Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | /// \file |
||
| 10 | /// This file provides a helper that implements much of the TTI interface in |
||
| 11 | /// terms of the target-independent code generator and TargetLowering |
||
| 12 | /// interfaces. |
||
| 13 | // |
||
| 14 | //===----------------------------------------------------------------------===// |
||
| 15 | |||
| 16 | #ifndef LLVM_CODEGEN_BASICTTIIMPL_H |
||
| 17 | #define LLVM_CODEGEN_BASICTTIIMPL_H |
||
| 18 | |||
| 19 | #include "llvm/ADT/APInt.h" |
||
| 20 | #include "llvm/ADT/ArrayRef.h" |
||
| 21 | #include "llvm/ADT/BitVector.h" |
||
| 22 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 23 | #include "llvm/ADT/SmallVector.h" |
||
| 24 | #include "llvm/Analysis/LoopInfo.h" |
||
| 25 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
||
| 26 | #include "llvm/Analysis/TargetTransformInfo.h" |
||
| 27 | #include "llvm/Analysis/TargetTransformInfoImpl.h" |
||
| 28 | #include "llvm/CodeGen/ISDOpcodes.h" |
||
| 29 | #include "llvm/CodeGen/TargetLowering.h" |
||
| 30 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
||
| 31 | #include "llvm/CodeGen/ValueTypes.h" |
||
| 32 | #include "llvm/IR/BasicBlock.h" |
||
| 33 | #include "llvm/IR/Constant.h" |
||
| 34 | #include "llvm/IR/Constants.h" |
||
| 35 | #include "llvm/IR/DataLayout.h" |
||
| 36 | #include "llvm/IR/DerivedTypes.h" |
||
| 37 | #include "llvm/IR/InstrTypes.h" |
||
| 38 | #include "llvm/IR/Instruction.h" |
||
| 39 | #include "llvm/IR/Instructions.h" |
||
| 40 | #include "llvm/IR/Intrinsics.h" |
||
| 41 | #include "llvm/IR/Operator.h" |
||
| 42 | #include "llvm/IR/Type.h" |
||
| 43 | #include "llvm/IR/Value.h" |
||
| 44 | #include "llvm/Support/Casting.h" |
||
| 45 | #include "llvm/Support/CommandLine.h" |
||
| 46 | #include "llvm/Support/ErrorHandling.h" |
||
| 47 | #include "llvm/Support/MachineValueType.h" |
||
| 48 | #include "llvm/Support/MathExtras.h" |
||
| 49 | #include "llvm/Target/TargetMachine.h" |
||
| 50 | #include "llvm/Target/TargetOptions.h" |
||
| 51 | #include <algorithm> |
||
| 52 | #include <cassert> |
||
| 53 | #include <cstdint> |
||
| 54 | #include <limits> |
||
| 55 | #include <optional> |
||
| 56 | #include <utility> |
||
| 57 | |||
| 58 | namespace llvm { |
||
| 59 | |||
| 60 | class Function; |
||
| 61 | class GlobalValue; |
||
| 62 | class LLVMContext; |
||
| 63 | class ScalarEvolution; |
||
| 64 | class SCEV; |
||
| 65 | class TargetMachine; |
||
| 66 | |||
| 67 | extern cl::opt<unsigned> PartialUnrollingThreshold; |
||
| 68 | |||
| 69 | /// Base class which can be used to help build a TTI implementation. |
||
| 70 | /// |
||
| 71 | /// This class provides as much implementation of the TTI interface as is |
||
| 72 | /// possible using the target independent parts of the code generator. |
||
| 73 | /// |
||
| 74 | /// In order to subclass it, your class must implement a getST() method to |
||
| 75 | /// return the subtarget, and a getTLI() method to return the target lowering. |
||
| 76 | /// We need these methods implemented in the derived class so that this class |
||
| 77 | /// doesn't have to duplicate storage for them. |
||
| 78 | template <typename T> |
||
| 79 | class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> { |
||
| 80 | private: |
||
| 81 | using BaseT = TargetTransformInfoImplCRTPBase<T>; |
||
| 82 | using TTI = TargetTransformInfo; |
||
| 83 | |||
| 84 | /// Helper function to access this as a T. |
||
| 85 | T *thisT() { return static_cast<T *>(this); } |
||
| 86 | |||
| 87 | /// Estimate a cost of Broadcast as an extract and sequence of insert |
||
| 88 | /// operations. |
||
| 89 | InstructionCost getBroadcastShuffleOverhead(FixedVectorType *VTy, |
||
| 90 | TTI::TargetCostKind CostKind) { |
||
| 91 | InstructionCost Cost = 0; |
||
| 92 | // Broadcast cost is equal to the cost of extracting the zero'th element |
||
