Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the LiveRange and LiveInterval classes.  Given some
10
// numbering of each the machine instructions an interval [i, j) is said to be a
11
// live range for register v if there is no instruction with number j' >= j
12
// such that v is live at j' and there is no instruction with number i' < i such
13
// that v is live at i'. In this implementation ranges can have holes,
14
// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
15
// individual segment is represented as an instance of LiveRange::Segment,
16
// and the whole range is represented as an instance of LiveRange.
17
//
18
//===----------------------------------------------------------------------===//
19
 
20
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
21
#define LLVM_CODEGEN_LIVEINTERVAL_H
22
 
23
#include "llvm/ADT/ArrayRef.h"
24
#include "llvm/ADT/IntEqClasses.h"
25
#include "llvm/ADT/STLExtras.h"
26
#include "llvm/ADT/SmallVector.h"
27
#include "llvm/ADT/iterator_range.h"
28
#include "llvm/CodeGen/Register.h"
29
#include "llvm/CodeGen/SlotIndexes.h"
30
#include "llvm/MC/LaneBitmask.h"
31
#include "llvm/Support/Allocator.h"
32
#include "llvm/Support/MathExtras.h"
33
#include <algorithm>
34
#include <cassert>
35
#include <cstddef>
36
#include <functional>
37
#include <memory>
38
#include <set>
39
#include <tuple>
40
#include <utility>
41
 
42
namespace llvm {
43
 
44
  class CoalescerPair;
45
  class LiveIntervals;
46
  class MachineRegisterInfo;
47
  class raw_ostream;
48
 
49
  /// VNInfo - Value Number Information.
50
  /// This class holds information about a machine level values, including
51
  /// definition and use points.
52
  ///
53
  class VNInfo {
54
  public:
55
    using Allocator = BumpPtrAllocator;
56
 
57
    /// The ID number of this value.
58
    unsigned id;
59
 
60
    /// The index of the defining instruction.
61
    SlotIndex def;
62
 
63
    /// VNInfo constructor.
64
    VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
65
 
66
    /// VNInfo constructor, copies values from orig, except for the value number.
67
    VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
68
 
69
    /// Copy from the parameter into this VNInfo.
70
    void copyFrom(VNInfo &src) {
71
      def = src.def;
72
    }
73
 
74
    /// Returns true if this value is defined by a PHI instruction (or was,
75
    /// PHI instructions may have been eliminated).
76
    /// PHI-defs begin at a block boundary, all other defs begin at register or
77
    /// EC slots.
78
    bool isPHIDef() const { return def.isBlock(); }
79
 
80
    /// Returns true if this value is unused.
81
    bool isUnused() const { return !def.isValid(); }
82
 
83
    /// Mark this value as unused.
84
    void markUnused() { def = SlotIndex(); }
85
  };
86
 
87
  /// Result of a LiveRange query. This class hides the implementation details
88
  /// of live ranges, and it should be used as the primary interface for
89
  /// examining live ranges around instructions.
90
  class LiveQueryResult {
91
    VNInfo *const EarlyVal;
92
    VNInfo *const LateVal;
93
    const SlotIndex EndPoint;
94
    const bool Kill;
95
 
96
  public:
97
    LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
98
                    bool Kill)
99
      : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
100
    {}
101
 
102
    /// Return the value that is live-in to the instruction. This is the value
103
    /// that will be read by the instruction's use operands. Return NULL if no
104
    /// value is live-in.
105
    VNInfo *valueIn() const {
106
      return EarlyVal;
107
    }
108
 
109
    /// Return true if the live-in value is killed by this instruction. This
110
    /// means that either the live range ends at the instruction, or it changes
111
    /// value.
112
    bool isKill() const {
113
      return Kill;
114
    }
115
 
116
    /// Return true if this instruction has a dead def.
117
    bool isDeadDef() const {
118
      return EndPoint.isDead();
119
    }
120
 
121
    /// Return the value leaving the instruction, if any. This can be a
122
    /// live-through value, or a live def. A dead def returns NULL.
123
    VNInfo *valueOut() const {
124
      return isDeadDef() ? nullptr : LateVal;
125
    }
126
 
127
    /// Returns the value alive at the end of the instruction, if any. This can
128
    /// be a live-through value, a live def or a dead def.
129
    VNInfo *valueOutOrDead() const {
130
      return LateVal;
131
    }
132
 
133
    /// Return the value defined by this instruction, if any. This includes
134
    /// dead defs, it is the value created by the instruction's def operands.
135
    VNInfo *valueDefined() const {
136
      return EarlyVal == LateVal ? nullptr : LateVal;
137
    }
138
 
