Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the LiveVariables analysis pass.  For each machine
10
// instruction in the function, this pass calculates the set of registers that
11
// are immediately dead after the instruction (i.e., the instruction calculates
12
// the value, but it is never used) and the set of registers that are used by
13
// the instruction, but are never used after the instruction (i.e., they are
14
// killed).
15
//
16
// This class computes live variables using a sparse implementation based on
17
// the machine code SSA form.  This class computes live variable information for
18
// each virtual and _register allocatable_ physical register in a function.  It
19
// uses the dominance properties of SSA form to efficiently compute live
20
// variables for virtual registers, and assumes that physical registers are only
21
// live within a single basic block (allowing it to do a single local analysis
22
// to resolve physical register lifetimes in each basic block).  If a physical
23
// register is not register allocatable, it is not tracked.  This is useful for
24
// things like the stack pointer and condition codes.
25
//
26
//===----------------------------------------------------------------------===//
27
 
28
#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
29
#define LLVM_CODEGEN_LIVEVARIABLES_H
30
 
31
#include "llvm/ADT/DenseMap.h"
32
#include "llvm/ADT/IndexedMap.h"
33
#include "llvm/ADT/SmallSet.h"
34
#include "llvm/ADT/SmallVector.h"
35
#include "llvm/ADT/SparseBitVector.h"
36
#include "llvm/CodeGen/MachineFunctionPass.h"
37
#include "llvm/CodeGen/MachineInstr.h"
38
#include "llvm/CodeGen/TargetRegisterInfo.h"
39
#include "llvm/InitializePasses.h"
40
#include "llvm/PassRegistry.h"
41
 
42
namespace llvm {
43
 
44
class MachineBasicBlock;
45
class MachineRegisterInfo;
46
 
47
class LiveVariables : public MachineFunctionPass {
48
public:
49
  static char ID; // Pass identification, replacement for typeid
50
  LiveVariables() : MachineFunctionPass(ID) {
51
    initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
52
  }
53
 
54
  /// VarInfo - This represents the regions where a virtual register is live in
55
  /// the program.  We represent this with three different pieces of
56
  /// information: the set of blocks in which the instruction is live
57
  /// throughout, the set of blocks in which the instruction is actually used,
58
  /// and the set of non-phi instructions that are the last users of the value.
59
  ///
60
  /// In the common case where a value is defined and killed in the same block,
61
  /// There is one killing instruction, and AliveBlocks is empty.
62
  ///
63
  /// Otherwise, the value is live out of the block.  If the value is live
64
  /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
65
  /// where the liveness range ends are not included in AliveBlocks, instead
66
  /// being captured by the Kills set.  In these blocks, the value is live into
67
  /// the block (unless the value is defined and killed in the same block) and
68
  /// lives until the specified instruction.  Note that there cannot ever be a
69
  /// value whose Kills set contains two instructions from the same basic block.
70
  ///
71
  /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
72
  /// value in one of its predecessor blocks, it is not listed in the kills set,
73
  /// but does include the predecessor block in the AliveBlocks set (unless that
74
  /// block also defines the value).  This leads to the (perfectly sensical)
75
  /// situation where a value is defined in a block, and the last use is a phi
76
  /// node in the successor.  In this case, AliveBlocks is empty (the value is
77
  /// not live across any  blocks) and Kills is empty (phi nodes are not
78
  /// included). This is sensical because the value must be live to the end of
79
  /// the block, but is not live in any successor blocks.
80
  struct VarInfo {
81
    /// AliveBlocks - Set of blocks in which this value is alive completely
82
    /// through.  This is a bit set which uses the basic block number as an
83
    /// index.
84
    ///
85
    SparseBitVector<> AliveBlocks;
86
 
87
    /// Kills - List of MachineInstruction's which are the last use of this
88
    /// virtual register (kill it) in their basic block.
89
    ///
90
    std::vector<MachineInstr*> Kills;
91
 
92
    /// removeKill - Delete a kill corresponding to the specified
93
    /// machine instruction. Returns true if there was a kill
94
    /// corresponding to this instruction, false otherwise.
95
    bool removeKill(MachineInstr &MI) {
96
      std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
97
      if (I == Kills.end())
98
        return false;
99
      Kills.erase(I);
100
      return true;
101
    }
102
 
103
    /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
104
    MachineInstr *findKill(const MachineBasicBlock *MBB) const;
105
 
