Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file contains the declaration of the MachineInstr class, which is the |
||
10 | // basic representation for all target dependent machine instructions used by |
||
11 | // the back end. |
||
12 | // |
||
13 | //===----------------------------------------------------------------------===// |
||
14 | |||
15 | #ifndef LLVM_CODEGEN_MACHINEINSTR_H |
||
16 | #define LLVM_CODEGEN_MACHINEINSTR_H |
||
17 | |||
18 | #include "llvm/ADT/DenseMapInfo.h" |
||
19 | #include "llvm/ADT/PointerSumType.h" |
||
20 | #include "llvm/ADT/SmallSet.h" |
||
21 | #include "llvm/ADT/ilist.h" |
||
22 | #include "llvm/ADT/ilist_node.h" |
||
23 | #include "llvm/ADT/iterator_range.h" |
||
24 | #include "llvm/CodeGen/MachineMemOperand.h" |
||
25 | #include "llvm/CodeGen/MachineOperand.h" |
||
26 | #include "llvm/CodeGen/TargetOpcodes.h" |
||
27 | #include "llvm/IR/DebugLoc.h" |
||
28 | #include "llvm/IR/InlineAsm.h" |
||
29 | #include "llvm/MC/MCInstrDesc.h" |
||
30 | #include "llvm/MC/MCSymbol.h" |
||
31 | #include "llvm/Support/ArrayRecycler.h" |
||
32 | #include "llvm/Support/TrailingObjects.h" |
||
33 | #include <algorithm> |
||
34 | #include <cassert> |
||
35 | #include <cstdint> |
||
36 | #include <utility> |
||
37 | |||
38 | namespace llvm { |
||
39 | |||
40 | class DILabel; |
||
41 | class Instruction; |
||
42 | class MDNode; |
||
43 | class AAResults; |
||
44 | template <typename T> class ArrayRef; |
||
45 | class DIExpression; |
||
46 | class DILocalVariable; |
||
47 | class MachineBasicBlock; |
||
48 | class MachineFunction; |
||
49 | class MachineRegisterInfo; |
||
50 | class ModuleSlotTracker; |
||
51 | class raw_ostream; |
||
52 | template <typename T> class SmallVectorImpl; |
||
53 | class SmallBitVector; |
||
54 | class StringRef; |
||
55 | class TargetInstrInfo; |
||
56 | class TargetRegisterClass; |
||
57 | class TargetRegisterInfo; |
||
58 | |||
59 | //===----------------------------------------------------------------------===// |
||
60 | /// Representation of each machine instruction. |
||
61 | /// |
||
62 | /// This class isn't a POD type, but it must have a trivial destructor. When a |
||
63 | /// MachineFunction is deleted, all the contained MachineInstrs are deallocated |
||
64 | /// without having their destructor called. |
||
65 | /// |
||
66 | class MachineInstr |
||
67 | : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, |
||
68 | ilist_sentinel_tracking<true>> { |
||
69 | public: |
||
70 | using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; |
||
71 | |||
72 | /// Flags to specify different kinds of comments to output in |
||
73 | /// assembly code. These flags carry semantic information not |
||
74 | /// otherwise easily derivable from the IR text. |
||
75 | /// |
||
76 | enum CommentFlag { |
||
77 | ReloadReuse = 0x1, // higher bits are reserved for target dep comments. |
||
78 | NoSchedComment = 0x2, |
||
79 | TAsmComments = 0x4 // Target Asm comments should start from this value. |
||
80 | }; |
||
81 | |||
82 | enum MIFlag { |
||
83 | NoFlags = 0, |
||
84 | FrameSetup = 1 << 0, // Instruction is used as a part of |
||
85 | // function frame setup code. |
||
86 | FrameDestroy = 1 << 1, // Instruction is used as a part of |
||
87 | // function frame destruction code. |
||
88 | BundledPred = 1 << 2, // Instruction has bundled predecessors. |
||
89 | BundledSucc = 1 << 3, // Instruction has bundled successors. |
||
90 | FmNoNans = 1 << 4, // Instruction does not support Fast |
||
91 | // math nan values. |
||
92 | FmNoInfs = 1 << 5, // Instruction does not support Fast |
||
93 | // math infinity values. |
||
94 | FmNsz = 1 << 6, // Instruction is not required to retain |
||
95 | // signed zero values. |
||
96 | FmArcp = 1 << 7, // Instruction supports Fast math |
||
97 | // reciprocal approximations. |
||
98 | FmContract = 1 << 8, // Instruction supports Fast math |
||
99 | // contraction operations like fma. |
||
100 | FmAfn = 1 << 9, // Instruction may map to Fast math |
||
101 | // intrinsic approximation. |
||
102 | FmReassoc = 1 << 10, // Instruction supports Fast math |
||
103 | // reassociation of operand order. |
||
104 | NoUWrap = 1 << 11, // Instruction supports binary operator |
||
105 | // no unsigned wrap. |
||
106 | NoSWrap = 1 << 12, // Instruction supports binary operator |
||
107 | // no signed wrap. |
||
108 | IsExact = 1 << 13, // Instruction supports division is |
||
109 | // known to be exact. |
||
110 | NoFPExcept = 1 << 14, // Instruction does not raise |
||
111 | // floatint-point exceptions. |
||
112 | NoMerge = 1 << 15, // Passes that drop source location info |
||
113 | // (e.g. branch folding) should skip |
||
114 | // this instruction. |
||
115 | }; |
||
116 | |||
117 | private: |
||
118 | const MCInstrDesc *MCID; // Instruction descriptor. |
||
119 | MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. |
||
120 | |||
121 | // Operands are allocated by an ArrayRecycler. |
||
122 | MachineOperand *Operands = nullptr; // Pointer to the first operand. |
||
123 | unsigned NumOperands = 0; // Number of operands on instruction. |
||
124 | |||
125 | uint16_t Flags = 0; // Various bits of additional |
||
126 | // information about machine |
||
127 | // instruction. |
||
128 | |||
129 | uint8_t AsmPrinterFlags = 0; // Various bits of information used by |
||
130 | // the AsmPrinter to emit helpful |
||
131 | // comments. This is *not* semantic |
||
132 | // information. Do not use this for |
||
133 | // anything other than to convey comment |
||
134 | // information to AsmPrinter. |
||
135 | |||
136 | // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags |
||
137 | // to properly pack. |
||
138 | using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; |
||
139 | OperandCapacity CapOperands; // Capacity of the Operands array. |
||
140 | |||
141 | /// Internal implementation detail class that provides out-of-line storage for |
||
142 | /// extra info used by the machine instruction when this info cannot be stored |
||
143 | /// in-line within the instruction itself. |
||
144 | /// |
||
145 | /// This has to be defined eagerly due to the implementation constraints of |
||
146 | /// `PointerSumType` where it is used. |
||
147 | class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *, |
||
148 | MCSymbol *, MDNode *, uint32_t> { |
||
149 | public: |
||
150 | static ExtraInfo *create(BumpPtrAllocator &Allocator, |
||
151 | ArrayRef<MachineMemOperand *> MMOs, |
||
152 | MCSymbol *PreInstrSymbol = nullptr, |
||
153 | MCSymbol *PostInstrSymbol = nullptr, |
||
154 | MDNode *HeapAllocMarker = nullptr, |
||
155 | MDNode *PCSections = nullptr, |
||
156 | uint32_t CFIType = 0) { |
||
157 | bool HasPreInstrSymbol = PreInstrSymbol != nullptr; |
||
158 | bool HasPostInstrSymbol = PostInstrSymbol != nullptr; |
||
159 | bool HasHeapAllocMarker = HeapAllocMarker != nullptr; |
||
160 | bool HasCFIType = CFIType != 0; |
||
161 | bool HasPCSections = PCSections != nullptr; |
||
162 | auto *Result = new (Allocator.Allocate( |
||
163 | totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>( |
||
164 | MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, |
||
165 | HasHeapAllocMarker + HasPCSections, HasCFIType), |
||
166 | alignof(ExtraInfo))) |
||
167 | ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, |
||
168 | HasHeapAllocMarker, HasPCSections, HasCFIType); |
||
169 | |||
170 | // Copy the actual data into the trailing objects. |
||
171 | std::copy(MMOs.begin(), MMOs.end(), |
||
172 | Result->getTrailingObjects<MachineMemOperand *>()); |
||
173 | |||
174 | if (HasPreInstrSymbol) |
||
175 | Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; |
||
176 | if (HasPostInstrSymbol) |
||
177 | Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = |
||
178 | PostInstrSymbol; |
||
179 | if (HasHeapAllocMarker) |
||
180 | Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker; |
||
181 | if (HasPCSections) |
||
182 | Result->getTrailingObjects<MDNode *>()[HasHeapAllocMarker] = |
||
183 | PCSections; |
||
184 | if (HasCFIType) |
||
185 | Result->getTrailingObjects<uint32_t>()[0] = CFIType; |
||
186 | |||
187 | return Result; |
||
188 | } |
||
189 | |||
190 | ArrayRef<MachineMemOperand *> getMMOs() const { |
||
191 | return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); |
||
192 | } |
||
193 | |||
194 | MCSymbol *getPreInstrSymbol() const { |
||
195 | return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; |
||
196 | } |
||
197 | |||
198 | MCSymbol *getPostInstrSymbol() const { |
||
199 | return HasPostInstrSymbol |
||
200 | ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] |
||
201 | : nullptr; |
||
202 | } |
||
203 | |||
204 | MDNode *getHeapAllocMarker() const { |
||
205 | return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr; |
||
206 | } |
||
207 | |||
208 | MDNode *getPCSections() const { |
||
209 | return HasPCSections |
||
210 | ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker] |
||
211 | : nullptr; |
||
212 | } |
||
213 | |||
214 | uint32_t getCFIType() const { |
||
215 | return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0; |
||
216 | } |
||
217 | |||
218 | private: |
||
219 | friend TrailingObjects; |
||
220 | |||
221 | // Description of the extra info, used to interpret the actual optional |
||
222 | // data appended. |
||
223 | // |
||
224 | // Note that this is not terribly space optimized. This leaves a great deal |
||
225 | // of flexibility to fit more in here later. |
||
226 | const int NumMMOs; |
||
227 | const bool HasPreInstrSymbol; |
||
228 | const bool HasPostInstrSymbol; |
||
229 | const bool HasHeapAllocMarker; |
||
230 | const bool HasPCSections; |
||
231 | const bool HasCFIType; |
||
232 | |||
233 | // Implement the `TrailingObjects` internal API. |
||
234 | size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { |
||
235 | return NumMMOs; |
||
236 | } |
||
237 | size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { |
||
238 | return HasPreInstrSymbol + HasPostInstrSymbol; |
||
239 | } |
||
240 | size_t numTrailingObjects(OverloadToken<MDNode *>) const { |
||
241 | return HasHeapAllocMarker + HasPCSections; |
||
242 | } |
||
243 | size_t numTrailingObjects(OverloadToken<uint32_t>) const { |
||
244 | return HasCFIType; |
||
245 | } |
||
246 | |||
247 | // Just a boring constructor to allow us to initialize the sizes. Always use |
||
248 | // the `create` routine above. |
||
249 | ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, |
||
250 | bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType) |
||
251 | : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), |
||
252 | HasPostInstrSymbol(HasPostInstrSymbol), |
||
253 | HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections), |
||
254 | HasCFIType(HasCFIType) {} |
||
255 | }; |
||
256 | |||
257 | /// Enumeration of the kinds of inline extra info available. It is important |
||
258 | /// that the `MachineMemOperand` inline kind has a tag value of zero to make |
||
259 | /// it accessible as an `ArrayRef`. |
||
260 | enum ExtraInfoInlineKinds { |
||
261 | EIIK_MMO = 0, |
||
262 | EIIK_PreInstrSymbol, |
||
263 | EIIK_PostInstrSymbol, |
||
264 | EIIK_OutOfLine |
||
265 | }; |
||
266 | |||
267 | // We store extra information about the instruction here. The common case is |
||
268 | // expected to be nothing or a single pointer (typically a MMO or a symbol). |
||
269 | // We work to optimize this common case by storing it inline here rather than |
||
270 | // requiring a separate allocation, but we fall back to an allocation when |
||
271 | // multiple pointers are needed. |
||
272 | PointerSumType<ExtraInfoInlineKinds, |
||
273 | PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, |
