimal |
||
32 | // initiation interval (MII). |
||
33 | // 1) Analyze the dependence graph and compute information about each |
||
34 | // instruction in the graph. |
||
35 | // 2) Order the nodes (instructions) by priority based upon the heuristics |
||
36 | // described in the algorithm. |
||
37 | // 3) Attempt to schedule the nodes in the specified order using the MII. |
||
38 | // |
||
39 | //===----------------------------------------------------------------------===// |
||
40 | #ifndef LLVM_CODEGEN_MACHINEPIPELINER_H |
||
41 | #define LLVM_CODEGEN_MACHINEPIPELINER_H |
||
42 | |||
43 | #include "llvm/ADT/SetVector.h" |
||
44 | #include "llvm/CodeGen/DFAPacketizer.h" |
||
45 | #include "llvm/CodeGen/MachineDominators.h" |
||
46 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
||
47 | #include "llvm/CodeGen/RegisterClassInfo.h" |
||
48 | #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
||
49 | #include "llvm/CodeGen/ScheduleDAGMutation.h" |
||
50 | #include "llvm/CodeGen/TargetInstrInfo.h" |
||
51 | #include "llvm/InitializePasses.h" |
||
52 | |||
53 | #include <deque> |
||
54 | |||
55 | namespace llvm { |
||
56 | |||
57 | class AAResults; |
||
58 | class NodeSet; |
||
59 | class SMSchedule; |
||
60 | |||
61 | extern cl::opt<bool> SwpEnableCopyToPhi; |
||
62 | extern cl::opt<int> SwpForceIssueWidth; |
||
63 | |||
64 | /// The main class in the implementation of the target independent |
||
65 | /// software pipeliner pass. |
||
66 | class MachinePipeliner : public MachineFunctionPass { |
||
67 | public: |
||
68 | MachineFunction *MF = nullptr; |
||
69 | MachineOptimizationRemarkEmitter *ORE = nullptr; |
||
70 | const MachineLoopInfo *MLI = nullptr; |
||
71 | const MachineDominatorTree *MDT = nullptr; |
||
72 | const InstrItineraryData *InstrItins; |
||
73 | const TargetInstrInfo *TII = nullptr; |
||
74 | RegisterClassInfo RegClassInfo; |
||
75 | bool disabledByPragma = false; |
||
76 | unsigned II_setByPragma = 0; |
||
77 | |||
78 | #ifndef NDEBUG |
||
79 | static int NumTries; |
||
80 | #endif |
||
81 | |||
82 | /// Cache the target analysis information about the loop. |
||
83 | struct LoopInfo { |
||
84 | MachineBasicBlock *TBB = nullptr; |
||
85 | MachineBasicBlock *FBB = nullptr; |
||
86 | SmallVector<MachineOperand, 4> BrCond; |
||
87 | MachineInstr *LoopInductionVar = nullptr; |
||
88 | MachineInstr *LoopCompare = nullptr; |
||
89 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopPipelinerInfo = |
||
90 | nullptr; |
||
91 | }; |
||
92 | LoopInfo LI; |
||
93 | |||
94 | static char ID; |
||
95 | |||
96 | MachinePipeliner() : MachineFunctionPass(ID) { |
||
97 | initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); |
||
98 | } |
||
99 | |||
100 | bool runOnMachineFunction(MachineFunction &MF) override; |
||
101 | |||
102 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
103 | |||
104 | private: |
||
105 | void preprocessPhiNodes(MachineBasicBlock &B); |
||
106 | bool canPipelineLoop(MachineLoop &L); |
||
107 | bool scheduleLoop(MachineLoop &L); |
||
108 | bool swingModuloScheduler(MachineLoop &L); |
||
109 | void setPragmaPipelineOptions(MachineLoop &L); |
||
110 | }; |
||
111 | |||
112 | /// This class builds the dependence graph for the instructions in a loop, |
||
113 | /// and attempts to schedule the instructions using the SMS algorithm. |
||
114 | class SwingSchedulerDAG : public ScheduleDAGInstrs { |
||
115 | MachinePipeliner &Pass; |
||
116 | /// The minimum initiation interval between iterations for this schedule. |
||
117 | unsigned MII = 0; |
||
118 | /// The maximum initiation interval between iterations for this schedule. |
||
119 | unsigned MAX_II = 0; |
||
120 | /// Set to true if a valid pipelined schedule is found for the loop. |
||
121 | bool Scheduled = false; |
||
122 | MachineLoop &Loop; |
||
