Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Collect native machine code for a function.  This class contains a list of
10
// MachineBasicBlock instances that make up the current compiled function.
11
//
12
// This class also contains pointers to various classes which hold
13
// target-specific information about the generated code.
14
//
15
//===----------------------------------------------------------------------===//
16
 
17
#ifndef LLVM_CODEGEN_MACHINEFUNCTION_H
18
#define LLVM_CODEGEN_MACHINEFUNCTION_H
19
 
20
#include "llvm/ADT/ArrayRef.h"
21
#include "llvm/ADT/BitVector.h"
22
#include "llvm/ADT/DenseMap.h"
23
#include "llvm/ADT/GraphTraits.h"
24
#include "llvm/ADT/SmallVector.h"
25
#include "llvm/ADT/ilist.h"
26
#include "llvm/ADT/iterator.h"
27
#include "llvm/Analysis/EHPersonalities.h"
28
#include "llvm/CodeGen/MachineBasicBlock.h"
29
#include "llvm/CodeGen/MachineInstr.h"
30
#include "llvm/CodeGen/MachineMemOperand.h"
31
#include "llvm/Support/Allocator.h"
32
#include "llvm/Support/ArrayRecycler.h"
33
#include "llvm/Support/AtomicOrdering.h"
34
#include "llvm/Support/Compiler.h"
35
#include "llvm/Support/Recycler.h"
36
#include "llvm/Target/TargetOptions.h"
37
#include <cassert>
38
#include <cstdint>
39
#include <memory>
40
#include <utility>
41
#include <vector>
42
 
43
namespace llvm {
44
 
45
class BasicBlock;
46
class BlockAddress;
47
class DataLayout;
48
class DebugLoc;
49
struct DenormalMode;
50
class DIExpression;
51
class DILocalVariable;
52
class DILocation;
53
class Function;
54
class GISelChangeObserver;
55
class GlobalValue;
56
class LLVMTargetMachine;
57
class MachineConstantPool;
58
class MachineFrameInfo;
59
class MachineFunction;
60
class MachineJumpTableInfo;
61
class MachineModuleInfo;
62
class MachineRegisterInfo;
63
class MCContext;
64
class MCInstrDesc;
65
class MCSymbol;
66
class MCSection;
67
class Pass;
68
class PseudoSourceValueManager;
69
class raw_ostream;
70
class SlotIndexes;
71
class StringRef;
72
class TargetRegisterClass;
73
class TargetSubtargetInfo;
74
struct WasmEHFuncInfo;
75
struct WinEHFuncInfo;
76
 
77
template <> struct ilist_alloc_traits<MachineBasicBlock> {
78
  void deleteNode(MachineBasicBlock *MBB);
79
};
80
 
81
template <> struct ilist_callback_traits<MachineBasicBlock> {
82
  void addNodeToList(MachineBasicBlock* N);
83
  void removeNodeFromList(MachineBasicBlock* N);
84
 
85
  template <class Iterator>
86
  void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) {
87
    assert(this == &OldList && "never transfer MBBs between functions");
88
  }
89
};
90
 
91
/// MachineFunctionInfo - This class can be derived from and used by targets to
92
/// hold private target-specific information for each MachineFunction.  Objects
93
/// of type are accessed/created with MF::getInfo and destroyed when the
94
/// MachineFunction is destroyed.
95
struct MachineFunctionInfo {
96
  virtual ~MachineFunctionInfo();
97
 
98
  /// Factory function: default behavior is to call new using the
99
  /// supplied allocator.
100
  ///
101
  /// This function can be overridden in a derive class.
102
  template <typename FuncInfoTy, typename SubtargetTy = TargetSubtargetInfo>
103
  static FuncInfoTy *create(BumpPtrAllocator &Allocator, const Function &F,
104
                            const SubtargetTy *STI) {
105
    return new (Allocator.Allocate<FuncInfoTy>()) FuncInfoTy(F, STI);
106
  }
107
 
108
  template <typename Ty>
109
  static Ty *create(BumpPtrAllocator &Allocator, const Ty &MFI) {
110
    return new (Allocator.Allocate<Ty>()) Ty(MFI);
111
  }
112
 
113
  /// Make a functionally equivalent copy of this MachineFunctionInfo in \p MF.
114
  /// This requires remapping MachineBasicBlock references from the original
115
  /// parent to values in the new function. Targets may assume that virtual
116
  /// register and frame index values are preserved in the new function.
117
  virtual MachineFunctionInfo *
118
  clone(BumpPtrAllocator &Allocator, MachineFunction &DestMF,
119
        const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
120
      const {
121
    return nullptr;
122
  }
123
};
124
 
125
/// Properties which a MachineFunction may have at a given point in time.
126
/// Each of these has checking code in the MachineVerifier, and passes can
127
/// require that a property be set.
128
class MachineFunctionProperties {
129
  // Possible TODO: Allow targets to extend this (perhaps by allowing the
130
  // constructor to specify the size of the bit vector)
131
  // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be
132
  // stated as the negative of "has vregs"
133
 
134
public:
135
  // The properties are stated in "positive" form; i.e. a pass could require
136
  // that the property hold, but not that it does not hold.
137
 
138
  // Property descriptions:
139
  // IsSSA: True when the machine function is in SSA form and virtual registers
140
  //  have a single def.
141
  // NoPHIs: The machine function does not contain any PHI instruction.
142
  // TracksLiveness: True when tracking register liveness accurately.
143
  //  While this property is set, register liveness information in basic block
144
  //  live-in lists and machine instruction operands (e.g. implicit defs) is
145
  //  accurate, kill flags are conservatively accurate (kill flag correctly
146
  //  indicates the last use of a register, an operand without kill flag may or
147
  //  may not be the last use of a register). This means it can be used to
148
  //  change the code in ways that affect the values in registers, for example
149
  //  by the register scavenger.
150
  //  When this property is cleared at a very late time, liveness is no longer
151
  //  reliable.
152
  // NoVRegs: The machine function does not use any virtual registers.
153
  // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic
154
  //  instructions have been legalized; i.e., all instructions are now one of:
155
  //   - generic and always legal (e.g., COPY)
156
  //   - target-specific
157
  //   - legal pre-isel generic instructions.
158
  // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic
159
  //  virtual registers have been assigned to a register bank.
160
  // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel
161
  //  generic instructions have been eliminated; i.e., all instructions are now
162
  //  target-specific or non-pre-isel generic instructions (e.g., COPY).
163
  //  Since only pre-isel generic instructions can have generic virtual register
164
  //  operands, this also means that all generic virtual registers have been
165
  //  constrained to virtual registers (assigned to register classes) and that
166
  //  all sizes attached to them have been eliminated.
167
  // TiedOpsRewritten: The twoaddressinstruction pass will set this flag, it
168
  //  means that tied-def have been rewritten to meet the RegConstraint.
169
  // FailsVerification: Means that the function is not expected to pass machine
170
  //  verification. This can be set by passes that introduce known problems that
171
  //  have not been fixed yet.
172
  // TracksDebugUserValues: Without this property enabled, debug instructions
173
  // such as DBG_VALUE are allowed to reference virtual registers even if those
174
  // registers do not have a definition. With the property enabled virtual
175
  // registers must only be used if they have a definition. This property
176
  // allows earlier passes in the pipeline to skip updates of `DBG_VALUE`
177
  // instructions to save compile time.
178
  enum class Property : unsigned {
179
    IsSSA,
180
    NoPHIs,
181
    TracksLiveness,
182
    NoVRegs,
183
    FailedISel,
184
    Legalized,
185
    RegBankSelected,
186
    Selected,
187
    TiedOpsRewritten,
188
    FailsVerification,
189
    TracksDebugUserValues,
190
    LastProperty = TracksDebugUserValues,
191
  };
192
 