139
    /// Return the end point of the last live range segment to interact with
140
    /// the instruction, if any.
141
    ///
142
    /// The end point is an invalid SlotIndex only if the live range doesn't
143
    /// intersect the instruction at all.
144
    ///
145
    /// The end point may be at or past the end of the instruction's basic
146
    /// block. That means the value was live out of the block.
147
    SlotIndex endPoint() const {
148
      return EndPoint;
149
    }
150
  };
151
 
152
  /// This class represents the liveness of a register, stack slot, etc.
153
  /// It manages an ordered list of Segment objects.
154
  /// The Segments are organized in a static single assignment form: At places
155
  /// where a new value is defined or different values reach a CFG join a new
156
  /// segment with a new value number is used.
157
  class LiveRange {
158
  public:
159
    /// This represents a simple continuous liveness interval for a value.
160
    /// The start point is inclusive, the end point exclusive. These intervals
161
    /// are rendered as [start,end).
162
    struct Segment {
163
      SlotIndex start;  // Start point of the interval (inclusive)
164
      SlotIndex end;    // End point of the interval (exclusive)
165
      VNInfo *valno = nullptr; // identifier for the value contained in this
166
                               // segment.
167
 
168
      Segment() = default;
169
 
170
      Segment(SlotIndex S, SlotIndex E, VNInfo *V)
171
        : start(S), end(E), valno(V) {
172
        assert(S < E && "Cannot create empty or backwards segment");
173
      }
174
 
175
      /// Return true if the index is covered by this segment.
176
      bool contains(SlotIndex I) const {
177
        return start <= I && I < end;
178
      }
179
 
180
      /// Return true if the given interval, [S, E), is covered by this segment.
181
      bool containsInterval(SlotIndex S, SlotIndex E) const {
182
        assert((S < E) && "Backwards interval?");
183
        return (start <= S && S < end) && (start < E && E <= end);
184
      }
185
 
186
      bool operator<(const Segment &Other) const {
187
        return std::tie(start, end) < std::tie(Other.start, Other.end);
188
      }
189
      bool operator==(const Segment &Other) const {
190
        return start == Other.start && end == Other.end;
191
      }
192
 
193
      bool operator!=(const Segment &Other) const {
194
        return !(*this == Other);
195
      }
196
 
197
      void dump() const;
198
    };
199
 
200
    using Segments = SmallVector<Segment, 2>;
201
    using VNInfoList = SmallVector<VNInfo *, 2>;
202
 
203
    Segments segments;   // the liveness segments
204
    VNInfoList valnos;   // value#'s
205
 
206
    // The segment set is used temporarily to accelerate initial computation
207
    // of live ranges of physical registers in computeRegUnitRange.
208
    // After that the set is flushed to the segment vector and deleted.
209
    using SegmentSet = std::set<Segment>;
210
    std::unique_ptr<SegmentSet> segmentSet;
211
 
212
    using iterator = Segments::iterator;
213
    using const_iterator = Segments::const_iterator;
214
 
215
    iterator begin() { return segments.begin(); }
216
    iterator end()   { return segments.end(); }
217
 
218
    const_iterator begin() const { return segments.begin(); }
219
    const_iterator end() const  { return segments.end(); }
220
 
221
    using vni_iterator = VNInfoList::iterator;
222
    using const_vni_iterator = VNInfoList::const_iterator;
223
 
224
    vni_iterator vni_begin() { return valnos.begin(); }
225
    vni_iterator vni_end()   { return valnos.end(); }
226
 
227
    const_vni_iterator vni_begin() const { return valnos.begin(); }
228
    const_vni_iterator vni_end() const   { return valnos.end(); }
229
 
230
    iterator_range<vni_iterator> vnis() {
231
      return make_range(vni_begin(), vni_end());
232
    }
233
 
234
    iterator_range<const_vni_iterator> vnis() const {
235
      return make_range(vni_begin(), vni_end());
236
    }
237
 
238
    /// Constructs a new LiveRange object.
239
    LiveRange(bool UseSegmentSet = false)
240
        : segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>()
241
                                   : nullptr) {}
242
 
243
    /// Constructs a new LiveRange object by copying segments and valnos from
244
    /// another LiveRange.
245
    LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
246
      assert(Other.segmentSet == nullptr &&
247
             "Copying of LiveRanges with active SegmentSets is not supported");
248
      assign(Other, Allocator);
249
    }
250
 
251
    /// Copies values numbers and live segments from \p Other into this range.
252
    void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
253
      if (this == &Other)
254
        return;
255
 
256
      assert(Other.segmentSet == nullptr &&
257
             "Copying of LiveRanges with active SegmentSets is not supported");
258
      // Duplicate valnos.
259
      for (const VNInfo *VNI : Other.valnos)
260
        createValueCopy(VNI, Allocator);
261
      // Now we can copy segments and remap their valnos.
262
      for (const Segment &S : Other.segments)
263
        segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
264
    }
265
 