123 | LiveIntervals &LIS; |
||
124 | const RegisterClassInfo &RegClassInfo; |
||
125 | unsigned II_setByPragma = 0; |
||
126 | TargetInstrInfo::PipelinerLoopInfo *LoopPipelinerInfo = nullptr; |
||
127 | |||
128 | /// A toplogical ordering of the SUnits, which is needed for changing |
||
129 | /// dependences and iterating over the SUnits. |
||
130 | ScheduleDAGTopologicalSort Topo; |
||
131 | |||
132 | struct NodeInfo { |
||
133 | int ASAP = 0; |
||
134 | int ALAP = 0; |
||
135 | int ZeroLatencyDepth = 0; |
||
136 | int ZeroLatencyHeight = 0; |
||
137 | |||
138 | NodeInfo() = default; |
||
139 | }; |
||
140 | /// Computed properties for each node in the graph. |
||
141 | std::vector<NodeInfo> ScheduleInfo; |
||
142 | |||
143 | enum OrderKind { BottomUp = 0, TopDown = 1 }; |
||
144 | /// Computed node ordering for scheduling. |
||
145 | SetVector<SUnit *> NodeOrder; |
||
146 | |||
147 | using NodeSetType = SmallVector<NodeSet, 8>; |
||
148 | using ValueMapTy = DenseMap<unsigned, unsigned>; |
||
149 | using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; |
||
150 | using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; |
||
151 | |||
152 | /// Instructions to change when emitting the final schedule. |
||
153 | DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; |
||
154 | |||
155 | /// We may create a new instruction, so remember it because it |
||
156 | /// must be deleted when the pass is finished. |
||
157 | DenseMap<MachineInstr*, MachineInstr *> NewMIs; |
||
158 | |||
159 | /// Ordered list of DAG postprocessing steps. |
||
160 | std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; |
||
161 | |||
162 | /// Helper class to implement Johnson's circuit finding algorithm. |
||
163 | class Circuits { |
||
164 | std::vector<SUnit> &SUnits; |
||
165 | SetVector<SUnit *> Stack; |
||
166 | BitVector Blocked; |
||
167 | SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; |
||
168 | SmallVector<SmallVector<int, 4>, 16> AdjK; |
||
169 | // Node to Index from ScheduleDAGTopologicalSort |
||
170 | std::vector<int> *Node2Idx; |
||
171 | unsigned NumPaths; |
||
172 | static unsigned MaxPaths; |
||
173 | |||
174 | public: |
||
175 | Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo) |
||
176 | : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) { |
||
177 | Node2Idx = new std::vector<int>(SUs.size()); |
||
178 | unsigned Idx = 0; |
||
179 | for (const auto &NodeNum : Topo) |
||
180 | Node2Idx->at(NodeNum) = Idx++; |
||
181 | } |
||
182 | |||
183 | ~Circuits() { delete Node2Idx; } |
||
184 | |||
185 | /// Reset the data structures used in the circuit algorithm. |
||
186 | void reset() { |
||
187 | Stack.clear(); |
||
188 | Blocked.reset(); |
||
189 | B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); |
||
190 | NumPaths = 0; |
||
191 | } |
||
192 | |||
193 | void createAdjacencyStructure(SwingSchedulerDAG *DAG); |
||
194 | bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); |
||
195 | void unblock(int U); |
||
196 | }; |
||
197 | |||
198 | struct CopyToPhiMutation : public ScheduleDAGMutation { |
||
199 | void apply(ScheduleDAGInstrs *DAG) override; |
||
200 | }; |
||
201 | |||
202 | public: |
||
203 | SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, |
||
204 | const RegisterClassInfo &rci, unsigned II, |
||
205 | TargetInstrInfo::PipelinerLoopInfo *PLI) |
||
206 | : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), |
||
207 | RegClassInfo(rci), II_setByPragma(II), LoopPipelinerInfo(PLI), |
||
208 | Topo(SUnits, &ExitSU) { |
||
209 | P.MF->getSubtarget().getSMSMutations(Mutations); |
||
210 | if (SwpEnableCopyToPhi) |
||
211 | Mutations.push_back(std::make_unique<CopyToPhiMutation>()); |
||
212 | } |
||
213 | |||
214 | void schedule() override; |
||
215 | void finishBlock() override; |
||
216 | |||