193
  bool hasProperty(Property P) const {
194
    return Properties[static_cast<unsigned>(P)];
195
  }
196
 
197
  MachineFunctionProperties &set(Property P) {
198
    Properties.set(static_cast<unsigned>(P));
199
    return *this;
200
  }
201
 
202
  MachineFunctionProperties &reset(Property P) {
203
    Properties.reset(static_cast<unsigned>(P));
204
    return *this;
205
  }
206
 
207
  /// Reset all the properties.
208
  MachineFunctionProperties &reset() {
209
    Properties.reset();
210
    return *this;
211
  }
212
 
213
  MachineFunctionProperties &set(const MachineFunctionProperties &MFP) {
214
    Properties |= MFP.Properties;
215
    return *this;
216
  }
217
 
218
  MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) {
219
    Properties.reset(MFP.Properties);
220
    return *this;
221
  }
222
 
223
  // Returns true if all properties set in V (i.e. required by a pass) are set
224
  // in this.
225
  bool verifyRequiredProperties(const MachineFunctionProperties &V) const {
226
    return !V.Properties.test(Properties);
227
  }
228
 
229
  /// Print the MachineFunctionProperties in human-readable form.
230
  void print(raw_ostream &OS) const;
231
 
232
private:
233
  BitVector Properties =
234
      BitVector(static_cast<unsigned>(Property::LastProperty)+1);
235
};
236
 
237
struct SEHHandler {
238
  /// Filter or finally function. Null indicates a catch-all.
239
  const Function *FilterOrFinally;
240
 
241
  /// Address of block to recover at. Null for a finally handler.
242
  const BlockAddress *RecoverBA;
243
};
244
 
245
/// This structure is used to retain landing pad info for the current function.
246
struct LandingPadInfo {
247
  MachineBasicBlock *LandingPadBlock;      // Landing pad block.
248
  SmallVector<MCSymbol *, 1> BeginLabels;  // Labels prior to invoke.
249
  SmallVector<MCSymbol *, 1> EndLabels;    // Labels after invoke.
250
  SmallVector<SEHHandler, 1> SEHHandlers;  // SEH handlers active at this lpad.
251
  MCSymbol *LandingPadLabel = nullptr;     // Label at beginning of landing pad.
252
  std::vector<int> TypeIds;                // List of type ids (filters negative).
253
 
254
  explicit LandingPadInfo(MachineBasicBlock *MBB)
255
      : LandingPadBlock(MBB) {}
256
};
257
 
258
class LLVM_EXTERNAL_VISIBILITY MachineFunction {
259
  Function &F;
260
  const LLVMTargetMachine &Target;
261
  const TargetSubtargetInfo *STI;
262
  MCContext &Ctx;
263
  MachineModuleInfo &MMI;
264
 
265
  // RegInfo - Information about each register in use in the function.
266
  MachineRegisterInfo *RegInfo;
267
 
268
  // Used to keep track of target-specific per-machine function information for
269
  // the target implementation.
270
  MachineFunctionInfo *MFInfo;
271
 
272
  // Keep track of objects allocated on the stack.
273
  MachineFrameInfo *FrameInfo;
274
 
275
  // Keep track of constants which are spilled to memory
276
  MachineConstantPool *ConstantPool;
277
 
278
  // Keep track of jump tables for switch instructions
279
  MachineJumpTableInfo *JumpTableInfo;
280
 
281
  // Keep track of the function section.
282
  MCSection *Section = nullptr;
283
 
284
  // Catchpad unwind destination info for wasm EH.
285
  // Keeps track of Wasm exception handling related data. This will be null for
286
  // functions that aren't using a wasm EH personality.
287
  WasmEHFuncInfo *WasmEHInfo = nullptr;
288
 
289
  // Keeps track of Windows exception handling related data. This will be null
290
  // for functions that aren't using a funclet-based EH personality.
291
  WinEHFuncInfo *WinEHInfo = nullptr;
292
 
293
  // Function-level unique numbering for MachineBasicBlocks.  When a
294
  // MachineBasicBlock is inserted into a MachineFunction is it automatically
295
  // numbered and this vector keeps track of the mapping from ID's to MBB's.
296
  std::vector<MachineBasicBlock*> MBBNumbering;
297
 
298
  // Pool-allocate MachineFunction-lifetime and IR objects.
299
  BumpPtrAllocator Allocator;
300
 
301
  // Allocation management for instructions in function.
302
  Recycler<MachineInstr> InstructionRecycler;
303
 
304
  // Allocation management for operand arrays on instructions.
305
  ArrayRecycler<MachineOperand> OperandRecycler;
306
 
307
  // Allocation management for basic blocks in function.
308
  Recycler<MachineBasicBlock> BasicBlockRecycler;
309
 
310
  // List of machine basic blocks in function
311
  using BasicBlockListType = ilist<MachineBasicBlock>;
312
  BasicBlockListType BasicBlocks;
313
 
314
  /// FunctionNumber - This provides a unique ID for each function emitted in
315
  /// this translation unit.
316
  ///
317
  unsigned FunctionNumber;
318
 
319
  /// Alignment - The alignment of the function.
320
  Align Alignment;
321
 
322
  /// ExposesReturnsTwice - True if the function calls setjmp or related
323
  /// functions with attribute "returns twice", but doesn't have
324
  /// the attribute itself.
325
  /// This is used to limit optimizations which cannot reason
326
  /// about the control flow of such functions.
327
  bool ExposesReturnsTwice = false;
328
 
329
  /// True if the function includes any inline assembly.
330
  bool HasInlineAsm = false;
331
 
332
  /// True if any WinCFI instruction have been emitted in this function.
333
  bool HasWinCFI = false;
334
 
335
  /// Current high-level properties of the IR of the function (e.g. is in SSA
336
  /// form or whether registers have been allocated)
337
  MachineFunctionProperties Properties;
338
 
339
  // Allocation management for pseudo source values.
340
  std::unique_ptr<PseudoSourceValueManager> PSVManager;
341
 
342
  /// List of moves done by a function's prolog.  Used to construct frame maps
343
  /// by debug and exception handling consumers.
344
  std::vector<MCCFIInstruction> FrameInstructions;
345
 
346
  /// List of basic blocks immediately following calls to _setjmp. Used to
347
  /// construct a table of valid longjmp targets for Windows Control Flow Guard.
348
  std::vector<MCSymbol *> LongjmpTargets;
349
 