266
    /// advanceTo - Advance the specified iterator to point to the Segment
267
    /// containing the specified position, or end() if the position is past the
268
    /// end of the range.  If no Segment contains this position, but the
269
    /// position is in a hole, this method returns an iterator pointing to the
270
    /// Segment immediately after the hole.
271
    iterator advanceTo(iterator I, SlotIndex Pos) {
272
      assert(I != end());
273
      if (Pos >= endIndex())
274
        return end();
275
      while (I->end <= Pos) ++I;
276
      return I;
277
    }
278
 
279
    const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
280
      assert(I != end());
281
      if (Pos >= endIndex())
282
        return end();
283
      while (I->end <= Pos) ++I;
284
      return I;
285
    }
286
 
287
    /// find - Return an iterator pointing to the first segment that ends after
288
    /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
289
    /// when searching large ranges.
290
    ///
291
    /// If Pos is contained in a Segment, that segment is returned.
292
    /// If Pos is in a hole, the following Segment is returned.
293
    /// If Pos is beyond endIndex, end() is returned.
294
    iterator find(SlotIndex Pos);
295
 
296
    const_iterator find(SlotIndex Pos) const {
297
      return const_cast<LiveRange*>(this)->find(Pos);
298
    }
299
 
300
    void clear() {
301
      valnos.clear();
302
      segments.clear();
303
    }
304
 
305
    size_t size() const {
306
      return segments.size();
307
    }
308
 
309
    bool hasAtLeastOneValue() const { return !valnos.empty(); }
310
 
311
    bool containsOneValue() const { return valnos.size() == 1; }
312
 
313
    unsigned getNumValNums() const { return (unsigned)valnos.size(); }
314
 
315
    /// getValNumInfo - Returns pointer to the specified val#.
316
    ///
317
    inline VNInfo *getValNumInfo(unsigned ValNo) {
318
      return valnos[ValNo];
319
    }
320
    inline const VNInfo *getValNumInfo(unsigned ValNo) const {
321
      return valnos[ValNo];
322
    }
323
 
324
    /// containsValue - Returns true if VNI belongs to this range.
325
    bool containsValue(const VNInfo *VNI) const {
326
      return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
327
    }
328
 
329
    /// getNextValue - Create a new value number and return it.  MIIdx specifies
330
    /// the instruction that defines the value number.
331
    VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
332
      VNInfo *VNI =
333
        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
334
      valnos.push_back(VNI);
335
      return VNI;
336
    }
337
 
338
    /// createDeadDef - Make sure the range has a value defined at Def.
339
    /// If one already exists, return it. Otherwise allocate a new value and
340
    /// add liveness for a dead def.
341
    VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc);
342
 
343
    /// Create a def of value @p VNI. Return @p VNI. If there already exists
344
    /// a definition at VNI->def, the value defined there must be @p VNI.
345
    VNInfo *createDeadDef(VNInfo *VNI);
346
 
347
    /// Create a copy of the given value. The new value will be identical except
348
    /// for the Value number.
349
    VNInfo *createValueCopy(const VNInfo *orig,
350
                            VNInfo::Allocator &VNInfoAllocator) {
351
      VNInfo *VNI =
352
        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
353
      valnos.push_back(VNI);
354
      return VNI;
355
    }
356
 
357
    /// RenumberValues - Renumber all values in order of appearance and remove
358
    /// unused values.
359
    void RenumberValues();
360
 
361
    /// MergeValueNumberInto - This method is called when two value numbers
362
    /// are found to be equivalent.  This eliminates V1, replacing all
363
    /// segments with the V1 value number with the V2 value number.  This can
364
    /// cause merging of V1/V2 values numbers and compaction of the value space.
365
    VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
366
 
367
    /// Merge all of the live segments of a specific val# in RHS into this live
368
    /// range as the specified value number. The segments in RHS are allowed
369
    /// to overlap with segments in the current range, it will replace the
370
    /// value numbers of the overlaped live segments with the specified value
371
    /// number.
372
    void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
373
 
374
    /// MergeValueInAsValue - Merge all of the segments of a specific val#
375
    /// in RHS into this live range as the specified value number.
376
    /// The segments in RHS are allowed to overlap with segments in the
377
    /// current range, but only if the overlapping segments have the
378
    /// specified value number.
379
    void MergeValueInAsValue(const LiveRange &RHS,
380
                             const VNInfo *RHSValNo, VNInfo *LHSValNo);
381
 
382
    bool empty() const { return segments.empty(); }
383
 
384
    /// beginIndex - Return the lowest numbered slot covered.
385
    SlotIndex beginIndex() const {
386
      assert(!empty() && "Call to beginIndex() on empty range.");
387
      return segments.front().start;
388
    }
389
 
390
    /// endNumber - return the maximum point of the range of the whole,
391
    /// exclusive.
392
    SlotIndex endIndex() const {
393
      assert(!empty() && "Call to endIndex() on empty range.");
394
      return segments.back().end;
395
    }
396
 