||
274 | PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, |
||
275 | PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, |
||
276 | PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> |
||
277 | Info; |
||
278 | |||
279 | DebugLoc DbgLoc; // Source line information. |
||
280 | |||
281 | /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values |
||
282 | /// defined by this instruction. |
||
283 | unsigned DebugInstrNum; |
||
284 | |||
285 | // Intrusive list support |
||
286 | friend struct ilist_traits<MachineInstr>; |
||
287 | friend struct ilist_callback_traits<MachineBasicBlock>; |
||
288 | void setParent(MachineBasicBlock *P) { Parent = P; } |
||
289 | |||
290 | /// This constructor creates a copy of the given |
||
291 | /// MachineInstr in the given MachineFunction. |
||
292 | MachineInstr(MachineFunction &, const MachineInstr &); |
||
293 | |||
294 | /// This constructor create a MachineInstr and add the implicit operands. |
||
295 | /// It reserves space for number of operands specified by |
||
296 | /// MCInstrDesc. An explicit DebugLoc is supplied. |
||
297 | MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL, |
||
298 | bool NoImp = false); |
||
299 | |||
300 | // MachineInstrs are pool-allocated and owned by MachineFunction. |
||
301 | friend class MachineFunction; |
||
302 | |||
303 | void |
||
304 | dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, |
||
305 | SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const; |
||
306 | |||
307 | public: |
||
308 | MachineInstr(const MachineInstr &) = delete; |
||
309 | MachineInstr &operator=(const MachineInstr &) = delete; |
||
310 | // Use MachineFunction::DeleteMachineInstr() instead. |
||
311 | ~MachineInstr() = delete; |
||
312 | |||
313 | const MachineBasicBlock* getParent() const { return Parent; } |
||
314 | MachineBasicBlock* getParent() { return Parent; } |
||
315 | |||
316 | /// Move the instruction before \p MovePos. |
||
317 | void moveBefore(MachineInstr *MovePos); |
||
318 | |||
319 | /// Return the function that contains the basic block that this instruction |
||
320 | /// belongs to. |
||
321 | /// |
||
322 | /// Note: this is undefined behaviour if the instruction does not have a |
||
323 | /// parent. |
||
324 | const MachineFunction *getMF() const; |
||
325 | MachineFunction *getMF() { |
||
326 | return const_cast<MachineFunction *>( |
||
327 | static_cast<const MachineInstr *>(this)->getMF()); |
||
328 | } |
||
329 | |||
330 | /// Return the asm printer flags bitvector. |
||
331 | uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } |
||
332 | |||
333 | /// Clear the AsmPrinter bitvector. |
||
334 | void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } |
||
335 | |||
336 | /// Return whether an AsmPrinter flag is set. |
||
337 | bool getAsmPrinterFlag(CommentFlag Flag) const { |
||
338 | return AsmPrinterFlags & Flag; |
||
339 | } |
||
340 | |||
341 | /// Set a flag for the AsmPrinter. |
||
342 | void setAsmPrinterFlag(uint8_t Flag) { |
||
343 | AsmPrinterFlags |= Flag; |
||
344 | } |
||
345 | |||
346 | /// Clear specific AsmPrinter flags. |
||
347 | void clearAsmPrinterFlag(CommentFlag Flag) { |
||
348 | AsmPrinterFlags &= ~Flag; |
||
349 | } |
||
350 | |||
351 | /// Return the MI flags bitvector. |
||
352 | uint16_t getFlags() const { |
||
353 | return Flags; |
||
354 | } |
||
355 | |||
356 | /// Return whether an MI flag is set. |
||
357 | bool getFlag(MIFlag Flag) const { |
||
358 | return Flags & Flag; |
||
359 | } |
||
360 | |||
361 | /// Set a MI flag. |
||
362 | void setFlag(MIFlag Flag) { |
||
363 | Flags |= (uint16_t)Flag; |
||
364 | } |
||
365 | |||
366 | void setFlags(unsigned flags) { |
||
367 | // Filter out the automatically maintained flags. |
||
368 | unsigned Mask = BundledPred | BundledSucc; |
||
369 | Flags = (Flags & Mask) | (flags & ~Mask); |
||
370 | } |
||
371 | |||
372 | /// clearFlag - Clear a MI flag. |
||
373 | void clearFlag(MIFlag Flag) { |
||
374 | Flags &= ~((uint16_t)Flag); |
||
375 | } |
||
376 | |||
377 | /// Return true if MI is in a bundle (but not the first MI in a bundle). |
||
378 | /// |
||
379 | /// A bundle looks like this before it's finalized: |
||
380 | /// ---------------- |
||
381 | /// | MI | |
||
382 | /// ---------------- |
||
383 | /// | |
||
384 | /// ---------------- |
||
385 | /// | MI * | |
||
386 | /// ---------------- |
||
387 | /// | |
||
388 | /// ---------------- |
||
389 | /// | MI * | |
||
390 | /// ---------------- |
||
391 | /// In this case, the first MI starts a bundle but is not inside a bundle, the |
||
392 | /// next 2 MIs are considered "inside" the bundle. |
||
393 | /// |
||
394 | /// After a bundle is finalized, it looks like this: |
||
395 | /// ---------------- |
||
396 | /// | Bundle | |
||
397 | /// ---------------- |
||
398 | /// | |
||
399 | /// ---------------- |
||
400 | /// | MI * | |
||
401 | /// ---------------- |
||
402 | /// | |
||
403 | /// ---------------- |
||
404 | /// | MI * | |
||
405 | /// ---------------- |
||
406 | /// | |
||
407 | /// ---------------- |
||
408 | /// | MI * | |
||
409 | /// ---------------- |
||
410 | /// The first instruction has the special opcode "BUNDLE". It's not "inside" |
||
411 | /// a bundle, but the next three MIs are. |
||
412 | bool isInsideBundle() const { |
||
413 | return getFlag(BundledPred); |
||
414 | } |
||
415 | |||
416 | /// Return true if this instruction part of a bundle. This is true |
||
417 | /// if either itself or its following instruction is marked "InsideBundle". |
||
418 | bool isBundled() const { |
||
419 | return isBundledWithPred() || isBundledWithSucc(); |
||
420 | } |
||
421 | |||
422 | /// Return true if this instruction is part of a bundle, and it is not the |
||
423 | /// first instruction in the bundle. |
||
424 | bool isBundledWithPred() const { return getFlag(BundledPred); } |
||
425 | |||
426 | /// Return true if this instruction is part of a bundle, and it is not the |
||
427 | /// last instruction in the bundle. |
||
428 | bool isBundledWithSucc() const { return getFlag(BundledSucc); } |
||
429 | |||
430 | /// Bundle this instruction with its predecessor. This can be an unbundled |
||
431 | /// instruction, or it can be the first instruction in a bundle. |
||
432 | void bundleWithPred(); |
||
433 | |||
434 | /// Bundle this instruction with its successor. This can be an unbundled |
||
435 | /// instruction, or it can be the last instruction in a bundle. |
||
436 | void bundleWithSucc(); |
||
437 | |||
438 | /// Break bundle above this instruction. |
||
439 | void unbundleFromPred(); |
||
440 | |||
441 | /// Break bundle below this instruction. |
||
442 | void unbundleFromSucc(); |
||
443 | |||
444 | /// Returns the debug location id of this MachineInstr. |
||
445 | const DebugLoc &getDebugLoc() const { return DbgLoc; } |
||
446 | |||
447 | /// Return the operand containing the offset to be used if this DBG_VALUE |
||
448 | /// instruction is indirect; will be an invalid register if this value is |
||
449 | /// not indirect, and an immediate with value 0 otherwise. |
||
450 | const MachineOperand &getDebugOffset() const { |
||
451 | assert(isNonListDebugValue() && "not a DBG_VALUE"); |
||
452 | return getOperand(1); |
||
453 | } |
||
454 | MachineOperand &getDebugOffset() { |
||
455 | assert(isNonListDebugValue() && "not a DBG_VALUE"); |
||
456 | return getOperand(1); |
||
457 | } |
||
458 | |||
459 | /// Return the operand for the debug variable referenced by |
||
460 | /// this DBG_VALUE instruction. |
||
461 | const MachineOperand &getDebugVariableOp() const; |
||
462 | MachineOperand &getDebugVariableOp(); |
||
463 | |||
464 | /// Return the debug variable referenced by |
||
465 | /// this DBG_VALUE instruction. |
||
466 | const DILocalVariable *getDebugVariable() const; |
||
467 | |||
468 | /// Return the operand for the complex address expression referenced by |
||
469 | /// this DBG_VALUE instruction. |
||
470 | const MachineOperand &getDebugExpressionOp() const; |
||
471 | MachineOperand &getDebugExpressionOp(); |
||
472 | |||
473 | /// Return the complex address expression referenced by |
||
474 | /// this DBG_VALUE instruction. |
||
475 | const DIExpression *getDebugExpression() const; |
||
476 | |||
477 | /// Return the debug label referenced by |
||
478 | /// this DBG_LABEL instruction. |
||
479 | const DILabel *getDebugLabel() const; |
||
480 | |||
481 | /// Fetch the instruction number of this MachineInstr. If it does not have |
||
482 | /// one already, a new and unique number will be assigned. |
||
483 | unsigned getDebugInstrNum(); |
||
484 | |||
485 | /// Fetch instruction number of this MachineInstr -- but before it's inserted |
||
486 | /// into \p MF. Needed for transformations that create an instruction but |
||
487 | /// don't immediately insert them. |
||
488 | unsigned getDebugInstrNum(MachineFunction &MF); |
||
489 | |||
490 | /// Examine the instruction number of this MachineInstr. May be zero if |
||
491 | /// it hasn't been assigned a number yet. |
||
492 | unsigned peekDebugInstrNum() const { return DebugInstrNum; } |
||
493 | |||
494 | /// Set instruction number of this MachineInstr. Avoid using unless you're |
||
495 | /// deserializing this information. |
||
496 | void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; } |
||
497 | |||
498 | /// Drop any variable location debugging information associated with this |
||
499 | /// instruction. Use when an instruction is modified in such a way that it no |
||
500 | /// longer defines the value it used to. Variable locations using that value |
||
501 | /// will be dropped. |
||
502 | void dropDebugNumber() { DebugInstrNum = 0; } |
||
503 | |||
504 | /// Emit an error referring to the source location of this instruction. |
||
505 | /// This should only be used for inline assembly that is somehow |
||
506 | /// impossible to compile. Other errors should have been handled much |
||
507 | /// earlier. |
||
508 | /// |
||
509 | /// If this method returns, the caller should try to recover from the error. |
||
510 | void emitError(StringRef Msg) const; |
||
511 | |||
512 | /// Returns the target instruction descriptor of this MachineInstr. |
||
513 | const MCInstrDesc &getDesc() const { return *MCID; } |
||
514 | |||
515 | /// Returns the opcode of this MachineInstr. |
||
516 | unsigned getOpcode() const { return MCID->Opcode; } |
||
517 | |||
518 | /// Retuns the total number of operands. |
||
519 | unsigned getNumOperands() const { return NumOperands; } |
||
520 | |||
521 | /// Returns the total number of operands which are debug locations. |
||
522 | unsigned getNumDebugOperands() const { |
||
523 | return std::distance(debug_operands().begin(), debug_operands().end()); |
||
524 | } |
||
525 | |||
526 | const MachineOperand& getOperand(unsigned i) const { |
||
527 | assert(i < getNumOperands() && "getOperand() out of range!"); |
||
528 | return Operands[i]; |
||
529 | } |
||
530 | MachineOperand& getOperand(unsigned i) { |
||
531 | assert(i < getNumOperands() && "getOperand() out of range!"); |
||
532 | return Operands[i]; |
||
533 | } |
||
534 | |||
535 | MachineOperand &getDebugOperand(unsigned Index) { |
||
536 | assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); |
||
537 | return *(debug_operands().begin() + Index); |
||
538 | } |
||
539 | const MachineOperand &getDebugOperand(unsigned Index) const { |
||
540 | assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); |
||
541 | return *(debug_operands().begin() + Index); |
||
542 | } |
||
543 | |||
544 | SmallSet<Register, 4> getUsedDebugRegs() const { |
||
545 | assert(isDebugValue() && "not a DBG_VALUE*"); |
||
546 | SmallSet<Register, 4> UsedRegs; |
