Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the declaration of the MachineInstr class, which is the
10
// basic representation for all target dependent machine instructions used by
11
// the back end.
12
//
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
16
#define LLVM_CODEGEN_MACHINEINSTR_H
17
 
18
#include "llvm/ADT/DenseMapInfo.h"
19
#include "llvm/ADT/PointerSumType.h"
20
#include "llvm/ADT/SmallSet.h"
21
#include "llvm/ADT/ilist.h"
22
#include "llvm/ADT/ilist_node.h"
23
#include "llvm/ADT/iterator_range.h"
24
#include "llvm/CodeGen/MachineMemOperand.h"
25
#include "llvm/CodeGen/MachineOperand.h"
26
#include "llvm/CodeGen/TargetOpcodes.h"
27
#include "llvm/IR/DebugLoc.h"
28
#include "llvm/IR/InlineAsm.h"
29
#include "llvm/MC/MCInstrDesc.h"
30
#include "llvm/MC/MCSymbol.h"
31
#include "llvm/Support/ArrayRecycler.h"
32
#include "llvm/Support/TrailingObjects.h"
33
#include <algorithm>
34
#include <cassert>
35
#include <cstdint>
36
#include <utility>
37
 
38
namespace llvm {
39
 
40
class DILabel;
41
class Instruction;
42
class MDNode;
43
class AAResults;
44
template <typename T> class ArrayRef;
45
class DIExpression;
46
class DILocalVariable;
47
class MachineBasicBlock;
48
class MachineFunction;
49
class MachineRegisterInfo;
50
class ModuleSlotTracker;
51
class raw_ostream;
52
template <typename T> class SmallVectorImpl;
53
class SmallBitVector;
54
class StringRef;
55
class TargetInstrInfo;
56
class TargetRegisterClass;
57
class TargetRegisterInfo;
58
 
59
//===----------------------------------------------------------------------===//
60
/// Representation of each machine instruction.
61
///
62
/// This class isn't a POD type, but it must have a trivial destructor. When a
63
/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
64
/// without having their destructor called.
65
///
66
class MachineInstr
67
    : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
68
                                    ilist_sentinel_tracking<true>> {
69
public:
70
  using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
71
 
72
  /// Flags to specify different kinds of comments to output in
73
  /// assembly code.  These flags carry semantic information not
74
  /// otherwise easily derivable from the IR text.
75
  ///
76
  enum CommentFlag {
77
    ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
78
    NoSchedComment = 0x2,
79
    TAsmComments = 0x4    // Target Asm comments should start from this value.
80
  };
81
 
82
  enum MIFlag {
83
    NoFlags      = 0,
84
    FrameSetup   = 1 << 0,              // Instruction is used as a part of
85
                                        // function frame setup code.
86
    FrameDestroy = 1 << 1,              // Instruction is used as a part of
87
                                        // function frame destruction code.
88
    BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
89
    BundledSucc  = 1 << 3,              // Instruction has bundled successors.
90
    FmNoNans     = 1 << 4,              // Instruction does not support Fast
91
                                        // math nan values.
92
    FmNoInfs     = 1 << 5,              // Instruction does not support Fast
93
                                        // math infinity values.
94
    FmNsz        = 1 << 6,              // Instruction is not required to retain
95
                                        // signed zero values.
96
    FmArcp       = 1 << 7,              // Instruction supports Fast math
97
                                        // reciprocal approximations.
98
    FmContract   = 1 << 8,              // Instruction supports Fast math
99
                                        // contraction operations like fma.
100
    FmAfn        = 1 << 9,              // Instruction may map to Fast math
101
                                        // intrinsic approximation.
102
    FmReassoc    = 1 << 10,             // Instruction supports Fast math
103
                                        // reassociation of operand order.
104
    NoUWrap      = 1 << 11,             // Instruction supports binary operator
105
                                        // no unsigned wrap.
106
    NoSWrap      = 1 << 12,             // Instruction supports binary operator
107
                                        // no signed wrap.
108
    IsExact      = 1 << 13,             // Instruction supports division is
109
                                        // known to be exact.
110
    NoFPExcept   = 1 << 14,             // Instruction does not raise
111
                                        // floatint-point exceptions.
112
    NoMerge      = 1 << 15,             // Passes that drop source location info
113
                                        // (e.g. branch folding) should skip
114
                                        // this instruction.
115
  };
116
 
117
private:
118
  const MCInstrDesc *MCID;              // Instruction descriptor.
119
  MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
120
 
121
  // Operands are allocated by an ArrayRecycler.
122
  MachineOperand *Operands = nullptr;   // Pointer to the first operand.
123
  unsigned NumOperands = 0;             // Number of operands on instruction.
124
 
125
  uint16_t Flags = 0;                   // Various bits of additional
126
                                        // information about machine
127
                                        // instruction.
128
 
129
  uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
130
                                        // the AsmPrinter to emit helpful
131
                                        // comments.  This is *not* semantic
132
                                        // information.  Do not use this for
133
                                        // anything other than to convey comment
134
                                        // information to AsmPrinter.
135
 
136
  // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
137
  // to properly pack.
138
  using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
139
  OperandCapacity CapOperands;          // Capacity of the Operands array.
140
 
141
  /// Internal implementation detail class that provides out-of-line storage for
142
  /// extra info used by the machine instruction when this info cannot be stored
143
  /// in-line within the instruction itself.
144
  ///
145
  /// This has to be defined eagerly due to the implementation constraints of
146
  /// `PointerSumType` where it is used.
147
  class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *,
148
                                          MCSymbol *, MDNode *, uint32_t> {
149
  public:
150
    static ExtraInfo *create(BumpPtrAllocator &Allocator,
151
                             ArrayRef<MachineMemOperand *> MMOs,
152
                             MCSymbol *PreInstrSymbol = nullptr,
153
                             MCSymbol *PostInstrSymbol = nullptr,
154
                             MDNode *HeapAllocMarker = nullptr,
155
                             MDNode *PCSections = nullptr,
156
                             uint32_t CFIType = 0) {
157
      bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
158
      bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
159
      bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
160
      bool HasCFIType = CFIType != 0;
161
      bool HasPCSections = PCSections != nullptr;
162
      auto *Result = new (Allocator.Allocate(
163
          totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>(
164
              MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
165
              HasHeapAllocMarker + HasPCSections, HasCFIType),
166
          alignof(ExtraInfo)))
167
          ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
168
                    HasHeapAllocMarker, HasPCSections, HasCFIType);
169
 
170
      // Copy the actual data into the trailing objects.
171
      std::copy(MMOs.begin(), MMOs.end(),
172
                Result->getTrailingObjects<MachineMemOperand *>());
173
 
174
      if (HasPreInstrSymbol)
175
        Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
176
      if (HasPostInstrSymbol)
177
        Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
178
            PostInstrSymbol;
179
      if (HasHeapAllocMarker)
180
        Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
181
      if (HasPCSections)
182
        Result->getTrailingObjects<MDNode *>()[HasHeapAllocMarker] =
183
            PCSections;
184
      if (HasCFIType)
185
        Result->getTrailingObjects<uint32_t>()[0] = CFIType;
186
 
187
      return Result;
188
    }
189
 
190
    ArrayRef<MachineMemOperand *> getMMOs() const {
191
      return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
192
    }
193
 
194
    MCSymbol *getPreInstrSymbol() const {
195
      return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
196
    }
197
 
198
    MCSymbol *getPostInstrSymbol() const {
199
      return HasPostInstrSymbol
200
                 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
201
                 : nullptr;
202
    }
203
 
204
    MDNode *getHeapAllocMarker() const {
205
      return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
206
    }
207
 
208
    MDNode *getPCSections() const {
209
      return HasPCSections
210
                 ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker]
211
                 : nullptr;
212
    }
213
 
214
    uint32_t getCFIType() const {
215
      return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0;
216
    }
217
 
218
  private:
219
    friend TrailingObjects;
220
 
221
    // Description of the extra info, used to interpret the actual optional
222
    // data appended.
223
    //
224
    // Note that this is not terribly space optimized. This leaves a great deal
225
    // of flexibility to fit more in here later.
226
    const int NumMMOs;
227
    const bool HasPreInstrSymbol;
228
    const bool HasPostInstrSymbol;
229
    const bool HasHeapAllocMarker;
230
    const bool HasPCSections;
231
    const bool HasCFIType;
232
 
233
    // Implement the `TrailingObjects` internal API.
234
    size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
235
      return NumMMOs;
236
    }
237
    size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
238
      return HasPreInstrSymbol + HasPostInstrSymbol;
239
    }
240
    size_t numTrailingObjects(OverloadToken<MDNode *>) const {
241
      return HasHeapAllocMarker + HasPCSections;
242
    }
243
    size_t numTrailingObjects(OverloadToken<uint32_t>) const {
244
      return HasCFIType;
245
    }
246
 
247
    // Just a boring constructor to allow us to initialize the sizes. Always use
248
    // the `create` routine above.
249
    ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
250
              bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType)
251
        : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
252
          HasPostInstrSymbol(HasPostInstrSymbol),
253
          HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections),
254
          HasCFIType(HasCFIType) {}
255
  };
256
 
257
  /// Enumeration of the kinds of inline extra info available. It is important
258
  /// that the `MachineMemOperand` inline kind has a tag value of zero to make
259
  /// it accessible as an `ArrayRef`.
260
  enum ExtraInfoInlineKinds {
261
    EIIK_MMO = 0,
262
    EIIK_PreInstrSymbol,
263
    EIIK_PostInstrSymbol,
264
    EIIK_OutOfLine
265
  };
266
 