| 93 | // plus the cost of inserting it into every element of the result vector. |
||
| 94 | Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, |
||
| 95 | CostKind, 0, nullptr, nullptr); |
||
| 96 | |||
| 97 | for (int i = 0, e = VTy->getNumElements(); i < e; ++i) { |
||
| 98 | Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, |
||
| 99 | CostKind, i, nullptr, nullptr); |
||
| 100 | } |
||
| 101 | return Cost; |
||
| 102 | } |
||
| 103 | |||
| 104 | /// Estimate a cost of shuffle as a sequence of extract and insert |
||
| 105 | /// operations. |
||
| 106 | InstructionCost getPermuteShuffleOverhead(FixedVectorType *VTy, |
||
| 107 | TTI::TargetCostKind CostKind) { |
||
| 108 | InstructionCost Cost = 0; |
||
| 109 | // Shuffle cost is equal to the cost of extracting element from its argument |
||
| 110 | // plus the cost of inserting them onto the result vector. |
||
| 111 | |||
| 112 | // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from |
||
| 113 | // index 0 of first vector, index 1 of second vector,index 2 of first |
||
| 114 | // vector and finally index 3 of second vector and insert them at index |
||
| 115 | // <0,1,2,3> of result vector. |
||
| 116 | for (int i = 0, e = VTy->getNumElements(); i < e; ++i) { |
||
| 117 | Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, |
||
| 118 | CostKind, i, nullptr, nullptr); |
||
| 119 | Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, |
||
| 120 | CostKind, i, nullptr, nullptr); |
||
| 121 | } |
||
| 122 | return Cost; |
||
| 123 | } |
||
| 124 | |||
| 125 | /// Estimate a cost of subvector extraction as a sequence of extract and |
||
| 126 | /// insert operations. |
||
| 127 | InstructionCost getExtractSubvectorOverhead(VectorType *VTy, |
||
| 128 | TTI::TargetCostKind CostKind, |
||
| 129 | int Index, |
||
| 130 | FixedVectorType *SubVTy) { |
||
| 131 | assert(VTy && SubVTy && |
||
| 132 | "Can only extract subvectors from vectors"); |
||
| 133 | int NumSubElts = SubVTy->getNumElements(); |
||
| 134 | assert((!isa<FixedVectorType>(VTy) || |
||
| 135 | (Index + NumSubElts) <= |
||
| 136 | (int)cast<FixedVectorType>(VTy)->getNumElements()) && |
||
| 137 | "SK_ExtractSubvector index out of range"); |
||
| 138 | |||
| 139 | InstructionCost Cost = 0; |
||
| 140 | // Subvector extraction cost is equal to the cost of extracting element from |
||
| 141 | // the source type plus the cost of inserting them into the result vector |
||
| 142 | // type. |
||
| 143 | for (int i = 0; i != NumSubElts; ++i) { |
||
| 144 | Cost += |
||
| 145 | thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, |
||
| 146 | CostKind, i + Index, nullptr, nullptr); |
||
| 147 | Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy, |
||
| 148 | CostKind, i, nullptr, nullptr); |
||
| 149 | } |
||
| 150 | return Cost; |
||
| 151 | } |
||
| 152 | |||
| 153 | /// Estimate a cost of subvector insertion as a sequence of extract and |
||
| 154 | /// insert operations. |
||
| 155 | InstructionCost getInsertSubvectorOverhead(VectorType *VTy, |
||
| 156 | TTI::TargetCostKind CostKind, |
||
| 157 | int Index, |
||
| 158 | FixedVectorType *SubVTy) { |
||
| 159 | assert(VTy && SubVTy && |
||
| 160 | "Can only insert subvectors into vectors"); |
||
| 161 | int NumSubElts = SubVTy->getNumElements(); |
||
| 162 | assert((!isa<FixedVectorType>(VTy) || |
||
| 163 | (Index + NumSubElts) <= |
||
| 164 | (int)cast<FixedVectorType>(VTy)->getNumElements()) && |
||
| 165 | "SK_InsertSubvector index out of range"); |
||
| 166 | |||
| 167 | InstructionCost Cost = 0; |
||
| 168 | // Subvector insertion cost is equal to the cost of extracting element from |
||
| 169 | // the source type plus the cost of inserting them into the result vector |
||
| 170 | // type. |
||
| 171 | for (int i = 0; i != NumSubElts; ++i) { |
||
| 172 | Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy, |
||