||
547 | for (const auto &MO : debug_operands()) |
||
548 | if (MO.isReg() && MO.getReg()) |
||
549 | UsedRegs.insert(MO.getReg()); |
||
550 | return UsedRegs; |
||
551 | } |
||
552 | |||
553 | /// Returns whether this debug value has at least one debug operand with the |
||
554 | /// register \p Reg. |
||
555 | bool hasDebugOperandForReg(Register Reg) const { |
||
556 | return any_of(debug_operands(), [Reg](const MachineOperand &Op) { |
||
557 | return Op.isReg() && Op.getReg() == Reg; |
||
558 | }); |
||
559 | } |
||
560 | |||
561 | /// Returns a range of all of the operands that correspond to a debug use of |
||
562 | /// \p Reg. |
||
563 | template <typename Operand, typename Instruction> |
||
564 | static iterator_range< |
||
565 | filter_iterator<Operand *, std::function<bool(Operand &Op)>>> |
||
566 | getDebugOperandsForReg(Instruction *MI, Register Reg) { |
||
567 | std::function<bool(Operand & Op)> OpUsesReg( |
||
568 | [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; }); |
||
569 | return make_filter_range(MI->debug_operands(), OpUsesReg); |
||
570 | } |
||
571 | iterator_range<filter_iterator<const MachineOperand *, |
||
572 | std::function<bool(const MachineOperand &Op)>>> |
||
573 | getDebugOperandsForReg(Register Reg) const { |
||
574 | return MachineInstr::getDebugOperandsForReg<const MachineOperand, |
||
575 | const MachineInstr>(this, Reg); |
||
576 | } |
||
577 | iterator_range<filter_iterator<MachineOperand *, |
||
578 | std::function<bool(MachineOperand &Op)>>> |
||
579 | getDebugOperandsForReg(Register Reg) { |
||
580 | return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>( |
||
581 | this, Reg); |
||
582 | } |
||
583 | |||
584 | bool isDebugOperand(const MachineOperand *Op) const { |
||
585 | return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands()); |
||
586 | } |
||
587 | |||
588 | unsigned getDebugOperandIndex(const MachineOperand *Op) const { |
||
589 | assert(isDebugOperand(Op) && "Expected a debug operand."); |
||
590 | return std::distance(adl_begin(debug_operands()), Op); |
||
591 | } |
||
592 | |||
593 | /// Returns the total number of definitions. |
||
594 | unsigned getNumDefs() const { |
||
595 | return getNumExplicitDefs() + MCID->implicit_defs().size(); |
||
596 | } |
||
597 | |||
598 | /// Returns true if the instruction has implicit definition. |
||
599 | bool hasImplicitDef() const { |
||
600 | for (const MachineOperand &MO : implicit_operands()) |
||
601 | if (MO.isDef() && MO.isImplicit()) |
||
602 | return true; |
||
603 | return false; |
||
604 | } |
||
605 | |||
606 | /// Returns the implicit operands number. |
||
607 | unsigned getNumImplicitOperands() const { |
||
608 | return getNumOperands() - getNumExplicitOperands(); |
||
609 | } |
||
610 | |||
611 | /// Return true if operand \p OpIdx is a subregister index. |
||
612 | bool isOperandSubregIdx(unsigned OpIdx) const { |
||
613 | assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type."); |
||
614 | if (isExtractSubreg() && OpIdx == 2) |
||
615 | return true; |
||
616 | if (isInsertSubreg() && OpIdx == 3) |
||
617 | return true; |
||
618 | if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) |
||
619 | return true; |
||
620 | if (isSubregToReg() && OpIdx == 3) |
||
621 | return true; |
||
622 | return false; |
||
623 | } |
||
624 | |||
625 | /// Returns the number of non-implicit operands. |
||
626 | unsigned getNumExplicitOperands() const; |
||
627 | |||
628 | /// Returns the number of non-implicit definitions. |
||
629 | unsigned getNumExplicitDefs() const; |
||
630 | |||
631 | /// iterator/begin/end - Iterate over all operands of a machine instruction. |
||
632 | using mop_iterator = MachineOperand *; |
||
633 | using const_mop_iterator = const MachineOperand *; |
||
634 | |||
635 | mop_iterator operands_begin() { return Operands; } |
||
636 | mop_iterator operands_end() { return Operands + NumOperands; } |
||
637 | |||
638 | const_mop_iterator operands_begin() const { return Operands; } |
||
639 | const_mop_iterator operands_end() const { return Operands + NumOperands; } |
||
640 | |||
641 | iterator_range<mop_iterator> operands() { |
||
642 | return make_range(operands_begin(), operands_end()); |
||
643 | } |
||
644 | iterator_range<const_mop_iterator> operands() const { |
||
645 | return make_range(operands_begin(), operands_end()); |
||
646 | } |
||
647 | iterator_range<mop_iterator> explicit_operands() { |
||
648 | return make_range(operands_begin(), |
||
649 | operands_begin() + getNumExplicitOperands()); |
||
650 | } |
||
651 | iterator_range<const_mop_iterator> explicit_operands() const { |
||
652 | return make_range(operands_begin(), |
||
653 | operands_begin() + getNumExplicitOperands()); |
||
654 | } |
||
655 | iterator_range<mop_iterator> implicit_operands() { |
||
656 | return make_range(explicit_operands().end(), operands_end()); |
||
657 | } |
||
658 | iterator_range<const_mop_iterator> implicit_operands() const { |
||
659 | return make_range(explicit_operands().end(), operands_end()); |
||
660 | } |
||
661 | /// Returns a range over all operands that are used to determine the variable |
||
662 | /// location for this DBG_VALUE instruction. |
||
663 | iterator_range<mop_iterator> debug_operands() { |
||
664 | assert((isDebugValueLike()) && "Must be a debug value instruction."); |
||
665 | return isNonListDebugValue() |
||
666 | ? make_range(operands_begin(), operands_begin() + 1) |
||
667 | : make_range(operands_begin() + 2, operands_end()); |
||
668 | } |
||
669 | /// \copydoc debug_operands() |
||
670 | iterator_range<const_mop_iterator> debug_operands() const { |
||
671 | assert((isDebugValueLike()) && "Must be a debug value instruction."); |
||
672 | return isNonListDebugValue() |
||
673 | ? make_range(operands_begin(), operands_begin() + 1) |
||
674 | : make_range(operands_begin() + 2, operands_end()); |
||
675 | } |
||
676 | /// Returns a range over all explicit operands that are register definitions. |
||
677 | /// Implicit definition are not included! |
||
678 | iterator_range<mop_iterator> defs() { |
||
679 | return make_range(operands_begin(), |
||
680 | operands_begin() + getNumExplicitDefs()); |
||
681 | } |
||
682 | /// \copydoc defs() |
||
683 | iterator_range<const_mop_iterator> defs() const { |
||
684 | return make_range(operands_begin(), |
||
685 | operands_begin() + getNumExplicitDefs()); |
||
686 | } |
||
687 | /// Returns a range that includes all operands that are register uses. |
||
688 | /// This may include unrelated operands which are not register uses. |
||
689 | iterator_range<mop_iterator> uses() { |
||
690 | return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); |
||
691 | } |
||
692 | /// \copydoc uses() |
||
693 | iterator_range<const_mop_iterator> uses() const { |
||
694 | return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); |
||
695 | } |
||
696 | iterator_range<mop_iterator> explicit_uses() { |
||
697 | return make_range(operands_begin() + getNumExplicitDefs(), |
||
698 | operands_begin() + getNumExplicitOperands()); |
||
699 | } |
||
700 | iterator_range<const_mop_iterator> explicit_uses() const { |
||
701 | return make_range(operands_begin() + getNumExplicitDefs(), |
||
702 | operands_begin() + getNumExplicitOperands()); |
||
703 | } |
||
704 | |||
705 | /// Returns the number of the operand iterator \p I points to. |
||
706 | unsigned getOperandNo(const_mop_iterator I) const { |
||
707 | return I - operands_begin(); |
||
708 | } |
||
709 | |||
710 | /// Access to memory operands of the instruction. If there are none, that does |
||
711 | /// not imply anything about whether the function accesses memory. Instead, |
||
712 | /// the caller must behave conservatively. |
||
713 | ArrayRef<MachineMemOperand *> memoperands() const { |
||
714 | if (!Info) |
||
715 | return {}; |
||
716 | |||
717 | if (Info.is<EIIK_MMO>()) |
||
718 | return ArrayRef(Info.getAddrOfZeroTagPointer(), 1); |
||
719 | |||
720 | if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
||
721 | return EI->getMMOs(); |
||
722 | |||
723 | return {}; |
||
724 | } |
||
725 | |||
726 | /// Access to memory operands of the instruction. |
||
727 | /// |
||
728 | /// If `memoperands_begin() == memoperands_end()`, that does not imply |
||
729 | /// anything about whether the function accesses memory. Instead, the caller |
||
730 | /// must behave conservatively. |
||
731 | mmo_iterator memoperands_begin() const { return memoperands().begin(); } |
||
732 | |||
733 | /// Access to memory operands of the instruction. |
||
734 | /// |
||
735 | /// If `memoperands_begin() == memoperands_end()`, that does not imply |
||
736 | /// anything about whether the function accesses memory. Instead, the caller |
||
737 | /// must behave conservatively. |
||
738 | mmo_iterator memoperands_end() const { return memoperands().end(); } |
||
739 | |||
740 | /// Return true if we don't have any memory operands which described the |
||
741 | /// memory access done by this instruction. If this is true, calling code |
||
742 | /// must be conservative. |
||
743 | bool memoperands_empty() const { return memoperands().empty(); } |
||
744 | |||
745 | /// Return true if this instruction has exactly one MachineMemOperand. |
||
746 | bool hasOneMemOperand() const { return memoperands().size() == 1; } |
||
747 | |||
748 | /// Return the number of memory operands. |
||
749 | unsigned getNumMemOperands() const { return memoperands().size(); } |
||
750 | |||
751 | /// Helper to extract a pre-instruction symbol if one has been added. |
||
752 | MCSymbol *getPreInstrSymbol() const { |
||
753 | if (!Info) |
||
754 | return nullptr; |
||
755 | if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) |
||
756 | return S; |
||
757 | if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
||
758 | return EI->getPreInstrSymbol(); |
||
759 | |||
760 | return nullptr; |
||
761 | } |
||
762 | |||
763 | /// Helper to extract a post-instruction symbol if one has been added. |
||
764 | MCSymbol *getPostInstrSymbol() const { |
||
765 | if (!Info) |
||
766 | return nullptr; |
||
767 | if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) |
||
768 | return S; |
||
769 | if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
||
770 | return EI->getPostInstrSymbol(); |
||
771 | |||
772 | return nullptr; |
||
773 | } |
||
774 | |||
775 | /// Helper to extract a heap alloc marker if one has been added. |
||
776 | MDNode *getHeapAllocMarker() const { |
||
777 | if (!Info) |
||
778 | return nullptr; |
||
779 | if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
||
780 | return EI->getHeapAllocMarker(); |
||
781 | |||
782 | return nullptr; |
||
783 | } |
||
784 | |||
785 | /// Helper to extract PCSections metadata target sections. |
||
786 | MDNode *getPCSections() const { |
||
787 | if (!Info) |
||
788 | return nullptr; |
||
789 | if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
||
790 | return EI->getPCSections(); |
||
791 | |||
792 | return nullptr; |
||
793 | } |
||
794 | |||
795 | /// Helper to extract a CFI type hash if one has been added. |
||
796 | uint32_t getCFIType() const { |
||
797 | if (!Info) |
||
798 | return 0; |
||
799 | if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
||
800 | return EI->getCFIType(); |
||
801 | |||
802 | return 0; |
||
803 | } |
||
804 | |||
805 | /// API for querying MachineInstr properties. They are the same as MCInstrDesc |
||
806 | /// queries but they are bundle aware. |
||
807 | |||
808 | enum QueryType { |
||
809 | IgnoreBundle, // Ignore bundles |
||
810 | AnyInBundle, // Return true if any instruction in bundle has property |
||
811 | AllInBundle // Return true if all instructions in bundle have property |
