Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //=- llvm/CodeGen/GlobalISel/RegBankSelect.h - Reg Bank Selector --*- C++ -*-=// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | /// \file |
||
10 | /// This file describes the interface of the MachineFunctionPass |
||
11 | /// responsible for assigning the generic virtual registers to register bank. |
||
12 | /// |
||
13 | /// By default, the reg bank selector relies on local decisions to |
||
14 | /// assign the register bank. In other words, it looks at one instruction |
||
15 | /// at a time to decide where the operand of that instruction should live. |
||
16 | /// |
||
17 | /// At higher optimization level, we could imagine that the reg bank selector |
||
18 | /// would use more global analysis and do crazier thing like duplicating |
||
19 | /// instructions and so on. This is future work. |
||
20 | /// |
||
21 | /// For now, the pass uses a greedy algorithm to decide where the operand |
||
22 | /// of an instruction should live. It asks the target which banks may be |
||
23 | /// used for each operand of the instruction and what is the cost. Then, |
||
24 | /// it chooses the solution which minimize the cost of the instruction plus |
||
25 | /// the cost of any move that may be needed to the values into the right |
||
26 | /// register bank. |
||
27 | /// In other words, the cost for an instruction on a register bank RegBank |
||
28 | /// is: Cost of I on RegBank plus the sum of the cost for bringing the |
||
29 | /// input operands from their current register bank to RegBank. |
||
30 | /// Thus, the following formula: |
||
31 | /// cost(I, RegBank) = cost(I.Opcode, RegBank) + |
||
32 | /// sum(for each arg in I.arguments: costCrossCopy(arg.RegBank, RegBank)) |
||
33 | /// |
||
34 | /// E.g., Let say we are assigning the register bank for the instruction |
||
35 | /// defining v2. |
||
36 | /// v0(A_REGBANK) = ... |
||
37 | /// v1(A_REGBANK) = ... |
||
38 | /// v2 = G_ADD i32 v0, v1 <-- MI |
||
39 | /// |
||
40 | /// The target may say it can generate G_ADD i32 on register bank A and B |
||
41 | /// with a cost of respectively 5 and 1. |
||
42 | /// Then, let say the cost of a cross register bank copies from A to B is 1. |
||
43 | /// The reg bank selector would compare the following two costs: |
||
44 | /// cost(MI, A_REGBANK) = cost(G_ADD, A_REGBANK) + cost(v0.RegBank, A_REGBANK) + |
||
45 | /// cost(v1.RegBank, A_REGBANK) |
||
46 | /// = 5 + cost(A_REGBANK, A_REGBANK) + cost(A_REGBANK, |
||
47 | /// A_REGBANK) |
||
48 | /// = 5 + 0 + 0 = 5 |
||
49 | /// cost(MI, B_REGBANK) = cost(G_ADD, B_REGBANK) + cost(v0.RegBank, B_REGBANK) + |
||
50 | /// cost(v1.RegBank, B_REGBANK) |
||
51 | /// = 1 + cost(A_REGBANK, B_REGBANK) + cost(A_REGBANK, |
||
52 | /// B_REGBANK) |
||
53 | /// = 1 + 1 + 1 = 3 |
||
54 | /// Therefore, in this specific example, the reg bank selector would choose |
||
55 | /// bank B for MI. |
||
56 | /// v0(A_REGBANK) = ... |
||
57 | /// v1(A_REGBANK) = ... |
||
58 | /// tmp0(B_REGBANK) = COPY v0 |
||
59 | /// tmp1(B_REGBANK) = COPY v1 |
||
60 | /// v2(B_REGBANK) = G_ADD i32 tmp0, tmp1 |
||
61 | // |
||
62 | //===----------------------------------------------------------------------===// |
||
63 | |||
64 | #ifndef LLVM_CODEGEN_GLOBALISEL_REGBANKSELECT_H |
||
65 | #define LLVM_CODEGEN_GLOBALISEL_REGBANKSELECT_H |
||
66 | |||
67 | #include "llvm/ADT/SmallVector.h" |
||
68 | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
||
69 | #include "llvm/CodeGen/MachineBasicBlock.h" |
||
70 | #include "llvm/CodeGen/MachineFunctionPass.h" |
||
71 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
||
72 | #include "llvm/CodeGen/RegisterBankInfo.h" |
||
73 | #include <cassert> |
||
74 | #include <cstdint> |
||
75 | #include <memory> |
||
76 | |||
77 | namespace llvm { |