397
    bool expiredAt(SlotIndex index) const {
398
      return index >= endIndex();
399
    }
400
 
401
    bool liveAt(SlotIndex index) const {
402
      const_iterator r = find(index);
403
      return r != end() && r->start <= index;
404
    }
405
 
406
    /// Return the segment that contains the specified index, or null if there
407
    /// is none.
408
    const Segment *getSegmentContaining(SlotIndex Idx) const {
409
      const_iterator I = FindSegmentContaining(Idx);
410
      return I == end() ? nullptr : &*I;
411
    }
412
 
413
    /// Return the live segment that contains the specified index, or null if
414
    /// there is none.
415
    Segment *getSegmentContaining(SlotIndex Idx) {
416
      iterator I = FindSegmentContaining(Idx);
417
      return I == end() ? nullptr : &*I;
418
    }
419
 
420
    /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
421
    VNInfo *getVNInfoAt(SlotIndex Idx) const {
422
      const_iterator I = FindSegmentContaining(Idx);
423
      return I == end() ? nullptr : I->valno;
424
    }
425
 
426
    /// getVNInfoBefore - Return the VNInfo that is live up to but not
427
    /// necessarilly including Idx, or NULL. Use this to find the reaching def
428
    /// used by an instruction at this SlotIndex position.
429
    VNInfo *getVNInfoBefore(SlotIndex Idx) const {
430
      const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
431
      return I == end() ? nullptr : I->valno;
432
    }
433
 
434
    /// Return an iterator to the segment that contains the specified index, or
435
    /// end() if there is none.
436
    iterator FindSegmentContaining(SlotIndex Idx) {
437
      iterator I = find(Idx);
438
      return I != end() && I->start <= Idx ? I : end();
439
    }
440
 
441
    const_iterator FindSegmentContaining(SlotIndex Idx) const {
442
      const_iterator I = find(Idx);
443
      return I != end() && I->start <= Idx ? I : end();
444
    }
445
 
446
    /// overlaps - Return true if the intersection of the two live ranges is
447
    /// not empty.
448
    bool overlaps(const LiveRange &other) const {
449
      if (other.empty())
450
        return false;
451
      return overlapsFrom(other, other.begin());
452
    }
453
 
454
    /// overlaps - Return true if the two ranges have overlapping segments
455
    /// that are not coalescable according to CP.
456
    ///
457
    /// Overlapping segments where one range is defined by a coalescable
458
    /// copy are allowed.
459
    bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
460
                  const SlotIndexes&) const;
461
 
462
    /// overlaps - Return true if the live range overlaps an interval specified
463
    /// by [Start, End).
464
    bool overlaps(SlotIndex Start, SlotIndex End) const;
465
 
466
    /// overlapsFrom - Return true if the intersection of the two live ranges
467
    /// is not empty.  The specified iterator is a hint that we can begin
468
    /// scanning the Other range starting at I.
469
    bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const;
470
 
471
    /// Returns true if all segments of the @p Other live range are completely
472
    /// covered by this live range.
473
    /// Adjacent live ranges do not affect the covering:the liverange
474
    /// [1,5](5,10] covers (3,7].
475
    bool covers(const LiveRange &Other) const;
476
 
477
    /// Add the specified Segment to this range, merging segments as
478
    /// appropriate.  This returns an iterator to the inserted segment (which
479
    /// may have grown since it was inserted).
480
    iterator addSegment(Segment S);
481
 
482
    /// Attempt to extend a value defined after @p StartIdx to include @p Use.
483
    /// Both @p StartIdx and @p Use should be in the same basic block. In case
484
    /// of subranges, an extension could be prevented by an explicit "undef"
485
    /// caused by a <def,read-undef> on a non-overlapping lane. The list of
486
    /// location of such "undefs" should be provided in @p Undefs.
487
    /// The return value is a pair: the first element is VNInfo of the value
488
    /// that was extended (possibly nullptr), the second is a boolean value
489
    /// indicating whether an "undef" was encountered.
490
    /// If this range is live before @p Use in the basic block that starts at
491
    /// @p StartIdx, and there is no intervening "undef", extend it to be live
492
    /// up to @p Use, and return the pair {value, false}. If there is no
493
    /// segment before @p Use and there is no "undef" between @p StartIdx and
494
    /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
495
    /// return {nullptr, true}.
496
    std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
497
        SlotIndex StartIdx, SlotIndex Kill);
498
 
499
    /// Simplified version of the above "extendInBlock", which assumes that
500
    /// no register lanes are undefined by <def,read-undef> operands.
501
    /// If this range is live before @p Use in the basic block that starts
502
    /// at @p StartIdx, extend it to be live up to @p Use, and return the
503
    /// value. If there is no segment before @p Use, return nullptr.
504
    VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
505
 