||
812 | }; |
||
813 | |||
814 | /// Return true if the instruction (or in the case of a bundle, |
||
815 | /// the instructions inside the bundle) has the specified property. |
||
816 | /// The first argument is the property being queried. |
||
817 | /// The second argument indicates whether the query should look inside |
||
818 | /// instruction bundles. |
||
819 | bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { |
||
820 | assert(MCFlag < 64 && |
||
821 | "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); |
||
822 | // Inline the fast path for unbundled or bundle-internal instructions. |
||
823 | if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) |
||
824 | return getDesc().getFlags() & (1ULL << MCFlag); |
||
825 | |||
826 | // If this is the first instruction in a bundle, take the slow path. |
||
827 | return hasPropertyInBundle(1ULL << MCFlag, Type); |
||
828 | } |
||
829 | |||
830 | /// Return true if this is an instruction that should go through the usual |
||
831 | /// legalization steps. |
||
832 | bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { |
||
833 | return hasProperty(MCID::PreISelOpcode, Type); |
||
834 | } |
||
835 | |||
836 | /// Return true if this instruction can have a variable number of operands. |
||
837 | /// In this case, the variable operands will be after the normal |
||
838 | /// operands but before the implicit definitions and uses (if any are |
||
839 | /// present). |
||
840 | bool isVariadic(QueryType Type = IgnoreBundle) const { |
||
841 | return hasProperty(MCID::Variadic, Type); |
||
842 | } |
||
843 | |||
844 | /// Set if this instruction has an optional definition, e.g. |
||
845 | /// ARM instructions which can set condition code if 's' bit is set. |
||
846 | bool hasOptionalDef(QueryType Type = IgnoreBundle) const { |
||
847 | return hasProperty(MCID::HasOptionalDef, Type); |
||
848 | } |
||
849 | |||
850 | /// Return true if this is a pseudo instruction that doesn't |
||
851 | /// correspond to a real machine instruction. |
||
852 | bool isPseudo(QueryType Type = IgnoreBundle) const { |
||
853 | return hasProperty(MCID::Pseudo, Type); |
||
854 | } |
||
855 | |||
856 | /// Return true if this instruction doesn't produce any output in the form of |
||
857 | /// executable instructions. |
||
858 | bool isMetaInstruction(QueryType Type = IgnoreBundle) const { |
||
859 | return hasProperty(MCID::Meta, Type); |
||
860 | } |
||
861 | |||
862 | bool isReturn(QueryType Type = AnyInBundle) const { |
||
863 | return hasProperty(MCID::Return, Type); |
||
864 | } |
||
865 | |||
866 | /// Return true if this is an instruction that marks the end of an EH scope, |
||
867 | /// i.e., a catchpad or a cleanuppad instruction. |
||
868 | bool isEHScopeReturn(QueryType Type = AnyInBundle) const { |
||
869 | return hasProperty(MCID::EHScopeReturn, Type); |
||
870 | } |
||
871 | |||
872 | bool isCall(QueryType Type = AnyInBundle) const { |
||
873 | return hasProperty(MCID::Call, Type); |
||
874 | } |
||
875 | |||
876 | /// Return true if this is a call instruction that may have an associated |
||
877 | /// call site entry in the debug info. |
||
878 | bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const; |
||
879 | /// Return true if copying, moving, or erasing this instruction requires |
||
880 | /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo, |
||
881 | /// \ref eraseCallSiteInfo). |
||
882 | bool shouldUpdateCallSiteInfo() const; |
||
883 | |||
884 | /// Returns true if the specified instruction stops control flow |
||
885 | /// from executing the instruction immediately following it. Examples include |
||
886 | /// unconditional branches and return instructions. |
||
887 | bool isBarrier(QueryType Type = AnyInBundle) const { |
||
888 | return hasProperty(MCID::Barrier, Type); |
||
889 | } |
||
890 | |||
891 | /// Returns true if this instruction part of the terminator for a basic block. |
||
892 | /// Typically this is things like return and branch instructions. |
||
893 | /// |
||
894 | /// Various passes use this to insert code into the bottom of a basic block, |
||
895 | /// but before control flow occurs. |
||
896 | bool isTerminator(QueryType Type = AnyInBundle) const { |
||
897 | return hasProperty(MCID::Terminator, Type); |
||
898 | } |
||
899 | |||
900 | /// Returns true if this is a conditional, unconditional, or indirect branch. |
||
901 | /// Predicates below can be used to discriminate between |
||
902 | /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to |
||
903 | /// get more information. |
||
904 | bool isBranch(QueryType Type = AnyInBundle) const { |
||
905 | return hasProperty(MCID::Branch, Type); |
||
906 | } |
||
907 | |||
908 | /// Return true if this is an indirect branch, such as a |
||
909 | /// branch through a register. |
||
910 | bool isIndirectBranch(QueryType Type = AnyInBundle) const { |
||
911 | return hasProperty(MCID::IndirectBranch, Type); |
||
912 | } |
||
913 | |||
914 | /// Return true if this is a branch which may fall |
||
915 | /// through to the next instruction or may transfer control flow to some other |
||
916 | /// block. The TargetInstrInfo::analyzeBranch method can be used to get more |
||
917 | /// information about this branch. |
||
918 | bool isConditionalBranch(QueryType Type = AnyInBundle) const { |
||
919 | return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); |
||
920 | } |
||
921 | |||
922 | /// Return true if this is a branch which always |
||
923 | /// transfers control flow to some other block. The |
||
924 | /// TargetInstrInfo::analyzeBranch method can be used to get more information |
||
925 | /// about this branch. |
||
926 | bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { |
||
927 | return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); |
||
928 | } |
||
929 | |||
930 | /// Return true if this instruction has a predicate operand that |
||
931 | /// controls execution. It may be set to 'always', or may be set to other |
||
932 | /// values. There are various methods in TargetInstrInfo that can be used to |
||
933 | /// control and modify the predicate in this instruction. |
||
934 | bool isPredicable(QueryType Type = AllInBundle) const { |
||
935 | // If it's a bundle than all bundled instructions must be predicable for this |
||
936 | // to return true. |
||
937 | return hasProperty(MCID::Predicable, Type); |
||
938 | } |
||
939 | |||
940 | /// Return true if this instruction is a comparison. |
||
941 | bool isCompare(QueryType Type = IgnoreBundle) const { |
||
942 | return hasProperty(MCID::Compare, Type); |
||
943 | } |
||
944 | |||
945 | /// Return true if this instruction is a move immediate |
||
946 | /// (including conditional moves) instruction. |
||
947 | bool isMoveImmediate(QueryType Type = IgnoreBundle) const { |
||
948 | return hasProperty(MCID::MoveImm, Type); |
||
949 | } |
||
950 | |||
951 | /// Return true if this instruction is a register move. |
||
952 | /// (including moving values from subreg to reg) |
||
953 | bool isMoveReg(QueryType Type = IgnoreBundle) const { |
||
954 | return hasProperty(MCID::MoveReg, Type); |
||
955 | } |
||
956 | |||
957 | /// Return true if this instruction is a bitcast instruction. |
||
958 | bool isBitcast(QueryType Type = IgnoreBundle) const { |
||
959 | return hasProperty(MCID::Bitcast, Type); |
||
960 | } |
||
961 | |||
962 | /// Return true if this instruction is a select instruction. |
||
963 | bool isSelect(QueryType Type = IgnoreBundle) const { |
||
964 | return hasProperty(MCID::Select, Type); |
||
965 | } |
||
966 | |||
967 | /// Return true if this instruction cannot be safely duplicated. |
||
968 | /// For example, if the instruction has a unique labels attached |
||
969 | /// to it, duplicating it would cause multiple definition errors. |
||
970 | bool isNotDuplicable(QueryType Type = AnyInBundle) const { |
||
971 | if (getPreInstrSymbol() || getPostInstrSymbol()) |
||
972 | return true; |
||
973 | return hasProperty(MCID::NotDuplicable, Type); |
||
974 | } |
||
975 | |||
976 | /// Return true if this instruction is convergent. |
||
977 | /// Convergent instructions can not be made control-dependent on any |
||
978 | /// additional values. |
||
979 | bool isConvergent(QueryType Type = AnyInBundle) const { |
||
980 | if (isInlineAsm()) { |
||
981 | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
||
982 | if (ExtraInfo & InlineAsm::Extra_IsConvergent) |
||
983 | return true; |
||
984 | } |
||
985 | return hasProperty(MCID::Convergent, Type); |
||
986 | } |
||
987 | |||
988 | /// Returns true if the specified instruction has a delay slot |
||
989 | /// which must be filled by the code generator. |
||
990 | bool hasDelaySlot(QueryType Type = AnyInBundle) const { |
||
991 | return hasProperty(MCID::DelaySlot, Type); |
||
992 | } |
||
993 | |||
994 | /// Return true for instructions that can be folded as |
||
995 | /// memory operands in other instructions. The most common use for this |
||
996 | /// is instructions that are simple loads from memory that don't modify |
||
997 | /// the loaded value in any way, but it can also be used for instructions |
||
998 | /// that can be expressed as constant-pool loads, such as V_SETALLONES |
||
999 | /// on x86, to allow them to be folded when it is beneficial. |
||
1000 | /// This should only be set on instructions that return a value in their |
||
1001 | /// only virtual register definition. |
||
1002 | bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { |
||
1003 | return hasProperty(MCID::FoldableAsLoad, Type); |
||
1004 | } |
||
1005 | |||
1006 | /// Return true if this instruction behaves |
||
1007 | /// the same way as the generic REG_SEQUENCE instructions. |
||
1008 | /// E.g., on ARM, |
||
1009 | /// dX VMOVDRR rY, rZ |
||
1010 | /// is equivalent to |
||
1011 | /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. |
||
1012 | /// |
||
1013 | /// Note that for the optimizers to be able to take advantage of |
||
1014 | /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be |
||
1015 | /// override accordingly. |
||
1016 | bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { |
||
1017 | return hasProperty(MCID::RegSequence, Type); |
||
1018 | } |
||
1019 | |||
1020 | /// Return true if this instruction behaves |
||
1021 | /// the same way as the generic EXTRACT_SUBREG instructions. |
||
1022 | /// E.g., on ARM, |
||
1023 | /// rX, rY VMOVRRD dZ |
||
1024 | /// is equivalent to two EXTRACT_SUBREG: |
||
1025 | /// rX = EXTRACT_SUBREG dZ, ssub_0 |
||
1026 | /// rY = EXTRACT_SUBREG dZ, ssub_1 |
||
1027 | /// |
||
1028 | /// Note that for the optimizers to be able to take advantage of |
||
1029 | /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be |
||
1030 | /// override accordingly. |
||
1031 | bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { |
||
1032 | return hasProperty(MCID::ExtractSubreg, Type); |
||
1033 | } |
||
1034 | |||
1035 | /// Return true if this instruction behaves |
||
1036 | /// the same way as the generic INSERT_SUBREG instructions. |
||
1037 | /// E.g., on ARM, |
||
1038 | /// dX = VSETLNi32 dY, rZ, Imm |
||
1039 | /// is equivalent to a INSERT_SUBREG: |
||
1040 | /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) |
||
1041 | /// |
||
1042 | /// Note that for the optimizers to be able to take advantage of |
||
1043 | /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be |
||
1044 | /// override accordingly. |
||
1045 | bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { |
||
1046 | return hasProperty(MCID::InsertSubreg, Type); |
||
1047 | } |
||
1048 | |||
1049 | //===--------------------------------------------------------------------===// |
||