||
78 | |||
79 | class BlockFrequency; |
||
80 | class MachineBlockFrequencyInfo; |
||
81 | class MachineBranchProbabilityInfo; |
||
82 | class MachineOperand; |
||
83 | class MachineRegisterInfo; |
||
84 | class Pass; |
||
85 | class raw_ostream; |
||
86 | class TargetPassConfig; |
||
87 | class TargetRegisterInfo; |
||
88 | |||
89 | /// This pass implements the reg bank selector pass used in the GlobalISel |
||
90 | /// pipeline. At the end of this pass, all register operands have been assigned |
||
91 | class RegBankSelect : public MachineFunctionPass { |
||
92 | public: |
||
93 | static char ID; |
||
94 | |||
95 | /// List of the modes supported by the RegBankSelect pass. |
||
96 | enum Mode { |
||
97 | /// Assign the register banks as fast as possible (default). |
||
98 | Fast, |
||
99 | /// Greedily minimize the cost of assigning register banks. |
||
100 | /// This should produce code of greater quality, but will |
||
101 | /// require more compile time. |
||
102 | Greedy |
||
103 | }; |
||
104 | |||
105 | /// Abstract class used to represent an insertion point in a CFG. |
||
106 | /// This class records an insertion point and materializes it on |
||
107 | /// demand. |
||
108 | /// It allows to reason about the frequency of this insertion point, |
||
109 | /// without having to logically materialize it (e.g., on an edge), |
||
110 | /// before we actually need to insert something. |
||
111 | class InsertPoint { |
||
112 | protected: |
||
113 | /// Tell if the insert point has already been materialized. |
||
114 | bool WasMaterialized = false; |
||
115 | |||
116 | /// Materialize the insertion point. |
||
117 | /// |
||
118 | /// If isSplit() is true, this involves actually splitting |
||
119 | /// the block or edge. |
||
120 | /// |
||
121 | /// \post getPointImpl() returns a valid iterator. |
||
122 | /// \post getInsertMBBImpl() returns a valid basic block. |
||
123 | /// \post isSplit() == false ; no more splitting should be required. |
||
124 | virtual void materialize() = 0; |
||
125 | |||
126 | /// Return the materialized insertion basic block. |
||
127 | /// Code will be inserted into that basic block. |
||
128 | /// |
||
129 | /// \pre ::materialize has been called. |
||
130 | virtual MachineBasicBlock &getInsertMBBImpl() = 0; |
||
131 | |||
132 | /// Return the materialized insertion point. |
||
133 | /// Code will be inserted before that point. |
||
134 | /// |
||
135 | /// \pre ::materialize has been called. |
||
136 | virtual MachineBasicBlock::iterator getPointImpl() = 0; |
||
137 | |||
138 | public: |
||
139 | virtual ~InsertPoint() = default; |
||
140 | |||
141 | /// The first call to this method will cause the splitting to |
||
142 | /// happen if need be, then sub sequent calls just return |
||
143 | /// the iterator to that point. I.e., no more splitting will |
||
144 | /// occur. |
||
145 | /// |
||
146 | /// \return The iterator that should be used with |
||
147 | /// MachineBasicBlock::insert. I.e., additional code happens |
||
148 | /// before that point. |
||
149 | MachineBasicBlock::iterator getPoint() { |
||
150 | if (!WasMaterialized) { |
||
151 | WasMaterialized = true; |
||
152 | assert(canMaterialize() && "Impossible to materialize this point"); |
||
153 | materialize(); |
||
154 | } |
||
155 | // When we materialized the point we should have done the splitting. |
||
156 | assert(!isSplit() && "Wrong pre-condition"); |
||
157 | return getPointImpl(); |
||
158 | } |
||
159 | |||
160 | /// The first call to this method will cause the splitting to |
||
161 | /// happen if need be, then sub sequent calls just return |
||
162 | /// the basic block that contains the insertion point. |
||
163 | /// I.e., no more splitting will occur. |
||
164 | /// |
||
165 | /// \return The basic block should be used with |