506
    /// join - Join two live ranges (this, and other) together.  This applies
507
    /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
508
    /// the ranges are not joinable, this aborts.
509
    void join(LiveRange &Other,
510
              const int *ValNoAssignments,
511
              const int *RHSValNoAssignments,
512
              SmallVectorImpl<VNInfo *> &NewVNInfo);
513
 
514
    /// True iff this segment is a single segment that lies between the
515
    /// specified boundaries, exclusively. Vregs live across a backedge are not
516
    /// considered local. The boundaries are expected to lie within an extended
517
    /// basic block, so vregs that are not live out should contain no holes.
518
    bool isLocal(SlotIndex Start, SlotIndex End) const {
519
      return beginIndex() > Start.getBaseIndex() &&
520
        endIndex() < End.getBoundaryIndex();
521
    }
522
 
523
    /// Remove the specified segment from this range.  Note that the segment
524
    /// must be a single Segment in its entirety.
525
    void removeSegment(SlotIndex Start, SlotIndex End,
526
                       bool RemoveDeadValNo = false);
527
 
528
    void removeSegment(Segment S, bool RemoveDeadValNo = false) {
529
      removeSegment(S.start, S.end, RemoveDeadValNo);
530
    }
531
 
532
    /// Remove segment pointed to by iterator @p I from this range.
533
    iterator removeSegment(iterator I, bool RemoveDeadValNo = false);
534
 
535
    /// Mark \p ValNo for deletion if no segments in this range use it.
536
    void removeValNoIfDead(VNInfo *ValNo);
537
 
538
    /// Query Liveness at Idx.
539
    /// The sub-instruction slot of Idx doesn't matter, only the instruction
540
    /// it refers to is considered.
541
    LiveQueryResult Query(SlotIndex Idx) const {
542
      // Find the segment that enters the instruction.
543
      const_iterator I = find(Idx.getBaseIndex());
544
      const_iterator E = end();
545
      if (I == E)
546
        return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
547
 
548
      // Is this an instruction live-in segment?
549
      // If Idx is the start index of a basic block, include live-in segments
550
      // that start at Idx.getBaseIndex().
551
      VNInfo *EarlyVal = nullptr;
552
      VNInfo *LateVal  = nullptr;
553
      SlotIndex EndPoint;
554
      bool Kill = false;
555
      if (I->start <= Idx.getBaseIndex()) {
556
        EarlyVal = I->valno;
557
        EndPoint = I->end;
558
        // Move to the potentially live-out segment.
559
        if (SlotIndex::isSameInstr(Idx, I->end)) {
560
          Kill = true;
561
          if (++I == E)
562
            return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
563
        }
564
        // Special case: A PHIDef value can have its def in the middle of a
565
        // segment if the value happens to be live out of the layout
566
        // predecessor.
567
        // Such a value is not live-in.
568
        if (EarlyVal->def == Idx.getBaseIndex())
569
          EarlyVal = nullptr;
570
      }
571
      // I now points to the segment that may be live-through, or defined by
572
      // this instr. Ignore segments starting after the current instr.
573
      if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
574
        LateVal = I->valno;
575
        EndPoint = I->end;
576
      }
577
      return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
578
    }
579
 
580
    /// removeValNo - Remove all the segments defined by the specified value#.
581
    /// Also remove the value# from value# list.
582
    void removeValNo(VNInfo *ValNo);
583
 
584
    /// Returns true if the live range is zero length, i.e. no live segments
585
    /// span instructions. It doesn't pay to spill such a range.
586
    bool isZeroLength(SlotIndexes *Indexes) const {
587
      for (const Segment &S : segments)
588
        if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
589
            S.end.getBaseIndex())
590
          return false;
591
      return true;
592
    }
593
 
594
    // Returns true if any segment in the live range contains any of the
595
    // provided slot indexes.  Slots which occur in holes between
596
    // segments will not cause the function to return true.
597
    bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
598
 
599
    bool operator<(const LiveRange& other) const {
600
      const SlotIndex &thisIndex = beginIndex();
601
      const SlotIndex &otherIndex = other.beginIndex();
602
      return thisIndex < otherIndex;
603
    }
604
 
605
    /// Returns true if there is an explicit "undef" between @p Begin
606
    /// @p End.
607
    bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
608
                   SlotIndex End) const {
609
      return llvm::any_of(Undefs, [Begin, End](SlotIndex Idx) -> bool {
610
        return Begin <= Idx && Idx < End;
611
      });
612
    }
613
 
614
    /// Flush segment set into the regular segment vector.
615
    /// The method is to be called after the live range
616
    /// has been created, if use of the segment set was
617
    /// activated in the constructor of the live range.
618
    void flushSegmentSet();
619
 