267
  // We store extra information about the instruction here. The common case is
268
  // expected to be nothing or a single pointer (typically a MMO or a symbol).
269
  // We work to optimize this common case by storing it inline here rather than
270
  // requiring a separate allocation, but we fall back to an allocation when
271
  // multiple pointers are needed.
272
  PointerSumType<ExtraInfoInlineKinds,
273
                 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
274
                 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
275
                 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
276
                 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
277
      Info;
278
 
279
  DebugLoc DbgLoc; // Source line information.
280
 
281
  /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
282
  /// defined by this instruction.
283
  unsigned DebugInstrNum;
284
 
285
  // Intrusive list support
286
  friend struct ilist_traits<MachineInstr>;
287
  friend struct ilist_callback_traits<MachineBasicBlock>;
288
  void setParent(MachineBasicBlock *P) { Parent = P; }
289
 
290
  /// This constructor creates a copy of the given
291
  /// MachineInstr in the given MachineFunction.
292
  MachineInstr(MachineFunction &, const MachineInstr &);
293
 
294
  /// This constructor create a MachineInstr and add the implicit operands.
295
  /// It reserves space for number of operands specified by
296
  /// MCInstrDesc.  An explicit DebugLoc is supplied.
297
  MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL,
298
               bool NoImp = false);
299
 
300
  // MachineInstrs are pool-allocated and owned by MachineFunction.
301
  friend class MachineFunction;
302
 
303
  void
304
  dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
305
            SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
306
 
307
public:
308
  MachineInstr(const MachineInstr &) = delete;
309
  MachineInstr &operator=(const MachineInstr &) = delete;
310
  // Use MachineFunction::DeleteMachineInstr() instead.
311
  ~MachineInstr() = delete;
312
 
313
  const MachineBasicBlock* getParent() const { return Parent; }
314
  MachineBasicBlock* getParent() { return Parent; }
315
 
316
  /// Move the instruction before \p MovePos.
317
  void moveBefore(MachineInstr *MovePos);
318
 
319
  /// Return the function that contains the basic block that this instruction
320
  /// belongs to.
321
  ///
322
  /// Note: this is undefined behaviour if the instruction does not have a
323
  /// parent.
324
  const MachineFunction *getMF() const;
325
  MachineFunction *getMF() {
326
    return const_cast<MachineFunction *>(
327
        static_cast<const MachineInstr *>(this)->getMF());
328
  }
329
 
330
  /// Return the asm printer flags bitvector.
331
  uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
332
 
333
  /// Clear the AsmPrinter bitvector.
334
  void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
335
 
336
  /// Return whether an AsmPrinter flag is set.
337
  bool getAsmPrinterFlag(CommentFlag Flag) const {
338
    return AsmPrinterFlags & Flag;
339
  }
340
 
341
  /// Set a flag for the AsmPrinter.
342
  void setAsmPrinterFlag(uint8_t Flag) {
343
    AsmPrinterFlags |= Flag;
344
  }
345
 
346
  /// Clear specific AsmPrinter flags.
347
  void clearAsmPrinterFlag(CommentFlag Flag) {
348
    AsmPrinterFlags &= ~Flag;
349
  }
350
 
351
  /// Return the MI flags bitvector.
352
  uint16_t getFlags() const {
353
    return Flags;
354
  }
355
 
356
  /// Return whether an MI flag is set.
357
  bool getFlag(MIFlag Flag) const {
358
    return Flags & Flag;
359
  }
360
 
361
  /// Set a MI flag.
362
  void setFlag(MIFlag Flag) {
363
    Flags |= (uint16_t)Flag;
364
  }
365
 
366
  void setFlags(unsigned flags) {
367
    // Filter out the automatically maintained flags.
368
    unsigned Mask = BundledPred | BundledSucc;
369
    Flags = (Flags & Mask) | (flags & ~Mask);
370
  }
371
 
372
  /// clearFlag - Clear a MI flag.
373
  void clearFlag(MIFlag Flag) {
374
    Flags &= ~((uint16_t)Flag);
375
  }
376
 
377
  /// Return true if MI is in a bundle (but not the first MI in a bundle).
378
  ///
379
  /// A bundle looks like this before it's finalized:
380
  ///   ----------------
381
  ///   |      MI      |
382
  ///   ----------------
383
  ///          |
384
  ///   ----------------
385
  ///   |      MI    * |
386
  ///   ----------------
387
  ///          |
388
  ///   ----------------
389
  ///   |      MI    * |
390
  ///   ----------------
391
  /// In this case, the first MI starts a bundle but is not inside a bundle, the
392
  /// next 2 MIs are considered "inside" the bundle.
393
  ///
394
  /// After a bundle is finalized, it looks like this:
395
  ///   ----------------
396
  ///   |    Bundle    |
397
  ///   ----------------
398
  ///          |
399
  ///   ----------------
400
  ///   |      MI    * |
401
  ///   ----------------
402
  ///          |
403
  ///   ----------------
404
  ///   |      MI    * |
405
  ///   ----------------
406
  ///          |
407
  ///   ----------------
408
  ///   |      MI    * |
409
  ///   ----------------
410
  /// The first instruction has the special opcode "BUNDLE". It's not "inside"
411
  /// a bundle, but the next three MIs are.
412
  bool isInsideBundle() const {
413
    return getFlag(BundledPred);
414
  }
415
 
416
  /// Return true if this instruction part of a bundle. This is true
417
  /// if either itself or its following instruction is marked "InsideBundle".
418
  bool isBundled() const {
419
    return isBundledWithPred() || isBundledWithSucc();
420
  }
421
 
422
  /// Return true if this instruction is part of a bundle, and it is not the
423
  /// first instruction in the bundle.
424
  bool isBundledWithPred() const { return getFlag(BundledPred); }
425
 
426
  /// Return true if this instruction is part of a bundle, and it is not the
427
  /// last instruction in the bundle.
428
  bool isBundledWithSucc() const { return getFlag(BundledSucc); }
429
 
430
  /// Bundle this instruction with its predecessor. This can be an unbundled
431
  /// instruction, or it can be the first instruction in a bundle.
432
  void bundleWithPred();
433
 
434
  /// Bundle this instruction with its successor. This can be an unbundled
435
  /// instruction, or it can be the last instruction in a bundle.
436
  void bundleWithSucc();
437
 
438
  /// Break bundle above this instruction.
439
  void unbundleFromPred();
440
 
441
  /// Break bundle below this instruction.
442
  void unbundleFromSucc();
443
 
444
  /// Returns the debug location id of this MachineInstr.
445
  const DebugLoc &getDebugLoc() const { return DbgLoc; }
446
 
447
  /// Return the operand containing the offset to be used if this DBG_VALUE
448
  /// instruction is indirect; will be an invalid register if this value is
449
  /// not indirect, and an immediate with value 0 otherwise.
450
  const MachineOperand &getDebugOffset() const {
451
    assert(isNonListDebugValue() && "not a DBG_VALUE");
452
    return getOperand(1);
453
  }
454
  MachineOperand &getDebugOffset() {
455
    assert(isNonListDebugValue() && "not a DBG_VALUE");
456
    return getOperand(1);
457
  }
458
 
459
  /// Return the operand for the debug variable referenced by
460
  /// this DBG_VALUE instruction.
461
  const MachineOperand &getDebugVariableOp() const;
462
  MachineOperand &getDebugVariableOp();
463
 
464
  /// Return the debug variable referenced by
465
  /// this DBG_VALUE instruction.
466
  const DILocalVariable *getDebugVariable() const;
467
 
468
  /// Return the operand for the complex address expression referenced by
469
  /// this DBG_VALUE instruction.
470
  const MachineOperand &getDebugExpressionOp() const;
471
  MachineOperand &getDebugExpressionOp();
472
 
473
  /// Return the complex address expression referenced by
474
  /// this DBG_VALUE instruction.
475
  const DIExpression *getDebugExpression() const;
476
 
477
  /// Return the debug label referenced by
478
  /// this DBG_LABEL instruction.
479
  const DILabel *getDebugLabel() const;
480
 
481
  /// Fetch the instruction number of this MachineInstr. If it does not have
482
  /// one already, a new and unique number will be assigned.
483
  unsigned getDebugInstrNum();
484
 
485
  /// Fetch instruction number of this MachineInstr -- but before it's inserted
486
  /// into \p MF. Needed for transformations that create an instruction but
487
  /// don't immediately insert them.
488
  unsigned getDebugInstrNum(MachineFunction &MF);
489
 
490
  /// Examine the instruction number of this MachineInstr. May be zero if
491
  /// it hasn't been assigned a number yet.
492
  unsigned peekDebugInstrNum() const { return DebugInstrNum; }
493
 
494
  /// Set instruction number of this MachineInstr. Avoid using unless you're
495
  /// deserializing this information.
496
  void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
497
 
498
  /// Drop any variable location debugging information associated with this
499
  /// instruction. Use when an instruction is modified in such a way that it no
500
  /// longer defines the value it used to. Variable locations using that value
501
  /// will be dropped.
502
  void dropDebugNumber() { DebugInstrNum = 0; }
503
 
504
  /// Emit an error referring to the source location of this instruction.
505
  /// This should only be used for inline assembly that is somehow
506
  /// impossible to compile. Other errors should have been handled much
507
  /// earlier.
508
  ///
509
  /// If this method returns, the caller should try to recover from the error.
510
  void emitError(StringRef Msg) const;
511
 
512
  /// Returns the target instruction descriptor of this MachineInstr.
513
  const MCInstrDesc &getDesc() const { return *MCID; }
514
 
515
  /// Returns the opcode of this MachineInstr.
516
  unsigned getOpcode() const { return MCID->Opcode; }
517
 
518
  /// Retuns the total number of operands.
519
  unsigned getNumOperands() const { return NumOperands; }
520
 
521
  /// Returns the total number of operands which are debug locations.
522
  unsigned getNumDebugOperands() const {
523
    return std::distance(debug_operands().begin(), debug_operands().end());
524
  }
525
 