| 173 | CostKind, i, nullptr, nullptr); |
||
| 174 | Cost += |
||
| 175 | thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, CostKind, |
||
| 176 | i + Index, nullptr, nullptr); |
||
| 177 | } |
||
| 178 | return Cost; |
||
| 179 | } |
||
| 180 | |||
| 181 | /// Local query method delegates up to T which *must* implement this! |
||
| 182 | const TargetSubtargetInfo *getST() const { |
||
| 183 | return static_cast<const T *>(this)->getST(); |
||
| 184 | } |
||
| 185 | |||
| 186 | /// Local query method delegates up to T which *must* implement this! |
||
| 187 | const TargetLoweringBase *getTLI() const { |
||
| 188 | return static_cast<const T *>(this)->getTLI(); |
||
| 189 | } |
||
| 190 | |||
| 191 | static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) { |
||
| 192 | switch (M) { |
||
| 193 | case TTI::MIM_Unindexed: |
||
| 194 | return ISD::UNINDEXED; |
||
| 195 | case TTI::MIM_PreInc: |
||
| 196 | return ISD::PRE_INC; |
||
| 197 | case TTI::MIM_PreDec: |
||
| 198 | return ISD::PRE_DEC; |
||
| 199 | case TTI::MIM_PostInc: |
||
| 200 | return ISD::POST_INC; |
||
| 201 | case TTI::MIM_PostDec: |
||
| 202 | return ISD::POST_DEC; |
||
| 203 | } |
||
| 204 | llvm_unreachable("Unexpected MemIndexedMode"); |
||
| 205 | } |
||
| 206 | |||
| 207 | InstructionCost getCommonMaskedMemoryOpCost(unsigned Opcode, Type *DataTy, |
||
| 208 | Align Alignment, |
||
| 209 | bool VariableMask, |
||
| 210 | bool IsGatherScatter, |
||
| 211 | TTI::TargetCostKind CostKind) { |
||
| 212 | // We cannot scalarize scalable vectors, so return Invalid. |
||
| 213 | if (isa<ScalableVectorType>(DataTy)) |
||
| 214 | return InstructionCost::getInvalid(); |
||
| 215 | |||
| 216 | auto *VT = cast<FixedVectorType>(DataTy); |
||
| 217 | // Assume the target does not have support for gather/scatter operations |
||
| 218 | // and provide a rough estimate. |
||
| 219 | // |
||
| 220 | // First, compute the cost of the individual memory operations. |
||
| 221 | InstructionCost AddrExtractCost = |
||
| 222 | IsGatherScatter |
||
| 223 | ? getVectorInstrCost(Instruction::ExtractElement, |
||
| 224 | FixedVectorType::get( |
||
| 225 | PointerType::get(VT->getElementType(), 0), |
||
| 226 | VT->getNumElements()), |
||
| 227 | CostKind, -1, nullptr, nullptr) |
||
| 228 | : 0; |
||
| 229 | InstructionCost LoadCost = |
||
| 230 | VT->getNumElements() * |
||
| 231 | (AddrExtractCost + |
||
| 232 | getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind)); |
||
| 233 | |||
| 234 | // Next, compute the cost of packing the result in a vector. |
||
| 235 | InstructionCost PackingCost = |
||
| 236 | getScalarizationOverhead(VT, Opcode != Instruction::Store, |
||
| 237 | Opcode == Instruction::Store, CostKind); |
||
| 238 | |||
| 239 | InstructionCost ConditionalCost = 0; |
||
| 240 | if (VariableMask) { |
||
| 241 | // Compute the cost of conditionally executing the memory operations with |
||
| 242 | // variable masks. This includes extracting the individual conditions, a |
||
| 243 | // branches and PHIs to combine the results. |
||
| 244 | // NOTE: Estimating the cost of conditionally executing the memory |
||
| 245 | // operations accurately is quite difficult and the current solution |
||
| 246 | // provides a very rough estimate only. |
||
| 247 | ConditionalCost = |
||
| 248 | VT->getNumElements() * |
||
| 249 | (getVectorInstrCost( |
||
| 250 | Instruction::ExtractElement, |
||
| 251 | FixedVectorType::get(Type::getInt1Ty(DataTy->getContext()), |
||
| 252 | VT->getNumElements()), |
||
| 253 | CostKind, -1, nullptr, nullptr) + |
||
| 254 | getCFInstrCost(Instruction::Br, CostKind) + |
||
| 255 | getCFInstrCost(Instruction::PHI, CostKind)); |
||
| 256 | } |
||
| 257 | |||
| 258 | return LoadCost + PackingCost + ConditionalCost; |
||
| 259 | } |
||
| 260 | |||
| 261 | protected: |
||
| 262 | explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL) |
||
