Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- LiveIntervals.h - Live Interval Analysis -----------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file This file implements the LiveInterval analysis pass.  Given some
10
/// numbering of each the machine instructions (in this implemention depth-first
11
/// order) an interval [i, j) is said to be a live interval for register v if
12
/// there is no instruction with number j' > j such that v is live at j' and
13
/// there is no instruction with number i' < i such that v is live at i'. In
14
/// this implementation intervals can have holes, i.e. an interval might look
15
/// like [1,20), [50,65), [1000,1001).
16
//
17
//===----------------------------------------------------------------------===//
18
 
19
#ifndef LLVM_CODEGEN_LIVEINTERVALS_H
20
#define LLVM_CODEGEN_LIVEINTERVALS_H
21
 
22
#include "llvm/ADT/ArrayRef.h"
23
#include "llvm/ADT/IndexedMap.h"
24
#include "llvm/ADT/SmallVector.h"
25
#include "llvm/CodeGen/LiveInterval.h"
26
#include "llvm/CodeGen/MachineBasicBlock.h"
27
#include "llvm/CodeGen/MachineFunctionPass.h"
28
#include "llvm/CodeGen/SlotIndexes.h"
29
#include "llvm/CodeGen/TargetRegisterInfo.h"
30
#include "llvm/MC/LaneBitmask.h"
31
#include "llvm/Support/CommandLine.h"
32
#include "llvm/Support/Compiler.h"
33
#include "llvm/Support/ErrorHandling.h"
34
#include <cassert>
35
#include <cstdint>
36
#include <utility>
37
 
38
namespace llvm {
39
 
40
extern cl::opt<bool> UseSegmentSetForPhysRegs;
41
 
42
class BitVector;
43
class LiveIntervalCalc;
44
class MachineBlockFrequencyInfo;
45
class MachineDominatorTree;
46
class MachineFunction;
47
class MachineInstr;
48
class MachineRegisterInfo;
49
class raw_ostream;
50
class TargetInstrInfo;
51
class VirtRegMap;
52
 
53
  class LiveIntervals : public MachineFunctionPass {
54
    MachineFunction* MF;
55
    MachineRegisterInfo* MRI;
56
    const TargetRegisterInfo* TRI;
57
    const TargetInstrInfo *TII;
58
    SlotIndexes* Indexes;
59
    MachineDominatorTree *DomTree = nullptr;
60
    LiveIntervalCalc *LICalc = nullptr;
61
 
62
    /// Special pool allocator for VNInfo's (LiveInterval val#).
63
    VNInfo::Allocator VNInfoAllocator;
64
 
65
    /// Live interval pointers for all the virtual registers.
66
    IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
67
 
68
    /// Sorted list of instructions with register mask operands. Always use the
69
    /// 'r' slot, RegMasks are normal clobbers, not early clobbers.
70
    SmallVector<SlotIndex, 8> RegMaskSlots;
71
 
72
    /// This vector is parallel to RegMaskSlots, it holds a pointer to the
73
    /// corresponding register mask.  This pointer can be recomputed as:
74
    ///
75
    ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
76
    ///   unsigned OpNum = findRegMaskOperand(MI);
77
    ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
78
    ///
79
    /// This is kept in a separate vector partly because some standard
80
    /// libraries don't support lower_bound() with mixed objects, partly to
81
    /// improve locality when searching in RegMaskSlots.
82
    /// Also see the comment in LiveInterval::find().
83
    SmallVector<const uint32_t*, 8> RegMaskBits;
84
 
85
    /// For each basic block number, keep (begin, size) pairs indexing into the
86
    /// RegMaskSlots and RegMaskBits arrays.
87
    /// Note that basic block numbers may not be layout contiguous, that's why
88
    /// we can't just keep track of the first register mask in each basic
89
    /// block.
90
    SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
91
 
92
    /// Keeps a live range set for each register unit to track fixed physreg
93
    /// interference.
94
    SmallVector<LiveRange*, 0> RegUnitRanges;
95
 