620
    /// Stores indexes from the input index sequence R at which this LiveRange
621
    /// is live to the output O iterator.
622
    /// R is a range of _ascending sorted_ _random_ access iterators
623
    /// to the input indexes. Indexes stored at O are ascending sorted so it
624
    /// can be used directly in the subsequent search (for example for
625
    /// subranges). Returns true if found at least one index.
626
    template <typename Range, typename OutputIt>
627
    bool findIndexesLiveAt(Range &&R, OutputIt O) const {
628
      assert(llvm::is_sorted(R));
629
      auto Idx = R.begin(), EndIdx = R.end();
630
      auto Seg = segments.begin(), EndSeg = segments.end();
631
      bool Found = false;
632
      while (Idx != EndIdx && Seg != EndSeg) {
633
        // if the Seg is lower find first segment that is above Idx using binary
634
        // search
635
        if (Seg->end <= *Idx) {
636
          Seg =
637
              std::upper_bound(++Seg, EndSeg, *Idx, [=](auto V, const auto &S) {
638
                return V < S.end;
639
              });
640
          if (Seg == EndSeg)
641
            break;
642
        }
643
        auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start);
644
        if (NotLessStart == EndIdx)
645
          break;
646
        auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end);
647
        if (NotLessEnd != NotLessStart) {
648
          Found = true;
649
          O = std::copy(NotLessStart, NotLessEnd, O);
650
        }
651
        Idx = NotLessEnd;
652
        ++Seg;
653
      }
654
      return Found;
655
    }
656
 
657
    void print(raw_ostream &OS) const;
658
    void dump() const;
659
 
660
    /// Walk the range and assert if any invariants fail to hold.
661
    ///
662
    /// Note that this is a no-op when asserts are disabled.
663
#ifdef NDEBUG
664
    void verify() const {}
665
#else
666
    void verify() const;
667
#endif
668
 
669
  protected:
670
    /// Append a segment to the list of segments.
671
    void append(const LiveRange::Segment S);
672
 
673
  private:
674
    friend class LiveRangeUpdater;
675
    void addSegmentToSet(Segment S);
676
    void markValNoForDeletion(VNInfo *V);
677
  };
678
 
679
  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
680
    LR.print(OS);
681
    return OS;
682
  }
683
 
684
  /// LiveInterval - This class represents the liveness of a register,
685
  /// or stack slot.
686
  class LiveInterval : public LiveRange {
687
  public:
688
    using super = LiveRange;
689
 
690
    /// A live range for subregisters. The LaneMask specifies which parts of the
691
    /// super register are covered by the interval.
692
    /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
693
    class SubRange : public LiveRange {
694
    public:
695
      SubRange *Next = nullptr;
696
      LaneBitmask LaneMask;
697
 
698
      /// Constructs a new SubRange object.
699
      SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
700
 
701
      /// Constructs a new SubRange object by copying liveness from @p Other.
702
      SubRange(LaneBitmask LaneMask, const LiveRange &Other,
703
               BumpPtrAllocator &Allocator)
704
        : LiveRange(Other, Allocator), LaneMask(LaneMask) {}
705
 
706
      void print(raw_ostream &OS) const;
707
      void dump() const;
708
    };
709
 
710
  private:
711
    SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
712
                                   /// ranges.
713
    const Register Reg; // the register or stack slot of this interval.
714
    float Weight = 0.0; // weight of this interval
715
 
716
  public:
717
    Register reg() const { return Reg; }
718
    float weight() const { return Weight; }
719
    void incrementWeight(float Inc) { Weight += Inc; }
720
    void setWeight(float Value) { Weight = Value; }
721
 
722
    LiveInterval(unsigned Reg, float Weight) : Reg(Reg), Weight(Weight) {}
723
 
724
    ~LiveInterval() {
725
      clearSubRanges();
726
    }
727
 
728
    template<typename T>
729
    class SingleLinkedListIterator {
730
      T *P;
731
 
732
    public:
733
      SingleLinkedListIterator(T *P) : P(P) {}
734
 
735
      SingleLinkedListIterator<T> &operator++() {
736
        P = P->Next;
737
        return *this;
738
      }
739
      SingleLinkedListIterator<T> operator++(int) {
740
        SingleLinkedListIterator res = *this;
741
        ++*this;
742
        return res;
743
      }
744
      bool operator!=(const SingleLinkedListIterator<T> &Other) const {
745
        return P != Other.operator->();
746
      }
747
      bool operator==(const SingleLinkedListIterator<T> &Other) const {
748
        return P == Other.operator->();
749
      }
750
      T &operator*() const {
751
        return *P;
752
      }
753
      T *operator->() const {
754
        return P;
755
      }
756
    };
757
 
758
    using subrange_iterator = SingleLinkedListIterator<SubRange>;
759
    using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
760
 
761
    subrange_iterator subrange_begin() {
762
      return subrange_iterator(SubRanges);
763
    }
764
    subrange_iterator subrange_end() {
765
      return subrange_iterator(nullptr);
766
    }
767
 