| 263 | : BaseT(DL) {} |
||
| 264 | virtual ~BasicTTIImplBase() = default; |
||
| 265 | |||
| 266 | using TargetTransformInfoImplBase::DL; |
||
| 267 | |||
| 268 | public: |
||
| 269 | /// \name Scalar TTI Implementations |
||
| 270 | /// @{ |
||
| 271 | bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, |
||
| 272 | unsigned AddressSpace, Align Alignment, |
||
| 273 | unsigned *Fast) const { |
||
| 274 | EVT E = EVT::getIntegerVT(Context, BitWidth); |
||
| 275 | return getTLI()->allowsMisalignedMemoryAccesses( |
||
| 276 | E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast); |
||
| 277 | } |
||
| 278 | |||
| 279 | bool hasBranchDivergence() { return false; } |
||
| 280 | |||
| 281 | bool useGPUDivergenceAnalysis() { return false; } |
||
| 282 | |||
| 283 | bool isSourceOfDivergence(const Value *V) { return false; } |
||
| 284 | |||
| 285 | bool isAlwaysUniform(const Value *V) { return false; } |
||
| 286 | |||
| 287 | unsigned getFlatAddressSpace() { |
||
| 288 | // Return an invalid address space. |
||
| 289 | return -1; |
||
| 290 | } |
||
| 291 | |||
| 292 | bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, |
||
| 293 | Intrinsic::ID IID) const { |
||
| 294 | return false; |
||
| 295 | } |
||
| 296 | |||
| 297 | bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const { |
||
| 298 | return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS); |
||
| 299 | } |
||
| 300 | |||
| 301 | unsigned getAssumedAddrSpace(const Value *V) const { |
||
| 302 | return getTLI()->getTargetMachine().getAssumedAddrSpace(V); |
||
| 303 | } |
||
| 304 | |||
| 305 | bool isSingleThreaded() const { |
||
| 306 | return getTLI()->getTargetMachine().Options.ThreadModel == |
||
| 307 | ThreadModel::Single; |
||
| 308 | } |
||
| 309 | |||
| 310 | std::pair<const Value *, unsigned> |
||
| 311 | getPredicatedAddrSpace(const Value *V) const { |
||
| 312 | return getTLI()->getTargetMachine().getPredicatedAddrSpace(V); |
||
| 313 | } |
||
| 314 | |||
| 315 | Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, |
||
| 316 | Value *NewV) const { |
||
| 317 | return nullptr; |
||
| 318 | } |
||
| 319 | |||
| 320 | bool isLegalAddImmediate(int64_t imm) { |
||
| 321 | return getTLI()->isLegalAddImmediate(imm); |
||
| 322 | } |
||
| 323 | |||
| 324 | bool isLegalICmpImmediate(int64_t imm) { |
||
| 325 | return getTLI()->isLegalICmpImmediate(imm); |
||
| 326 | } |
||
| 327 | |||
| 328 | bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
||
| 329 | bool HasBaseReg, int64_t Scale, |
||
| 330 | unsigned AddrSpace, Instruction *I = nullptr) { |
||
| 331 | TargetLoweringBase::AddrMode AM; |
||
| 332 | AM.BaseGV = BaseGV; |
||
| 333 | AM.BaseOffs = BaseOffset; |
||
| 334 | AM.HasBaseReg = HasBaseReg; |
||
| 335 | AM.Scale = Scale; |
||
| 336 | return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I); |
||
| 337 | } |
||
| 338 | |||
| 339 | unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, |
||
| 340 | Type *ScalarValTy) const { |
||
| 341 | auto &&IsSupportedByTarget = [this, ScalarMemTy, ScalarValTy](unsigned VF) { |
||
| 342 | auto *SrcTy = FixedVectorType::get(ScalarMemTy, VF / 2); |
||
| 343 | EVT VT = getTLI()->getValueType(DL, SrcTy); |
||
| 344 | if (getTLI()->isOperationLegal(ISD::STORE, VT) || |
||
| 345 | getTLI()->isOperationCustom(ISD::STORE, VT)) |
||
| 346 | return true; |
||
| 347 | |||
| 348 | EVT ValVT = |
||
| 349 | getTLI()->getValueType(DL, FixedVectorType::get(ScalarValTy, VF / 2)); |
||
| 350 | EVT LegalizedVT = |
||
| 351 | getTLI()->getTypeToTransformTo(ScalarMemTy->getContext(), VT); |
||
| 352 | return getTLI()->isTruncStoreLegal(LegalizedVT, ValVT); |
||
| 353 | }; |
||
| 354 | while (VF > 2 && IsSupportedByTarget(VF)) |
||
| 355 | VF /= 2; |
||
| 356 | return VF; |
||
| 357 | } |
||
| 358 | |||
| 359 | bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty, |
||
| 360 | const DataLayout &DL) const { |