96
  public:
97
    static char ID;
98
 
99
    LiveIntervals();
100
    ~LiveIntervals() override;
101
 
102
    /// Calculate the spill weight to assign to a single instruction.
103
    static float getSpillWeight(bool isDef, bool isUse,
104
                                const MachineBlockFrequencyInfo *MBFI,
105
                                const MachineInstr &MI);
106
 
107
    /// Calculate the spill weight to assign to a single instruction.
108
    static float getSpillWeight(bool isDef, bool isUse,
109
                                const MachineBlockFrequencyInfo *MBFI,
110
                                const MachineBasicBlock *MBB);
111
 
112
    LiveInterval &getInterval(Register Reg) {
113
      if (hasInterval(Reg))
114
        return *VirtRegIntervals[Reg.id()];
115
 
116
      return createAndComputeVirtRegInterval(Reg);
117
    }
118
 
119
    const LiveInterval &getInterval(Register Reg) const {
120
      return const_cast<LiveIntervals*>(this)->getInterval(Reg);
121
    }
122
 
123
    bool hasInterval(Register Reg) const {
124
      return VirtRegIntervals.inBounds(Reg.id()) &&
125
             VirtRegIntervals[Reg.id()];
126
    }
127
 
128
    /// Interval creation.
129
    LiveInterval &createEmptyInterval(Register Reg) {
130
      assert(!hasInterval(Reg) && "Interval already exists!");
131
      VirtRegIntervals.grow(Reg.id());
132
      VirtRegIntervals[Reg.id()] = createInterval(Reg);
133
      return *VirtRegIntervals[Reg.id()];
134
    }
135
 
136
    LiveInterval &createAndComputeVirtRegInterval(Register Reg) {
137
      LiveInterval &LI = createEmptyInterval(Reg);
138
      computeVirtRegInterval(LI);
139
      return LI;
140
    }
141
 
142
    /// Interval removal.
143
    void removeInterval(Register Reg) {
144
      delete VirtRegIntervals[Reg];
145
      VirtRegIntervals[Reg] = nullptr;
146
    }
147
 
148
    /// Given a register and an instruction, adds a live segment from that
149
    /// instruction to the end of its MBB.
150
    LiveInterval::Segment addSegmentToEndOfBlock(Register Reg,
151
                                                 MachineInstr &startInst);
152
 
153
    /// After removing some uses of a register, shrink its live range to just
154
    /// the remaining uses. This method does not compute reaching defs for new
155
    /// uses, and it doesn't remove dead defs.
156
    /// Dead PHIDef values are marked as unused. New dead machine instructions
157
    /// are added to the dead vector. Returns true if the interval may have been
158
    /// separated into multiple connected components.
159
    bool shrinkToUses(LiveInterval *li,
160
                      SmallVectorImpl<MachineInstr*> *dead = nullptr);
161
 
162
    /// Specialized version of
163
    /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
164
    /// that works on a subregister live range and only looks at uses matching
165
    /// the lane mask of the subregister range.
166
    /// This may leave the subrange empty which needs to be cleaned up with
167
    /// LiveInterval::removeEmptySubranges() afterwards.
168
    void shrinkToUses(LiveInterval::SubRange &SR, Register Reg);
169
 
170
    /// Extend the live range \p LR to reach all points in \p Indices. The
171
    /// points in the \p Indices array must be jointly dominated by the union
172
    /// of the existing defs in \p LR and points in \p Undefs.
173
    ///
174
    /// PHI-defs are added as needed to maintain SSA form.
175
    ///
176
    /// If a SlotIndex in \p Indices is the end index of a basic block, \p LR
177
    /// will be extended to be live out of the basic block.
178
    /// If a SlotIndex in \p Indices is jointy dominated only by points in
179
    /// \p Undefs, the live range will not be extended to that point.
180
    ///
181
    /// See also LiveRangeCalc::extend().
182
    void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices,
183
                         ArrayRef<SlotIndex> Undefs);
184
 
185
    void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices) {
186
      extendToIndices(LR, Indices, /*Undefs=*/{});
187
    }
188
 