||
166 | /// MachineBasicBlock::insert and ::getPoint. The new code should |
||
167 | /// happen before that point. |
||
168 | MachineBasicBlock &getInsertMBB() { |
||
169 | if (!WasMaterialized) { |
||
170 | WasMaterialized = true; |
||
171 | assert(canMaterialize() && "Impossible to materialize this point"); |
||
172 | materialize(); |
||
173 | } |
||
174 | // When we materialized the point we should have done the splitting. |
||
175 | assert(!isSplit() && "Wrong pre-condition"); |
||
176 | return getInsertMBBImpl(); |
||
177 | } |
||
178 | |||
179 | /// Insert \p MI in the just before ::getPoint() |
||
180 | MachineBasicBlock::iterator insert(MachineInstr &MI) { |
||
181 | return getInsertMBB().insert(getPoint(), &MI); |
||
182 | } |
||
183 | |||
184 | /// Does this point involve splitting an edge or block? |
||
185 | /// As soon as ::getPoint is called and thus, the point |
||
186 | /// materialized, the point will not require splitting anymore, |
||
187 | /// i.e., this will return false. |
||
188 | virtual bool isSplit() const { return false; } |
||
189 | |||
190 | /// Frequency of the insertion point. |
||
191 | /// \p P is used to access the various analysis that will help to |
||
192 | /// get that information, like MachineBlockFrequencyInfo. If \p P |
||
193 | /// does not contain enough enough to return the actual frequency, |
||
194 | /// this returns 1. |
||
195 | virtual uint64_t frequency(const Pass &P) const { return 1; } |
||
196 | |||
197 | /// Check whether this insertion point can be materialized. |
||
198 | /// As soon as ::getPoint is called and thus, the point materialized |
||
199 | /// calling this method does not make sense. |
||
200 | virtual bool canMaterialize() const { return false; } |
||
201 | }; |
||
202 | |||
203 | /// Insertion point before or after an instruction. |
||
204 | class InstrInsertPoint : public InsertPoint { |
||
205 | private: |
||
206 | /// Insertion point. |
||
207 | MachineInstr &Instr; |
||
208 | |||
209 | /// Does the insertion point is before or after Instr. |
||
210 | bool Before; |
||
211 | |||
212 | void materialize() override; |
||
213 | |||
214 | MachineBasicBlock::iterator getPointImpl() override { |
||
215 | if (Before) |
||
216 | return Instr; |
||
217 | return Instr.getNextNode() ? *Instr.getNextNode() |
||
218 | : Instr.getParent()->end(); |
||
219 | } |
||
220 | |||
221 | MachineBasicBlock &getInsertMBBImpl() override { |
||
222 | return *Instr.getParent(); |
||
223 | } |
||
224 | |||
225 | public: |
||
226 | /// Create an insertion point before (\p Before=true) or after \p Instr. |
||
227 | InstrInsertPoint(MachineInstr &Instr, bool Before = true); |
||
228 | |||
229 | bool isSplit() const override; |
||
230 | uint64_t frequency(const Pass &P) const override; |
||
231 | |||
232 | // Worst case, we need to slice the basic block, but that is still doable. |
||
233 | bool canMaterialize() const override { return true; } |
||
234 | }; |
||
235 | |||
236 | /// Insertion point at the beginning or end of a basic block. |
||
237 | class MBBInsertPoint : public InsertPoint { |
||
238 | private: |
||
239 | /// Insertion point. |
||
240 | MachineBasicBlock &MBB; |
||
241 | |||
242 | /// Does the insertion point is at the beginning or end of MBB. |
||
243 | bool Beginning; |
||
244 | |||
245 | void materialize() override { /*Nothing to do to materialize*/ |
||
246 | } |
||
247 | |||
248 | MachineBasicBlock::iterator getPointImpl() override { |
||
249 | return Beginning ? MBB.begin() : MBB.end(); |
||
250 | } |
||
251 | |||
252 | MachineBasicBlock &getInsertMBBImpl() override { return MBB; } |
||
253 | |||
254 | public: |
||
255 | MBBInsertPoint(MachineBasicBlock &MBB, bool Beginning = true) |
||
256 | : MBB(MBB), Beginning(Beginning) { |
||