||
| 361 | EVT VT = getTLI()->getValueType(DL, Ty); |
||
| 362 | return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT); |
||
| 363 | } |
||
| 364 | |||
| 365 | bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty, |
||
| 366 | const DataLayout &DL) const { |
||
| 367 | EVT VT = getTLI()->getValueType(DL, Ty); |
||
| 368 | return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT); |
||
| 369 | } |
||
| 370 | |||
| 371 | bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) { |
||
| 372 | return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); |
||
| 373 | } |
||
| 374 | |||
| 375 | bool isNumRegsMajorCostOfLSR() { |
||
| 376 | return TargetTransformInfoImplBase::isNumRegsMajorCostOfLSR(); |
||
| 377 | } |
||
| 378 | |||
| 379 | bool isProfitableLSRChainElement(Instruction *I) { |
||
| 380 | return TargetTransformInfoImplBase::isProfitableLSRChainElement(I); |
||
| 381 | } |
||
| 382 | |||
| 383 | InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
||
| 384 | int64_t BaseOffset, bool HasBaseReg, |
||
| 385 | int64_t Scale, unsigned AddrSpace) { |
||
| 386 | TargetLoweringBase::AddrMode AM; |
||
| 387 | AM.BaseGV = BaseGV; |
||
| 388 | AM.BaseOffs = BaseOffset; |
||
| 389 | AM.HasBaseReg = HasBaseReg; |
||
| 390 | AM.Scale = Scale; |
||
| 391 | if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace)) |
||
| 392 | return 0; |
||
| 393 | return -1; |
||
| 394 | } |
||
| 395 | |||
| 396 | bool isTruncateFree(Type *Ty1, Type *Ty2) { |
||
| 397 | return getTLI()->isTruncateFree(Ty1, Ty2); |
||
| 398 | } |
||
| 399 | |||
| 400 | bool isProfitableToHoist(Instruction *I) { |
||
| 401 | return getTLI()->isProfitableToHoist(I); |
||
| 402 | } |
||
| 403 | |||
| 404 | bool useAA() const { return getST()->useAA(); } |
||
| 405 | |||
| 406 | bool isTypeLegal(Type *Ty) { |
||
| 407 | EVT VT = getTLI()->getValueType(DL, Ty); |
||
| 408 | return getTLI()->isTypeLegal(VT); |
||
| 409 | } |
||
| 410 | |||
| 411 | unsigned getRegUsageForType(Type *Ty) { |
||
| 412 | EVT ETy = getTLI()->getValueType(DL, Ty); |
||
| 413 | return getTLI()->getNumRegisters(Ty->getContext(), ETy); |
||
| 414 | } |
||
| 415 | |||
| 416 | InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, |
||
| 417 | ArrayRef<const Value *> Operands, |
||
| 418 | TTI::TargetCostKind CostKind) { |
||
| 419 | return BaseT::getGEPCost(PointeeType, Ptr, Operands, CostKind); |
||
| 420 | } |
||
| 421 | |||
| 422 | unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
||
| 423 | unsigned &JumpTableSize, |
||
| 424 | ProfileSummaryInfo *PSI, |
||
| 425 | BlockFrequencyInfo *BFI) { |
||
| 426 | /// Try to find the estimated number of clusters. Note that the number of |
||
| 427 | /// clusters identified in this function could be different from the actual |
||
| 428 | /// numbers found in lowering. This function ignore switches that are |
||
| 429 | /// lowered with a mix of jump table / bit test / BTree. This function was |
||
| 430 | /// initially intended to be used when estimating the cost of switch in |
||
| 431 | /// inline cost heuristic, but it's a generic cost model to be used in other |
||
| 432 | /// places (e.g., in loop unrolling). |
||
| 433 | unsigned N = SI.getNumCases(); |
||
| 434 | const TargetLoweringBase *TLI = getTLI(); |
||
| 435 | const DataLayout &DL = this->getDataLayout(); |
||
| 436 | |||
| 437 | JumpTableSize = 0; |
||
| 438 | bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent()); |
||
| 439 | |||
| 440 | // Early exit if both a jump table and bit test are not allowed. |
||
| 441 | if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N)) |
||
| 442 | return N; |
||
| 443 | |||
| 444 | APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue(); |
||
| 445 | APInt MinCaseVal = MaxCaseVal; |
||
| 446 | for (auto CI : SI.cases()) { |
||
| 447 | const APInt &CaseVal = CI.getCaseValue()->getValue(); |
||