526
  const MachineOperand& getOperand(unsigned i) const {
527
    assert(i < getNumOperands() && "getOperand() out of range!");
528
    return Operands[i];
529
  }
530
  MachineOperand& getOperand(unsigned i) {
531
    assert(i < getNumOperands() && "getOperand() out of range!");
532
    return Operands[i];
533
  }
534
 
535
  MachineOperand &getDebugOperand(unsigned Index) {
536
    assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
537
    return *(debug_operands().begin() + Index);
538
  }
539
  const MachineOperand &getDebugOperand(unsigned Index) const {
540
    assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
541
    return *(debug_operands().begin() + Index);
542
  }
543
 
544
  SmallSet<Register, 4> getUsedDebugRegs() const {
545
    assert(isDebugValue() && "not a DBG_VALUE*");
546
    SmallSet<Register, 4> UsedRegs;
547
    for (const auto &MO : debug_operands())
548
      if (MO.isReg() && MO.getReg())
549
        UsedRegs.insert(MO.getReg());
550
    return UsedRegs;
551
  }
552
 
553
  /// Returns whether this debug value has at least one debug operand with the
554
  /// register \p Reg.
555
  bool hasDebugOperandForReg(Register Reg) const {
556
    return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
557
      return Op.isReg() && Op.getReg() == Reg;
558
    });
559
  }
560
 
561
  /// Returns a range of all of the operands that correspond to a debug use of
562
  /// \p Reg.
563
  template <typename Operand, typename Instruction>
564
  static iterator_range<
565
      filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
566
  getDebugOperandsForReg(Instruction *MI, Register Reg) {
567
    std::function<bool(Operand & Op)> OpUsesReg(
568
        [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
569
    return make_filter_range(MI->debug_operands(), OpUsesReg);
570
  }
571
  iterator_range<filter_iterator<const MachineOperand *,
572
                                 std::function<bool(const MachineOperand &Op)>>>
573
  getDebugOperandsForReg(Register Reg) const {
574
    return MachineInstr::getDebugOperandsForReg<const MachineOperand,
575
                                                const MachineInstr>(this, Reg);
576
  }
577
  iterator_range<filter_iterator<MachineOperand *,
578
                                 std::function<bool(MachineOperand &Op)>>>
579
  getDebugOperandsForReg(Register Reg) {
580
    return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
581
        this, Reg);
582
  }
583
 
584
  bool isDebugOperand(const MachineOperand *Op) const {
585
    return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
586
  }
587
 
588
  unsigned getDebugOperandIndex(const MachineOperand *Op) const {
589
    assert(isDebugOperand(Op) && "Expected a debug operand.");
590
    return std::distance(adl_begin(debug_operands()), Op);
591
  }
592
 
593
  /// Returns the total number of definitions.
594
  unsigned getNumDefs() const {
595
    return getNumExplicitDefs() + MCID->implicit_defs().size();
596
  }
597
 
598
  /// Returns true if the instruction has implicit definition.
599
  bool hasImplicitDef() const {
600
    for (const MachineOperand &MO : implicit_operands())
601
      if (MO.isDef() && MO.isImplicit())
602
        return true;
603
    return false;
604
  }
605
 
606
  /// Returns the implicit operands number.
607
  unsigned getNumImplicitOperands() const {
608
    return getNumOperands() - getNumExplicitOperands();
609
  }
610
 
611
  /// Return true if operand \p OpIdx is a subregister index.
612
  bool isOperandSubregIdx(unsigned OpIdx) const {
613
    assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type.");
614
    if (isExtractSubreg() && OpIdx == 2)
615
      return true;
616
    if (isInsertSubreg() && OpIdx == 3)
617
      return true;
618
    if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
619
      return true;
620
    if (isSubregToReg() && OpIdx == 3)
621
      return true;
622
    return false;
623
  }
624
 
625
  /// Returns the number of non-implicit operands.
626
  unsigned getNumExplicitOperands() const;
627
 
628
  /// Returns the number of non-implicit definitions.
629
  unsigned getNumExplicitDefs() const;
630
 
631
  /// iterator/begin/end - Iterate over all operands of a machine instruction.
632
  using mop_iterator = MachineOperand *;
633
  using const_mop_iterator = const MachineOperand *;
634
 
635
  mop_iterator operands_begin() { return Operands; }
636
  mop_iterator operands_end() { return Operands + NumOperands; }
637
 
638
  const_mop_iterator operands_begin() const { return Operands; }
639
  const_mop_iterator operands_end() const { return Operands + NumOperands; }
640
 
641
  iterator_range<mop_iterator> operands() {
642
    return make_range(operands_begin(), operands_end());
643
  }
644
  iterator_range<const_mop_iterator> operands() const {
645
    return make_range(operands_begin(), operands_end());
646
  }
647
  iterator_range<mop_iterator> explicit_operands() {
648
    return make_range(operands_begin(),
649
                      operands_begin() + getNumExplicitOperands());
650
  }
651
  iterator_range<const_mop_iterator> explicit_operands() const {
652
    return make_range(operands_begin(),
653
                      operands_begin() + getNumExplicitOperands());
654
  }
655
  iterator_range<mop_iterator> implicit_operands() {
656
    return make_range(explicit_operands().end(), operands_end());
657
  }
658
  iterator_range<const_mop_iterator> implicit_operands() const {
659
    return make_range(explicit_operands().end(), operands_end());
660
  }
661
  /// Returns a range over all operands that are used to determine the variable
662
  /// location for this DBG_VALUE instruction.
663
  iterator_range<mop_iterator> debug_operands() {
664
    assert((isDebugValueLike()) && "Must be a debug value instruction.");
665
    return isNonListDebugValue()
666
               ? make_range(operands_begin(), operands_begin() + 1)
667
               : make_range(operands_begin() + 2, operands_end());
668
  }
669
  /// \copydoc debug_operands()
670
  iterator_range<const_mop_iterator> debug_operands() const {
671
    assert((isDebugValueLike()) && "Must be a debug value instruction.");
672
    return isNonListDebugValue()
673
               ? make_range(operands_begin(), operands_begin() + 1)
674
               : make_range(operands_begin() + 2, operands_end());
675
  }
676
  /// Returns a range over all explicit operands that are register definitions.
677
  /// Implicit definition are not included!
678
  iterator_range<mop_iterator> defs() {
679
    return make_range(operands_begin(),
680
                      operands_begin() + getNumExplicitDefs());
681
  }
682
  /// \copydoc defs()
683
  iterator_range<const_mop_iterator> defs() const {
684
    return make_range(operands_begin(),
685
                      operands_begin() + getNumExplicitDefs());
686
  }
687
  /// Returns a range that includes all operands that are register uses.
688
  /// This may include unrelated operands which are not register uses.
689
  iterator_range<mop_iterator> uses() {
690
    return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
691
  }
692
  /// \copydoc uses()
693
  iterator_range<const_mop_iterator> uses() const {
694
    return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
695
  }
696
  iterator_range<mop_iterator> explicit_uses() {
697
    return make_range(operands_begin() + getNumExplicitDefs(),
698
                      operands_begin() + getNumExplicitOperands());
699
  }
700
  iterator_range<const_mop_iterator> explicit_uses() const {
701
    return make_range(operands_begin() + getNumExplicitDefs(),
702
                      operands_begin() + getNumExplicitOperands());
703
  }
704
 
705
  /// Returns the number of the operand iterator \p I points to.
706
  unsigned getOperandNo(const_mop_iterator I) const {
707
    return I - operands_begin();
708
  }
709
 
710
  /// Access to memory operands of the instruction. If there are none, that does
711
  /// not imply anything about whether the function accesses memory. Instead,
712
  /// the caller must behave conservatively.
713
  ArrayRef<MachineMemOperand *> memoperands() const {
714
    if (!Info)
715
      return {};
716
 
717
    if (Info.is<EIIK_MMO>())
718
      return ArrayRef(Info.getAddrOfZeroTagPointer(), 1);
719
 
720
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
721
      return EI->getMMOs();
722
 
723
    return {};
724
  }
725
 
726
  /// Access to memory operands of the instruction.
727
  ///
728
  /// If `memoperands_begin() == memoperands_end()`, that does not imply
729
  /// anything about whether the function accesses memory. Instead, the caller
730
  /// must behave conservatively.
731
  mmo_iterator memoperands_begin() const { return memoperands().begin(); }
732
 
733
  /// Access to memory operands of the instruction.
734
  ///
735
  /// If `memoperands_begin() == memoperands_end()`, that does not imply
736
  /// anything about whether the function accesses memory. Instead, the caller
737
  /// must behave conservatively.
738
  mmo_iterator memoperands_end() const { return memoperands().end(); }
739
 
740
  /// Return true if we don't have any memory operands which described the
741
  /// memory access done by this instruction.  If this is true, calling code
742
  /// must be conservative.
743
  bool memoperands_empty() const { return memoperands().empty(); }
744
 
745
  /// Return true if this instruction has exactly one MachineMemOperand.
746
  bool hasOneMemOperand() const { return memoperands().size() == 1; }
747
 
748
  /// Return the number of memory operands.
749
  unsigned getNumMemOperands() const { return memoperands().size(); }
750
 
751
  /// Helper to extract a pre-instruction symbol if one has been added.
752
  MCSymbol *getPreInstrSymbol() const {
753
    if (!Info)
754
      return nullptr;
755
    if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
756
      return S;
757
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
758
      return EI->getPreInstrSymbol();
759
 
760
    return nullptr;
761
  }
762
 
763
  /// Helper to extract a post-instruction symbol if one has been added.
764
  MCSymbol *getPostInstrSymbol() const {
765
    if (!Info)
766
      return nullptr;
767
    if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
768
      return S;
769
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
770
      return EI->getPostInstrSymbol();
771
 