257 | // If we try to insert before phis, we should use the insertion |
||
258 | // points on the incoming edges. |
||
259 | assert((!Beginning || MBB.getFirstNonPHI() == MBB.begin()) && |
||
260 | "Invalid beginning point"); |
||
261 | // If we try to insert after the terminators, we should use the |
||
262 | // points on the outcoming edges. |
||
263 | assert((Beginning || MBB.getFirstTerminator() == MBB.end()) && |
||
264 | "Invalid end point"); |
||
265 | } |
||
266 | |||
267 | bool isSplit() const override { return false; } |
||
268 | uint64_t frequency(const Pass &P) const override; |
||
269 | bool canMaterialize() const override { return true; }; |
||
270 | }; |
||
271 | |||
272 | /// Insertion point on an edge. |
||
273 | class EdgeInsertPoint : public InsertPoint { |
||
274 | private: |
||
275 | /// Source of the edge. |
||
276 | MachineBasicBlock &Src; |
||
277 | |||
278 | /// Destination of the edge. |
||
279 | /// After the materialization is done, this hold the basic block |
||
280 | /// that resulted from the splitting. |
||
281 | MachineBasicBlock *DstOrSplit; |
||
282 | |||
283 | /// P is used to update the analysis passes as applicable. |
||
284 | Pass &P; |
||
285 | |||
286 | void materialize() override; |
||
287 | |||
288 | MachineBasicBlock::iterator getPointImpl() override { |
||
289 | // DstOrSplit should be the Split block at this point. |
||
290 | // I.e., it should have one predecessor, Src, and one successor, |
||
291 | // the original Dst. |
||
292 | assert(DstOrSplit && DstOrSplit->isPredecessor(&Src) && |
||
293 | DstOrSplit->pred_size() == 1 && DstOrSplit->succ_size() == 1 && |
||
294 | "Did not split?!"); |
||
295 | return DstOrSplit->begin(); |
||
296 | } |
||
297 | |||
298 | MachineBasicBlock &getInsertMBBImpl() override { return *DstOrSplit; } |
||
299 | |||
300 | public: |
||
301 | EdgeInsertPoint(MachineBasicBlock &Src, MachineBasicBlock &Dst, Pass &P) |
||
302 | : Src(Src), DstOrSplit(&Dst), P(P) {} |
||
303 | |||
304 | bool isSplit() const override { |
||
305 | return Src.succ_size() > 1 && DstOrSplit->pred_size() > 1; |
||
306 | } |
||
307 | |||
308 | uint64_t frequency(const Pass &P) const override; |
||
309 | bool canMaterialize() const override; |
||
310 | }; |
||
311 | |||
312 | /// Struct used to represent the placement of a repairing point for |
||
313 | /// a given operand. |
||
314 | class RepairingPlacement { |
||
315 | public: |
||
316 | /// Define the kind of action this repairing needs. |
||
317 | enum RepairingKind { |
||
318 | /// Nothing to repair, just drop this action. |
||
319 | None, |
||
320 | /// Reparing code needs to happen before InsertPoints. |
||
321 | Insert, |
||
322 | /// (Re)assign the register bank of the operand. |
||
323 | Reassign, |
||
324 | /// Mark this repairing placement as impossible. |
||
325 | Impossible |
||
326 | }; |
||
327 | |||
328 | /// \name Convenient types for a list of insertion points. |
||
329 | /// @{ |
||
330 | using InsertionPoints = SmallVector<std::unique_ptr<InsertPoint>, 2>; |
||
331 | using insertpt_iterator = InsertionPoints::iterator; |
||
332 | using const_insertpt_iterator = InsertionPoints::const_iterator; |
||
333 | /// @} |
||
334 | |||
335 | private: |
||
336 | /// Kind of repairing. |
||
337 | RepairingKind Kind; |
||
338 | /// Index of the operand that will be repaired. |
||
339 | unsigned OpIdx; |
||
340 | /// Are all the insert points materializeable? |
||
341 | bool CanMaterialize; |
||
342 | /// Is there any of the insert points needing splitting? |
||
343 | bool HasSplit = false; |
||
344 | /// Insertion point for the repair code. |
||
345 | /// The repairing code needs to happen just before these points. |
||
346 | InsertionPoints InsertPoints; |
||
347 | /// Some insertion points may need to update the liveness and such. |
||
348 | Pass &P; |