350
  /// List of basic blocks that are the target of catchrets. Used to construct
351
  /// a table of valid targets for Windows EHCont Guard.
352
  std::vector<MCSymbol *> CatchretTargets;
353
 
354
  /// \name Exception Handling
355
  /// \{
356
 
357
  /// List of LandingPadInfo describing the landing pad information.
358
  std::vector<LandingPadInfo> LandingPads;
359
 
360
  /// Map a landing pad's EH symbol to the call site indexes.
361
  DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap;
362
 
363
  /// Map a landing pad to its index.
364
  DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap;
365
 
366
  /// Map of invoke call site index values to associated begin EH_LABEL.
367
  DenseMap<MCSymbol*, unsigned> CallSiteMap;
368
 
369
  /// CodeView label annotations.
370
  std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations;
371
 
372
  bool CallsEHReturn = false;
373
  bool CallsUnwindInit = false;
374
  bool HasEHCatchret = false;
375
  bool HasEHScopes = false;
376
  bool HasEHFunclets = false;
377
 
378
  /// BBID to assign to the next basic block of this function.
379
  unsigned NextBBID = 0;
380
 
381
  /// Section Type for basic blocks, only relevant with basic block sections.
382
  BasicBlockSection BBSectionsType = BasicBlockSection::None;
383
 
384
  /// List of C++ TypeInfo used.
385
  std::vector<const GlobalValue *> TypeInfos;
386
 
387
  /// List of typeids encoding filters used.
388
  std::vector<unsigned> FilterIds;
389
 
390
  /// List of the indices in FilterIds corresponding to filter terminators.
391
  std::vector<unsigned> FilterEnds;
392
 
393
  EHPersonality PersonalityTypeCache = EHPersonality::Unknown;
394
 
395
  /// \}
396
 
397
  /// Clear all the members of this MachineFunction, but the ones used
398
  /// to initialize again the MachineFunction.
399
  /// More specifically, this deallocates all the dynamically allocated
400
  /// objects and get rid of all the XXXInfo data structure, but keep
401
  /// unchanged the references to Fn, Target, MMI, and FunctionNumber.
402
  void clear();
403
  /// Allocate and initialize the different members.
404
  /// In particular, the XXXInfo data structure.
405
  /// \pre Fn, Target, MMI, and FunctionNumber are properly set.
406
  void init();
407
 
408
public:
409
  struct VariableDbgInfo {
410
    const DILocalVariable *Var;
411
    const DIExpression *Expr;
412
    // The Slot can be negative for fixed stack objects.
413
    int Slot;
414
    const DILocation *Loc;
415
 
416
    VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
417
                    int Slot, const DILocation *Loc)
418
        : Var(Var), Expr(Expr), Slot(Slot), Loc(Loc) {}
419
  };
420
 
421
  class Delegate {
422
    virtual void anchor();
423
 
424
  public:
425
    virtual ~Delegate() = default;
426
    /// Callback after an insertion. This should not modify the MI directly.
427
    virtual void MF_HandleInsertion(MachineInstr &MI) = 0;
428
    /// Callback before a removal. This should not modify the MI directly.
429
    virtual void MF_HandleRemoval(MachineInstr &MI) = 0;
430
  };
431
 
432
  /// Structure used to represent pair of argument number after call lowering
433
  /// and register used to transfer that argument.
434
  /// For now we support only cases when argument is transferred through one
435
  /// register.
436
  struct ArgRegPair {
437
    Register Reg;
438
    uint16_t ArgNo;
439
    ArgRegPair(Register R, unsigned Arg) : Reg(R), ArgNo(Arg) {
440
      assert(Arg < (1 << 16) && "Arg out of range");
441
    }
442
  };
443
  /// Vector of call argument and its forwarding register.
444
  using CallSiteInfo = SmallVector<ArgRegPair, 1>;
445
  using CallSiteInfoImpl = SmallVectorImpl<ArgRegPair>;
446
 
447
private:
448
  Delegate *TheDelegate = nullptr;
449
  GISelChangeObserver *Observer = nullptr;
450
 
451
  using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>;
452
  /// Map a call instruction to call site arguments forwarding info.
453
  CallSiteInfoMap CallSitesInfo;
454
 
455
  /// A helper function that returns call site info for a give call
456
  /// instruction if debug entry value support is enabled.
457
  CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI);
458
 
459
  // Callbacks for insertion and removal.
460
  void handleInsertion(MachineInstr &MI);
461
  void handleRemoval(MachineInstr &MI);
462
  friend struct ilist_traits<MachineInstr>;
463
 
464
public:
465
  using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>;
466
  VariableDbgInfoMapTy VariableDbgInfos;
467
 
468
  /// A count of how many instructions in the function have had numbers
469
  /// assigned to them. Used for debug value tracking, to determine the
470
  /// next instruction number.
471
  unsigned DebugInstrNumberingCount = 0;
472
 
473
  /// Set value of DebugInstrNumberingCount field. Avoid using this unless
474
  /// you're deserializing this data.
475
  void setDebugInstrNumberingCount(unsigned Num);
476
 
477
  /// Pair of instruction number and operand number.
478
  using DebugInstrOperandPair = std::pair<unsigned, unsigned>;
479
 
480
  /// Replacement definition for a debug instruction reference. Made up of a
481
  /// source instruction / operand pair, destination pair, and a qualifying
482
  /// subregister indicating what bits in the operand make up the substitution.
483
  // For example, a debug user
484
  /// of %1:
485
  ///    %0:gr32 = someinst, debug-instr-number 1
486
  ///    %1:gr16 = %0.some_16_bit_subreg, debug-instr-number 2
487
  /// Would receive the substitution {{2, 0}, {1, 0}, $subreg}, where $subreg is
488
  /// the subregister number for some_16_bit_subreg.
489
  class DebugSubstitution {
490
  public:
491
    DebugInstrOperandPair Src;  ///< Source instruction / operand pair.
492
    DebugInstrOperandPair Dest; ///< Replacement instruction / operand pair.
493
    unsigned Subreg;            ///< Qualifier for which part of Dest is read.
494
 
495
    DebugSubstitution(const DebugInstrOperandPair &Src,
496
                      const DebugInstrOperandPair &Dest, unsigned Subreg)
497
        : Src(Src), Dest(Dest), Subreg(Subreg) {}
498
 
499
    /// Order only by source instruction / operand pair: there should never
500
    /// be duplicate entries for the same source in any collection.
501
    bool operator<(const DebugSubstitution &Other) const {
502
      return Src < Other.Src;
503
    }
504
  };
505
 
506
  /// Debug value substitutions: a collection of DebugSubstitution objects,
507
  /// recording changes in where a value is defined. For example, when one
508
  /// instruction is substituted for another. Keeping a record allows recovery
509
  /// of variable locations after compilation finishes.
510
  SmallVector<DebugSubstitution, 8> DebugValueSubstitutions;
511
 