772
    return nullptr;
773
  }
774
 
775
  /// Helper to extract a heap alloc marker if one has been added.
776
  MDNode *getHeapAllocMarker() const {
777
    if (!Info)
778
      return nullptr;
779
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
780
      return EI->getHeapAllocMarker();
781
 
782
    return nullptr;
783
  }
784
 
785
  /// Helper to extract PCSections metadata target sections.
786
  MDNode *getPCSections() const {
787
    if (!Info)
788
      return nullptr;
789
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
790
      return EI->getPCSections();
791
 
792
    return nullptr;
793
  }
794
 
795
  /// Helper to extract a CFI type hash if one has been added.
796
  uint32_t getCFIType() const {
797
    if (!Info)
798
      return 0;
799
    if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
800
      return EI->getCFIType();
801
 
802
    return 0;
803
  }
804
 
805
  /// API for querying MachineInstr properties. They are the same as MCInstrDesc
806
  /// queries but they are bundle aware.
807
 
808
  enum QueryType {
809
    IgnoreBundle,    // Ignore bundles
810
    AnyInBundle,     // Return true if any instruction in bundle has property
811
    AllInBundle      // Return true if all instructions in bundle have property
812
  };
813
 
814
  /// Return true if the instruction (or in the case of a bundle,
815
  /// the instructions inside the bundle) has the specified property.
816
  /// The first argument is the property being queried.
817
  /// The second argument indicates whether the query should look inside
818
  /// instruction bundles.
819
  bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
820
    assert(MCFlag < 64 &&
821
           "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
822
    // Inline the fast path for unbundled or bundle-internal instructions.
823
    if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
824
      return getDesc().getFlags() & (1ULL << MCFlag);
825
 
826
    // If this is the first instruction in a bundle, take the slow path.
827
    return hasPropertyInBundle(1ULL << MCFlag, Type);
828
  }
829
 
830
  /// Return true if this is an instruction that should go through the usual
831
  /// legalization steps.
832
  bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
833
    return hasProperty(MCID::PreISelOpcode, Type);
834
  }
835
 
836
  /// Return true if this instruction can have a variable number of operands.
837
  /// In this case, the variable operands will be after the normal
838
  /// operands but before the implicit definitions and uses (if any are
839
  /// present).
840
  bool isVariadic(QueryType Type = IgnoreBundle) const {
841
    return hasProperty(MCID::Variadic, Type);
842
  }
843
 
844
  /// Set if this instruction has an optional definition, e.g.
845
  /// ARM instructions which can set condition code if 's' bit is set.
846
  bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
847
    return hasProperty(MCID::HasOptionalDef, Type);
848
  }
849
 
850
  /// Return true if this is a pseudo instruction that doesn't
851
  /// correspond to a real machine instruction.
852
  bool isPseudo(QueryType Type = IgnoreBundle) const {
853
    return hasProperty(MCID::Pseudo, Type);
854
  }
855
 
856
  /// Return true if this instruction doesn't produce any output in the form of
857
  /// executable instructions.
858
  bool isMetaInstruction(QueryType Type = IgnoreBundle) const {
859
    return hasProperty(MCID::Meta, Type);
860
  }
861
 
862
  bool isReturn(QueryType Type = AnyInBundle) const {
863
    return hasProperty(MCID::Return, Type);
864
  }
865
 
866
  /// Return true if this is an instruction that marks the end of an EH scope,
867
  /// i.e., a catchpad or a cleanuppad instruction.
868
  bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
869
    return hasProperty(MCID::EHScopeReturn, Type);
870
  }
871
 
872
  bool isCall(QueryType Type = AnyInBundle) const {
873
    return hasProperty(MCID::Call, Type);
874
  }
875
 
876
  /// Return true if this is a call instruction that may have an associated
877
  /// call site entry in the debug info.
878
  bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
879
  /// Return true if copying, moving, or erasing this instruction requires
880
  /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
881
  /// \ref eraseCallSiteInfo).
882
  bool shouldUpdateCallSiteInfo() const;
883
 
884
  /// Returns true if the specified instruction stops control flow
885
  /// from executing the instruction immediately following it.  Examples include
886
  /// unconditional branches and return instructions.
887
  bool isBarrier(QueryType Type = AnyInBundle) const {
888
    return hasProperty(MCID::Barrier, Type);
889
  }
890
 
891
  /// Returns true if this instruction part of the terminator for a basic block.
892
  /// Typically this is things like return and branch instructions.
893
  ///
894
  /// Various passes use this to insert code into the bottom of a basic block,
895
  /// but before control flow occurs.
896
  bool isTerminator(QueryType Type = AnyInBundle) const {
897
    return hasProperty(MCID::Terminator, Type);
898
  }
899
 
900
  /// Returns true if this is a conditional, unconditional, or indirect branch.
901
  /// Predicates below can be used to discriminate between
902
  /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
903
  /// get more information.
904
  bool isBranch(QueryType Type = AnyInBundle) const {
905
    return hasProperty(MCID::Branch, Type);
906
  }
907
 
908
  /// Return true if this is an indirect branch, such as a
909
  /// branch through a register.
910
  bool isIndirectBranch(QueryType Type = AnyInBundle) const {
911
    return hasProperty(MCID::IndirectBranch, Type);
912
  }
913
 
914
  /// Return true if this is a branch which may fall
915
  /// through to the next instruction or may transfer control flow to some other
916
  /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
917
  /// information about this branch.
918
  bool isConditionalBranch(QueryType Type = AnyInBundle) const {
919
    return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
920
  }
921
 
922
  /// Return true if this is a branch which always
923
  /// transfers control flow to some other block.  The
924
  /// TargetInstrInfo::analyzeBranch method can be used to get more information
925
  /// about this branch.
926
  bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
927
    return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
928
  }
929
 
930
  /// Return true if this instruction has a predicate operand that
931
  /// controls execution.  It may be set to 'always', or may be set to other
932
  /// values.   There are various methods in TargetInstrInfo that can be used to
933
  /// control and modify the predicate in this instruction.
934
  bool isPredicable(QueryType Type = AllInBundle) const {
935
    // If it's a bundle than all bundled instructions must be predicable for this
936
    // to return true.
937
    return hasProperty(MCID::Predicable, Type);
938
  }
939
 
940
  /// Return true if this instruction is a comparison.
941
  bool isCompare(QueryType Type = IgnoreBundle) const {
942
    return hasProperty(MCID::Compare, Type);
943
  }
944
 
945
  /// Return true if this instruction is a move immediate
946
  /// (including conditional moves) instruction.
947
  bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
948
    return hasProperty(MCID::MoveImm, Type);
949
  }
950
 
951
  /// Return true if this instruction is a register move.
952
  /// (including moving values from subreg to reg)
953
  bool isMoveReg(QueryType Type = IgnoreBundle) const {
954
    return hasProperty(MCID::MoveReg, Type);
955
  }
956
 
957
  /// Return true if this instruction is a bitcast instruction.
958
  bool isBitcast(QueryType Type = IgnoreBundle) const {
959
    return hasProperty(MCID::Bitcast, Type);
960
  }
961
 
962
  /// Return true if this instruction is a select instruction.
963
  bool isSelect(QueryType Type = IgnoreBundle) const {
964
    return hasProperty(MCID::Select, Type);
965
  }
966
 
967
  /// Return true if this instruction cannot be safely duplicated.
968
  /// For example, if the instruction has a unique labels attached
969
  /// to it, duplicating it would cause multiple definition errors.
970
  bool isNotDuplicable(QueryType Type = AnyInBundle) const {
971
    if (getPreInstrSymbol() || getPostInstrSymbol())
972
      return true;
973
    return hasProperty(MCID::NotDuplicable, Type);
974
  }
975
 
976
  /// Return true if this instruction is convergent.
977
  /// Convergent instructions can not be made control-dependent on any
978
  /// additional values.
979
  bool isConvergent(QueryType Type = AnyInBundle) const {
980
    if (isInlineAsm()) {
981
      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
982
      if (ExtraInfo & InlineAsm::Extra_IsConvergent)
983
        return true;
984
    }
985
    return hasProperty(MCID::Convergent, Type);
986
  }
987
 
988
  /// Returns true if the specified instruction has a delay slot
989
  /// which must be filled by the code generator.
990
  bool hasDelaySlot(QueryType Type = AnyInBundle) const {
991
    return hasProperty(MCID::DelaySlot, Type);
992
  }
993
 
994
  /// Return true for instructions that can be folded as
995
  /// memory operands in other instructions. The most common use for this
996
  /// is instructions that are simple loads from memory that don't modify
997
  /// the loaded value in any way, but it can also be used for instructions
998
  /// that can be expressed as constant-pool loads, such as V_SETALLONES
999
  /// on x86, to allow them to be folded when it is beneficial.
1000
  /// This should only be set on instructions that return a value in their
1001
  /// only virtual register definition.
1002
  bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
1003
    return hasProperty(MCID::FoldableAsLoad, Type);
1004
  }
1005
 
1006
  /// Return true if this instruction behaves
1007
  /// the same way as the generic REG_SEQUENCE instructions.
1008
  /// E.g., on ARM,
1009
  /// dX VMOVDRR rY, rZ
1010
  /// is equivalent to
1011
  /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
1012
  ///
1013
  /// Note that for the optimizers to be able to take advantage of
1014
  /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
1015
  /// override accordingly.
1016
  bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
1017
    return hasProperty(MCID::RegSequence, Type);
1018
  }
1019
 