217 | /// Return true if the loop kernel has been scheduled. |
||
218 | bool hasNewSchedule() { return Scheduled; } |
||
219 | |||
220 | /// Return the earliest time an instruction may be scheduled. |
||
221 | int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } |
||
222 | |||
223 | /// Return the latest time an instruction my be scheduled. |
||
224 | int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } |
||
225 | |||
226 | /// The mobility function, which the number of slots in which |
||
227 | /// an instruction may be scheduled. |
||
228 | int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } |
||
229 | |||
230 | /// The depth, in the dependence graph, for a node. |
||
231 | unsigned getDepth(SUnit *Node) { return Node->getDepth(); } |
||
232 | |||
233 | /// The maximum unweighted length of a path from an arbitrary node to the |
||
234 | /// given node in which each edge has latency 0 |
||
235 | int getZeroLatencyDepth(SUnit *Node) { |
||
236 | return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; |
||
237 | } |
||
238 | |||
239 | /// The height, in the dependence graph, for a node. |
||
240 | unsigned getHeight(SUnit *Node) { return Node->getHeight(); } |
||
241 | |||
242 | /// The maximum unweighted length of a path from the given node to an |
||
243 | /// arbitrary node in which each edge has latency 0 |
||
244 | int getZeroLatencyHeight(SUnit *Node) { |
||
245 | return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; |
||
246 | } |
||
247 | |||
248 | /// Return true if the dependence is a back-edge in the data dependence graph. |
||
249 | /// Since the DAG doesn't contain cycles, we represent a cycle in the graph |
||
250 | /// using an anti dependence from a Phi to an instruction. |
||
251 | bool isBackedge(SUnit *Source, const SDep &Dep) { |
||
252 | if (Dep.getKind() != SDep::Anti) |
||
253 | return false; |
||
254 | return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); |
||
255 | } |
||
256 | |||
257 | bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); |
||
258 | |||
259 | /// The distance function, which indicates that operation V of iteration I |
||
260 | /// depends on operations U of iteration I-distance. |
||
261 | unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { |
||
262 | // Instructions that feed a Phi have a distance of 1. Computing larger |
||
263 | // values for arrays requires data dependence information. |
||
264 | if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) |
||
265 | return 1; |
||
266 | return 0; |
||
267 | } |
||
268 | |||
269 | void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); |
||
270 | |||
271 | void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); |
||
272 | |||
273 | /// Return the new base register that was stored away for the changed |
||
274 | /// instruction. |
||
275 | unsigned getInstrBaseReg(SUnit *SU) { |
||
276 | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = |
||
277 | InstrChanges.find(SU); |
||
278 | if (It != InstrChanges.end()) |
||
279 | return It->second.first; |
||
280 | return 0; |
||
281 | } |
||
282 | |||
283 | void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { |
||
284 | Mutations.push_back(std::move(Mutation)); |
||
285 | } |
||
286 | |||
287 | static bool classof(const ScheduleDAGInstrs *DAG) { return true; } |
||
288 | |||
289 | private: |
||
290 | void addLoopCarriedDependences(AAResults *AA); |
||
291 | void updatePhiDependences(); |
||
292 | void changeDependences(); |
||
293 | unsigned calculateResMII(); |
||
294 | unsigned calculateRecMII(NodeSetType &RecNodeSets); |
||
295 | void findCircuits(NodeSetType &NodeSets); |
||
296 | void fuseRecs(NodeSetType &NodeSets); |
||
297 | void removeDuplicateNodes(NodeSetType &NodeSets); |
||
298 | void computeNodeFunctions(NodeSetType &NodeSets); |
||