189
    /// If \p LR has a live value at \p Kill, prune its live range by removing
190
    /// any liveness reachable from Kill. Add live range end points to
191
    /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
192
    /// value's live range.
193
    ///
194
    /// Calling pruneValue() and extendToIndices() can be used to reconstruct
195
    /// SSA form after adding defs to a virtual register.
196
    void pruneValue(LiveRange &LR, SlotIndex Kill,
197
                    SmallVectorImpl<SlotIndex> *EndPoints);
198
 
199
    /// This function should not be used. Its intent is to tell you that you are
200
    /// doing something wrong if you call pruneValue directly on a
201
    /// LiveInterval. Indeed, you are supposed to call pruneValue on the main
202
    /// LiveRange and all the LiveRanges of the subranges if any.
203
    LLVM_ATTRIBUTE_UNUSED void pruneValue(LiveInterval &, SlotIndex,
204
                                          SmallVectorImpl<SlotIndex> *) {
205
      llvm_unreachable(
206
          "Use pruneValue on the main LiveRange and on each subrange");
207
    }
208
 
209
    SlotIndexes *getSlotIndexes() const {
210
      return Indexes;
211
    }
212
 
213
    /// Returns true if the specified machine instr has been removed or was
214
    /// never entered in the map.
215
    bool isNotInMIMap(const MachineInstr &Instr) const {
216
      return !Indexes->hasIndex(Instr);
217
    }
218
 
219
    /// Returns the base index of the given instruction.
220
    SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
221
      return Indexes->getInstructionIndex(Instr);
222
    }
223
 
224
    /// Returns the instruction associated with the given index.
225
    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
226
      return Indexes->getInstructionFromIndex(index);
227
    }
228
 
229
    /// Return the first index in the given basic block.
230
    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
231
      return Indexes->getMBBStartIdx(mbb);
232
    }
233
 
234
    /// Return the last index in the given basic block.
235
    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
236
      return Indexes->getMBBEndIdx(mbb);
237
    }
238
 
239
    bool isLiveInToMBB(const LiveRange &LR,
240
                       const MachineBasicBlock *mbb) const {
241
      return LR.liveAt(getMBBStartIdx(mbb));
242
    }
243
 
244
    bool isLiveOutOfMBB(const LiveRange &LR,
245
                        const MachineBasicBlock *mbb) const {
246
      return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
247
    }
248
 
249
    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
250
      return Indexes->getMBBFromIndex(index);
251
    }
252
 
253
    void insertMBBInMaps(MachineBasicBlock *MBB) {
254
      Indexes->insertMBBInMaps(MBB);
255
      assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
256
             "Blocks must be added in order.");
257
      RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
258
    }
259
 
260
    SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
261
      return Indexes->insertMachineInstrInMaps(MI);
262
    }
263
 
264
    void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
265
                                       MachineBasicBlock::iterator E) {
266
      for (MachineBasicBlock::iterator I = B; I != E; ++I)
267
        Indexes->insertMachineInstrInMaps(*I);
268
    }
269
 
270
    void RemoveMachineInstrFromMaps(MachineInstr &MI) {
271
      Indexes->removeMachineInstrFromMaps(MI);
272
    }
273
 
274
    SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
275
      return Indexes->replaceMachineInstrInMaps(MI, NewMI);
276
    }
277
 
278
    VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
279
 
280
    void getAnalysisUsage(AnalysisUsage &AU) const override;
281
    void releaseMemory() override;
282
 
283
    /// Pass entry point; Calculates LiveIntervals.
284
    bool runOnMachineFunction(MachineFunction&) override;
285
 
286
    /// Implement the dump method.
287
    void print(raw_ostream &O, const Module* = nullptr) const override;
288
 
289
    /// If LI is confined to a single basic block, return a pointer to that
290
    /// block.  If LI is live in to or out of any block, return NULL.
291
    MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
292
 
293
    /// Returns true if VNI is killed by any PHI-def values in LI.
294
    /// This may conservatively return true to avoid expensive computations.
295
    bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
296
 