1020
  /// Return true if this instruction behaves
1021
  /// the same way as the generic EXTRACT_SUBREG instructions.
1022
  /// E.g., on ARM,
1023
  /// rX, rY VMOVRRD dZ
1024
  /// is equivalent to two EXTRACT_SUBREG:
1025
  /// rX = EXTRACT_SUBREG dZ, ssub_0
1026
  /// rY = EXTRACT_SUBREG dZ, ssub_1
1027
  ///
1028
  /// Note that for the optimizers to be able to take advantage of
1029
  /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
1030
  /// override accordingly.
1031
  bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
1032
    return hasProperty(MCID::ExtractSubreg, Type);
1033
  }
1034
 
1035
  /// Return true if this instruction behaves
1036
  /// the same way as the generic INSERT_SUBREG instructions.
1037
  /// E.g., on ARM,
1038
  /// dX = VSETLNi32 dY, rZ, Imm
1039
  /// is equivalent to a INSERT_SUBREG:
1040
  /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
1041
  ///
1042
  /// Note that for the optimizers to be able to take advantage of
1043
  /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
1044
  /// override accordingly.
1045
  bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
1046
    return hasProperty(MCID::InsertSubreg, Type);
1047
  }
1048
 
1049
  //===--------------------------------------------------------------------===//
1050
  // Side Effect Analysis
1051
  //===--------------------------------------------------------------------===//
1052
 
1053
  /// Return true if this instruction could possibly read memory.
1054
  /// Instructions with this flag set are not necessarily simple load
1055
  /// instructions, they may load a value and modify it, for example.
1056
  bool mayLoad(QueryType Type = AnyInBundle) const {
1057
    if (isInlineAsm()) {
1058
      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1059
      if (ExtraInfo & InlineAsm::Extra_MayLoad)
1060
        return true;
1061
    }
1062
    return hasProperty(MCID::MayLoad, Type);
1063
  }
1064
 
1065
  /// Return true if this instruction could possibly modify memory.
1066
  /// Instructions with this flag set are not necessarily simple store
1067
  /// instructions, they may store a modified value based on their operands, or
1068
  /// may not actually modify anything, for example.
1069
  bool mayStore(QueryType Type = AnyInBundle) const {
1070
    if (isInlineAsm()) {
1071
      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1072
      if (ExtraInfo & InlineAsm::Extra_MayStore)
1073
        return true;
1074
    }
1075
    return hasProperty(MCID::MayStore, Type);
1076
  }
1077
 
1078
  /// Return true if this instruction could possibly read or modify memory.
1079
  bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
1080
    return mayLoad(Type) || mayStore(Type);
1081
  }
1082
 
1083
  /// Return true if this instruction could possibly raise a floating-point
1084
  /// exception.  This is the case if the instruction is a floating-point
1085
  /// instruction that can in principle raise an exception, as indicated
1086
  /// by the MCID::MayRaiseFPException property, *and* at the same time,
1087
  /// the instruction is used in a context where we expect floating-point
1088
  /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
1089
  bool mayRaiseFPException() const {
1090
    return hasProperty(MCID::MayRaiseFPException) &&
1091
           !getFlag(MachineInstr::MIFlag::NoFPExcept);
1092
  }
1093
 
1094
  //===--------------------------------------------------------------------===//
1095
  // Flags that indicate whether an instruction can be modified by a method.
1096
  //===--------------------------------------------------------------------===//
1097
 
1098
  /// Return true if this may be a 2- or 3-address
1099
  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1100
  /// result if Y and Z are exchanged.  If this flag is set, then the
1101
  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1102
  /// instruction.
1103
  ///
1104
  /// Note that this flag may be set on instructions that are only commutable
1105
  /// sometimes.  In these cases, the call to commuteInstruction will fail.
1106
  /// Also note that some instructions require non-trivial modification to
1107
  /// commute them.
1108
  bool isCommutable(QueryType Type = IgnoreBundle) const {
1109
    return hasProperty(MCID::Commutable, Type);
1110
  }
1111
 
1112
  /// Return true if this is a 2-address instruction
1113
  /// which can be changed into a 3-address instruction if needed.  Doing this
1114
  /// transformation can be profitable in the register allocator, because it
1115
  /// means that the instruction can use a 2-address form if possible, but
1116
  /// degrade into a less efficient form if the source and dest register cannot
1117
  /// be assigned to the same register.  For example, this allows the x86
1118
  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1119
  /// is the same speed as the shift but has bigger code size.
1120
  ///
1121
  /// If this returns true, then the target must implement the
1122
  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1123
  /// is allowed to fail if the transformation isn't valid for this specific
1124
  /// instruction (e.g. shl reg, 4 on x86).
1125
  ///
1126
  bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
1127
    return hasProperty(MCID::ConvertibleTo3Addr, Type);
1128
  }
1129
 
1130
  /// Return true if this instruction requires
1131
  /// custom insertion support when the DAG scheduler is inserting it into a
1132
  /// machine basic block.  If this is true for the instruction, it basically
1133
  /// means that it is a pseudo instruction used at SelectionDAG time that is
1134
  /// expanded out into magic code by the target when MachineInstrs are formed.
1135
  ///
1136
  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1137
  /// is used to insert this into the MachineBasicBlock.
1138
  bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
1139
    return hasProperty(MCID::UsesCustomInserter, Type);
1140
  }
1141
 
1142
  /// Return true if this instruction requires *adjustment*
1143
  /// after instruction selection by calling a target hook. For example, this
1144
  /// can be used to fill in ARM 's' optional operand depending on whether
1145
  /// the conditional flag register is used.
1146
  bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
1147
    return hasProperty(MCID::HasPostISelHook, Type);
1148
  }
1149
 
1150
  /// Returns true if this instruction is a candidate for remat.
1151
  /// This flag is deprecated, please don't use it anymore.  If this
1152
  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
1153
  /// verify the instruction is really rematable.
1154
  bool isRematerializable(QueryType Type = AllInBundle) const {
1155
    // It's only possible to re-mat a bundle if all bundled instructions are
1156
    // re-materializable.
1157
    return hasProperty(MCID::Rematerializable, Type);
1158
  }
1159
 
1160
  /// Returns true if this instruction has the same cost (or less) than a move
1161
  /// instruction. This is useful during certain types of optimizations
1162
  /// (e.g., remat during two-address conversion or machine licm)
1163
  /// where we would like to remat or hoist the instruction, but not if it costs
1164
  /// more than moving the instruction into the appropriate register. Note, we
1165
  /// are not marking copies from and to the same register class with this flag.
1166
  bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
1167
    // Only returns true for a bundle if all bundled instructions are cheap.
1168
    return hasProperty(MCID::CheapAsAMove, Type);
1169
  }
1170
 
1171
  /// Returns true if this instruction source operands
1172
  /// have special register allocation requirements that are not captured by the
1173
  /// operand register classes. e.g. ARM::STRD's two source registers must be an
1174
  /// even / odd pair, ARM::STM registers have to be in ascending order.
1175
  /// Post-register allocation passes should not attempt to change allocations
1176
  /// for sources of instructions with this flag.
1177
  bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
1178
    return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
1179
  }
1180
 
1181
  /// Returns true if this instruction def operands
1182
  /// have special register allocation requirements that are not captured by the
1183
  /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1184
  /// even / odd pair, ARM::LDM registers have to be in ascending order.
1185
  /// Post-register allocation passes should not attempt to change allocations
1186
  /// for definitions of instructions with this flag.
1187
  bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1188
    return hasProperty(MCID::ExtraDefRegAllocReq, Type);
1189
  }
1190
 
1191
  enum MICheckType {
1192
    CheckDefs,      // Check all operands for equality
1193
    CheckKillDead,  // Check all operands including kill / dead markers
1194
    IgnoreDefs,     // Ignore all definitions
1195
    IgnoreVRegDefs  // Ignore virtual register definitions
1196
  };
1197
 
1198
  /// Return true if this instruction is identical to \p Other.
1199
  /// Two instructions are identical if they have the same opcode and all their
1200
  /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1201
  /// Note that this means liveness related flags (dead, undef, kill) do not
1202
  /// affect the notion of identical.
1203
  bool isIdenticalTo(const MachineInstr &Other,
1204
                     MICheckType Check = CheckDefs) const;
1205
 
1206
  /// Returns true if this instruction is a debug instruction that represents an
1207
  /// identical debug value to \p Other.
1208
  /// This function considers these debug instructions equivalent if they have
1209
  /// identical variables, debug locations, and debug operands, and if the
1210
  /// DIExpressions combined with the directness flags are equivalent.
1211
  bool isEquivalentDbgInstr(const MachineInstr &Other) const;
1212
 
1213
  /// Unlink 'this' from the containing basic block, and return it without
1214
  /// deleting it.
1215
  ///
1216
  /// This function can not be used on bundled instructions, use
1217
  /// removeFromBundle() to remove individual instructions from a bundle.
1218
  MachineInstr *removeFromParent();
1219
 
1220
  /// Unlink this instruction from its basic block and return it without
1221
  /// deleting it.
1222
  ///
1223
  /// If the instruction is part of a bundle, the other instructions in the
1224
  /// bundle remain bundled.
1225
  MachineInstr *removeFromBundle();
1226
 
1227
  /// Unlink 'this' from the containing basic block and delete it.
1228
  ///
1229
  /// If this instruction is the header of a bundle, the whole bundle is erased.
1230
  /// This function can not be used for instructions inside a bundle, use
1231
  /// eraseFromBundle() to erase individual bundled instructions.
1232
  void eraseFromParent();
1233
 
1234
  /// Unlink 'this' form its basic block and delete it.
1235
  ///
1236
  /// If the instruction is part of a bundle, the other instructions in the
1237
  /// bundle remain bundled.
1238
  void eraseFromBundle();
1239
 
1240
  bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1241
  bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1242
  bool isAnnotationLabel() const {
1243
    return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1244
  }
1245
 
1246
  /// Returns true if the MachineInstr represents a label.
1247
  bool isLabel() const {
1248
    return isEHLabel() || isGCLabel() || isAnnotationLabel();
1249
  }
1250
 