512
  /// Location of a PHI instruction that is also a debug-info variable value,
513
  /// for the duration of register allocation. Loaded by the PHI-elimination
514
  /// pass, and emitted as DBG_PHI instructions during VirtRegRewriter, with
515
  /// maintenance applied by intermediate passes that edit registers (such as
516
  /// coalescing and the allocator passes).
517
  class DebugPHIRegallocPos {
518
  public:
519
    MachineBasicBlock *MBB; ///< Block where this PHI was originally located.
520
    Register Reg;           ///< VReg where the control-flow-merge happens.
521
    unsigned SubReg;        ///< Optional subreg qualifier within Reg.
522
    DebugPHIRegallocPos(MachineBasicBlock *MBB, Register Reg, unsigned SubReg)
523
        : MBB(MBB), Reg(Reg), SubReg(SubReg) {}
524
  };
525
 
526
  /// Map of debug instruction numbers to the position of their PHI instructions
527
  /// during register allocation. See DebugPHIRegallocPos.
528
  DenseMap<unsigned, DebugPHIRegallocPos> DebugPHIPositions;
529
 
530
  /// Flag for whether this function contains DBG_VALUEs (false) or
531
  /// DBG_INSTR_REF (true).
532
  bool UseDebugInstrRef = false;
533
 
534
  /// Create a substitution between one <instr,operand> value to a different,
535
  /// new value.
536
  void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair,
537
                                  unsigned SubReg = 0);
538
 
539
  /// Create substitutions for any tracked values in \p Old, to point at
540
  /// \p New. Needed when we re-create an instruction during optimization,
541
  /// which has the same signature (i.e., def operands in the same place) but
542
  /// a modified instruction type, flags, or otherwise. An example: X86 moves
543
  /// are sometimes transformed into equivalent LEAs.
544
  /// If the two instructions are not the same opcode, limit which operands to
545
  /// examine for substitutions to the first N operands by setting
546
  /// \p MaxOperand.
547
  void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New,
548
                                    unsigned MaxOperand = UINT_MAX);
549
 
550
  /// Find the underlying  defining instruction / operand for a COPY instruction
551
  /// while in SSA form. Copies do not actually define values -- they move them
552
  /// between registers. Labelling a COPY-like instruction with an instruction
553
  /// number is to be avoided as it makes value numbers non-unique later in
554
  /// compilation. This method follows the definition chain for any sequence of
555
  /// COPY-like instructions to find whatever non-COPY-like instruction defines
556
  /// the copied value; or for parameters, creates a DBG_PHI on entry.
557
  /// May insert instructions into the entry block!
558
  /// \p MI The copy-like instruction to salvage.
559
  /// \p DbgPHICache A container to cache already-solved COPYs.
560
  /// \returns An instruction/operand pair identifying the defining value.
561
  DebugInstrOperandPair
562
  salvageCopySSA(MachineInstr &MI,
563
                 DenseMap<Register, DebugInstrOperandPair> &DbgPHICache);
564
 
565
  DebugInstrOperandPair salvageCopySSAImpl(MachineInstr &MI);
566
 
567
  /// Finalise any partially emitted debug instructions. These are DBG_INSTR_REF
568
  /// instructions where we only knew the vreg of the value they use, not the
569
  /// instruction that defines that vreg. Once isel finishes, we should have
570
  /// enough information for every DBG_INSTR_REF to point at an instruction
571
  /// (or DBG_PHI).
572
  void finalizeDebugInstrRefs();
573
 
574
  /// Determine whether, in the current machine configuration, we should use
575
  /// instruction referencing or not.
576
  bool shouldUseDebugInstrRef() const;
577
 
578
  /// Returns true if the function's variable locations are tracked with
579
  /// instruction referencing.
580
  bool useDebugInstrRef() const;
581
 
582
  /// Set whether this function will use instruction referencing or not.
583
  void setUseDebugInstrRef(bool UseInstrRef);
584
 
585
  /// A reserved operand number representing the instructions memory operand,
586
  /// for instructions that have a stack spill fused into them.
587
  const static unsigned int DebugOperandMemNumber;
588
 
589
  MachineFunction(Function &F, const LLVMTargetMachine &Target,
590
                  const TargetSubtargetInfo &STI, unsigned FunctionNum,
591
                  MachineModuleInfo &MMI);
592
  MachineFunction(const MachineFunction &) = delete;
593
  MachineFunction &operator=(const MachineFunction &) = delete;
594
  ~MachineFunction();
595
 
596
  /// Reset the instance as if it was just created.
597
  void reset() {
598
    clear();
599
    init();
600
  }
601
 
602
  /// Reset the currently registered delegate - otherwise assert.
603
  void resetDelegate(Delegate *delegate) {
604
    assert(TheDelegate == delegate &&
605
           "Only the current delegate can perform reset!");
606
    TheDelegate = nullptr;
607
  }
608
 
609
  /// Set the delegate. resetDelegate must be called before attempting
610
  /// to set.
611
  void setDelegate(Delegate *delegate) {
612
    assert(delegate && !TheDelegate &&
613
           "Attempted to set delegate to null, or to change it without "
614
           "first resetting it!");
615
 
616
    TheDelegate = delegate;
617
  }
618
 
619
  void setObserver(GISelChangeObserver *O) { Observer = O; }
620
 
621
  GISelChangeObserver *getObserver() const { return Observer; }
622
 
623
  MachineModuleInfo &getMMI() const { return MMI; }
624
  MCContext &getContext() const { return Ctx; }
625
 
626
  /// Returns the Section this function belongs to.
627
  MCSection *getSection() const { return Section; }
628
 
629
  /// Indicates the Section this function belongs to.
630
  void setSection(MCSection *S) { Section = S; }
631
 
632
  PseudoSourceValueManager &getPSVManager() const { return *PSVManager; }
633
 
634
  /// Return the DataLayout attached to the Module associated to this MF.
635
  const DataLayout &getDataLayout() const;
636
 
637
  /// Return the LLVM function that this machine code represents
638
  Function &getFunction() { return F; }
639
 
640
  /// Return the LLVM function that this machine code represents
641
  const Function &getFunction() const { return F; }
642
 
643
  /// getName - Return the name of the corresponding LLVM function.
644
  StringRef getName() const;
645
 
646
  /// getFunctionNumber - Return a unique ID for the current function.
647
  unsigned getFunctionNumber() const { return FunctionNumber; }
648
 
649
  /// Returns true if this function has basic block sections enabled.
650
  bool hasBBSections() const {
651
    return (BBSectionsType == BasicBlockSection::All ||
652
            BBSectionsType == BasicBlockSection::List ||
653
            BBSectionsType == BasicBlockSection::Preset);
654
  }
655
 
656
  /// Returns true if basic block labels are to be generated for this function.
657
  bool hasBBLabels() const {
658
    return BBSectionsType == BasicBlockSection::Labels;
659
  }
660
 
661
  void setBBSectionsType(BasicBlockSection V) { BBSectionsType = V; }
662
 
663
  /// Assign IsBeginSection IsEndSection fields for basic blocks in this
664
  /// function.
665
  void assignBeginEndSections();
666
 