299 | void registerPressureFilter(NodeSetType &NodeSets); |
||
300 | void colocateNodeSets(NodeSetType &NodeSets); |
||
301 | void checkNodeSets(NodeSetType &NodeSets); |
||
302 | void groupRemainingNodes(NodeSetType &NodeSets); |
||
303 | void addConnectedNodes(SUnit *SU, NodeSet &NewSet, |
||
304 | SetVector<SUnit *> &NodesAdded); |
||
305 | void computeNodeOrder(NodeSetType &NodeSets); |
||
306 | void checkValidNodeOrder(const NodeSetType &Circuits) const; |
||
307 | bool schedulePipeline(SMSchedule &Schedule); |
||
308 | bool computeDelta(MachineInstr &MI, unsigned &Delta); |
||
309 | MachineInstr *findDefInLoop(Register Reg); |
||
310 | bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, |
||
311 | unsigned &OffsetPos, unsigned &NewBase, |
||
312 | int64_t &NewOffset); |
||
313 | void postprocessDAG(); |
||
314 | /// Set the Minimum Initiation Interval for this schedule attempt. |
||
315 | void setMII(unsigned ResMII, unsigned RecMII); |
||
316 | /// Set the Maximum Initiation Interval for this schedule attempt. |
||
317 | void setMAX_II(); |
||
318 | }; |
||
319 | |||
320 | /// A NodeSet contains a set of SUnit DAG nodes with additional information |
||
321 | /// that assigns a priority to the set. |
||
322 | class NodeSet { |
||
323 | SetVector<SUnit *> Nodes; |
||
324 | bool HasRecurrence = false; |
||
325 | unsigned RecMII = 0; |
||
326 | int MaxMOV = 0; |
||
327 | unsigned MaxDepth = 0; |
||
328 | unsigned Colocate = 0; |
||
329 | SUnit *ExceedPressure = nullptr; |
||
330 | unsigned Latency = 0; |
||
331 | |||
332 | public: |
||
333 | using iterator = SetVector<SUnit *>::const_iterator; |
||
334 | |||
335 | NodeSet() = default; |
||
336 | NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { |
||
337 | Latency = 0; |
||
338 | for (const SUnit *Node : Nodes) { |
||
339 | DenseMap<SUnit *, unsigned> SuccSUnitLatency; |
||
340 | for (const SDep &Succ : Node->Succs) { |
||
341 | auto SuccSUnit = Succ.getSUnit(); |
||
342 | if (!Nodes.count(SuccSUnit)) |
||
343 | continue; |
||
344 | unsigned CurLatency = Succ.getLatency(); |
||
345 | unsigned MaxLatency = 0; |
||
346 | if (SuccSUnitLatency.count(SuccSUnit)) |
||
347 | MaxLatency = SuccSUnitLatency[SuccSUnit]; |
||
348 | if (CurLatency > MaxLatency) |
||
349 | SuccSUnitLatency[SuccSUnit] = CurLatency; |
||
350 | } |
||
351 | for (auto SUnitLatency : SuccSUnitLatency) |
||
352 | Latency += SUnitLatency.second; |
||
353 | } |
||
354 | } |
||
355 | |||
356 | bool insert(SUnit *SU) { return Nodes.insert(SU); } |
||
357 | |||
358 | void insert(iterator S, iterator E) { Nodes.insert(S, E); } |
||
359 | |||
360 | template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { |
||
361 | return Nodes.remove_if(P); |
||
362 | } |
||
363 | |||
364 | unsigned count(SUnit *SU) const { return Nodes.count(SU); } |
||
365 | |||
366 | bool hasRecurrence() { return HasRecurrence; }; |
||
367 | |||
368 | unsigned size() const { return Nodes.size(); } |
||
369 | |||
370 | bool empty() const { return Nodes.empty(); } |
||
371 | |||
372 | SUnit *getNode(unsigned i) const { return Nodes[i]; }; |
||
373 | |||
374 | void setRecMII(unsigned mii) { RecMII = mii; }; |
||
375 | |||
376 | void setColocate(unsigned c) { Colocate = c; }; |
||
377 | |||
378 | void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } |
||
379 | |||
380 | bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } |
||
381 | |||
382 | int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } |
||
383 | |||
384 | int getRecMII() { return RecMII; } |
||
385 | |||
386 | /// Summarize node functions for the entire node set. |
||
387 | void computeNodeSetInfo(SwingSchedulerDAG *SSD) { |
||
388 | for (SUnit *SU : *this) { |
||
389 | MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); |
||
390 | MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); |