1251
  bool isCFIInstruction() const {
1252
    return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1253
  }
1254
 
1255
  bool isPseudoProbe() const {
1256
    return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1257
  }
1258
 
1259
  // True if the instruction represents a position in the function.
1260
  bool isPosition() const { return isLabel() || isCFIInstruction(); }
1261
 
1262
  bool isNonListDebugValue() const {
1263
    return getOpcode() == TargetOpcode::DBG_VALUE;
1264
  }
1265
  bool isDebugValueList() const {
1266
    return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
1267
  }
1268
  bool isDebugValue() const {
1269
    return isNonListDebugValue() || isDebugValueList();
1270
  }
1271
  bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1272
  bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1273
  bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); }
1274
  bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
1275
  bool isDebugInstr() const {
1276
    return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
1277
  }
1278
  bool isDebugOrPseudoInstr() const {
1279
    return isDebugInstr() || isPseudoProbe();
1280
  }
1281
 
1282
  bool isDebugOffsetImm() const {
1283
    return isNonListDebugValue() && getDebugOffset().isImm();
1284
  }
1285
 
1286
  /// A DBG_VALUE is indirect iff the location operand is a register and
1287
  /// the offset operand is an immediate.
1288
  bool isIndirectDebugValue() const {
1289
    return isDebugOffsetImm() && getDebugOperand(0).isReg();
1290
  }
1291
 
1292
  /// A DBG_VALUE is an entry value iff its debug expression contains the
1293
  /// DW_OP_LLVM_entry_value operation.
1294
  bool isDebugEntryValue() const;
1295
 
1296
  /// Return true if the instruction is a debug value which describes a part of
1297
  /// a variable as unavailable.
1298
  bool isUndefDebugValue() const {
1299
    if (!isDebugValue())
1300
      return false;
1301
    // If any $noreg locations are given, this DV is undef.
1302
    for (const MachineOperand &Op : debug_operands())
1303
      if (Op.isReg() && !Op.getReg().isValid())
1304
        return true;
1305
    return false;
1306
  }
1307
 
1308
  bool isPHI() const {
1309
    return getOpcode() == TargetOpcode::PHI ||
1310
           getOpcode() == TargetOpcode::G_PHI;
1311
  }
1312
  bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1313
  bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1314
  bool isInlineAsm() const {
1315
    return getOpcode() == TargetOpcode::INLINEASM ||
1316
           getOpcode() == TargetOpcode::INLINEASM_BR;
1317
  }
1318
 
1319
  /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1320
  /// specific, be attached to a generic MachineInstr.
1321
  bool isMSInlineAsm() const {
1322
    return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1323
  }
1324
 
1325
  bool isStackAligningInlineAsm() const;
1326
  InlineAsm::AsmDialect getInlineAsmDialect() const;
1327
 
1328
  bool isInsertSubreg() const {
1329
    return getOpcode() == TargetOpcode::INSERT_SUBREG;
1330
  }
1331
 
1332
  bool isSubregToReg() const {
1333
    return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1334
  }
1335
 
1336
  bool isRegSequence() const {
1337
    return getOpcode() == TargetOpcode::REG_SEQUENCE;
1338
  }
1339
 
1340
  bool isBundle() const {
1341
    return getOpcode() == TargetOpcode::BUNDLE;
1342
  }
1343
 
1344
  bool isCopy() const {
1345
    return getOpcode() == TargetOpcode::COPY;
1346
  }
1347
 
1348
  bool isFullCopy() const {
1349
    return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1350
  }
1351
 
1352
  bool isExtractSubreg() const {
1353
    return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1354
  }
1355
 
1356
  /// Return true if the instruction behaves like a copy.
1357
  /// This does not include native copy instructions.
1358
  bool isCopyLike() const {
1359
    return isCopy() || isSubregToReg();
1360
  }
1361
 
1362
  /// Return true is the instruction is an identity copy.
1363
  bool isIdentityCopy() const {
1364
    return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1365
      getOperand(0).getSubReg() == getOperand(1).getSubReg();
1366
  }
1367
 
1368
  /// Return true if this is a transient instruction that is either very likely
1369
  /// to be eliminated during register allocation (such as copy-like
1370
  /// instructions), or if this instruction doesn't have an execution-time cost.
1371
  bool isTransient() const {
1372
    switch (getOpcode()) {
1373
    default:
1374
      return isMetaInstruction();
1375
    // Copy-like instructions are usually eliminated during register allocation.
1376
    case TargetOpcode::PHI:
1377
    case TargetOpcode::G_PHI:
1378
    case TargetOpcode::COPY:
1379
    case TargetOpcode::INSERT_SUBREG:
1380
    case TargetOpcode::SUBREG_TO_REG:
1381
    case TargetOpcode::REG_SEQUENCE:
1382
      return true;
1383
    }
1384
  }
1385
 
1386
  /// Return the number of instructions inside the MI bundle, excluding the
1387
  /// bundle header.
1388
  ///
1389
  /// This is the number of instructions that MachineBasicBlock::iterator
1390
  /// skips, 0 for unbundled instructions.
1391
  unsigned getBundleSize() const;
1392
 
1393
  /// Return true if the MachineInstr reads the specified register.
1394
  /// If TargetRegisterInfo is passed, then it also checks if there
1395
  /// is a read of a super-register.
1396
  /// This does not count partial redefines of virtual registers as reads:
1397
  ///   %reg1024:6 = OP.
1398
  bool readsRegister(Register Reg,
1399
                     const TargetRegisterInfo *TRI = nullptr) const {
1400
    return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1401
  }
1402
 
1403
  /// Return true if the MachineInstr reads the specified virtual register.
1404
  /// Take into account that a partial define is a
1405
  /// read-modify-write operation.
1406
  bool readsVirtualRegister(Register Reg) const {
1407
    return readsWritesVirtualRegister(Reg).first;
1408
  }
1409
 
1410
  /// Return a pair of bools (reads, writes) indicating if this instruction
1411
  /// reads or writes Reg. This also considers partial defines.
1412
  /// If Ops is not null, all operand indices for Reg are added.
1413
  std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1414
                                SmallVectorImpl<unsigned> *Ops = nullptr) const;
1415
 
1416
  /// Return true if the MachineInstr kills the specified register.
1417
  /// If TargetRegisterInfo is passed, then it also checks if there is
1418
  /// a kill of a super-register.
1419
  bool killsRegister(Register Reg,
1420
                     const TargetRegisterInfo *TRI = nullptr) const {
1421
    return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1422
  }
1423
 
1424
  /// Return true if the MachineInstr fully defines the specified register.
1425
  /// If TargetRegisterInfo is passed, then it also checks
1426
  /// if there is a def of a super-register.
1427
  /// NOTE: It's ignoring subreg indices on virtual registers.
1428
  bool definesRegister(Register Reg,
1429
                       const TargetRegisterInfo *TRI = nullptr) const {
1430
    return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1431
  }
1432
 
1433
  /// Return true if the MachineInstr modifies (fully define or partially
1434
  /// define) the specified register.
1435
  /// NOTE: It's ignoring subreg indices on virtual registers.
1436
  bool modifiesRegister(Register Reg,
1437
                        const TargetRegisterInfo *TRI = nullptr) const {
1438
    return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1439
  }
1440
 
1441
  /// Returns true if the register is dead in this machine instruction.
1442
  /// If TargetRegisterInfo is passed, then it also checks
1443
  /// if there is a dead def of a super-register.
1444
  bool registerDefIsDead(Register Reg,
1445
                         const TargetRegisterInfo *TRI = nullptr) const {
1446
    return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1447
  }
1448
 
1449
  /// Returns true if the MachineInstr has an implicit-use operand of exactly
1450
  /// the given register (not considering sub/super-registers).
1451
  bool hasRegisterImplicitUseOperand(Register Reg) const;
1452
 
1453
  /// Returns the operand index that is a use of the specific register or -1
1454
  /// if it is not found. It further tightens the search criteria to a use
1455
  /// that kills the register if isKill is true.
1456
  int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1457
                                const TargetRegisterInfo *TRI = nullptr) const;
1458
 
1459
  /// Wrapper for findRegisterUseOperandIdx, it returns
1460
  /// a pointer to the MachineOperand rather than an index.
1461
  MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1462
                                      const TargetRegisterInfo *TRI = nullptr) {
1463
    int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1464
    return (Idx == -1) ? nullptr : &getOperand(Idx);
1465
  }
1466
 
1467
  const MachineOperand *findRegisterUseOperand(
1468
    Register Reg, bool isKill = false,
1469
    const TargetRegisterInfo *TRI = nullptr) const {
1470
    return const_cast<MachineInstr *>(this)->
1471
      findRegisterUseOperand(Reg, isKill, TRI);
1472
  }
1473
 
1474
  /// Returns the operand index that is a def of the specified register or
1475
  /// -1 if it is not found. If isDead is true, defs that are not dead are
1476
  /// skipped. If Overlap is true, then it also looks for defs that merely
1477
  /// overlap the specified register. If TargetRegisterInfo is non-null,
1478
  /// then it also checks if there is a def of a super-register.
1479
  /// This may also return a register mask operand when Overlap is true.
1480
  int findRegisterDefOperandIdx(Register Reg,
1481
                                bool isDead = false, bool Overlap = false,
1482
                                const TargetRegisterInfo *TRI = nullptr) const;
1483
 
1484
  /// Wrapper for findRegisterDefOperandIdx, it returns
1485
  /// a pointer to the MachineOperand rather than an index.
1486
  MachineOperand *
1487
  findRegisterDefOperand(Register Reg, bool isDead = false,
1488
                         bool Overlap = false,
1489
                         const TargetRegisterInfo *TRI = nullptr) {
1490
    int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1491
    return (Idx == -1) ? nullptr : &getOperand(Idx);
1492
  }
1493
 