667
  /// getTarget - Return the target machine this machine code is compiled with
668
  const LLVMTargetMachine &getTarget() const { return Target; }
669
 
670
  /// getSubtarget - Return the subtarget for which this machine code is being
671
  /// compiled.
672
  const TargetSubtargetInfo &getSubtarget() const { return *STI; }
673
 
674
  /// getSubtarget - This method returns a pointer to the specified type of
675
  /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
676
  /// returned is of the correct type.
677
  template<typename STC> const STC &getSubtarget() const {
678
    return *static_cast<const STC *>(STI);
679
  }
680
 
681
  /// getRegInfo - Return information about the registers currently in use.
682
  MachineRegisterInfo &getRegInfo() { return *RegInfo; }
683
  const MachineRegisterInfo &getRegInfo() const { return *RegInfo; }
684
 
685
  /// getFrameInfo - Return the frame info object for the current function.
686
  /// This object contains information about objects allocated on the stack
687
  /// frame of the current function in an abstract way.
688
  MachineFrameInfo &getFrameInfo() { return *FrameInfo; }
689
  const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; }
690
 
691
  /// getJumpTableInfo - Return the jump table info object for the current
692
  /// function.  This object contains information about jump tables in the
693
  /// current function.  If the current function has no jump tables, this will
694
  /// return null.
695
  const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; }
696
  MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; }
697
 
698
  /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
699
  /// does already exist, allocate one.
700
  MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind);
701
 
702
  /// getConstantPool - Return the constant pool object for the current
703
  /// function.
704
  MachineConstantPool *getConstantPool() { return ConstantPool; }
705
  const MachineConstantPool *getConstantPool() const { return ConstantPool; }
706
 
707
  /// getWasmEHFuncInfo - Return information about how the current function uses
708
  /// Wasm exception handling. Returns null for functions that don't use wasm
709
  /// exception handling.
710
  const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; }
711
  WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; }
712
 
713
  /// getWinEHFuncInfo - Return information about how the current function uses
714
  /// Windows exception handling. Returns null for functions that don't use
715
  /// funclets for exception handling.
716
  const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; }
717
  WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; }
718
 
719
  /// getAlignment - Return the alignment of the function.
720
  Align getAlignment() const { return Alignment; }
721
 
722
  /// setAlignment - Set the alignment of the function.
723
  void setAlignment(Align A) { Alignment = A; }
724
 
725
  /// ensureAlignment - Make sure the function is at least A bytes aligned.
726
  void ensureAlignment(Align A) {
727
    if (Alignment < A)
728
      Alignment = A;
729
  }
730
 
731
  /// exposesReturnsTwice - Returns true if the function calls setjmp or
732
  /// any other similar functions with attribute "returns twice" without
733
  /// having the attribute itself.
734
  bool exposesReturnsTwice() const {
735
    return ExposesReturnsTwice;
736
  }
737
 
738
  /// setCallsSetJmp - Set a flag that indicates if there's a call to
739
  /// a "returns twice" function.
740
  void setExposesReturnsTwice(bool B) {
741
    ExposesReturnsTwice = B;
742
  }
743
 
744
  /// Returns true if the function contains any inline assembly.
745
  bool hasInlineAsm() const {
746
    return HasInlineAsm;
747
  }
748
 
749
  /// Set a flag that indicates that the function contains inline assembly.
750
  void setHasInlineAsm(bool B) {
751
    HasInlineAsm = B;
752
  }
753
 
754
  bool hasWinCFI() const {
755
    return HasWinCFI;
756
  }
757
  void setHasWinCFI(bool v) { HasWinCFI = v; }
758
 
759
  /// True if this function needs frame moves for debug or exceptions.
760
  bool needsFrameMoves() const;
761
 
762
  /// Get the function properties
763
  const MachineFunctionProperties &getProperties() const { return Properties; }
764
  MachineFunctionProperties &getProperties() { return Properties; }
765
 
766
  /// getInfo - Keep track of various per-function pieces of information for
767
  /// backends that would like to do so.
768
  ///
769
  template<typename Ty>
770
  Ty *getInfo() {
771
    return static_cast<Ty*>(MFInfo);
772
  }
773
 
774
  template<typename Ty>
775
  const Ty *getInfo() const {
776
    return static_cast<const Ty *>(MFInfo);
777
  }
778
 
779
  template <typename Ty> Ty *cloneInfo(const Ty &Old) {
780
    assert(!MFInfo);
781
    MFInfo = Ty::template create<Ty>(Allocator, Old);
782
    return static_cast<Ty *>(MFInfo);
783
  }
784
 
785
  /// Initialize the target specific MachineFunctionInfo
786
  void initTargetMachineFunctionInfo(const TargetSubtargetInfo &STI);
787
 
788
  MachineFunctionInfo *cloneInfoFrom(
789
      const MachineFunction &OrigMF,
790
      const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) {
791
    assert(!MFInfo && "new function already has MachineFunctionInfo");
792
    if (!OrigMF.MFInfo)
793
      return nullptr;
794
    return OrigMF.MFInfo->clone(Allocator, *this, Src2DstMBB);
795
  }
796
 
797
  /// Returns the denormal handling type for the default rounding mode of the
798
  /// function.
799
  DenormalMode getDenormalMode(const fltSemantics &FPType) const;
800
 
801
  /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they
802
  /// are inserted into the machine function.  The block number for a machine
803
  /// basic block can be found by using the MBB::getNumber method, this method
804
  /// provides the inverse mapping.
805
  MachineBasicBlock *getBlockNumbered(unsigned N) const {
806
    assert(N < MBBNumbering.size() && "Illegal block number");
807
    assert(MBBNumbering[N] && "Block was removed from the machine function!");
808
    return MBBNumbering[N];
809
  }
810
 
811
  /// Should we be emitting segmented stack stuff for the function
812
  bool shouldSplitStack() const;
813
 
814
  /// getNumBlockIDs - Return the number of MBB ID's allocated.
815
  unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); }
816
 
817
  /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
818
  /// recomputes them.  This guarantees that the MBB numbers are sequential,
819
  /// dense, and match the ordering of the blocks within the function.  If a
820
  /// specific MachineBasicBlock is specified, only that block and those after
821
  /// it are renumbered.
822
  void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr);
823
 
824
  /// print - Print out the MachineFunction in a format suitable for debugging
825
  /// to the specified stream.
826
  void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
827
 
828
  /// viewCFG - This function is meant for use from the debugger.  You can just
829
  /// say 'call F->viewCFG()' and a ghostview window should pop up from the
830
  /// program, displaying the CFG of the current function with the code for each
831
  /// basic block inside.  This depends on there being a 'dot' and 'gv' program
832
  /// in your path.
833
  void viewCFG() const;
834
 
835
  /// viewCFGOnly - This function is meant for use from the debugger.  It works
836
  /// just like viewCFG, but it does not include the contents of basic blocks
837
  /// into the nodes, just the label.  If you are only interested in the CFG
838
  /// this can make the graph smaller.
839
  ///
840
  void viewCFGOnly() const;
841
 