| 448 | if (CaseVal.sgt(MaxCaseVal)) |
||
| 449 | MaxCaseVal = CaseVal; |
||
| 450 | if (CaseVal.slt(MinCaseVal)) |
||
| 451 | MinCaseVal = CaseVal; |
||
| 452 | } |
||
| 453 | |||
| 454 | // Check if suitable for a bit test |
||
| 455 | if (N <= DL.getIndexSizeInBits(0u)) { |
||
| 456 | SmallPtrSet<const BasicBlock *, 4> Dests; |
||
| 457 | for (auto I : SI.cases()) |
||
| 458 | Dests.insert(I.getCaseSuccessor()); |
||
| 459 | |||
| 460 | if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal, |
||
| 461 | DL)) |
||
| 462 | return 1; |
||
| 463 | } |
||
| 464 | |||
| 465 | // Check if suitable for a jump table. |
||
| 466 | if (IsJTAllowed) { |
||
| 467 | if (N < 2 || N < TLI->getMinimumJumpTableEntries()) |
||
| 468 | return N; |
||
| 469 | uint64_t Range = |
||
| 470 | (MaxCaseVal - MinCaseVal) |
||
| 471 | .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1; |
||
| 472 | // Check whether a range of clusters is dense enough for a jump table |
||
| 473 | if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) { |
||
| 474 | JumpTableSize = Range; |
||
| 475 | return 1; |
||
| 476 | } |
||
| 477 | } |
||
| 478 | return N; |
||
| 479 | } |
||
| 480 | |||
| 481 | bool shouldBuildLookupTables() { |
||
| 482 | const TargetLoweringBase *TLI = getTLI(); |
||
| 483 | return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || |
||
| 484 | TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other); |
||
| 485 | } |
||
| 486 | |||
| 487 | bool shouldBuildRelLookupTables() const { |
||
| 488 | const TargetMachine &TM = getTLI()->getTargetMachine(); |
||
| 489 | // If non-PIC mode, do not generate a relative lookup table. |
||
| 490 | if (!TM.isPositionIndependent()) |
||
| 491 | return false; |
||
| 492 | |||
| 493 | /// Relative lookup table entries consist of 32-bit offsets. |
||
| 494 | /// Do not generate relative lookup tables for large code models |
||
| 495 | /// in 64-bit achitectures where 32-bit offsets might not be enough. |
||
| 496 | if (TM.getCodeModel() == CodeModel::Medium || |
||
| 497 | TM.getCodeModel() == CodeModel::Large) |
||
| 498 | return false; |
||
| 499 | |||
| 500 | Triple TargetTriple = TM.getTargetTriple(); |
||
| 501 | if (!TargetTriple.isArch64Bit()) |
||
| 502 | return false; |
||
| 503 | |||
| 504 | // TODO: Triggers issues on aarch64 on darwin, so temporarily disable it |
||
| 505 | // there. |
||
| 506 | if (TargetTriple.getArch() == Triple::aarch64 && TargetTriple.isOSDarwin()) |
||
| 507 | return false; |
||
| 508 | |||
| 509 | return true; |
||
| 510 | } |
||
| 511 | |||
| 512 | bool haveFastSqrt(Type *Ty) { |
||
| 513 | const TargetLoweringBase *TLI = getTLI(); |
||
| 514 | EVT VT = TLI->getValueType(DL, Ty); |
||
| 515 | return TLI->isTypeLegal(VT) && |
||
| 516 | TLI->isOperationLegalOrCustom(ISD::FSQRT, VT); |
||
| 517 | } |
||
| 518 | |||
| 519 | bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { |
||
| 520 | return true; |
||
| 521 | } |
||
| 522 | |||
| 523 | InstructionCost getFPOpCost(Type *Ty) { |
||
| 524 | // Check whether FADD is available, as a proxy for floating-point in |
||
| 525 | // general. |
||
| 526 | const TargetLoweringBase *TLI = getTLI(); |
||
| 527 | EVT VT = TLI->getValueType(DL, Ty); |
||
| 528 | if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT)) |
||
| 529 | return TargetTransformInfo::TCC_Basic; |
||
| 530 | return TargetTransformInfo::TCC_Expensive; |
||
| 531 | } |
||
| 532 | |||
| 533 | unsigned getInliningThresholdMultiplier() { return 1; } |
||
| 534 | unsigned adjustInliningThreshold(const CallBase *CB) { return 0; } |
||
| 535 | |||
| 536 | int getInlinerVectorBonusPercent() { return 150; } |
||
| 537 | |||
| 538 | void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
||
| 539 | TTI::UnrollingPreferences &UP, |
||
| 540 | OptimizationRemarkEmitter *ORE) { |
||
| 541 | // This unrolling functionality is target independent, but to provide some |