1050 | // Side Effect Analysis |
||
1051 | //===--------------------------------------------------------------------===// |
||
1052 | |||
1053 | /// Return true if this instruction could possibly read memory. |
||
1054 | /// Instructions with this flag set are not necessarily simple load |
||
1055 | /// instructions, they may load a value and modify it, for example. |
||
1056 | bool mayLoad(QueryType Type = AnyInBundle) const { |
||
1057 | if (isInlineAsm()) { |
||
1058 | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
||
1059 | if (ExtraInfo & InlineAsm::Extra_MayLoad) |
||
1060 | return true; |
||
1061 | } |
||
1062 | return hasProperty(MCID::MayLoad, Type); |
||
1063 | } |
||
1064 | |||
1065 | /// Return true if this instruction could possibly modify memory. |
||
1066 | /// Instructions with this flag set are not necessarily simple store |
||
1067 | /// instructions, they may store a modified value based on their operands, or |
||
1068 | /// may not actually modify anything, for example. |
||
1069 | bool mayStore(QueryType Type = AnyInBundle) const { |
||
1070 | if (isInlineAsm()) { |
||
1071 | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
||
1072 | if (ExtraInfo & InlineAsm::Extra_MayStore) |
||
1073 | return true; |
||
1074 | } |
||
1075 | return hasProperty(MCID::MayStore, Type); |
||
1076 | } |
||
1077 | |||
1078 | /// Return true if this instruction could possibly read or modify memory. |
||
1079 | bool mayLoadOrStore(QueryType Type = AnyInBundle) const { |
||
1080 | return mayLoad(Type) || mayStore(Type); |
||
1081 | } |
||
1082 | |||
1083 | /// Return true if this instruction could possibly raise a floating-point |
||
1084 | /// exception. This is the case if the instruction is a floating-point |
||
1085 | /// instruction that can in principle raise an exception, as indicated |
||
1086 | /// by the MCID::MayRaiseFPException property, *and* at the same time, |
||
1087 | /// the instruction is used in a context where we expect floating-point |
||
1088 | /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. |
||
1089 | bool mayRaiseFPException() const { |
||
1090 | return hasProperty(MCID::MayRaiseFPException) && |
||
1091 | !getFlag(MachineInstr::MIFlag::NoFPExcept); |
||
1092 | } |
||
1093 | |||
1094 | //===--------------------------------------------------------------------===// |
||
1095 | // Flags that indicate whether an instruction can be modified by a method. |
||
1096 | //===--------------------------------------------------------------------===// |
||
1097 | |||
1098 | /// Return true if this may be a 2- or 3-address |
||
1099 | /// instruction (of the form "X = op Y, Z, ..."), which produces the same |
||
1100 | /// result if Y and Z are exchanged. If this flag is set, then the |
||
1101 | /// TargetInstrInfo::commuteInstruction method may be used to hack on the |
||
1102 | /// instruction. |
||
1103 | /// |
||
1104 | /// Note that this flag may be set on instructions that are only commutable |
||
1105 | /// sometimes. In these cases, the call to commuteInstruction will fail. |
||
1106 | /// Also note that some instructions require non-trivial modification to |
||
1107 | /// commute them. |
||
1108 | bool isCommutable(QueryType Type = IgnoreBundle) const { |
||
1109 | return hasProperty(MCID::Commutable, Type); |
||
1110 | } |
||
1111 | |||
1112 | /// Return true if this is a 2-address instruction |
||
1113 | /// which can be changed into a 3-address instruction if needed. Doing this |
||
1114 | /// transformation can be profitable in the register allocator, because it |
||
1115 | /// means that the instruction can use a 2-address form if possible, but |
||
1116 | /// degrade into a less efficient form if the source and dest register cannot |
||
1117 | /// be assigned to the same register. For example, this allows the x86 |
||
1118 | /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which |
||
1119 | /// is the same speed as the shift but has bigger code size. |
||
1120 | /// |
||
1121 | /// If this returns true, then the target must implement the |
||
1122 | /// TargetInstrInfo::convertToThreeAddress method for this instruction, which |
||
1123 | /// is allowed to fail if the transformation isn't valid for this specific |
||
1124 | /// instruction (e.g. shl reg, 4 on x86). |
||
1125 | /// |
||
1126 | bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { |
||
1127 | return hasProperty(MCID::ConvertibleTo3Addr, Type); |
||
1128 | } |
||
1129 | |||
1130 | /// Return true if this instruction requires |
||
1131 | /// custom insertion support when the DAG scheduler is inserting it into a |
||
1132 | /// machine basic block. If this is true for the instruction, it basically |
||
1133 | /// means that it is a pseudo instruction used at SelectionDAG time that is |
||
1134 | /// expanded out into magic code by the target when MachineInstrs are formed. |
||
1135 | /// |
||
1136 | /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method |
||
1137 | /// is used to insert this into the MachineBasicBlock. |
||
1138 | bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { |
||
1139 | return hasProperty(MCID::UsesCustomInserter, Type); |
||
1140 | } |
||
1141 | |||
1142 | /// Return true if this instruction requires *adjustment* |
||
1143 | /// after instruction selection by calling a target hook. For example, this |
||
1144 | /// can be used to fill in ARM 's' optional operand depending on whether |
||
1145 | /// the conditional flag register is used. |
||
1146 | bool hasPostISelHook(QueryType Type = IgnoreBundle) const { |
||
1147 | return hasProperty(MCID::HasPostISelHook, Type); |
||
1148 | } |
||
1149 | |||
1150 | /// Returns true if this instruction is a candidate for remat. |
||
1151 | /// This flag is deprecated, please don't use it anymore. If this |
||
1152 | /// flag is set, the isReallyTriviallyReMaterializable() method is called to |
||
1153 | /// verify the instruction is really rematable. |
||
1154 | bool isRematerializable(QueryType Type = AllInBundle) const { |
||
1155 | // It's only possible to re-mat a bundle if all bundled instructions are |
||
1156 | // re-materializable. |
||
1157 | return hasProperty(MCID::Rematerializable, Type); |
||
1158 | } |
||
1159 | |||
1160 | /// Returns true if this instruction has the same cost (or less) than a move |
||
1161 | /// instruction. This is useful during certain types of optimizations |
||
1162 | /// (e.g., remat during two-address conversion or machine licm) |
||
1163 | /// where we would like to remat or hoist the instruction, but not if it costs |
||
1164 | /// more than moving the instruction into the appropriate register. Note, we |
||
1165 | /// are not marking copies from and to the same register class with this flag. |
||
1166 | bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { |
||
1167 | // Only returns true for a bundle if all bundled instructions are cheap. |
||
1168 | return hasProperty(MCID::CheapAsAMove, Type); |
||
1169 | } |
||
1170 | |||
1171 | /// Returns true if this instruction source operands |
||
1172 | /// have special register allocation requirements that are not captured by the |
||
1173 | /// operand register classes. e.g. ARM::STRD's two source registers must be an |
||
1174 | /// even / odd pair, ARM::STM registers have to be in ascending order. |
||
1175 | /// Post-register allocation passes should not attempt to change allocations |
||
1176 | /// for sources of instructions with this flag. |
||
1177 | bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { |
||
1178 | return hasProperty(MCID::ExtraSrcRegAllocReq, Type); |
||
1179 | } |
||
1180 | |||
1181 | /// Returns true if this instruction def operands |
||
1182 | /// have special register allocation requirements that are not captured by the |
||
1183 | /// operand register classes. e.g. ARM::LDRD's two def registers must be an |
||
1184 | /// even / odd pair, ARM::LDM registers have to be in ascending order. |
||
1185 | /// Post-register allocation passes should not attempt to change allocations |
||
1186 | /// for definitions of instructions with this flag. |
||
1187 | bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { |
||
1188 | return hasProperty(MCID::ExtraDefRegAllocReq, Type); |
||
1189 | } |
||
1190 | |||
1191 | enum MICheckType { |
||
1192 | CheckDefs, // Check all operands for equality |
||
1193 | CheckKillDead, // Check all operands including kill / dead markers |
||
1194 | IgnoreDefs, // Ignore all definitions |
||
1195 | IgnoreVRegDefs // Ignore virtual register definitions |
||
1196 | }; |
||
1197 | |||
1198 | /// Return true if this instruction is identical to \p Other. |
||
1199 | /// Two instructions are identical if they have the same opcode and all their |
||
1200 | /// operands are identical (with respect to MachineOperand::isIdenticalTo()). |
||
1201 | /// Note that this means liveness related flags (dead, undef, kill) do not |
||
1202 | /// affect the notion of identical. |
||
1203 | bool isIdenticalTo(const MachineInstr &Other, |
||
1204 | MICheckType Check = CheckDefs) const; |
||
1205 | |||
1206 | /// Returns true if this instruction is a debug instruction that represents an |
||
1207 | /// identical debug value to \p Other. |
||
1208 | /// This function considers these debug instructions equivalent if they have |
||
1209 | /// identical variables, debug locations, and debug operands, and if the |
||
1210 | /// DIExpressions combined with the directness flags are equivalent. |
||
1211 | bool isEquivalentDbgInstr(const MachineInstr &Other) const; |
||
1212 | |||
1213 | /// Unlink 'this' from the containing basic block, and return it without |
||
1214 | /// deleting it. |
||
1215 | /// |
||
1216 | /// This function can not be used on bundled instructions, use |
||
1217 | /// removeFromBundle() to remove individual instructions from a bundle. |
||
1218 | MachineInstr *removeFromParent(); |
||
1219 | |||
1220 | /// Unlink this instruction from its basic block and return it without |
||
1221 | /// deleting it. |
||
1222 | /// |
||
1223 | /// If the instruction is part of a bundle, the other instructions in the |
||
1224 | /// bundle remain bundled. |
||
1225 | MachineInstr *removeFromBundle(); |
||
1226 | |||
1227 | /// Unlink 'this' from the containing basic block and delete it. |
||
1228 | /// |
||
1229 | /// If this instruction is the header of a bundle, the whole bundle is erased. |
||
1230 | /// This function can not be used for instructions inside a bundle, use |
||
1231 | /// eraseFromBundle() to erase individual bundled instructions. |
||
1232 | void eraseFromParent(); |
||
1233 | |||
1234 | /// Unlink 'this' form its basic block and delete it. |
||
1235 | /// |
||
1236 | /// If the instruction is part of a bundle, the other instructions in the |
||
1237 | /// bundle remain bundled. |
||
1238 | void eraseFromBundle(); |
||
1239 | |||
1240 | bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } |
||
1241 | bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } |
||
1242 | bool isAnnotationLabel() const { |
||
1243 | return getOpcode() == TargetOpcode::ANNOTATION_LABEL; |
||
1244 | } |
||
1245 | |||
1246 | /// Returns true if the MachineInstr represents a label. |
||
1247 | bool isLabel() const { |
||
1248 | return isEHLabel() || isGCLabel() || isAnnotationLabel(); |
||
1249 | } |
||
1250 | |||
1251 | bool isCFIInstruction() const { |
||
1252 | return getOpcode() == TargetOpcode::CFI_INSTRUCTION; |
||
1253 | } |
||
1254 | |||
1255 | bool isPseudoProbe() const { |
||
1256 | return getOpcode() == TargetOpcode::PSEUDO_PROBE; |
||
1257 | } |
||
1258 | |||
1259 | // True if the instruction represents a position in the function. |
||
1260 | bool isPosition() const { return isLabel() || isCFIInstruction(); } |