842
  /// dump - Print the current MachineFunction to cerr, useful for debugger use.
843
  void dump() const;
844
 
845
  /// Run the current MachineFunction through the machine code verifier, useful
846
  /// for debugger use.
847
  /// \returns true if no problems were found.
848
  bool verify(Pass *p = nullptr, const char *Banner = nullptr,
849
              bool AbortOnError = true) const;
850
 
851
  // Provide accessors for the MachineBasicBlock list...
852
  using iterator = BasicBlockListType::iterator;
853
  using const_iterator = BasicBlockListType::const_iterator;
854
  using const_reverse_iterator = BasicBlockListType::const_reverse_iterator;
855
  using reverse_iterator = BasicBlockListType::reverse_iterator;
856
 
857
  /// Support for MachineBasicBlock::getNextNode().
858
  static BasicBlockListType MachineFunction::*
859
  getSublistAccess(MachineBasicBlock *) {
860
    return &MachineFunction::BasicBlocks;
861
  }
862
 
863
  /// addLiveIn - Add the specified physical register as a live-in value and
864
  /// create a corresponding virtual register for it.
865
  Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC);
866
 
867
  //===--------------------------------------------------------------------===//
868
  // BasicBlock accessor functions.
869
  //
870
  iterator                 begin()       { return BasicBlocks.begin(); }
871
  const_iterator           begin() const { return BasicBlocks.begin(); }
872
  iterator                 end  ()       { return BasicBlocks.end();   }
873
  const_iterator           end  () const { return BasicBlocks.end();   }
874
 
875
  reverse_iterator        rbegin()       { return BasicBlocks.rbegin(); }
876
  const_reverse_iterator  rbegin() const { return BasicBlocks.rbegin(); }
877
  reverse_iterator        rend  ()       { return BasicBlocks.rend();   }
878
  const_reverse_iterator  rend  () const { return BasicBlocks.rend();   }
879
 
880
  unsigned                  size() const { return (unsigned)BasicBlocks.size();}
881
  bool                     empty() const { return BasicBlocks.empty(); }
882
  const MachineBasicBlock &front() const { return BasicBlocks.front(); }
883
        MachineBasicBlock &front()       { return BasicBlocks.front(); }
884
  const MachineBasicBlock & back() const { return BasicBlocks.back(); }
885
        MachineBasicBlock & back()       { return BasicBlocks.back(); }
886
 
887
  void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); }
888
  void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); }
889
  void insert(iterator MBBI, MachineBasicBlock *MBB) {
890
    BasicBlocks.insert(MBBI, MBB);
891
  }
892
  void splice(iterator InsertPt, iterator MBBI) {
893
    BasicBlocks.splice(InsertPt, BasicBlocks, MBBI);
894
  }
895
  void splice(iterator InsertPt, MachineBasicBlock *MBB) {
896
    BasicBlocks.splice(InsertPt, BasicBlocks, MBB);
897
  }
898
  void splice(iterator InsertPt, iterator MBBI, iterator MBBE) {
899
    BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE);
900
  }
901
 
902
  void remove(iterator MBBI) { BasicBlocks.remove(MBBI); }
903
  void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); }
904
  void erase(iterator MBBI) { BasicBlocks.erase(MBBI); }
905
  void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); }
906
 
907
  template <typename Comp>
908
  void sort(Comp comp) {
909
    BasicBlocks.sort(comp);
910
  }
911
 
912
  /// Return the number of \p MachineInstrs in this \p MachineFunction.
913
  unsigned getInstructionCount() const {
914
    unsigned InstrCount = 0;
915
    for (const MachineBasicBlock &MBB : BasicBlocks)
916
      InstrCount += MBB.size();
917
    return InstrCount;
918
  }
919
 
920
  //===--------------------------------------------------------------------===//
921
  // Internal functions used to automatically number MachineBasicBlocks
922
 
923
  /// Adds the MBB to the internal numbering. Returns the unique number
924
  /// assigned to the MBB.
925
  unsigned addToMBBNumbering(MachineBasicBlock *MBB) {
926
    MBBNumbering.push_back(MBB);
927
    return (unsigned)MBBNumbering.size()-1;
928
  }
929
 
930
  /// removeFromMBBNumbering - Remove the specific machine basic block from our
931
  /// tracker, this is only really to be used by the MachineBasicBlock
932
  /// implementation.
933
  void removeFromMBBNumbering(unsigned N) {
934
    assert(N < MBBNumbering.size() && "Illegal basic block #");
935
    MBBNumbering[N] = nullptr;
936
  }
937
 
938
  /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
939
  /// of `new MachineInstr'.
940
  MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL,
941
                                   bool NoImplicit = false);
942
 
943
  /// Create a new MachineInstr which is a copy of \p Orig, identical in all
944
  /// ways except the instruction has no parent, prev, or next. Bundling flags
945
  /// are reset.
946
  ///
947
  /// Note: Clones a single instruction, not whole instruction bundles.
948
  /// Does not perform target specific adjustments; consider using
949
  /// TargetInstrInfo::duplicate() instead.
950
  MachineInstr *CloneMachineInstr(const MachineInstr *Orig);
951
 
952
  /// Clones instruction or the whole instruction bundle \p Orig and insert
953
  /// into \p MBB before \p InsertBefore.
954
  ///
955
  /// Note: Does not perform target specific adjustments; consider using
956
  /// TargetInstrInfo::duplicate() intead.
957
  MachineInstr &
958
  cloneMachineInstrBundle(MachineBasicBlock &MBB,
959
                          MachineBasicBlock::iterator InsertBefore,
960
                          const MachineInstr &Orig);
961
 
962
  /// DeleteMachineInstr - Delete the given MachineInstr.
963
  void deleteMachineInstr(MachineInstr *MI);
964
 
965
  /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
966
  /// instead of `new MachineBasicBlock'.
967
  MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = nullptr);
968
 
969
  /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
970
  void deleteMachineBasicBlock(MachineBasicBlock *MBB);
971
 
972
  /// getMachineMemOperand - Allocate a new MachineMemOperand.
973
  /// MachineMemOperands are owned by the MachineFunction and need not be
974
  /// explicitly deallocated.
975
  MachineMemOperand *getMachineMemOperand(
976
      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
977
      Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
978
      const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
979
      AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
980
      AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
981
 
982
  MachineMemOperand *getMachineMemOperand(
983
      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
984
      Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
985
      const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
986
      AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
987
      AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
988
 
989
  /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
990
  /// an existing one, adjusting by an offset and using the given size.
991
  /// MachineMemOperands are owned by the MachineFunction and need not be
992
  /// explicitly deallocated.
993
  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
994
                                          int64_t Offset, LLT Ty);
995
  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
996
                                          int64_t Offset, uint64_t Size) {
997
    return getMachineMemOperand(
998
        MMO, Offset, Size == ~UINT64_C(0) ? LLT() : LLT::scalar(8 * Size));
999
  }
1000
 