1494
  const MachineOperand *
1495
  findRegisterDefOperand(Register Reg, bool isDead = false,
1496
                         bool Overlap = false,
1497
                         const TargetRegisterInfo *TRI = nullptr) const {
1498
    return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1499
        Reg, isDead, Overlap, TRI);
1500
  }
1501
 
1502
  /// Find the index of the first operand in the
1503
  /// operand list that is used to represent the predicate. It returns -1 if
1504
  /// none is found.
1505
  int findFirstPredOperandIdx() const;
1506
 
1507
  /// Find the index of the flag word operand that
1508
  /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
1509
  /// getOperand(OpIdx) does not belong to an inline asm operand group.
1510
  ///
1511
  /// If GroupNo is not NULL, it will receive the number of the operand group
1512
  /// containing OpIdx.
1513
  int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1514
 
1515
  /// Compute the static register class constraint for operand OpIdx.
1516
  /// For normal instructions, this is derived from the MCInstrDesc.
1517
  /// For inline assembly it is derived from the flag words.
1518
  ///
1519
  /// Returns NULL if the static register class constraint cannot be
1520
  /// determined.
1521
  const TargetRegisterClass*
1522
  getRegClassConstraint(unsigned OpIdx,
1523
                        const TargetInstrInfo *TII,
1524
                        const TargetRegisterInfo *TRI) const;
1525
 
1526
  /// Applies the constraints (def/use) implied by this MI on \p Reg to
1527
  /// the given \p CurRC.
1528
  /// If \p ExploreBundle is set and MI is part of a bundle, all the
1529
  /// instructions inside the bundle will be taken into account. In other words,
1530
  /// this method accumulates all the constraints of the operand of this MI and
1531
  /// the related bundle if MI is a bundle or inside a bundle.
1532
  ///
1533
  /// Returns the register class that satisfies both \p CurRC and the
1534
  /// constraints set by MI. Returns NULL if such a register class does not
1535
  /// exist.
1536
  ///
1537
  /// \pre CurRC must not be NULL.
1538
  const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1539
      Register Reg, const TargetRegisterClass *CurRC,
1540
      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1541
      bool ExploreBundle = false) const;
1542
 
1543
  /// Applies the constraints (def/use) implied by the \p OpIdx operand
1544
  /// to the given \p CurRC.
1545
  ///
1546
  /// Returns the register class that satisfies both \p CurRC and the
1547
  /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1548
  /// does not exist.
1549
  ///
1550
  /// \pre CurRC must not be NULL.
1551
  /// \pre The operand at \p OpIdx must be a register.
1552
  const TargetRegisterClass *
1553
  getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1554
                              const TargetInstrInfo *TII,
1555
                              const TargetRegisterInfo *TRI) const;
1556
 
1557
  /// Add a tie between the register operands at DefIdx and UseIdx.
1558
  /// The tie will cause the register allocator to ensure that the two
1559
  /// operands are assigned the same physical register.
1560
  ///
1561
  /// Tied operands are managed automatically for explicit operands in the
1562
  /// MCInstrDesc. This method is for exceptional cases like inline asm.
1563
  void tieOperands(unsigned DefIdx, unsigned UseIdx);
1564
 
1565
  /// Given the index of a tied register operand, find the
1566
  /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1567
  /// index of the tied operand which must exist.
1568
  unsigned findTiedOperandIdx(unsigned OpIdx) const;
1569
 
1570
  /// Given the index of a register def operand,
1571
  /// check if the register def is tied to a source operand, due to either
1572
  /// two-address elimination or inline assembly constraints. Returns the
1573
  /// first tied use operand index by reference if UseOpIdx is not null.
1574
  bool isRegTiedToUseOperand(unsigned DefOpIdx,
1575
                             unsigned *UseOpIdx = nullptr) const {
1576
    const MachineOperand &MO = getOperand(DefOpIdx);
1577
    if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1578
      return false;
1579
    if (UseOpIdx)
1580
      *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1581
    return true;
1582
  }
1583
 
1584
  /// Return true if the use operand of the specified index is tied to a def
1585
  /// operand. It also returns the def operand index by reference if DefOpIdx
1586
  /// is not null.
1587
  bool isRegTiedToDefOperand(unsigned UseOpIdx,
1588
                             unsigned *DefOpIdx = nullptr) const {
1589
    const MachineOperand &MO = getOperand(UseOpIdx);
1590
    if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1591
      return false;
1592
    if (DefOpIdx)
1593
      *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1594
    return true;
1595
  }
1596
 
1597
  /// Clears kill flags on all operands.
1598
  void clearKillInfo();
1599
 
1600
  /// Replace all occurrences of FromReg with ToReg:SubIdx,
1601
  /// properly composing subreg indices where necessary.
1602
  void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1603
                          const TargetRegisterInfo &RegInfo);
1604
 
1605
  /// We have determined MI kills a register. Look for the
1606
  /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1607
  /// add a implicit operand if it's not found. Returns true if the operand
1608
  /// exists / is added.
1609
  bool addRegisterKilled(Register IncomingReg,
1610
                         const TargetRegisterInfo *RegInfo,
1611
                         bool AddIfNotFound = false);
1612
 
1613
  /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1614
  /// all aliasing registers.
1615
  void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1616
 
1617
  /// We have determined MI defined a register without a use.
1618
  /// Look for the operand that defines it and mark it as IsDead. If
1619
  /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1620
  /// true if the operand exists / is added.
1621
  bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1622
                       bool AddIfNotFound = false);
1623
 
1624
  /// Clear all dead flags on operands defining register @p Reg.
1625
  void clearRegisterDeads(Register Reg);
1626
 
1627
  /// Mark all subregister defs of register @p Reg with the undef flag.
1628
  /// This function is used when we determined to have a subregister def in an
1629
  /// otherwise undefined super register.
1630
  void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1631
 
1632
  /// We have determined MI defines a register. Make sure there is an operand
1633
  /// defining Reg.
1634
  void addRegisterDefined(Register Reg,
1635
                          const TargetRegisterInfo *RegInfo = nullptr);
1636
 
1637
  /// Mark every physreg used by this instruction as
1638
  /// dead except those in the UsedRegs list.
1639
  ///
1640
  /// On instructions with register mask operands, also add implicit-def
1641
  /// operands for all registers in UsedRegs.
1642
  void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1643
                             const TargetRegisterInfo &TRI);
1644
 
1645
  /// Return true if it is safe to move this instruction. If
1646
  /// SawStore is set to true, it means that there is a store (or call) between
1647
  /// the instruction's location and its intended destination.
1648
  bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1649
 
1650
  /// Returns true if this instruction's memory access aliases the memory
1651
  /// access of Other.
1652
  //
1653
  /// Assumes any physical registers used to compute addresses
1654
  /// have the same value for both instructions.  Returns false if neither
1655
  /// instruction writes to memory.
1656
  ///
1657
  /// @param AA Optional alias analysis, used to compare memory operands.
1658
  /// @param Other MachineInstr to check aliasing against.
1659
  /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1660
  bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1661
 
1662
  /// Return true if this instruction may have an ordered
1663
  /// or volatile memory reference, or if the information describing the memory
1664
  /// reference is not available. Return false if it is known to have no
1665
  /// ordered or volatile memory references.
1666
  bool hasOrderedMemoryRef() const;
1667
 
1668
  /// Return true if this load instruction never traps and points to a memory
1669
  /// location whose value doesn't change during the execution of this function.
1670
  ///
1671
  /// Examples include loading a value from the constant pool or from the
1672
  /// argument area of a function (if it does not change).  If the instruction
1673
  /// does multiple loads, this returns true only if all of the loads are
1674
  /// dereferenceable and invariant.
1675
  bool isDereferenceableInvariantLoad() const;
1676
 
1677
  /// If the specified instruction is a PHI that always merges together the
1678
  /// same virtual register, return the register, otherwise return 0.
1679
  unsigned isConstantValuePHI() const;
1680
 
1681
  /// Return true if this instruction has side effects that are not modeled
1682
  /// by mayLoad / mayStore, etc.
1683
  /// For all instructions, the property is encoded in MCInstrDesc::Flags
1684
  /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1685
  /// INLINEASM instruction, in which case the side effect property is encoded
1686
  /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1687
  ///
1688
  bool hasUnmodeledSideEffects() const;
1689
 
1690
  /// Returns true if it is illegal to fold a load across this instruction.
1691
  bool isLoadFoldBarrier() const;
1692
 
1693
  /// Return true if all the defs of this instruction are dead.
1694
  bool allDefsAreDead() const;
1695
 
1696
  /// Return a valid size if the instruction is a spill instruction.
1697
  std::optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1698
 
1699
  /// Return a valid size if the instruction is a folded spill instruction.
1700
  std::optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1701
 
1702
  /// Return a valid size if the instruction is a restore instruction.
1703
  std::optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1704
 
1705
  /// Return a valid size if the instruction is a folded restore instruction.
1706
  std::optional<unsigned>
1707
  getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1708
 
1709
  /// Copy implicit register operands from specified
1710
  /// instruction to this instruction.
1711
  void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1712
 
1713
  /// Debugging support
1714
  /// @{
1715
  /// Determine the generic type to be printed (if needed) on uses and defs.
1716
  LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1717
                     const MachineRegisterInfo &MRI) const;
1718
 
1719
  /// Return true when an instruction has tied register that can't be determined
1720
  /// by the instruction's descriptor. This is useful for MIR printing, to
1721
  /// determine whether we need to print the ties or not.
1722
  bool hasComplexRegisterTies() const;
1723
 