768
    const_subrange_iterator subrange_begin() const {
769
      return const_subrange_iterator(SubRanges);
770
    }
771
    const_subrange_iterator subrange_end() const {
772
      return const_subrange_iterator(nullptr);
773
    }
774
 
775
    iterator_range<subrange_iterator> subranges() {
776
      return make_range(subrange_begin(), subrange_end());
777
    }
778
 
779
    iterator_range<const_subrange_iterator> subranges() const {
780
      return make_range(subrange_begin(), subrange_end());
781
    }
782
 
783
    /// Creates a new empty subregister live range. The range is added at the
784
    /// beginning of the subrange list; subrange iterators stay valid.
785
    SubRange *createSubRange(BumpPtrAllocator &Allocator,
786
                             LaneBitmask LaneMask) {
787
      SubRange *Range = new (Allocator) SubRange(LaneMask);
788
      appendSubRange(Range);
789
      return Range;
790
    }
791
 
792
    /// Like createSubRange() but the new range is filled with a copy of the
793
    /// liveness information in @p CopyFrom.
794
    SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
795
                                 LaneBitmask LaneMask,
796
                                 const LiveRange &CopyFrom) {
797
      SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
798
      appendSubRange(Range);
799
      return Range;
800
    }
801
 
802
    /// Returns true if subregister liveness information is available.
803
    bool hasSubRanges() const {
804
      return SubRanges != nullptr;
805
    }
806
 
807
    /// Removes all subregister liveness information.
808
    void clearSubRanges();
809
 
810
    /// Removes all subranges without any segments (subranges without segments
811
    /// are not considered valid and should only exist temporarily).
812
    void removeEmptySubRanges();
813
 
814
    /// getSize - Returns the sum of sizes of all the LiveRange's.
815
    ///
816
    unsigned getSize() const;
817
 
818
    /// isSpillable - Can this interval be spilled?
819
    bool isSpillable() const { return Weight != huge_valf; }
820
 
821
    /// markNotSpillable - Mark interval as not spillable
822
    void markNotSpillable() { Weight = huge_valf; }
823
 
824
    /// For a given lane mask @p LaneMask, compute indexes at which the
825
    /// lane is marked undefined by subregister <def,read-undef> definitions.
826
    void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
827
                               LaneBitmask LaneMask,
828
                               const MachineRegisterInfo &MRI,
829
                               const SlotIndexes &Indexes) const;
830
 
831
    /// Refines the subranges to support \p LaneMask. This may only be called
832
    /// for LI.hasSubrange()==true. Subregister ranges are split or created
833
    /// until \p LaneMask can be matched exactly. \p Mod is executed on the
834
    /// matching subranges.
835
    ///
836
    /// Example:
837
    ///    Given an interval with subranges with lanemasks L0F00, L00F0 and
838
    ///    L000F, refining for mask L0018. Will split the L00F0 lane into
839
    ///    L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
840
    ///    function will be applied to the L0010 and L0008 subranges.
841
    ///
842
    /// \p Indexes and \p TRI are required to clean up the VNIs that
843
    /// don't define the related lane masks after they get shrunk. E.g.,
844
    /// when L000F gets split into L0007 and L0008 maybe only a subset
845
    /// of the VNIs that defined L000F defines L0007.
846
    ///
847
    /// The clean up of the VNIs need to look at the actual instructions
848
    /// to decide what is or is not live at a definition point. If the
849
    /// update of the subranges occurs while the IR does not reflect these
850
    /// changes, \p ComposeSubRegIdx can be used to specify how the
851
    /// definition are going to be rewritten.
852
    /// E.g., let say we want to merge:
853
    ///     V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32>
854
    /// We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32>
855
    /// overlap, i.e., by choosing a class where we can find "offset + 1 == 3".
856
    /// Put differently we align V2's sub3 with V1's sub1:
857
    /// V2: sub0 sub1 sub2 sub3
858
    /// V1: <offset>  sub0 sub1
859
    ///
860
    /// This offset will look like a composed subregidx in the the class:
861
    ///     V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
862
    /// =>  V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
863
    ///
864
    /// Now if we didn't rewrite the uses and def of V1, all the checks for V1
865
    /// need to account for this offset.
866
    /// This happens during coalescing where we update the live-ranges while
867
    /// still having the old IR around because updating the IR on-the-fly
868
    /// would actually clobber some information on how the live-ranges that
869
    /// are being updated look like.
870
    void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
871
                         std::function<void(LiveInterval::SubRange &)> Apply,
872
                         const SlotIndexes &Indexes,
873
                         const TargetRegisterInfo &TRI,
874
                         unsigned ComposeSubRegIdx = 0);
875
 
876
    bool operator<(const LiveInterval& other) const {
877
      const SlotIndex &thisIndex = beginIndex();
878
      const SlotIndex &otherIndex = other.beginIndex();
879
      return std::tie(thisIndex, Reg) < std::tie(otherIndex, other.Reg);
880
    }
881
 