||
349 | |||
350 | public: |
||
351 | /// Create a repairing placement for the \p OpIdx-th operand of |
||
352 | /// \p MI. \p TRI is used to make some checks on the register aliases |
||
353 | /// if the machine operand is a physical register. \p P is used to |
||
354 | /// to update liveness information and such when materializing the |
||
355 | /// points. |
||
356 | RepairingPlacement(MachineInstr &MI, unsigned OpIdx, |
||
357 | const TargetRegisterInfo &TRI, Pass &P, |
||
358 | RepairingKind Kind = RepairingKind::Insert); |
||
359 | |||
360 | /// \name Getters. |
||
361 | /// @{ |
||
362 | RepairingKind getKind() const { return Kind; } |
||
363 | unsigned getOpIdx() const { return OpIdx; } |
||
364 | bool canMaterialize() const { return CanMaterialize; } |
||
365 | bool hasSplit() { return HasSplit; } |
||
366 | /// @} |
||
367 | |||
368 | /// \name Overloaded methods to add an insertion point. |
||
369 | /// @{ |
||
370 | /// Add a MBBInsertionPoint to the list of InsertPoints. |
||
371 | void addInsertPoint(MachineBasicBlock &MBB, bool Beginning); |
||
372 | /// Add a InstrInsertionPoint to the list of InsertPoints. |
||
373 | void addInsertPoint(MachineInstr &MI, bool Before); |
||
374 | /// Add an EdgeInsertionPoint (\p Src, \p Dst) to the list of InsertPoints. |
||
375 | void addInsertPoint(MachineBasicBlock &Src, MachineBasicBlock &Dst); |
||
376 | /// Add an InsertPoint to the list of insert points. |
||
377 | /// This method takes the ownership of &\p Point. |
||
378 | void addInsertPoint(InsertPoint &Point); |
||
379 | /// @} |
||
380 | |||
381 | /// \name Accessors related to the insertion points. |
||
382 | /// @{ |
||
383 | insertpt_iterator begin() { return InsertPoints.begin(); } |
||
384 | insertpt_iterator end() { return InsertPoints.end(); } |
||
385 | |||
386 | const_insertpt_iterator begin() const { return InsertPoints.begin(); } |
||
387 | const_insertpt_iterator end() const { return InsertPoints.end(); } |
||
388 | |||
389 | unsigned getNumInsertPoints() const { return InsertPoints.size(); } |
||
390 | /// @} |
||
391 | |||
392 | /// Change the type of this repairing placement to \p NewKind. |
||
393 | /// It is not possible to switch a repairing placement to the |
||
394 | /// RepairingKind::Insert. There is no fundamental problem with |
||
395 | /// that, but no uses as well, so do not support it for now. |
||
396 | /// |
||
397 | /// \pre NewKind != RepairingKind::Insert |
||
398 | /// \post getKind() == NewKind |
||
399 | void switchTo(RepairingKind NewKind) { |
||
400 | assert(NewKind != Kind && "Already of the right Kind"); |
||
401 | Kind = NewKind; |
||
402 | InsertPoints.clear(); |
||
403 | CanMaterialize = NewKind != RepairingKind::Impossible; |
||
404 | HasSplit = false; |
||
405 | assert(NewKind != RepairingKind::Insert && |
||
406 | "We would need more MI to switch to Insert"); |
||
407 | } |
||
408 | }; |
||
409 | |||
410 | protected: |
||
411 | /// Helper class used to represent the cost for mapping an instruction. |
||
412 | /// When mapping an instruction, we may introduce some repairing code. |
||
413 | /// In most cases, the repairing code is local to the instruction, |
||
414 | /// thus, we can omit the basic block frequency from the cost. |
||
415 | /// However, some alternatives may produce non-local cost, e.g., when |
||
416 | /// repairing a phi, and thus we then need to scale the local cost |
||
417 | /// to the non-local cost. This class does this for us. |
||
418 | /// \note: We could simply always scale the cost. The problem is that |
||
419 | /// there are higher chances that we saturate the cost easier and end |
||
420 | /// up having the same cost for actually different alternatives. |
||
421 | /// Another option would be to use APInt everywhere. |
||
422 | class MappingCost { |