1001
  /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
1002
  /// an existing one, replacing only the MachinePointerInfo and size.
1003
  /// MachineMemOperands are owned by the MachineFunction and need not be
1004
  /// explicitly deallocated.
1005
  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1006
                                          const MachinePointerInfo &PtrInfo,
1007
                                          uint64_t Size);
1008
  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1009
                                          const MachinePointerInfo &PtrInfo,
1010
                                          LLT Ty);
1011
 
1012
  /// Allocate a new MachineMemOperand by copying an existing one,
1013
  /// replacing only AliasAnalysis information. MachineMemOperands are owned
1014
  /// by the MachineFunction and need not be explicitly deallocated.
1015
  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1016
                                          const AAMDNodes &AAInfo);
1017
 
1018
  /// Allocate a new MachineMemOperand by copying an existing one,
1019
  /// replacing the flags. MachineMemOperands are owned
1020
  /// by the MachineFunction and need not be explicitly deallocated.
1021
  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1022
                                          MachineMemOperand::Flags Flags);
1023
 
1024
  using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
1025
 
1026
  /// Allocate an array of MachineOperands. This is only intended for use by
1027
  /// internal MachineInstr functions.
1028
  MachineOperand *allocateOperandArray(OperandCapacity Cap) {
1029
    return OperandRecycler.allocate(Cap, Allocator);
1030
  }
1031
 
1032
  /// Dellocate an array of MachineOperands and recycle the memory. This is
1033
  /// only intended for use by internal MachineInstr functions.
1034
  /// Cap must be the same capacity that was used to allocate the array.
1035
  void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) {
1036
    OperandRecycler.deallocate(Cap, Array);
1037
  }
1038
 
1039
  /// Allocate and initialize a register mask with @p NumRegister bits.
1040
  uint32_t *allocateRegMask();
1041
 
1042
  ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask);
1043
 
1044
  /// Allocate and construct an extra info structure for a `MachineInstr`.
1045
  ///
1046
  /// This is allocated on the function's allocator and so lives the life of
1047
  /// the function.
1048
  MachineInstr::ExtraInfo *createMIExtraInfo(
1049
      ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr,
1050
      MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr,
1051
      MDNode *PCSections = nullptr, uint32_t CFIType = 0);
1052
 
1053
  /// Allocate a string and populate it with the given external symbol name.
1054
  const char *createExternalSymbolName(StringRef Name);
1055
 
1056
  //===--------------------------------------------------------------------===//
1057
  // Label Manipulation.
1058
 
1059
  /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
1060
  /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
1061
  /// normal 'L' label is returned.
1062
  MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx,
1063
                         bool isLinkerPrivate = false) const;
1064
 
1065
  /// getPICBaseSymbol - Return a function-local symbol to represent the PIC
1066
  /// base.
1067
  MCSymbol *getPICBaseSymbol() const;
1068
 
1069
  /// Returns a reference to a list of cfi instructions in the function's
1070
  /// prologue.  Used to construct frame maps for debug and exception handling
1071
  /// comsumers.
1072
  const std::vector<MCCFIInstruction> &getFrameInstructions() const {
1073
    return FrameInstructions;
1074
  }
1075
 
1076
  [[nodiscard]] unsigned addFrameInst(const MCCFIInstruction &Inst);
1077
 
1078
  /// Returns a reference to a list of symbols immediately following calls to
1079
  /// _setjmp in the function. Used to construct the longjmp target table used
1080
  /// by Windows Control Flow Guard.
1081
  const std::vector<MCSymbol *> &getLongjmpTargets() const {
1082
    return LongjmpTargets;
1083
  }
1084
 
1085
  /// Add the specified symbol to the list of valid longjmp targets for Windows
1086
  /// Control Flow Guard.
1087
  void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); }
1088
 
1089
  /// Returns a reference to a list of symbols that we have catchrets.
1090
  /// Used to construct the catchret target table used by Windows EHCont Guard.
1091
  const std::vector<MCSymbol *> &getCatchretTargets() const {
1092
    return CatchretTargets;
1093
  }
1094
 
1095
  /// Add the specified symbol to the list of valid catchret targets for Windows
1096
  /// EHCont Guard.
1097
  void addCatchretTarget(MCSymbol *Target) {
1098
    CatchretTargets.push_back(Target);
1099
  }
1100
 
1101
  /// \name Exception Handling
1102
  /// \{
1103
 
1104
  bool callsEHReturn() const { return CallsEHReturn; }
1105
  void setCallsEHReturn(bool b) { CallsEHReturn = b; }
1106
 
1107
  bool callsUnwindInit() const { return CallsUnwindInit; }
1108
  void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }
1109
 
1110
  bool hasEHCatchret() const { return HasEHCatchret; }
1111
  void setHasEHCatchret(bool V) { HasEHCatchret = V; }
1112
 
1113
  bool hasEHScopes() const { return HasEHScopes; }
1114
  void setHasEHScopes(bool V) { HasEHScopes = V; }
1115
 
1116
  bool hasEHFunclets() const { return HasEHFunclets; }
1117
  void setHasEHFunclets(bool V) { HasEHFunclets = V; }
1118
 
1119
  /// Find or create an LandingPadInfo for the specified MachineBasicBlock.
1120
  LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad);
1121
 
1122
  /// Return a reference to the landing pad info for the current function.
1123
  const std::vector<LandingPadInfo> &getLandingPads() const {
1124
    return LandingPads;
1125
  }
1126
 
1127
  /// Provide the begin and end labels of an invoke style call and associate it
1128
  /// with a try landing pad block.
1129
  void addInvoke(MachineBasicBlock *LandingPad,
1130
                 MCSymbol *BeginLabel, MCSymbol *EndLabel);
1131
 
1132
  /// Add a new panding pad, and extract the exception handling information from
1133
  /// the landingpad instruction. Returns the label ID for the landing pad
1134
  /// entry.
1135
  MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);
1136
 
1137
  /// Return the type id for the specified typeinfo.  This is function wide.
1138
  unsigned getTypeIDFor(const GlobalValue *TI);
1139
 
1140
  /// Return the id of the filter encoded by TyIds.  This is function wide.
1141
  int getFilterIDFor(ArrayRef<unsigned> TyIds);
1142
 
1143
  /// Map the landing pad's EH symbol to the call site indexes.
1144
  void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites);
1145
 
1146
  /// Return if there is any wasm exception handling.
1147
  bool hasAnyWasmLandingPadIndex() const {
1148
    return !WasmLPadToIndexMap.empty();
1149
  }
1150
 
1151
  /// Map the landing pad to its index. Used for Wasm exception handling.
1152
  void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) {
1153
    WasmLPadToIndexMap[LPad] = Index;
1154
  }
1155
 
1156
  /// Returns true if the landing pad has an associate index in wasm EH.
1157
  bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
1158
    return WasmLPadToIndexMap.count(LPad);
1159
  }
1160
 
1161
  /// Get the index in wasm EH for a given landing pad.
1162
  unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
1163
    assert(hasWasmLandingPadIndex(LPad));
1164
    return WasmLPadToIndexMap.lookup(LPad);
1165
  }
1166
 