||
391 | } |
||
392 | } |
||
393 | |||
394 | unsigned getLatency() { return Latency; } |
||
395 | |||
396 | unsigned getMaxDepth() { return MaxDepth; } |
||
397 | |||
398 | void clear() { |
||
399 | Nodes.clear(); |
||
400 | RecMII = 0; |
||
401 | HasRecurrence = false; |
||
402 | MaxMOV = 0; |
||
403 | MaxDepth = 0; |
||
404 | Colocate = 0; |
||
405 | ExceedPressure = nullptr; |
||
406 | } |
||
407 | |||
408 | operator SetVector<SUnit *> &() { return Nodes; } |
||
409 | |||
410 | /// Sort the node sets by importance. First, rank them by recurrence MII, |
||
411 | /// then by mobility (least mobile done first), and finally by depth. |
||
412 | /// Each node set may contain a colocate value which is used as the first |
||
413 | /// tie breaker, if it's set. |
||
414 | bool operator>(const NodeSet &RHS) const { |
||
415 | if (RecMII == RHS.RecMII) { |
||
416 | if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) |
||
417 | return Colocate < RHS.Colocate; |
||
418 | if (MaxMOV == RHS.MaxMOV) |
||
419 | return MaxDepth > RHS.MaxDepth; |
||
420 | return MaxMOV < RHS.MaxMOV; |
||
421 | } |
||
422 | return RecMII > RHS.RecMII; |
||
423 | } |
||
424 | |||
425 | bool operator==(const NodeSet &RHS) const { |
||
426 | return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && |
||
427 | MaxDepth == RHS.MaxDepth; |
||
428 | } |
||
429 | |||
430 | bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } |
||
431 | |||
432 | iterator begin() { return Nodes.begin(); } |
||
433 | iterator end() { return Nodes.end(); } |
||
434 | void print(raw_ostream &os) const; |
||
435 | |||
436 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
437 | LLVM_DUMP_METHOD void dump() const; |
||
438 | #endif |
||
439 | }; |
||
440 | |||
441 | // 16 was selected based on the number of ProcResource kinds for all |
||
442 | // existing Subtargets, so that SmallVector don't need to resize too often. |
||
443 | static const int DefaultProcResSize = 16; |
||
444 | |||
445 | class ResourceManager { |
||
446 | private: |
||
447 | const MCSubtargetInfo *STI; |
||
448 | const MCSchedModel &SM; |
||
449 | const TargetSubtargetInfo *ST; |
||
450 | const TargetInstrInfo *TII; |
||
451 | SwingSchedulerDAG *DAG; |
||
452 | const bool UseDFA; |
||
453 | /// DFA resources for each slot |
||
454 | llvm::SmallVector<std::unique_ptr<DFAPacketizer>> DFAResources; |
||
455 | /// Modulo Reservation Table. When a resource with ID R is consumed in cycle |
||
456 | /// C, it is counted in MRT[C mod II][R]. (Used when UseDFA == F) |
||
457 | llvm::SmallVector<llvm::SmallVector<uint64_t, DefaultProcResSize>> MRT; |
||
458 | /// The number of scheduled micro operations for each slot. Micro operations |
||
459 | /// are assumed to be scheduled one per cycle, starting with the cycle in |
||
460 | /// which the instruction is scheduled. |
||
461 | llvm::SmallVector<int> NumScheduledMops; |
||
462 | /// Each processor resource is associated with a so-called processor resource |
||
463 | /// mask. This vector allows to correlate processor resource IDs with |
||
464 | /// processor resource masks. There is exactly one element per each processor |
||
465 | /// resource declared by the scheduling model. |
||
466 | llvm::SmallVector<uint64_t, DefaultProcResSize> ProcResourceMasks; |
||
467 | int InitiationInterval; |
||
468 | /// The number of micro operations that can be scheduled at a cycle. |
||
469 | int IssueWidth; |
||
470 | |||
471 | int calculateResMIIDFA() const; |
||
472 | /// Check if MRT is overbooked |
||
473 | bool isOverbooked() const; |
||
474 | /// Reserve resources on MRT |
||
475 | void reserveResources(const MCSchedClassDesc *SCDesc, int Cycle); |
||
476 | /// Unreserve resources on MRT |
||
477 | void unreserveResources(const MCSchedClassDesc *SCDesc, int Cycle); |
||