106
    /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
107
    /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
108
    /// MBB, it is not considered live in.
109
    bool isLiveIn(const MachineBasicBlock &MBB, Register Reg,
110
                  MachineRegisterInfo &MRI);
111
 
112
    void dump() const;
113
  };
114
 
115
private:
116
  /// VirtRegInfo - This list is a mapping from virtual register number to
117
  /// variable information.
118
  ///
119
  IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
120
 
121
  /// PHIJoins - list of virtual registers that are PHI joins. These registers
122
  /// may have multiple definitions, and they require special handling when
123
  /// building live intervals.
124
  SparseBitVector<> PHIJoins;
125
 
126
private:   // Intermediate data structures
127
  MachineFunction *MF;
128
 
129
  MachineRegisterInfo* MRI;
130
 
131
  const TargetRegisterInfo *TRI;
132
 
133
  // PhysRegInfo - Keep track of which instruction was the last def of a
134
  // physical register. This is a purely local property, because all physical
135
  // register references are presumed dead across basic blocks.
136
  std::vector<MachineInstr *> PhysRegDef;
137
 
138
  // PhysRegInfo - Keep track of which instruction was the last use of a
139
  // physical register. This is a purely local property, because all physical
140
  // register references are presumed dead across basic blocks.
141
  std::vector<MachineInstr *> PhysRegUse;
142
 
143
  std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
144
 
145
  // DistanceMap - Keep track the distance of a MI from the start of the
146
  // current basic block.
147
  DenseMap<MachineInstr*, unsigned> DistanceMap;
148
 
149
  /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
150
  /// uses. Pay special attention to the sub-register uses which may come below
151
  /// the last use of the whole register.
152
  bool HandlePhysRegKill(Register Reg, MachineInstr *MI);
153
 
154
  /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
155
  void HandleRegMask(const MachineOperand&);
156
 
157
  void HandlePhysRegUse(Register Reg, MachineInstr &MI);
158
  void HandlePhysRegDef(Register Reg, MachineInstr *MI,
159
                        SmallVectorImpl<unsigned> &Defs);
160
  void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
161
 
162
  /// FindLastRefOrPartRef - Return the last reference or partial reference of
163
  /// the specified register.
164
  MachineInstr *FindLastRefOrPartRef(Register Reg);
165
 
166
  /// FindLastPartialDef - Return the last partial def of the specified
167
  /// register. Also returns the sub-registers that're defined by the
168
  /// instruction.
169
  MachineInstr *FindLastPartialDef(Register Reg,
170
                                   SmallSet<unsigned, 4> &PartDefRegs);
171
 
172
  /// analyzePHINodes - Gather information about the PHI nodes in here. In
173
  /// particular, we want to map the variable information of a virtual
174
  /// register which is used in a PHI node. We map that to the BB the vreg
175
  /// is coming from.
176
  void analyzePHINodes(const MachineFunction& Fn);
177
 
178
  void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
179
 
180
  void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
181
public:
182
 
183
  bool runOnMachineFunction(MachineFunction &MF) override;
184
 
185
  /// RegisterDefIsDead - Return true if the specified instruction defines the
186
  /// specified register, but that definition is dead.
187
  bool RegisterDefIsDead(MachineInstr &MI, Register Reg) const;
188
 
189
  //===--------------------------------------------------------------------===//
190
  //  API to update live variable information
191
 
192
  /// Recompute liveness from scratch for a virtual register \p Reg that is
193
  /// known to have a single def that dominates all uses. This can be useful
194
  /// after removing some uses of \p Reg. It is not necessary for the whole
195
  /// machine function to be in SSA form.
196
  void recomputeForSingleDefVirtReg(Register Reg);
197
 
198
  /// replaceKillInstruction - Update register kill info by replacing a kill
199
  /// instruction with a new one.
200
  void replaceKillInstruction(Register Reg, MachineInstr &OldMI,
201
                              MachineInstr &NewMI);
202
 
203
  /// addVirtualRegisterKilled - Add information about the fact that the
204
  /// specified register is killed after being used by the specified
205
  /// instruction. If AddIfNotFound is true, add a implicit operand if it's
206
  /// not found.
207
  void addVirtualRegisterKilled(Register IncomingReg, MachineInstr &MI,
208
                                bool AddIfNotFound = false) {
209
    if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
210
      getVarInfo(IncomingReg).Kills.push_back(&MI);
211
  }
212
 