||
423 | private: |
||
424 | /// Cost of the local instructions. |
||
425 | /// This cost is free of basic block frequency. |
||
426 | uint64_t LocalCost = 0; |
||
427 | /// Cost of the non-local instructions. |
||
428 | /// This cost should include the frequency of the related blocks. |
||
429 | uint64_t NonLocalCost = 0; |
||
430 | /// Frequency of the block where the local instructions live. |
||
431 | uint64_t LocalFreq; |
||
432 | |||
433 | MappingCost(uint64_t LocalCost, uint64_t NonLocalCost, uint64_t LocalFreq) |
||
434 | : LocalCost(LocalCost), NonLocalCost(NonLocalCost), |
||
435 | LocalFreq(LocalFreq) {} |
||
436 | |||
437 | /// Check if this cost is saturated. |
||
438 | bool isSaturated() const; |
||
439 | |||
440 | public: |
||
441 | /// Create a MappingCost assuming that most of the instructions |
||
442 | /// will occur in a basic block with \p LocalFreq frequency. |
||
443 | MappingCost(const BlockFrequency &LocalFreq); |
||
444 | |||
445 | /// Add \p Cost to the local cost. |
||
446 | /// \return true if this cost is saturated, false otherwise. |
||
447 | bool addLocalCost(uint64_t Cost); |
||
448 | |||
449 | /// Add \p Cost to the non-local cost. |
||
450 | /// Non-local cost should reflect the frequency of their placement. |
||
451 | /// \return true if this cost is saturated, false otherwise. |
||
452 | bool addNonLocalCost(uint64_t Cost); |
||
453 | |||
454 | /// Saturate the cost to the maximal representable value. |
||
455 | void saturate(); |
||
456 | |||
457 | /// Return an instance of MappingCost that represents an |
||
458 | /// impossible mapping. |
||
459 | static MappingCost ImpossibleCost(); |
||
460 | |||
461 | /// Check if this is less than \p Cost. |
||
462 | bool operator<(const MappingCost &Cost) const; |
||
463 | /// Check if this is equal to \p Cost. |
||
464 | bool operator==(const MappingCost &Cost) const; |
||
465 | /// Check if this is not equal to \p Cost. |
||
466 | bool operator!=(const MappingCost &Cost) const { return !(*this == Cost); } |
||
467 | /// Check if this is greater than \p Cost. |
||
468 | bool operator>(const MappingCost &Cost) const { |
||
469 | return *this != Cost && Cost < *this; |
||
470 | } |
||
471 | |||
472 | /// Print this on dbgs() stream. |
||
473 | void dump() const; |
||
474 | |||
475 | /// Print this on \p OS; |
||
476 | void print(raw_ostream &OS) const; |
||
477 | |||
478 | /// Overload the stream operator for easy debug printing. |
||
479 | friend raw_ostream &operator<<(raw_ostream &OS, const MappingCost &Cost) { |
||
480 | Cost.print(OS); |
||
481 | return OS; |
||
482 | } |
||
483 | }; |
||
484 | |||
485 | /// Interface to the target lowering info related |
||
486 | /// to register banks. |
||
487 | const RegisterBankInfo *RBI = nullptr; |
||
488 | |||
489 | /// MRI contains all the register class/bank information that this |
||
490 | /// pass uses and updates. |
||
491 | MachineRegisterInfo *MRI = nullptr; |
||
492 | |||
493 | /// Information on the register classes for the current function. |
||
494 | const TargetRegisterInfo *TRI = nullptr; |
||
495 | |||
496 | /// Get the frequency of blocks. |
||
497 | /// This is required for non-fast mode. |
||
498 | MachineBlockFrequencyInfo *MBFI = nullptr; |
||
499 | |||
500 | /// Get the frequency of the edges. |
||
501 | /// This is required for non-fast mode. |
||
502 | MachineBranchProbabilityInfo *MBPI = nullptr; |
||
503 | |||
504 | /// Current optimization remark emitter. Used to report failures. |
||
505 | std::unique_ptr<MachineOptimizationRemarkEmitter> MORE; |
||
506 | |||
507 | /// Helper class used for every code morphing. |
||
508 | MachineIRBuilder MIRBuilder; |
||
509 | |||
510 | /// Optimization mode of the pass. |
||
511 | Mode OptMode; |
||
512 | |||