1167
  bool hasAnyCallSiteLandingPad() const {
1168
    return !LPadToCallSiteMap.empty();
1169
  }
1170
 
1171
  /// Get the call site indexes for a landing pad EH symbol.
1172
  SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) {
1173
    assert(hasCallSiteLandingPad(Sym) &&
1174
           "missing call site number for landing pad!");
1175
    return LPadToCallSiteMap[Sym];
1176
  }
1177
 
1178
  /// Return true if the landing pad Eh symbol has an associated call site.
1179
  bool hasCallSiteLandingPad(MCSymbol *Sym) {
1180
    return !LPadToCallSiteMap[Sym].empty();
1181
  }
1182
 
1183
  bool hasAnyCallSiteLabel() const {
1184
    return !CallSiteMap.empty();
1185
  }
1186
 
1187
  /// Map the begin label for a call site.
1188
  void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
1189
    CallSiteMap[BeginLabel] = Site;
1190
  }
1191
 
1192
  /// Get the call site number for a begin label.
1193
  unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const {
1194
    assert(hasCallSiteBeginLabel(BeginLabel) &&
1195
           "Missing call site number for EH_LABEL!");
1196
    return CallSiteMap.lookup(BeginLabel);
1197
  }
1198
 
1199
  /// Return true if the begin label has a call site number associated with it.
1200
  bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const {
1201
    return CallSiteMap.count(BeginLabel);
1202
  }
1203
 
1204
  /// Record annotations associated with a particular label.
1205
  void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) {
1206
    CodeViewAnnotations.push_back({Label, MD});
1207
  }
1208
 
1209
  ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const {
1210
    return CodeViewAnnotations;
1211
  }
1212
 
1213
  /// Return a reference to the C++ typeinfo for the current function.
1214
  const std::vector<const GlobalValue *> &getTypeInfos() const {
1215
    return TypeInfos;
1216
  }
1217
 
1218
  /// Return a reference to the typeids encoding filters used in the current
1219
  /// function.
1220
  const std::vector<unsigned> &getFilterIds() const {
1221
    return FilterIds;
1222
  }
1223
 
1224
  /// \}
1225
 
1226
  /// Collect information used to emit debugging information of a variable.
1227
  void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
1228
                          int Slot, const DILocation *Loc) {
1229
    VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc);
1230
  }
1231
 
1232
  VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; }
1233
  const VariableDbgInfoMapTy &getVariableDbgInfo() const {
1234
    return VariableDbgInfos;
1235
  }
1236
 
1237
  /// Start tracking the arguments passed to the call \p CallI.
1238
  void addCallArgsForwardingRegs(const MachineInstr *CallI,
1239
                                 CallSiteInfoImpl &&CallInfo) {
1240
    assert(CallI->isCandidateForCallSiteEntry());
1241
    bool Inserted =
1242
        CallSitesInfo.try_emplace(CallI, std::move(CallInfo)).second;
1243
    (void)Inserted;
1244
    assert(Inserted && "Call site info not unique");
1245
  }
1246
 
1247
  const CallSiteInfoMap &getCallSitesInfo() const {
1248
    return CallSitesInfo;
1249
  }
1250
 
1251
  /// Following functions update call site info. They should be called before
1252
  /// removing, replacing or copying call instruction.
1253
 
1254
  /// Erase the call site info for \p MI. It is used to remove a call
1255
  /// instruction from the instruction stream.
1256
  void eraseCallSiteInfo(const MachineInstr *MI);
1257
  /// Copy the call site info from \p Old to \ New. Its usage is when we are
1258
  /// making a copy of the instruction that will be inserted at different point
1259
  /// of the instruction stream.
1260
  void copyCallSiteInfo(const MachineInstr *Old,
1261
                        const MachineInstr *New);
1262
 
1263
  /// Move the call site info from \p Old to \New call site info. This function
1264
  /// is used when we are replacing one call instruction with another one to
1265
  /// the same callee.
1266
  void moveCallSiteInfo(const MachineInstr *Old,
1267
                        const MachineInstr *New);
1268
 
1269
  unsigned getNewDebugInstrNum() {
1270
    return ++DebugInstrNumberingCount;
1271
  }
1272
};
1273
 
1274
//===--------------------------------------------------------------------===//
1275
// GraphTraits specializations for function basic block graphs (CFGs)
1276
//===--------------------------------------------------------------------===//
1277
 
1278
// Provide specializations of GraphTraits to be able to treat a
1279
// machine function as a graph of machine basic blocks... these are
1280
// the same as the machine basic block iterators, except that the root
1281
// node is implicitly the first node of the function.
1282
//
1283
template <> struct GraphTraits<MachineFunction*> :
1284
  public GraphTraits<MachineBasicBlock*> {
1285
  static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); }
1286
 
1287
  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1288
  using nodes_iterator = pointer_iterator<MachineFunction::iterator>;
1289
 
1290
  static nodes_iterator nodes_begin(MachineFunction *F) {
1291
    return nodes_iterator(F->begin());
1292
  }
1293
 
1294
  static nodes_iterator nodes_end(MachineFunction *F) {
1295
    return nodes_iterator(F->end());
1296
  }
1297
 
1298
  static unsigned       size       (MachineFunction *F) { return F->size(); }
1299
};
1300
template <> struct GraphTraits<const MachineFunction*> :
1301
  public GraphTraits<const MachineBasicBlock*> {
1302
  static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); }
1303
 
1304
  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1305
  using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>;
1306
 
1307
  static nodes_iterator nodes_begin(const MachineFunction *F) {
1308
    return nodes_iterator(F->begin());
1309
  }
1310
 
1311
  static nodes_iterator nodes_end  (const MachineFunction *F) {
1312
    return nodes_iterator(F->end());
1313
  }
1314
 
1315
  static unsigned       size       (const MachineFunction *F)  {
1316
    return F->size();
1317
  }
1318
};
1319
 
1320
// Provide specializations of GraphTraits to be able to treat a function as a
1321
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
1322
// a function is considered to be when traversing the predecessor edges of a BB
1323
// instead of the successor edges.
1324
//
1325
template <> struct GraphTraits<Inverse<MachineFunction*>> :
1326
  public GraphTraits<Inverse<MachineBasicBlock*>> {
1327
  static NodeRef getEntryNode(Inverse<MachineFunction *> G) {
1328
    return &G.Graph->front();
1329
  }
1330
};
1331
template <> struct GraphTraits<Inverse<const MachineFunction*>> :
1332
  public GraphTraits<Inverse<const MachineBasicBlock*>> {
1333
  static NodeRef getEntryNode(Inverse<const MachineFunction *> G) {
1334
    return &G.Graph->front();
1335
  }
1336
};
1337
 
1338
class MachineFunctionAnalysisManager;
1339
void verifyMachineFunction(MachineFunctionAnalysisManager *,
1340
                           const std::string &Banner,
1341
                           const MachineFunction &MF);
1342
 
1343
} // end namespace llvm
1344
 
1345
#endif // LLVM_CODEGEN_MACHINEFUNCTION_H