||
1261 | |||
1262 | bool isNonListDebugValue() const { |
||
1263 | return getOpcode() == TargetOpcode::DBG_VALUE; |
||
1264 | } |
||
1265 | bool isDebugValueList() const { |
||
1266 | return getOpcode() == TargetOpcode::DBG_VALUE_LIST; |
||
1267 | } |
||
1268 | bool isDebugValue() const { |
||
1269 | return isNonListDebugValue() || isDebugValueList(); |
||
1270 | } |
||
1271 | bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } |
||
1272 | bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; } |
||
1273 | bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); } |
||
1274 | bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; } |
||
1275 | bool isDebugInstr() const { |
||
1276 | return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI(); |
||
1277 | } |
||
1278 | bool isDebugOrPseudoInstr() const { |
||
1279 | return isDebugInstr() || isPseudoProbe(); |
||
1280 | } |
||
1281 | |||
1282 | bool isDebugOffsetImm() const { |
||
1283 | return isNonListDebugValue() && getDebugOffset().isImm(); |
||
1284 | } |
||
1285 | |||
1286 | /// A DBG_VALUE is indirect iff the location operand is a register and |
||
1287 | /// the offset operand is an immediate. |
||
1288 | bool isIndirectDebugValue() const { |
||
1289 | return isDebugOffsetImm() && getDebugOperand(0).isReg(); |
||
1290 | } |
||
1291 | |||
1292 | /// A DBG_VALUE is an entry value iff its debug expression contains the |
||
1293 | /// DW_OP_LLVM_entry_value operation. |
||
1294 | bool isDebugEntryValue() const; |
||
1295 | |||
1296 | /// Return true if the instruction is a debug value which describes a part of |
||
1297 | /// a variable as unavailable. |
||
1298 | bool isUndefDebugValue() const { |
||
1299 | if (!isDebugValue()) |
||
1300 | return false; |
||
1301 | // If any $noreg locations are given, this DV is undef. |
||
1302 | for (const MachineOperand &Op : debug_operands()) |
||
1303 | if (Op.isReg() && !Op.getReg().isValid()) |
||
1304 | return true; |
||
1305 | return false; |
||
1306 | } |
||
1307 | |||
1308 | bool isPHI() const { |
||
1309 | return getOpcode() == TargetOpcode::PHI || |
||
1310 | getOpcode() == TargetOpcode::G_PHI; |
||
1311 | } |
||
1312 | bool isKill() const { return getOpcode() == TargetOpcode::KILL; } |
||
1313 | bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } |
||
1314 | bool isInlineAsm() const { |
||
1315 | return getOpcode() == TargetOpcode::INLINEASM || |
||
1316 | getOpcode() == TargetOpcode::INLINEASM_BR; |
||
1317 | } |
||
1318 | |||
1319 | /// FIXME: Seems like a layering violation that the AsmDialect, which is X86 |
||
1320 | /// specific, be attached to a generic MachineInstr. |
||
1321 | bool isMSInlineAsm() const { |
||
1322 | return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel; |
||
1323 | } |
||
1324 | |||
1325 | bool isStackAligningInlineAsm() const; |
||
1326 | InlineAsm::AsmDialect getInlineAsmDialect() const; |
||
1327 | |||
1328 | bool isInsertSubreg() const { |
||
1329 | return getOpcode() == TargetOpcode::INSERT_SUBREG; |
||
1330 | } |
||
1331 | |||
1332 | bool isSubregToReg() const { |
||
1333 | return getOpcode() == TargetOpcode::SUBREG_TO_REG; |
||
1334 | } |
||
1335 | |||
1336 | bool isRegSequence() const { |
||
1337 | return getOpcode() == TargetOpcode::REG_SEQUENCE; |
||
1338 | } |
||
1339 | |||
1340 | bool isBundle() const { |
||
1341 | return getOpcode() == TargetOpcode::BUNDLE; |
||
1342 | } |
||
1343 | |||
1344 | bool isCopy() const { |
||
1345 | return getOpcode() == TargetOpcode::COPY; |
||
1346 | } |
||
1347 | |||
1348 | bool isFullCopy() const { |
||
1349 | return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); |
||
1350 | } |
||
1351 | |||
1352 | bool isExtractSubreg() const { |
||
1353 | return getOpcode() == TargetOpcode::EXTRACT_SUBREG; |
||
1354 | } |
||
1355 | |||
1356 | /// Return true if the instruction behaves like a copy. |
||
1357 | /// This does not include native copy instructions. |
||
1358 | bool isCopyLike() const { |
||
1359 | return isCopy() || isSubregToReg(); |
||
1360 | } |
||
1361 | |||
1362 | /// Return true is the instruction is an identity copy. |
||
1363 | bool isIdentityCopy() const { |
||
1364 | return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && |
||
1365 | getOperand(0).getSubReg() == getOperand(1).getSubReg(); |
||
1366 | } |
||
1367 | |||
1368 | /// Return true if this is a transient instruction that is either very likely |
||
1369 | /// to be eliminated during register allocation (such as copy-like |
||
1370 | /// instructions), or if this instruction doesn't have an execution-time cost. |
||
1371 | bool isTransient() const { |
||
1372 | switch (getOpcode()) { |
||
1373 | default: |
||
1374 | return isMetaInstruction(); |
||
1375 | // Copy-like instructions are usually eliminated during register allocation. |
||
1376 | case TargetOpcode::PHI: |
||
1377 | case TargetOpcode::G_PHI: |
||
1378 | case TargetOpcode::COPY: |
||
1379 | case TargetOpcode::INSERT_SUBREG: |
||
1380 | case TargetOpcode::SUBREG_TO_REG: |
||
1381 | case TargetOpcode::REG_SEQUENCE: |
||
1382 | return true; |
||
1383 | } |
||
1384 | } |
||
1385 | |||
1386 | /// Return the number of instructions inside the MI bundle, excluding the |
||
1387 | /// bundle header. |
||
1388 | /// |
||
1389 | /// This is the number of instructions that MachineBasicBlock::iterator |
||
1390 | /// skips, 0 for unbundled instructions. |
||
1391 | unsigned getBundleSize() const; |
||
1392 | |||
1393 | /// Return true if the MachineInstr reads the specified register. |
||
1394 | /// If TargetRegisterInfo is passed, then it also checks if there |
||
1395 | /// is a read of a super-register. |
||
1396 | /// This does not count partial redefines of virtual registers as reads: |
||
1397 | /// %reg1024:6 = OP. |
||
1398 | bool readsRegister(Register Reg, |
||
1399 | const TargetRegisterInfo *TRI = nullptr) const { |
||
1400 | return findRegisterUseOperandIdx(Reg, false, TRI) != -1; |
||
1401 | } |
||
1402 | |||
1403 | /// Return true if the MachineInstr reads the specified virtual register. |
||
1404 | /// Take into account that a partial define is a |
||
1405 | /// read-modify-write operation. |
||
1406 | bool readsVirtualRegister(Register Reg) const { |
||
1407 | return readsWritesVirtualRegister(Reg).first; |
||
1408 | } |
||
1409 | |||
1410 | /// Return a pair of bools (reads, writes) indicating if this instruction |
||
1411 | /// reads or writes Reg. This also considers partial defines. |
||
1412 | /// If Ops is not null, all operand indices for Reg are added. |
||
1413 | std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, |
||
1414 | SmallVectorImpl<unsigned> *Ops = nullptr) const; |
||
1415 | |||
1416 | /// Return true if the MachineInstr kills the specified register. |
||
1417 | /// If TargetRegisterInfo is passed, then it also checks if there is |
||
1418 | /// a kill of a super-register. |
||
1419 | bool killsRegister(Register Reg, |
||
1420 | const TargetRegisterInfo *TRI = nullptr) const { |
||
1421 | return findRegisterUseOperandIdx(Reg, true, TRI) != -1; |
||
1422 | } |
||
1423 | |||
1424 | /// Return true if the MachineInstr fully defines the specified register. |
||
1425 | /// If TargetRegisterInfo is passed, then it also checks |
||
1426 | /// if there is a def of a super-register. |
||
1427 | /// NOTE: It's ignoring subreg indices on virtual registers. |
||
1428 | bool definesRegister(Register Reg, |
||
1429 | const TargetRegisterInfo *TRI = nullptr) const { |
||
1430 | return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; |
||
1431 | } |
||
1432 | |||
1433 | /// Return true if the MachineInstr modifies (fully define or partially |
||
1434 | /// define) the specified register. |
||
1435 | /// NOTE: It's ignoring subreg indices on virtual registers. |
||
1436 | bool modifiesRegister(Register Reg, |
||
1437 | const TargetRegisterInfo *TRI = nullptr) const { |
||
1438 | return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; |
||
1439 | } |
||
1440 | |||
1441 | /// Returns true if the register is dead in this machine instruction. |
||
1442 | /// If TargetRegisterInfo is passed, then it also checks |
||
1443 | /// if there is a dead def of a super-register. |
||
1444 | bool registerDefIsDead(Register Reg, |
||
1445 | const TargetRegisterInfo *TRI = nullptr) const { |
||
1446 | return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; |
||
1447 | } |
||
1448 | |||
1449 | /// Returns true if the MachineInstr has an implicit-use operand of exactly |
||
1450 | /// the given register (not considering sub/super-registers). |
||
1451 | bool hasRegisterImplicitUseOperand(Register Reg) const; |
||
1452 | |||
1453 | /// Returns the operand index that is a use of the specific register or -1 |
||
1454 | /// if it is not found. It further tightens the search criteria to a use |
||
1455 | /// that kills the register if isKill is true. |
||
1456 | int findRegisterUseOperandIdx(Register Reg, bool isKill = false, |
||
1457 | const TargetRegisterInfo *TRI = nullptr) const; |
||
1458 | |||
1459 | /// Wrapper for findRegisterUseOperandIdx, it returns |
||
1460 | /// a pointer to the MachineOperand rather than an index. |
||
1461 | MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false, |
||
1462 | const TargetRegisterInfo *TRI = nullptr) { |
||
1463 | int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); |
||
1464 | return (Idx == -1) ? nullptr : &getOperand(Idx); |
||
1465 | } |
||
1466 | |||
1467 | const MachineOperand *findRegisterUseOperand( |
||
1468 | Register Reg, bool isKill = false, |
||
1469 | const TargetRegisterInfo *TRI = nullptr) const { |
||
1470 | return const_cast<MachineInstr *>(this)-> |
||
1471 | findRegisterUseOperand(Reg, isKill, TRI); |
||
1472 | } |
||
1473 | |||
1474 | /// Returns the operand index that is a def of the specified register or |
||
1475 | /// -1 if it is not found. If isDead is true, defs that are not dead are |
||
1476 | /// skipped. If Overlap is true, then it also looks for defs that merely |
||
1477 | /// overlap the specified register. If TargetRegisterInfo is non-null, |
||
1478 | /// then it also checks if there is a def of a super-register. |
||
1479 | /// This may also return a register mask operand when Overlap is true. |
||
1480 | int findRegisterDefOperandIdx(Register Reg, |
||
1481 | bool isDead = false, bool Overlap = false, |
||
1482 | const TargetRegisterInfo *TRI = nullptr) const; |
||
1483 | |||
1484 | /// Wrapper for findRegisterDefOperandIdx, it returns |
||
1485 | /// a pointer to the MachineOperand rather than an index. |
||
1486 | MachineOperand * |
||
1487 | findRegisterDefOperand(Register Reg, bool isDead = false, |
||
1488 | bool Overlap = false, |
||
1489 | const TargetRegisterInfo *TRI = nullptr) { |
||
1490 | int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI); |
||
1491 | return (Idx == -1) ? nullptr : &getOperand(Idx); |
||
1492 | } |
||
1493 | |||
1494 | const MachineOperand * |
||
1495 | findRegisterDefOperand(Register Reg, bool isDead = false, |
||
1496 | bool Overlap = false, |
||
1497 | const TargetRegisterInfo *TRI = nullptr) const { |
||
1498 | return const_cast<MachineInstr *>(this)->findRegisterDefOperand( |
||
1499 | Reg, isDead, Overlap, TRI); |
||
1500 | } |
||
1501 | |||
1502 | /// Find the index of the first operand in the |
||
1503 | /// operand list that is used to represent the predicate. It returns -1 if |
||
1504 | /// none is found. |
||
1505 | int findFirstPredOperandIdx() const; |
||
1506 | |||
1507 | /// Find the index of the flag word operand that |
||
1508 | /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if |
||
1509 | /// getOperand(OpIdx) does not belong to an inline asm operand group. |