513 | /// Current target configuration. Controls how the pass handles errors. |
||
514 | const TargetPassConfig *TPC; |
||
515 | |||
516 | /// Assign the register bank of each operand of \p MI. |
||
517 | /// \return True on success, false otherwise. |
||
518 | bool assignInstr(MachineInstr &MI); |
||
519 | |||
520 | /// Initialize the field members using \p MF. |
||
521 | void init(MachineFunction &MF); |
||
522 | |||
523 | /// Check if \p Reg is already assigned what is described by \p ValMapping. |
||
524 | /// \p OnlyAssign == true means that \p Reg just needs to be assigned a |
||
525 | /// register bank. I.e., no repairing is necessary to have the |
||
526 | /// assignment match. |
||
527 | bool assignmentMatch(Register Reg, |
||
528 | const RegisterBankInfo::ValueMapping &ValMapping, |
||
529 | bool &OnlyAssign) const; |
||
530 | |||
531 | /// Insert repairing code for \p Reg as specified by \p ValMapping. |
||
532 | /// The repairing placement is specified by \p RepairPt. |
||
533 | /// \p NewVRegs contains all the registers required to remap \p Reg. |
||
534 | /// In other words, the number of registers in NewVRegs must be equal |
||
535 | /// to ValMapping.BreakDown.size(). |
||
536 | /// |
||
537 | /// The transformation could be sketched as: |
||
538 | /// \code |
||
539 | /// ... = op Reg |
||
540 | /// \endcode |
||
541 | /// Becomes |
||
542 | /// \code |
||
543 | /// <NewRegs> = COPY or extract Reg |
||
544 | /// ... = op Reg |
||
545 | /// \endcode |
||
546 | /// |
||
547 | /// and |
||
548 | /// \code |
||
549 | /// Reg = op ... |
||
550 | /// \endcode |
||
551 | /// Becomes |
||
552 | /// \code |
||
553 | /// Reg = op ... |
||
554 | /// Reg = COPY or build_sequence <NewRegs> |
||
555 | /// \endcode |
||
556 | /// |
||
557 | /// \pre NewVRegs.size() == ValMapping.BreakDown.size() |
||
558 | /// |
||
559 | /// \note The caller is supposed to do the rewriting of op if need be. |
||
560 | /// I.e., Reg = op ... => <NewRegs> = NewOp ... |
||
561 | /// |
||
562 | /// \return True if the repairing worked, false otherwise. |
||
563 | bool repairReg(MachineOperand &MO, |
||
564 | const RegisterBankInfo::ValueMapping &ValMapping, |
||
565 | RegBankSelect::RepairingPlacement &RepairPt, |
||
566 | const iterator_range<SmallVectorImpl<Register>::const_iterator> |
||
567 | &NewVRegs); |
||
568 | |||
569 | /// Return the cost of the instruction needed to map \p MO to \p ValMapping. |
||
570 | /// The cost is free of basic block frequencies. |
||
571 | /// \pre MO.isReg() |
||
572 | /// \pre MO is assigned to a register bank. |
||
573 | /// \pre ValMapping is a valid mapping for MO. |
||
574 | uint64_t |
||
575 | getRepairCost(const MachineOperand &MO, |
||
576 | const RegisterBankInfo::ValueMapping &ValMapping) const; |
||
577 | |||
578 | /// Find the best mapping for \p MI from \p PossibleMappings. |
||
579 | /// \return a reference on the best mapping in \p PossibleMappings. |
||
580 | const RegisterBankInfo::InstructionMapping & |
||
581 | findBestMapping(MachineInstr &MI, |
||
582 | RegisterBankInfo::InstructionMappings &PossibleMappings, |
||
583 | SmallVectorImpl<RepairingPlacement> &RepairPts); |
||
584 | |||
585 | /// Compute the cost of mapping \p MI with \p InstrMapping and |
||
586 | /// compute the repairing placement for such mapping in \p |
||
587 | /// RepairPts. |
||
588 | /// \p BestCost is used to specify when the cost becomes too high |
||
589 | /// and thus it is not worth computing the RepairPts. Moreover if |
||
590 | /// \p BestCost == nullptr, the mapping cost is actually not |
||
591 | /// computed. |
||
592 | MappingCost |
||
593 | computeMapping(MachineInstr &MI, |
||
594 | const RegisterBankInfo::InstructionMapping &InstrMapping, |
||
595 | SmallVectorImpl<RepairingPlacement> &RepairPts, |
||
596 | const MappingCost *BestCost = nullptr); |