297
    /// Add kill flags to any instruction that kills a virtual register.
298
    void addKillFlags(const VirtRegMap*);
299
 
300
    /// Call this method to notify LiveIntervals that instruction \p MI has been
301
    /// moved within a basic block. This will update the live intervals for all
302
    /// operands of \p MI. Moves between basic blocks are not supported.
303
    ///
304
    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
305
    void handleMove(MachineInstr &MI, bool UpdateFlags = false);
306
 
307
    /// Update intervals of operands of all instructions in the newly
308
    /// created bundle specified by \p BundleStart.
309
    ///
310
    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
311
    ///
312
    /// Assumes existing liveness is accurate.
313
    /// \pre BundleStart should be the first instruction in the Bundle.
314
    /// \pre BundleStart should not have a have SlotIndex as one will be assigned.
315
    void handleMoveIntoNewBundle(MachineInstr &BundleStart,
316
                                 bool UpdateFlags = false);
317
 
318
    /// Update live intervals for instructions in a range of iterators. It is
319
    /// intended for use after target hooks that may insert or remove
320
    /// instructions, and is only efficient for a small number of instructions.
321
    ///
322
    /// OrigRegs is a vector of registers that were originally used by the
323
    /// instructions in the range between the two iterators.
324
    ///
325
    /// Currently, the only only changes that are supported are simple removal
326
    /// and addition of uses.
327
    void repairIntervalsInRange(MachineBasicBlock *MBB,
328
                                MachineBasicBlock::iterator Begin,
329
                                MachineBasicBlock::iterator End,
330
                                ArrayRef<Register> OrigRegs);
331
 
332
    // Register mask functions.
333
    //
334
    // Machine instructions may use a register mask operand to indicate that a
335
    // large number of registers are clobbered by the instruction.  This is
336
    // typically used for calls.
337
    //
338
    // For compile time performance reasons, these clobbers are not recorded in
339
    // the live intervals for individual physical registers.  Instead,
340
    // LiveIntervalAnalysis maintains a sorted list of instructions with
341
    // register mask operands.
342
 
343
    /// Returns a sorted array of slot indices of all instructions with
344
    /// register mask operands.
345
    ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
346
 
347
    /// Returns a sorted array of slot indices of all instructions with register
348
    /// mask operands in the basic block numbered \p MBBNum.
349
    ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
350
      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
351
      return getRegMaskSlots().slice(P.first, P.second);
352
    }
353
 
354
    /// Returns an array of register mask pointers corresponding to
355
    /// getRegMaskSlots().
356
    ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
357
 
358
    /// Returns an array of mask pointers corresponding to
359
    /// getRegMaskSlotsInBlock(MBBNum).
360
    ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
361
      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
362
      return getRegMaskBits().slice(P.first, P.second);
363
    }
364
 
365
    /// Test if \p LI is live across any register mask instructions, and
366
    /// compute a bit mask of physical registers that are not clobbered by any
367
    /// of them.
368
    ///
369
    /// Returns false if \p LI doesn't cross any register mask instructions. In
370
    /// that case, the bit vector is not filled in.
371
    bool checkRegMaskInterference(const LiveInterval &LI,
372
                                  BitVector &UsableRegs);
373
 
374
    // Register unit functions.
375
    //
376
    // Fixed interference occurs when MachineInstrs use physregs directly
377
    // instead of virtual registers. This typically happens when passing
378
    // arguments to a function call, or when instructions require operands in
379
    // fixed registers.
380
    //
381
    // Each physreg has one or more register units, see MCRegisterInfo. We
382
    // track liveness per register unit to handle aliasing registers more
383
    // efficiently.
384
 
385
    /// Return the live range for register unit \p Unit. It will be computed if
386
    /// it doesn't exist.
387
    LiveRange &getRegUnit(unsigned Unit) {
388
      LiveRange *LR = RegUnitRanges[Unit];
389
      if (!LR) {
390
        // Compute missing ranges on demand.
391
        // Use segment set to speed-up initial computation of the live range.
392
        RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
393
        computeRegUnitRange(*LR, Unit);
394
      }
395
      return *LR;
396
    }
397
 