||
1510 | /// |
||
1511 | /// If GroupNo is not NULL, it will receive the number of the operand group |
||
1512 | /// containing OpIdx. |
||
1513 | int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; |
||
1514 | |||
1515 | /// Compute the static register class constraint for operand OpIdx. |
||
1516 | /// For normal instructions, this is derived from the MCInstrDesc. |
||
1517 | /// For inline assembly it is derived from the flag words. |
||
1518 | /// |
||
1519 | /// Returns NULL if the static register class constraint cannot be |
||
1520 | /// determined. |
||
1521 | const TargetRegisterClass* |
||
1522 | getRegClassConstraint(unsigned OpIdx, |
||
1523 | const TargetInstrInfo *TII, |
||
1524 | const TargetRegisterInfo *TRI) const; |
||
1525 | |||
1526 | /// Applies the constraints (def/use) implied by this MI on \p Reg to |
||
1527 | /// the given \p CurRC. |
||
1528 | /// If \p ExploreBundle is set and MI is part of a bundle, all the |
||
1529 | /// instructions inside the bundle will be taken into account. In other words, |
||
1530 | /// this method accumulates all the constraints of the operand of this MI and |
||
1531 | /// the related bundle if MI is a bundle or inside a bundle. |
||
1532 | /// |
||
1533 | /// Returns the register class that satisfies both \p CurRC and the |
||
1534 | /// constraints set by MI. Returns NULL if such a register class does not |
||
1535 | /// exist. |
||
1536 | /// |
||
1537 | /// \pre CurRC must not be NULL. |
||
1538 | const TargetRegisterClass *getRegClassConstraintEffectForVReg( |
||
1539 | Register Reg, const TargetRegisterClass *CurRC, |
||
1540 | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, |
||
1541 | bool ExploreBundle = false) const; |
||
1542 | |||
1543 | /// Applies the constraints (def/use) implied by the \p OpIdx operand |
||
1544 | /// to the given \p CurRC. |
||
1545 | /// |
||
1546 | /// Returns the register class that satisfies both \p CurRC and the |
||
1547 | /// constraints set by \p OpIdx MI. Returns NULL if such a register class |
||
1548 | /// does not exist. |
||
1549 | /// |
||
1550 | /// \pre CurRC must not be NULL. |
||
1551 | /// \pre The operand at \p OpIdx must be a register. |
||
1552 | const TargetRegisterClass * |
||
1553 | getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, |
||
1554 | const TargetInstrInfo *TII, |
||
1555 | const TargetRegisterInfo *TRI) const; |
||
1556 | |||
1557 | /// Add a tie between the register operands at DefIdx and UseIdx. |
||
1558 | /// The tie will cause the register allocator to ensure that the two |
||
1559 | /// operands are assigned the same physical register. |
||
1560 | /// |
||
1561 | /// Tied operands are managed automatically for explicit operands in the |
||
1562 | /// MCInstrDesc. This method is for exceptional cases like inline asm. |
||
1563 | void tieOperands(unsigned DefIdx, unsigned UseIdx); |
||
1564 | |||
1565 | /// Given the index of a tied register operand, find the |
||
1566 | /// operand it is tied to. Defs are tied to uses and vice versa. Returns the |
||
1567 | /// index of the tied operand which must exist. |
||
1568 | unsigned findTiedOperandIdx(unsigned OpIdx) const; |
||
1569 | |||
1570 | /// Given the index of a register def operand, |
||
1571 | /// check if the register def is tied to a source operand, due to either |
||
1572 | /// two-address elimination or inline assembly constraints. Returns the |
||
1573 | /// first tied use operand index by reference if UseOpIdx is not null. |
||
1574 | bool isRegTiedToUseOperand(unsigned DefOpIdx, |
||
1575 | unsigned *UseOpIdx = nullptr) const { |
||
1576 | const MachineOperand &MO = getOperand(DefOpIdx); |
||
1577 | if (!MO.isReg() || !MO.isDef() || !MO.isTied()) |
||
1578 | return false; |
||
1579 | if (UseOpIdx) |
||
1580 | *UseOpIdx = findTiedOperandIdx(DefOpIdx); |
||
1581 | return true; |
||
1582 | } |
||
1583 | |||
1584 | /// Return true if the use operand of the specified index is tied to a def |
||
1585 | /// operand. It also returns the def operand index by reference if DefOpIdx |
||
1586 | /// is not null. |
||
1587 | bool isRegTiedToDefOperand(unsigned UseOpIdx, |
||
1588 | unsigned *DefOpIdx = nullptr) const { |
||
1589 | const MachineOperand &MO = getOperand(UseOpIdx); |
||
1590 | if (!MO.isReg() || !MO.isUse() || !MO.isTied()) |
||
1591 | return false; |
||
1592 | if (DefOpIdx) |
||
1593 | *DefOpIdx = findTiedOperandIdx(UseOpIdx); |
||
1594 | return true; |
||
1595 | } |
||
1596 | |||
1597 | /// Clears kill flags on all operands. |
||
1598 | void clearKillInfo(); |
||
1599 | |||
1600 | /// Replace all occurrences of FromReg with ToReg:SubIdx, |
||
1601 | /// properly composing subreg indices where necessary. |
||
1602 | void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, |
||
1603 | const TargetRegisterInfo &RegInfo); |
||
1604 | |||
1605 | /// We have determined MI kills a register. Look for the |
||
1606 | /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, |
||
1607 | /// add a implicit operand if it's not found. Returns true if the operand |
||
1608 | /// exists / is added. |
||
1609 | bool addRegisterKilled(Register IncomingReg, |
||
1610 | const TargetRegisterInfo *RegInfo, |
||
1611 | bool AddIfNotFound = false); |
||
1612 | |||
1613 | /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes |
||
1614 | /// all aliasing registers. |
||
1615 | void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); |
||
1616 | |||
1617 | /// We have determined MI defined a register without a use. |
||
1618 | /// Look for the operand that defines it and mark it as IsDead. If |
||
1619 | /// AddIfNotFound is true, add a implicit operand if it's not found. Returns |
||
1620 | /// true if the operand exists / is added. |
||
1621 | bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, |
||
1622 | bool AddIfNotFound = false); |
||
1623 | |||
1624 | /// Clear all dead flags on operands defining register @p Reg. |
||
1625 | void clearRegisterDeads(Register Reg); |
||
1626 | |||
1627 | /// Mark all subregister defs of register @p Reg with the undef flag. |
||
1628 | /// This function is used when we determined to have a subregister def in an |
||
1629 | /// otherwise undefined super register. |
||
1630 | void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); |
||
1631 | |||
1632 | /// We have determined MI defines a register. Make sure there is an operand |
||
1633 | /// defining Reg. |
||
1634 | void addRegisterDefined(Register Reg, |
||
1635 | const TargetRegisterInfo *RegInfo = nullptr); |
||
1636 | |||
1637 | /// Mark every physreg used by this instruction as |
||
1638 | /// dead except those in the UsedRegs list. |
||
1639 | /// |
||
1640 | /// On instructions with register mask operands, also add implicit-def |
||
1641 | /// operands for all registers in UsedRegs. |
||
1642 | void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, |
||
1643 | const TargetRegisterInfo &TRI); |
||
1644 | |||
1645 | /// Return true if it is safe to move this instruction. If |
||
1646 | /// SawStore is set to true, it means that there is a store (or call) between |
||
1647 | /// the instruction's location and its intended destination. |
||
1648 | bool isSafeToMove(AAResults *AA, bool &SawStore) const; |
||
1649 | |||
1650 | /// Returns true if this instruction's memory access aliases the memory |
||
1651 | /// access of Other. |
||
1652 | // |
||
1653 | /// Assumes any physical registers used to compute addresses |
||
1654 | /// have the same value for both instructions. Returns false if neither |
||
1655 | /// instruction writes to memory. |
||
1656 | /// |
||
1657 | /// @param AA Optional alias analysis, used to compare memory operands. |
||
1658 | /// @param Other MachineInstr to check aliasing against. |
||
1659 | /// @param UseTBAA Whether to pass TBAA information to alias analysis. |
||
1660 | bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; |
||
1661 | |||
1662 | /// Return true if this instruction may have an ordered |
||
1663 | /// or volatile memory reference, or if the information describing the memory |
||
1664 | /// reference is not available. Return false if it is known to have no |
||
1665 | /// ordered or volatile memory references. |
||
1666 | bool hasOrderedMemoryRef() const; |
||
1667 | |||
1668 | /// Return true if this load instruction never traps and points to a memory |
||
1669 | /// location whose value doesn't change during the execution of this function. |
||
1670 | /// |
||
1671 | /// Examples include loading a value from the constant pool or from the |
||
1672 | /// argument area of a function (if it does not change). If the instruction |
||
1673 | /// does multiple loads, this returns true only if all of the loads are |
||
1674 | /// dereferenceable and invariant. |
||
1675 | bool isDereferenceableInvariantLoad() const; |
||
1676 | |||
1677 | /// If the specified instruction is a PHI that always merges together the |
||
1678 | /// same virtual register, return the register, otherwise return 0. |
||
1679 | unsigned isConstantValuePHI() const; |
||
1680 | |||
1681 | /// Return true if this instruction has side effects that are not modeled |
||
1682 | /// by mayLoad / mayStore, etc. |
||
1683 | /// For all instructions, the property is encoded in MCInstrDesc::Flags |
||
1684 | /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is |
||
1685 | /// INLINEASM instruction, in which case the side effect property is encoded |
||
1686 | /// in one of its operands (see InlineAsm::Extra_HasSideEffect). |
||
1687 | /// |
||
1688 | bool hasUnmodeledSideEffects() const; |
||
1689 | |||
1690 | /// Returns true if it is illegal to fold a load across this instruction. |
||
1691 | bool isLoadFoldBarrier() const; |
||
1692 | |||
1693 | /// Return true if all the defs of this instruction are dead. |
||
1694 | bool allDefsAreDead() const; |
||
1695 | |||
1696 | /// Return a valid size if the instruction is a spill instruction. |
||
1697 | std::optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const; |
||
1698 | |||
1699 | /// Return a valid size if the instruction is a folded spill instruction. |
||
1700 | std::optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const; |
||
1701 | |||
1702 | /// Return a valid size if the instruction is a restore instruction. |
||
1703 | std::optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const; |
||
1704 | |||
1705 | /// Return a valid size if the instruction is a folded restore instruction. |
||
1706 | std::optional<unsigned> |
||
1707 | getFoldedRestoreSize(const TargetInstrInfo *TII) const; |
||
1708 | |||
1709 | /// Copy implicit register operands from specified |
||
1710 | /// instruction to this instruction. |
||
1711 | void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); |
||
1712 | |||
1713 | /// Debugging support |
||
1714 | /// @{ |
||
1715 | /// Determine the generic type to be printed (if needed) on uses and defs. |
||
1716 | LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, |
||
1717 | const MachineRegisterInfo &MRI) const; |
||
1718 | |||
1719 | /// Return true when an instruction has tied register that can't be determined |
||
1720 | /// by the instruction's descriptor. This is useful for MIR printing, to |
||
1721 | /// determine whether we need to print the ties or not. |
||
1722 | bool hasComplexRegisterTies() const; |
||
1723 | |||
1724 | /// Print this MI to \p OS. |
||
1725 | /// Don't print information that can be inferred from other instructions if |
||
1726 | /// \p IsStandalone is false. It is usually true when only a fragment of the |
||
1727 | /// function is printed. |
||
1728 | /// Only print the defs and the opcode if \p SkipOpers is true. |
||