1724
  /// Print this MI to \p OS.
1725
  /// Don't print information that can be inferred from other instructions if
1726
  /// \p IsStandalone is false. It is usually true when only a fragment of the
1727
  /// function is printed.
1728
  /// Only print the defs and the opcode if \p SkipOpers is true.
1729
  /// Otherwise, also print operands if \p SkipDebugLoc is true.
1730
  /// Otherwise, also print the debug loc, with a terminating newline.
1731
  /// \p TII is used to print the opcode name.  If it's not present, but the
1732
  /// MI is in a function, the opcode will be printed using the function's TII.
1733
  void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1734
             bool SkipDebugLoc = false, bool AddNewLine = true,
1735
             const TargetInstrInfo *TII = nullptr) const;
1736
  void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1737
             bool SkipOpers = false, bool SkipDebugLoc = false,
1738
             bool AddNewLine = true,
1739
             const TargetInstrInfo *TII = nullptr) const;
1740
  void dump() const;
1741
  /// Print on dbgs() the current instruction and the instructions defining its
1742
  /// operands and so on until we reach \p MaxDepth.
1743
  void dumpr(const MachineRegisterInfo &MRI,
1744
             unsigned MaxDepth = UINT_MAX) const;
1745
  /// @}
1746
 
1747
  //===--------------------------------------------------------------------===//
1748
  // Accessors used to build up machine instructions.
1749
 
1750
  /// Add the specified operand to the instruction.  If it is an implicit
1751
  /// operand, it is added to the end of the operand list.  If it is an
1752
  /// explicit operand it is added at the end of the explicit operand list
1753
  /// (before the first implicit operand).
1754
  ///
1755
  /// MF must be the machine function that was used to allocate this
1756
  /// instruction.
1757
  ///
1758
  /// MachineInstrBuilder provides a more convenient interface for creating
1759
  /// instructions and adding operands.
1760
  void addOperand(MachineFunction &MF, const MachineOperand &Op);
1761
 
1762
  /// Add an operand without providing an MF reference. This only works for
1763
  /// instructions that are inserted in a basic block.
1764
  ///
1765
  /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1766
  /// preferred.
1767
  void addOperand(const MachineOperand &Op);
1768
 
1769
  /// Replace the instruction descriptor (thus opcode) of
1770
  /// the current instruction with a new one.
1771
  void setDesc(const MCInstrDesc &TID) { MCID = &TID; }
1772
 
1773
  /// Replace current source information with new such.
1774
  /// Avoid using this, the constructor argument is preferable.
1775
  void setDebugLoc(DebugLoc DL) {
1776
    DbgLoc = std::move(DL);
1777
    assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
1778
  }
1779
 
1780
  /// Erase an operand from an instruction, leaving it with one
1781
  /// fewer operand than it started with.
1782
  void removeOperand(unsigned OpNo);
1783
 
1784
  /// Clear this MachineInstr's memory reference descriptor list.  This resets
1785
  /// the memrefs to their most conservative state.  This should be used only
1786
  /// as a last resort since it greatly pessimizes our knowledge of the memory
1787
  /// access performed by the instruction.
1788
  void dropMemRefs(MachineFunction &MF);
1789
 
1790
  /// Assign this MachineInstr's memory reference descriptor list.
1791
  ///
1792
  /// Unlike other methods, this *will* allocate them into a new array
1793
  /// associated with the provided `MachineFunction`.
1794
  void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1795
 
1796
  /// Add a MachineMemOperand to the machine instruction.
1797
  /// This function should be used only occasionally. The setMemRefs function
1798
  /// is the primary method for setting up a MachineInstr's MemRefs list.
1799
  void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1800
 
1801
  /// Clone another MachineInstr's memory reference descriptor list and replace
1802
  /// ours with it.
1803
  ///
1804
  /// Note that `*this` may be the incoming MI!
1805
  ///
1806
  /// Prefer this API whenever possible as it can avoid allocations in common
1807
  /// cases.
1808
  void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1809
 
1810
  /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1811
  /// list and replace ours with it.
1812
  ///
1813
  /// Note that `*this` may be one of the incoming MIs!
1814
  ///
1815
  /// Prefer this API whenever possible as it can avoid allocations in common
1816
  /// cases.
1817
  void cloneMergedMemRefs(MachineFunction &MF,
1818
                          ArrayRef<const MachineInstr *> MIs);
1819
 
1820
  /// Set a symbol that will be emitted just prior to the instruction itself.
1821
  ///
1822
  /// Setting this to a null pointer will remove any such symbol.
1823
  ///
1824
  /// FIXME: This is not fully implemented yet.
1825
  void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1826
 
1827
  /// Set a symbol that will be emitted just after the instruction itself.
1828
  ///
1829
  /// Setting this to a null pointer will remove any such symbol.
1830
  ///
1831
  /// FIXME: This is not fully implemented yet.
1832
  void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1833
 
1834
  /// Clone another MachineInstr's pre- and post- instruction symbols and
1835
  /// replace ours with it.
1836
  void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1837
 
1838
  /// Set a marker on instructions that denotes where we should create and emit
1839
  /// heap alloc site labels. This waits until after instruction selection and
1840
  /// optimizations to create the label, so it should still work if the
1841
  /// instruction is removed or duplicated.
1842
  void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1843
 
1844
  // Set metadata on instructions that say which sections to emit instruction
1845
  // addresses into.
1846
  void setPCSections(MachineFunction &MF, MDNode *MD);
1847
 
1848
  /// Set the CFI type for the instruction.
1849
  void setCFIType(MachineFunction &MF, uint32_t Type);
1850
 
1851
  /// Return the MIFlags which represent both MachineInstrs. This
1852
  /// should be used when merging two MachineInstrs into one. This routine does
1853
  /// not modify the MIFlags of this MachineInstr.
1854
  uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1855
 
1856
  static uint16_t copyFlagsFromInstruction(const Instruction &I);
1857
 
1858
  /// Copy all flags to MachineInst MIFlags
1859
  void copyIRFlags(const Instruction &I);
1860
 
1861
  /// Break any tie involving OpIdx.
1862
  void untieRegOperand(unsigned OpIdx) {
1863
    MachineOperand &MO = getOperand(OpIdx);
1864
    if (MO.isReg() && MO.isTied()) {
1865
      getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1866
      MO.TiedTo = 0;
1867
    }
1868
  }
1869
 
1870
  /// Add all implicit def and use operands to this instruction.
1871
  void addImplicitDefUseOperands(MachineFunction &MF);
1872
 
1873
  /// Scan instructions immediately following MI and collect any matching
1874
  /// DBG_VALUEs.
1875
  void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1876
 
1877
  /// Find all DBG_VALUEs that point to the register def in this instruction
1878
  /// and point them to \p Reg instead.
1879
  void changeDebugValuesDefReg(Register Reg);
1880
 
1881
  /// Returns the Intrinsic::ID for this instruction.
1882
  /// \pre Must have an intrinsic ID operand.
1883
  unsigned getIntrinsicID() const {
1884
    return getOperand(getNumExplicitDefs()).getIntrinsicID();
1885
  }
1886
 
1887
  /// Sets all register debug operands in this debug value instruction to be
1888
  /// undef.
1889
  void setDebugValueUndef() {
1890
    assert(isDebugValue() && "Must be a debug value instruction.");
1891
    for (MachineOperand &MO : debug_operands()) {
1892
      if (MO.isReg()) {
1893
        MO.setReg(0);
1894
        MO.setSubReg(0);
1895
      }
1896
    }
1897
  }
1898
 
1899
private:
1900
  /// If this instruction is embedded into a MachineFunction, return the
1901
  /// MachineRegisterInfo object for the current function, otherwise
1902
  /// return null.
1903
  MachineRegisterInfo *getRegInfo();
1904
 
1905
  /// Unlink all of the register operands in this instruction from their
1906
  /// respective use lists.  This requires that the operands already be on their
1907
  /// use lists.
1908
  void removeRegOperandsFromUseLists(MachineRegisterInfo&);
1909
 
1910
  /// Add all of the register operands in this instruction from their
1911
  /// respective use lists.  This requires that the operands not be on their
1912
  /// use lists yet.
1913
  void addRegOperandsToUseLists(MachineRegisterInfo&);
1914
 
1915
  /// Slow path for hasProperty when we're dealing with a bundle.
1916
  bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1917
 
1918
  /// Implements the logic of getRegClassConstraintEffectForVReg for the
1919
  /// this MI and the given operand index \p OpIdx.
1920
  /// If the related operand does not constrained Reg, this returns CurRC.
1921
  const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1922
      unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1923
      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1924
 
1925
  /// Stores extra instruction information inline or allocates as ExtraInfo
1926
  /// based on the number of pointers.
1927
  void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
1928
                    MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
1929
                    MDNode *HeapAllocMarker, MDNode *PCSections,
1930
                    uint32_t CFIType);
1931
};
1932
 
1933
/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1934
/// instruction rather than by pointer value.
1935
/// The hashing and equality testing functions ignore definitions so this is
1936
/// useful for CSE, etc.
1937
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1938
  static inline MachineInstr *getEmptyKey() {
1939
    return nullptr;
1940
  }
1941
 
1942
  static inline MachineInstr *getTombstoneKey() {
1943
    return reinterpret_cast<MachineInstr*>(-1);
1944
  }
1945
 
1946
  static unsigned getHashValue(const MachineInstr* const &MI);
1947
 
1948
  static bool isEqual(const MachineInstr* const &LHS,
1949
                      const MachineInstr* const &RHS) {
1950
    if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1951
        LHS == getEmptyKey() || LHS == getTombstoneKey())
1952
      return LHS == RHS;
1953
    return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1954
  }
1955
};
1956
 
1957
//===----------------------------------------------------------------------===//
1958
// Debugging Support
1959
 
1960
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1961
  MI.print(OS);
1962
  return OS;
1963
}
1964
 
1965
} // end namespace llvm
1966
 
1967
#endif // LLVM_CODEGEN_MACHINEINSTR_H