398
    /// Return the live range for register unit \p Unit if it has already been
399
    /// computed, or nullptr if it hasn't been computed yet.
400
    LiveRange *getCachedRegUnit(unsigned Unit) {
401
      return RegUnitRanges[Unit];
402
    }
403
 
404
    const LiveRange *getCachedRegUnit(unsigned Unit) const {
405
      return RegUnitRanges[Unit];
406
    }
407
 
408
    /// Remove computed live range for register unit \p Unit. Subsequent uses
409
    /// should rely on on-demand recomputation.
410
    void removeRegUnit(unsigned Unit) {
411
      delete RegUnitRanges[Unit];
412
      RegUnitRanges[Unit] = nullptr;
413
    }
414
 
415
    /// Remove associated live ranges for the register units associated with \p
416
    /// Reg. Subsequent uses should rely on on-demand recomputation.  \note This
417
    /// method can result in inconsistent liveness tracking if multiple phyical
418
    /// registers share a regunit, and should be used cautiously.
419
    void removeAllRegUnitsForPhysReg(MCRegister Reg) {
420
      for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
421
        removeRegUnit(*Units);
422
    }
423
 
424
    /// Remove value numbers and related live segments starting at position
425
    /// \p Pos that are part of any liverange of physical register \p Reg or one
426
    /// of its subregisters.
427
    void removePhysRegDefAt(MCRegister Reg, SlotIndex Pos);
428
 
429
    /// Remove value number and related live segments of \p LI and its subranges
430
    /// that start at position \p Pos.
431
    void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
432
 
433
    /// Split separate components in LiveInterval \p LI into separate intervals.
434
    void splitSeparateComponents(LiveInterval &LI,
435
                                 SmallVectorImpl<LiveInterval*> &SplitLIs);
436
 
437
    /// For live interval \p LI with correct SubRanges construct matching
438
    /// information for the main live range. Expects the main live range to not
439
    /// have any segments or value numbers.
440
    void constructMainRangeFromSubranges(LiveInterval &LI);
441
 
442
  private:
443
    /// Compute live intervals for all virtual registers.
444
    void computeVirtRegs();
445
 
446
    /// Compute RegMaskSlots and RegMaskBits.
447
    void computeRegMasks();
448
 
449
    /// Walk the values in \p LI and check for dead values:
450
    /// - Dead PHIDef values are marked as unused.
451
    /// - Dead operands are marked as such.
452
    /// - Completely dead machine instructions are added to the \p dead vector
453
    ///   if it is not nullptr.
454
    /// Returns true if any PHI value numbers have been removed which may
455
    /// have separated the interval into multiple connected components.
456
    bool computeDeadValues(LiveInterval &LI,
457
                           SmallVectorImpl<MachineInstr*> *dead);
458
 
459
    static LiveInterval *createInterval(Register Reg);
460
 
461
    void printInstrs(raw_ostream &O) const;
462
    void dumpInstrs() const;
463
 
464
    void computeLiveInRegUnits();
465
    void computeRegUnitRange(LiveRange&, unsigned Unit);
466
    bool computeVirtRegInterval(LiveInterval&);
467
 
468
    using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
469
    void extendSegmentsToUses(LiveRange &Segments,
470
                              ShrinkToUsesWorkList &WorkList, Register Reg,
471
                              LaneBitmask LaneMask);
472
 
473
    /// Helper function for repairIntervalsInRange(), walks backwards and
474
    /// creates/modifies live segments in \p LR to match the operands found.
475
    /// Only full operands or operands with subregisters matching \p LaneMask
476
    /// are considered.
477
    void repairOldRegInRange(MachineBasicBlock::iterator Begin,
478
                             MachineBasicBlock::iterator End,
479
                             const SlotIndex endIdx, LiveRange &LR,
480
                             Register Reg,
481
                             LaneBitmask LaneMask = LaneBitmask::getAll());
482
 
483
    class HMEditor;
484
  };
485
 
486
} // end namespace llvm
487
 
488
#endif