||
| 542 | // motivation for its intended use, for x86: |
||
| 543 | |||
| 544 | // According to the Intel 64 and IA-32 Architectures Optimization Reference |
||
| 545 | // Manual, Intel Core models and later have a loop stream detector (and |
||
| 546 | // associated uop queue) that can benefit from partial unrolling. |
||
| 547 | // The relevant requirements are: |
||
| 548 | // - The loop must have no more than 4 (8 for Nehalem and later) branches |
||
| 549 | // taken, and none of them may be calls. |
||
| 550 | // - The loop can have no more than 18 (28 for Nehalem and later) uops. |
||
| 551 | |||
| 552 | // According to the Software Optimization Guide for AMD Family 15h |
||
| 553 | // Processors, models 30h-4fh (Steamroller and later) have a loop predictor |
||
| 554 | // and loop buffer which can benefit from partial unrolling. |
||
| 555 | // The relevant requirements are: |
||
| 556 | // - The loop must have fewer than 16 branches |
||
| 557 | // - The loop must have less than 40 uops in all executed loop branches |
||
| 558 | |||
| 559 | // The number of taken branches in a loop is hard to estimate here, and |
||
| 560 | // benchmarking has revealed that it is better not to be conservative when |
||
| 561 | // estimating the branch count. As a result, we'll ignore the branch limits |
||
| 562 | // until someone finds a case where it matters in practice. |
||
| 563 | |||
| 564 | unsigned MaxOps; |
||
| 565 | const TargetSubtargetInfo *ST = getST(); |
||
| 566 | if (PartialUnrollingThreshold.getNumOccurrences() > 0) |
||
| 567 | MaxOps = PartialUnrollingThreshold; |
||
| 568 | else if (ST->getSchedModel().LoopMicroOpBufferSize > 0) |
||
| 569 | MaxOps = ST->getSchedModel().LoopMicroOpBufferSize; |
||
| 570 | else |
||
| 571 | return; |
||
| 572 | |||
| 573 | // Scan the loop: don't unroll loops with calls. |
||
| 574 | for (BasicBlock *BB : L->blocks()) { |
||
| 575 | for (Instruction &I : *BB) { |
||
| 576 | if (isa<CallInst>(I) || isa<InvokeInst>(I)) { |
||
| 577 | if (const Function *F = cast<CallBase>(I).getCalledFunction()) { |
||
| 578 | if (!thisT()->isLoweredToCall(F)) |
||
| 579 | continue; |
||
| 580 | } |
||
| 581 | |||
| 582 | if (ORE) { |
||
| 583 | ORE->emit([&]() { |
||
| 584 | return OptimizationRemark("TTI", "DontUnroll", L->getStartLoc(), |
||
| 585 | L->getHeader()) |
||
| 586 | << "advising against unrolling the loop because it " |
||
| 587 | "contains a " |
||
| 588 | << ore::NV("Call", &I); |
||
| 589 | }); |
||
| 590 | } |
||
| 591 | return; |
||
| 592 | } |
||
| 593 | } |
||
| 594 | } |
||
| 595 | |||
| 596 | // Enable runtime and partial unrolling up to the specified size. |
||
| 597 | // Enable using trip count upper bound to unroll loops. |
||
| 598 | UP.Partial = UP.Runtime = UP.UpperBound = true; |
||
| 599 | UP.PartialThreshold = MaxOps; |
||
| 600 | |||
| 601 | // Avoid unrolling when optimizing for size. |
||
| 602 | UP.OptSizeThreshold = 0; |
||
| 603 | UP.PartialOptSizeThreshold = 0; |
||
| 604 | |||
| 605 | // Set number of instructions optimized when "back edge" |
||
| 606 | // becomes "fall through" to default value of 2. |
||
| 607 | UP.BEInsns = 2; |
||
| 608 | } |
||
| 609 | |||
| 610 | void getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
||
| 611 | TTI::PeelingPreferences &PP) { |
||
| 612 | PP.PeelCount = 0; |
||
| 613 | PP.AllowPeeling = true; |
||
| 614 | PP.AllowLoopNestsPeeling = false; |
||
| 615 | PP.PeelProfiledIterations = true; |
||
| 616 | } |
||
| 617 | |||
| 618 | bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
||
| 619 | AssumptionCache &AC, |
||
| 620 | TargetLibraryInfo *LibInfo, |
||
| 621 | HardwareLoopInfo &HWLoopInfo) { |
||
| 622 | return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); |
||
| 623 | } |
||
| 624 | |||
| 625 | bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, |
||