478 | |||
479 | /// Return M satisfying Dividend = Divisor * X + M, 0 < M < Divisor. |
||
480 | /// The slot on MRT to reserve a resource for the cycle C is positiveModulo(C, |
||
481 | /// II). |
||
482 | int positiveModulo(int Dividend, int Divisor) const { |
||
483 | assert(Divisor > 0); |
||
484 | int R = Dividend % Divisor; |
||
485 | if (R < 0) |
||
486 | R += Divisor; |
||
487 | return R; |
||
488 | } |
||
489 | |||
490 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
491 | LLVM_DUMP_METHOD void dumpMRT() const; |
||
492 | #endif |
||
493 | |||
494 | public: |
||
495 | ResourceManager(const TargetSubtargetInfo *ST, SwingSchedulerDAG *DAG) |
||
496 | : STI(ST), SM(ST->getSchedModel()), ST(ST), TII(ST->getInstrInfo()), |
||
497 | DAG(DAG), UseDFA(ST->useDFAforSMS()), |
||
498 | ProcResourceMasks(SM.getNumProcResourceKinds(), 0), |
||
499 | IssueWidth(SM.IssueWidth) { |
||
500 | initProcResourceVectors(SM, ProcResourceMasks); |
||
501 | if (IssueWidth <= 0) |
||
502 | // If IssueWidth is not specified, set a sufficiently large value |
||
503 | IssueWidth = 100; |
||
504 | if (SwpForceIssueWidth > 0) |
||
505 | IssueWidth = SwpForceIssueWidth; |
||
506 | } |
||
507 | |||
508 | void initProcResourceVectors(const MCSchedModel &SM, |
||
509 | SmallVectorImpl<uint64_t> &Masks); |
||
510 | |||
511 | /// Check if the resources occupied by a machine instruction are available |
||
512 | /// in the current state. |
||
513 | bool canReserveResources(SUnit &SU, int Cycle); |
||
514 | |||
515 | /// Reserve the resources occupied by a machine instruction and change the |
||
516 | /// current state to reflect that change. |
||
517 | void reserveResources(SUnit &SU, int Cycle); |
||
518 | |||
519 | int calculateResMII() const; |
||
520 | |||
521 | /// Initialize resources with the initiation interval II. |
||
522 | void init(int II); |
||
523 | }; |
||
524 | |||
525 | /// This class represents the scheduled code. The main data structure is a |
||
526 | /// map from scheduled cycle to instructions. During scheduling, the |
||
527 | /// data structure explicitly represents all stages/iterations. When |
||
528 | /// the algorithm finshes, the schedule is collapsed into a single stage, |
||
529 | /// which represents instructions from different loop iterations. |
||
530 | /// |
||
531 | /// The SMS algorithm allows negative values for cycles, so the first cycle |
||
532 | /// in the schedule is the smallest cycle value. |
||
533 | class SMSchedule { |
||
534 | private: |
||
535 | /// Map from execution cycle to instructions. |
||
536 | DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; |
||
537 | |||
538 | /// Map from instruction to execution cycle. |
||
539 | std::map<SUnit *, int> InstrToCycle; |
||
540 | |||
541 | /// Keep track of the first cycle value in the schedule. It starts |
||
542 | /// as zero, but the algorithm allows negative values. |
||
543 | int FirstCycle = 0; |
||
544 | |||
545 | /// Keep track of the last cycle value in the schedule. |
||
546 | int LastCycle = 0; |
||
547 | |||
548 | /// The initiation interval (II) for the schedule. |
||
549 | int InitiationInterval = 0; |
||
550 | |||
551 | /// Target machine information. |
||
552 | const TargetSubtargetInfo &ST; |
||
553 | |||
554 | /// Virtual register information. |
||
555 | MachineRegisterInfo &MRI; |
||
556 | |||
557 | ResourceManager ProcItinResources; |
||
558 | |||
559 | public: |
||
560 | SMSchedule(MachineFunction *mf, SwingSchedulerDAG *DAG) |
||
561 | : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), |
||
562 | ProcItinResources(&ST, DAG) {} |
||
563 | |||
564 | void reset() { |
||
565 | ScheduledInstrs.clear(); |
||
566 | InstrToCycle.clear(); |
||
567 | FirstCycle = 0; |
||
568 | LastCycle = 0; |
||
569 | InitiationInterval = 0; |
||
570 | } |
||
571 | |||