||
597 | |||
598 | /// When \p RepairPt involves splitting to repair \p MO for the |
||
599 | /// given \p ValMapping, try to change the way we repair such that |
||
600 | /// the splitting is not required anymore. |
||
601 | /// |
||
602 | /// \pre \p RepairPt.hasSplit() |
||
603 | /// \pre \p MO == MO.getParent()->getOperand(\p RepairPt.getOpIdx()) |
||
604 | /// \pre \p ValMapping is the mapping of \p MO for MO.getParent() |
||
605 | /// that implied \p RepairPt. |
||
606 | void tryAvoidingSplit(RegBankSelect::RepairingPlacement &RepairPt, |
||
607 | const MachineOperand &MO, |
||
608 | const RegisterBankInfo::ValueMapping &ValMapping) const; |
||
609 | |||
610 | /// Apply \p Mapping to \p MI. \p RepairPts represents the different |
||
611 | /// mapping action that need to happen for the mapping to be |
||
612 | /// applied. |
||
613 | /// \return True if the mapping was applied sucessfully, false otherwise. |
||
614 | bool applyMapping(MachineInstr &MI, |
||
615 | const RegisterBankInfo::InstructionMapping &InstrMapping, |
||
616 | SmallVectorImpl<RepairingPlacement> &RepairPts); |
||
617 | |||
618 | public: |
||
619 | /// Create a RegBankSelect pass with the specified \p RunningMode. |
||
620 | RegBankSelect(Mode RunningMode = Fast); |
||
621 | |||
622 | StringRef getPassName() const override { return "RegBankSelect"; } |
||
623 | |||
624 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
625 | |||
626 | MachineFunctionProperties getRequiredProperties() const override { |
||
627 | return MachineFunctionProperties() |
||
628 | .set(MachineFunctionProperties::Property::IsSSA) |
||
629 | .set(MachineFunctionProperties::Property::Legalized); |
||
630 | } |
||
631 | |||
632 | MachineFunctionProperties getSetProperties() const override { |
||
633 | return MachineFunctionProperties().set( |
||
634 | MachineFunctionProperties::Property::RegBankSelected); |
||
635 | } |
||
636 | |||
637 | MachineFunctionProperties getClearedProperties() const override { |
||
638 | return MachineFunctionProperties() |
||
639 | .set(MachineFunctionProperties::Property::NoPHIs); |
||
640 | } |
||
641 | |||
642 | /// Check that our input is fully legal: we require the function to have the |
||
643 | /// Legalized property, so it should be. |
||
644 | /// |
||
645 | /// FIXME: This should be in the MachineVerifier. |
||
646 | bool checkFunctionIsLegal(MachineFunction &MF) const; |
||
647 | |||
648 | /// Walk through \p MF and assign a register bank to every virtual register |
||
649 | /// that are still mapped to nothing. |
||
650 | /// The target needs to provide a RegisterBankInfo and in particular |
||
651 | /// override RegisterBankInfo::getInstrMapping. |
||
652 | /// |
||
653 | /// Simplified algo: |
||
654 | /// \code |
||
655 | /// RBI = MF.subtarget.getRegBankInfo() |
||
656 | /// MIRBuilder.setMF(MF) |
||
657 | /// for each bb in MF |
||
658 | /// for each inst in bb |
||
659 | /// MIRBuilder.setInstr(inst) |
||
660 | /// MappingCosts = RBI.getMapping(inst); |
||
661 | /// Idx = findIdxOfMinCost(MappingCosts) |
||
662 | /// CurRegBank = MappingCosts[Idx].RegBank |
||
663 | /// MRI.setRegBank(inst.getOperand(0).getReg(), CurRegBank) |
||
664 | /// for each argument in inst |
||
665 | /// if (CurRegBank != argument.RegBank) |
||
666 | /// ArgReg = argument.getReg() |
||
667 | /// Tmp = MRI.createNewVirtual(MRI.getSize(ArgReg), CurRegBank) |
||
668 | /// MIRBuilder.buildInstr(COPY, Tmp, ArgReg) |
||
669 | /// inst.getOperand(argument.getOperandNo()).setReg(Tmp) |
||
670 | /// \endcode |
||
671 | bool assignRegisterBanks(MachineFunction &MF); |
||
672 | |||
673 | bool runOnMachineFunction(MachineFunction &MF) override; |
||
674 | }; |
||
675 | |||
676 | } // end namespace llvm |
||
677 | |||
678 | #endif // LLVM_CODEGEN_GLOBALISEL_REGBANKSELECT_H |