1729 | /// Otherwise, also print operands if \p SkipDebugLoc is true. |
||
1730 | /// Otherwise, also print the debug loc, with a terminating newline. |
||
1731 | /// \p TII is used to print the opcode name. If it's not present, but the |
||
1732 | /// MI is in a function, the opcode will be printed using the function's TII. |
||
1733 | void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, |
||
1734 | bool SkipDebugLoc = false, bool AddNewLine = true, |
||
1735 | const TargetInstrInfo *TII = nullptr) const; |
||
1736 | void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, |
||
1737 | bool SkipOpers = false, bool SkipDebugLoc = false, |
||
1738 | bool AddNewLine = true, |
||
1739 | const TargetInstrInfo *TII = nullptr) const; |
||
1740 | void dump() const; |
||
1741 | /// Print on dbgs() the current instruction and the instructions defining its |
||
1742 | /// operands and so on until we reach \p MaxDepth. |
||
1743 | void dumpr(const MachineRegisterInfo &MRI, |
||
1744 | unsigned MaxDepth = UINT_MAX) const; |
||
1745 | /// @} |
||
1746 | |||
1747 | //===--------------------------------------------------------------------===// |
||
1748 | // Accessors used to build up machine instructions. |
||
1749 | |||
1750 | /// Add the specified operand to the instruction. If it is an implicit |
||
1751 | /// operand, it is added to the end of the operand list. If it is an |
||
1752 | /// explicit operand it is added at the end of the explicit operand list |
||
1753 | /// (before the first implicit operand). |
||
1754 | /// |
||
1755 | /// MF must be the machine function that was used to allocate this |
||
1756 | /// instruction. |
||
1757 | /// |
||
1758 | /// MachineInstrBuilder provides a more convenient interface for creating |
||
1759 | /// instructions and adding operands. |
||
1760 | void addOperand(MachineFunction &MF, const MachineOperand &Op); |
||
1761 | |||
1762 | /// Add an operand without providing an MF reference. This only works for |
||
1763 | /// instructions that are inserted in a basic block. |
||
1764 | /// |
||
1765 | /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be |
||
1766 | /// preferred. |
||
1767 | void addOperand(const MachineOperand &Op); |
||
1768 | |||
1769 | /// Replace the instruction descriptor (thus opcode) of |
||
1770 | /// the current instruction with a new one. |
||
1771 | void setDesc(const MCInstrDesc &TID) { MCID = &TID; } |
||
1772 | |||
1773 | /// Replace current source information with new such. |
||
1774 | /// Avoid using this, the constructor argument is preferable. |
||
1775 | void setDebugLoc(DebugLoc DL) { |
||
1776 | DbgLoc = std::move(DL); |
||
1777 | assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); |
||
1778 | } |
||
1779 | |||
1780 | /// Erase an operand from an instruction, leaving it with one |
||
1781 | /// fewer operand than it started with. |
||
1782 | void removeOperand(unsigned OpNo); |
||
1783 | |||
1784 | /// Clear this MachineInstr's memory reference descriptor list. This resets |
||
1785 | /// the memrefs to their most conservative state. This should be used only |
||
1786 | /// as a last resort since it greatly pessimizes our knowledge of the memory |
||
1787 | /// access performed by the instruction. |
||
1788 | void dropMemRefs(MachineFunction &MF); |
||
1789 | |||
1790 | /// Assign this MachineInstr's memory reference descriptor list. |
||
1791 | /// |
||
1792 | /// Unlike other methods, this *will* allocate them into a new array |
||
1793 | /// associated with the provided `MachineFunction`. |
||
1794 | void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); |
||
1795 | |||
1796 | /// Add a MachineMemOperand to the machine instruction. |
||
1797 | /// This function should be used only occasionally. The setMemRefs function |
||
1798 | /// is the primary method for setting up a MachineInstr's MemRefs list. |
||
1799 | void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); |
||
1800 | |||
1801 | /// Clone another MachineInstr's memory reference descriptor list and replace |
||
1802 | /// ours with it. |
||
1803 | /// |
||
1804 | /// Note that `*this` may be the incoming MI! |
||
1805 | /// |
||
1806 | /// Prefer this API whenever possible as it can avoid allocations in common |
||
1807 | /// cases. |
||
1808 | void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); |
||
1809 | |||
1810 | /// Clone the merge of multiple MachineInstrs' memory reference descriptors |
||
1811 | /// list and replace ours with it. |
||
1812 | /// |
||
1813 | /// Note that `*this` may be one of the incoming MIs! |
||
1814 | /// |
||
1815 | /// Prefer this API whenever possible as it can avoid allocations in common |
||
1816 | /// cases. |
||
1817 | void cloneMergedMemRefs(MachineFunction &MF, |
||
1818 | ArrayRef<const MachineInstr *> MIs); |
||
1819 | |||
1820 | /// Set a symbol that will be emitted just prior to the instruction itself. |
||
1821 | /// |
||
1822 | /// Setting this to a null pointer will remove any such symbol. |
||
1823 | /// |
||
1824 | /// FIXME: This is not fully implemented yet. |
||
1825 | void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); |
||
1826 | |||
1827 | /// Set a symbol that will be emitted just after the instruction itself. |
||
1828 | /// |
||
1829 | /// Setting this to a null pointer will remove any such symbol. |
||
1830 | /// |
||
1831 | /// FIXME: This is not fully implemented yet. |
||
1832 | void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); |
||
1833 | |||
1834 | /// Clone another MachineInstr's pre- and post- instruction symbols and |
||
1835 | /// replace ours with it. |
||
1836 | void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); |
||
1837 | |||
1838 | /// Set a marker on instructions that denotes where we should create and emit |
||
1839 | /// heap alloc site labels. This waits until after instruction selection and |
||
1840 | /// optimizations to create the label, so it should still work if the |
||
1841 | /// instruction is removed or duplicated. |
||
1842 | void setHeapAllocMarker(MachineFunction &MF, MDNode *MD); |
||
1843 | |||
1844 | // Set metadata on instructions that say which sections to emit instruction |
||
1845 | // addresses into. |
||
1846 | void setPCSections(MachineFunction &MF, MDNode *MD); |
||
1847 | |||
1848 | /// Set the CFI type for the instruction. |
||
1849 | void setCFIType(MachineFunction &MF, uint32_t Type); |
||
1850 | |||
1851 | /// Return the MIFlags which represent both MachineInstrs. This |
||
1852 | /// should be used when merging two MachineInstrs into one. This routine does |
||
1853 | /// not modify the MIFlags of this MachineInstr. |
||
1854 | uint16_t mergeFlagsWith(const MachineInstr& Other) const; |
||
1855 | |||
1856 | static uint16_t copyFlagsFromInstruction(const Instruction &I); |
||
1857 | |||
1858 | /// Copy all flags to MachineInst MIFlags |
||
1859 | void copyIRFlags(const Instruction &I); |
||
1860 | |||
1861 | /// Break any tie involving OpIdx. |
||
1862 | void untieRegOperand(unsigned OpIdx) { |
||
1863 | MachineOperand &MO = getOperand(OpIdx); |
||
1864 | if (MO.isReg() && MO.isTied()) { |
||
1865 | getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; |
||
1866 | MO.TiedTo = 0; |
||
1867 | } |
||
1868 | } |
||
1869 | |||
1870 | /// Add all implicit def and use operands to this instruction. |
||
1871 | void addImplicitDefUseOperands(MachineFunction &MF); |
||
1872 | |||
1873 | /// Scan instructions immediately following MI and collect any matching |
||
1874 | /// DBG_VALUEs. |
||
1875 | void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); |
||
1876 | |||
1877 | /// Find all DBG_VALUEs that point to the register def in this instruction |
||
1878 | /// and point them to \p Reg instead. |
||
1879 | void changeDebugValuesDefReg(Register Reg); |
||
1880 | |||
1881 | /// Returns the Intrinsic::ID for this instruction. |
||
1882 | /// \pre Must have an intrinsic ID operand. |
||
1883 | unsigned getIntrinsicID() const { |
||
1884 | return getOperand(getNumExplicitDefs()).getIntrinsicID(); |
||
1885 | } |
||
1886 | |||
1887 | /// Sets all register debug operands in this debug value instruction to be |
||
1888 | /// undef. |
||
1889 | void setDebugValueUndef() { |
||
1890 | assert(isDebugValue() && "Must be a debug value instruction."); |
||
1891 | for (MachineOperand &MO : debug_operands()) { |
||
1892 | if (MO.isReg()) { |
||
1893 | MO.setReg(0); |
||
1894 | MO.setSubReg(0); |
||
1895 | } |
||
1896 | } |
||
1897 | } |
||
1898 | |||
1899 | private: |
||
1900 | /// If this instruction is embedded into a MachineFunction, return the |
||
1901 | /// MachineRegisterInfo object for the current function, otherwise |
||
1902 | /// return null. |
||
1903 | MachineRegisterInfo *getRegInfo(); |
||
1904 | |||
1905 | /// Unlink all of the register operands in this instruction from their |
||
1906 | /// respective use lists. This requires that the operands already be on their |
||
1907 | /// use lists. |
||
1908 | void removeRegOperandsFromUseLists(MachineRegisterInfo&); |
||
1909 | |||
1910 | /// Add all of the register operands in this instruction from their |
||
1911 | /// respective use lists. This requires that the operands not be on their |
||
1912 | /// use lists yet. |
||
1913 | void addRegOperandsToUseLists(MachineRegisterInfo&); |
||
1914 | |||
1915 | /// Slow path for hasProperty when we're dealing with a bundle. |
||
1916 | bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; |
||
1917 | |||
1918 | /// Implements the logic of getRegClassConstraintEffectForVReg for the |
||
1919 | /// this MI and the given operand index \p OpIdx. |
||
1920 | /// If the related operand does not constrained Reg, this returns CurRC. |
||
1921 | const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( |
||
1922 | unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, |
||
1923 | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; |
||
1924 | |||
1925 | /// Stores extra instruction information inline or allocates as ExtraInfo |
||
1926 | /// based on the number of pointers. |
||
1927 | void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs, |
||
1928 | MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, |
||
1929 | MDNode *HeapAllocMarker, MDNode *PCSections, |
||
1930 | uint32_t CFIType); |
||
1931 | }; |
||
1932 | |||
1933 | /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the |
||
1934 | /// instruction rather than by pointer value. |
||
1935 | /// The hashing and equality testing functions ignore definitions so this is |
||
1936 | /// useful for CSE, etc. |
||
1937 | struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { |
||
1938 | static inline MachineInstr *getEmptyKey() { |
||
1939 | return nullptr; |
||
1940 | } |
||
1941 | |||
1942 | static inline MachineInstr *getTombstoneKey() { |
||
1943 | return reinterpret_cast<MachineInstr*>(-1); |
||
1944 | } |
||
1945 | |||
1946 | static unsigned getHashValue(const MachineInstr* const &MI); |
||
1947 | |||
1948 | static bool isEqual(const MachineInstr* const &LHS, |
||
1949 | const MachineInstr* const &RHS) { |
||
1950 | if (RHS == getEmptyKey() || RHS == getTombstoneKey() || |
||
1951 | LHS == getEmptyKey() || LHS == getTombstoneKey()) |
||
1952 | return LHS == RHS; |
||
1953 | return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); |
||
1954 | } |
||
1955 | }; |
||
1956 | |||
1957 | //===----------------------------------------------------------------------===// |
||
1958 | // Debugging Support |
||
1959 | |||
1960 | inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { |
||
1961 | MI.print(OS); |
||
1962 | return OS; |
||
1963 | } |
||
1964 | |||
1965 | } // end namespace llvm |
||
1966 | |||
1967 | #endif // LLVM_CODEGEN_MACHINEINSTR_H |