213
  /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
214
  /// register from the live variable information. Returns true if the
215
  /// variable was marked as killed by the specified instruction,
216
  /// false otherwise.
217
  bool removeVirtualRegisterKilled(Register Reg, MachineInstr &MI) {
218
    if (!getVarInfo(Reg).removeKill(MI))
219
      return false;
220
 
221
    bool Removed = false;
222
    for (MachineOperand &MO : MI.operands()) {
223
      if (MO.isReg() && MO.isKill() && MO.getReg() == Reg) {
224
        MO.setIsKill(false);
225
        Removed = true;
226
        break;
227
      }
228
    }
229
 
230
    assert(Removed && "Register is not used by this instruction!");
231
    (void)Removed;
232
    return true;
233
  }
234
 
235
  /// removeVirtualRegistersKilled - Remove all killed info for the specified
236
  /// instruction.
237
  void removeVirtualRegistersKilled(MachineInstr &MI);
238
 
239
  /// addVirtualRegisterDead - Add information about the fact that the specified
240
  /// register is dead after being used by the specified instruction. If
241
  /// AddIfNotFound is true, add a implicit operand if it's not found.
242
  void addVirtualRegisterDead(Register IncomingReg, MachineInstr &MI,
243
                              bool AddIfNotFound = false) {
244
    if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
245
      getVarInfo(IncomingReg).Kills.push_back(&MI);
246
  }
247
 
248
  /// removeVirtualRegisterDead - Remove the specified kill of the virtual
249
  /// register from the live variable information. Returns true if the
250
  /// variable was marked dead at the specified instruction, false
251
  /// otherwise.
252
  bool removeVirtualRegisterDead(Register Reg, MachineInstr &MI) {
253
    if (!getVarInfo(Reg).removeKill(MI))
254
      return false;
255
 
256
    bool Removed = false;
257
    for (MachineOperand &MO : MI.operands()) {
258
      if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
259
        MO.setIsDead(false);
260
        Removed = true;
261
        break;
262
      }
263
    }
264
    assert(Removed && "Register is not defined by this instruction!");
265
    (void)Removed;
266
    return true;
267
  }
268
 
269
  void getAnalysisUsage(AnalysisUsage &AU) const override;
270
 
271
  void releaseMemory() override {
272
    VirtRegInfo.clear();
273
  }
274
 
275
  /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
276
  /// register.
277
  VarInfo &getVarInfo(Register Reg);
278
 
279
  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
280
                               MachineBasicBlock *BB);
281
  void MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock,
282
                               MachineBasicBlock *BB,
283
                               SmallVectorImpl<MachineBasicBlock *> &WorkList);
284
 
285
  void HandleVirtRegDef(Register reg, MachineInstr &MI);
286
  void HandleVirtRegUse(Register reg, MachineBasicBlock *MBB, MachineInstr &MI);
287
 
288
  bool isLiveIn(Register Reg, const MachineBasicBlock &MBB) {
289
    return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
290
  }
291
 
292
  /// isLiveOut - Determine if Reg is live out from MBB, when not considering
293
  /// PHI nodes. This means that Reg is either killed by a successor block or
294
  /// passed through one.
295
  bool isLiveOut(Register Reg, const MachineBasicBlock &MBB);
296
 
297
  /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
298
  /// variables that are live out of DomBB and live into SuccBB will be marked
299
  /// as passing live through BB. This method assumes that the machine code is
300
  /// still in SSA form.
301
  void addNewBlock(MachineBasicBlock *BB,
302
                   MachineBasicBlock *DomBB,
303
                   MachineBasicBlock *SuccBB);
304
 
305
  void addNewBlock(MachineBasicBlock *BB,
306
                   MachineBasicBlock *DomBB,
307
                   MachineBasicBlock *SuccBB,
308
                   std::vector<SparseBitVector<>> &LiveInSets);
309
 
310
  /// isPHIJoin - Return true if Reg is a phi join register.
311
  bool isPHIJoin(Register Reg) { return PHIJoins.test(Reg.id()); }
312
 
313
  /// setPHIJoin - Mark Reg as a phi join register.
314
  void setPHIJoin(Register Reg) { PHIJoins.set(Reg.id()); }
315
};
316
 
317
} // End llvm namespace
318
 
319
#endif