572 | /// Set the initiation interval for this schedule. |
||
573 | void setInitiationInterval(int ii) { |
||
574 | InitiationInterval = ii; |
||
575 | ProcItinResources.init(ii); |
||
576 | } |
||
577 | |||
578 | /// Return the initiation interval for this schedule. |
||
579 | int getInitiationInterval() const { return InitiationInterval; } |
||
580 | |||
581 | /// Return the first cycle in the completed schedule. This |
||
582 | /// can be a negative value. |
||
583 | int getFirstCycle() const { return FirstCycle; } |
||
584 | |||
585 | /// Return the last cycle in the finalized schedule. |
||
586 | int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } |
||
587 | |||
588 | /// Return the cycle of the earliest scheduled instruction in the dependence |
||
589 | /// chain. |
||
590 | int earliestCycleInChain(const SDep &Dep); |
||
591 | |||
592 | /// Return the cycle of the latest scheduled instruction in the dependence |
||
593 | /// chain. |
||
594 | int latestCycleInChain(const SDep &Dep); |
||
595 | |||
596 | void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, |
||
597 | int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); |
||
598 | bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); |
||
599 | |||
600 | /// Iterators for the cycle to instruction map. |
||
601 | using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; |
||
602 | using const_sched_iterator = |
||
603 | DenseMap<int, std::deque<SUnit *>>::const_iterator; |
||
604 | |||
605 | /// Return true if the instruction is scheduled at the specified stage. |
||
606 | bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { |
||
607 | return (stageScheduled(SU) == (int)StageNum); |
||
608 | } |
||
609 | |||
610 | /// Return the stage for a scheduled instruction. Return -1 if |
||
611 | /// the instruction has not been scheduled. |
||
612 | int stageScheduled(SUnit *SU) const { |
||
613 | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); |
||
614 | if (it == InstrToCycle.end()) |
||
615 | return -1; |
||
616 | return (it->second - FirstCycle) / InitiationInterval; |
||
617 | } |
||
618 | |||
619 | /// Return the cycle for a scheduled instruction. This function normalizes |
||
620 | /// the first cycle to be 0. |
||
621 | unsigned cycleScheduled(SUnit *SU) const { |
||
622 | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); |
||
623 | assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); |
||
624 | return (it->second - FirstCycle) % InitiationInterval; |
||
625 | } |
||
626 | |||
627 | /// Return the maximum stage count needed for this schedule. |
||
628 | unsigned getMaxStageCount() { |
||
629 | return (LastCycle - FirstCycle) / InitiationInterval; |
||
630 | } |
||
631 | |||
632 | /// Return the instructions that are scheduled at the specified cycle. |
||
633 | std::deque<SUnit *> &getInstructions(int cycle) { |
||
634 | return ScheduledInstrs[cycle]; |
||
635 | } |
||
636 | |||
637 | SmallSet<SUnit *, 8> |
||
638 | computeUnpipelineableNodes(SwingSchedulerDAG *SSD, |
||
639 | TargetInstrInfo::PipelinerLoopInfo *PLI); |
||
640 | |||
641 | bool |
||
642 | normalizeNonPipelinedInstructions(SwingSchedulerDAG *SSD, |
||
643 | TargetInstrInfo::PipelinerLoopInfo *PLI); |
||
644 | bool isValidSchedule(SwingSchedulerDAG *SSD); |
||
645 | void finalizeSchedule(SwingSchedulerDAG *SSD); |
||
646 | void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, |
||
647 | std::deque<SUnit *> &Insts); |
||
648 | bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); |
||
649 | bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def, |
||
650 | MachineOperand &MO); |
||
651 | void print(raw_ostream &os) const; |
||
652 | void dump() const; |
||
653 | }; |
||
654 | |||
655 | } // end namespace llvm |
||
656 | |||
657 | #endif // LLVM_CODEGEN_MACHINEPIPELINER_H |