882
    void print(raw_ostream &OS) const;
883
    void dump() const;
884
 
885
    /// Walks the interval and assert if any invariants fail to hold.
886
    ///
887
    /// Note that this is a no-op when asserts are disabled.
888
#ifdef NDEBUG
889
    void verify(const MachineRegisterInfo *MRI = nullptr) const {}
890
#else
891
    void verify(const MachineRegisterInfo *MRI = nullptr) const;
892
#endif
893
 
894
  private:
895
    /// Appends @p Range to SubRanges list.
896
    void appendSubRange(SubRange *Range) {
897
      Range->Next = SubRanges;
898
      SubRanges = Range;
899
    }
900
 
901
    /// Free memory held by SubRange.
902
    void freeSubRange(SubRange *S);
903
  };
904
 
905
  inline raw_ostream &operator<<(raw_ostream &OS,
906
                                 const LiveInterval::SubRange &SR) {
907
    SR.print(OS);
908
    return OS;
909
  }
910
 
911
  inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
912
    LI.print(OS);
913
    return OS;
914
  }
915
 
916
  raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
917
 
918
  inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
919
    return V < S.start;
920
  }
921
 
922
  inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
923
    return S.start < V;
924
  }
925
 
926
  /// Helper class for performant LiveRange bulk updates.
927
  ///
928
  /// Calling LiveRange::addSegment() repeatedly can be expensive on large
929
  /// live ranges because segments after the insertion point may need to be
930
  /// shifted. The LiveRangeUpdater class can defer the shifting when adding
931
  /// many segments in order.
932
  ///
933
  /// The LiveRange will be in an invalid state until flush() is called.
934
  class LiveRangeUpdater {
935
    LiveRange *LR;
936
    SlotIndex LastStart;
937
    LiveRange::iterator WriteI;
938
    LiveRange::iterator ReadI;
939
    SmallVector<LiveRange::Segment, 16> Spills;
940
    void mergeSpills();
941
 
942
  public:
943
    /// Create a LiveRangeUpdater for adding segments to LR.
944
    /// LR will temporarily be in an invalid state until flush() is called.
945
    LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
946
 
947
    ~LiveRangeUpdater() { flush(); }
948
 
949
    /// Add a segment to LR and coalesce when possible, just like
950
    /// LR.addSegment(). Segments should be added in increasing start order for
951
    /// best performance.
952
    void add(LiveRange::Segment);
953
 
954
    void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
955
      add(LiveRange::Segment(Start, End, VNI));
956
    }
957
 
958
    /// Return true if the LR is currently in an invalid state, and flush()
959
    /// needs to be called.
960
    bool isDirty() const { return LastStart.isValid(); }
961
 
962
    /// Flush the updater state to LR so it is valid and contains all added
963
    /// segments.
964
    void flush();
965
 
966
    /// Select a different destination live range.
967
    void setDest(LiveRange *lr) {
968
      if (LR != lr && isDirty())
969
        flush();
970
      LR = lr;
971
    }
972
 
973
    /// Get the current destination live range.
974
    LiveRange *getDest() const { return LR; }
975
 
976
    void dump() const;
977
    void print(raw_ostream&) const;
978
  };
979
 
980
  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
981
    X.print(OS);
982
    return OS;
983
  }
984
 
985
  /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
986
  /// LiveInterval into equivalence clases of connected components. A
987
  /// LiveInterval that has multiple connected components can be broken into
988
  /// multiple LiveIntervals.
989
  ///
990
  /// Given a LiveInterval that may have multiple connected components, run:
991
  ///
992
  ///   unsigned numComps = ConEQ.Classify(LI);
993
  ///   if (numComps > 1) {
994
  ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
995
  ///     ConEQ.Distribute(LIS);
996
  /// }
997
 
998
  class ConnectedVNInfoEqClasses {
999
    LiveIntervals &LIS;
1000
    IntEqClasses EqClass;
1001
 
1002
  public:
1003
    explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
1004
 
1005
    /// Classify the values in \p LR into connected components.
1006
    /// Returns the number of connected components.
1007
    unsigned Classify(const LiveRange &LR);
1008
 
1009
    /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
1010
    /// the equivalence class assigned the VNI.
1011
    unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
1012
 
1013
    /// Distribute values in \p LI into a separate LiveIntervals
1014
    /// for each connected component. LIV must have an empty LiveInterval for
1015
    /// each additional connected component. The first connected component is
1016
    /// left in \p LI.
1017
    void Distribute(LiveInterval &LI, LiveInterval *LIV[],
1018
                    MachineRegisterInfo &MRI);
1019
  };
1020
 
1021
} // end namespace llvm
1022
 
1023
#endif // LLVM_CODEGEN_LIVEINTERVAL_H