| 626 | AssumptionCache &AC, TargetLibraryInfo *TLI, |
||
| 627 | DominatorTree *DT, |
||
| 628 | LoopVectorizationLegality *LVL, |
||
| 629 | InterleavedAccessInfo *IAI) { |
||
| 630 | return BaseT::preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI); |
||
| 631 | } |
||
| 632 | |||
| 633 | PredicationStyle emitGetActiveLaneMask() { |
||
| 634 | return BaseT::emitGetActiveLaneMask(); |
||
| 635 | } |
||
| 636 | |||
| 637 | std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC, |
||
| 638 | IntrinsicInst &II) { |
||
| 639 | return BaseT::instCombineIntrinsic(IC, II); |
||
| 640 | } |
||
| 641 | |||
| 642 | std::optional<Value *> |
||
| 643 | simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, |
||
| 644 | APInt DemandedMask, KnownBits &Known, |
||
| 645 | bool &KnownBitsComputed) { |
||
| 646 | return BaseT::simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, |
||
| 647 | KnownBitsComputed); |
||
| 648 | } |
||
| 649 | |||
| 650 | std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( |
||
| 651 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, |
||
| 652 | APInt &UndefElts2, APInt &UndefElts3, |
||
| 653 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
||
| 654 | SimplifyAndSetOp) { |
||
| 655 | return BaseT::simplifyDemandedVectorEltsIntrinsic( |
||
| 656 | IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, |
||
| 657 | SimplifyAndSetOp); |
||
| 658 | } |
||
| 659 | |||
| 660 | virtual std::optional<unsigned> |
||
| 661 | getCacheSize(TargetTransformInfo::CacheLevel Level) const { |
||
| 662 | return std::optional<unsigned>( |
||
| 663 | getST()->getCacheSize(static_cast<unsigned>(Level))); |
||
| 664 | } |
||
| 665 | |||
| 666 | virtual std::optional<unsigned> |
||
| 667 | getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const { |
||
| 668 | std::optional<unsigned> TargetResult = |
||
| 669 | getST()->getCacheAssociativity(static_cast<unsigned>(Level)); |
||
| 670 | |||
| 671 | if (TargetResult) |
||
| 672 | return TargetResult; |
||
| 673 | |||
| 674 | return BaseT::getCacheAssociativity(Level); |
||
| 675 | } |
||
| 676 | |||
| 677 | virtual unsigned getCacheLineSize() const { |
||
| 678 | return getST()->getCacheLineSize(); |
||
| 679 | } |
||
| 680 | |||
| 681 | virtual unsigned getPrefetchDistance() const { |
||
| 682 | return getST()->getPrefetchDistance(); |
||
| 683 | } |
||
| 684 | |||
| 685 | virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses, |
||
| 686 | unsigned NumStridedMemAccesses, |
||
| 687 | unsigned NumPrefetches, |
||
| 688 | bool HasCall) const { |
||
| 689 | return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, |
||
| 690 | NumPrefetches, HasCall); |
||
| 691 | } |
||
| 692 | |||
| 693 | virtual unsigned getMaxPrefetchIterationsAhead() const { |
||
| 694 | return getST()->getMaxPrefetchIterationsAhead(); |
||
| 695 | } |
||
| 696 | |||
| 697 | virtual bool enableWritePrefetching() const { |
||
| 698 | return getST()->enableWritePrefetching(); |
||
| 699 | } |
||
| 700 | |||
| 701 | virtual bool shouldPrefetchAddressSpace(unsigned AS) const { |
||
| 702 | return getST()->shouldPrefetchAddressSpace(AS); |
||
| 703 | } |
||
| 704 | |||
| 705 | /// @} |
||
| 706 | |||
| 707 | /// \name Vector TTI Implementations |
||
| 708 | /// @{ |
||
| 709 | |||
| 710 | TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { |
||
| 711 | return TypeSize::getFixed(32); |
||
| 712 | } |
||
| 713 | |||
| 714 | std::optional<unsigned> getMaxVScale() const { return std::nullopt; } |
||
| 715 | std::optional<unsigned> getVScaleForTuning() const { return std::nullopt; } |
||
| 716 | |||
| 717 | /// Estimate the overhead of scalarizing an instruction. Insert and Extract |
||
| 718 | /// are set if the demanded result elements need to be inserted and/or |
||
| 719 | /// extracted from vectors. |
||
| 720 | InstructionCost getScalarizationOverhead(VectorType *InTy, |
||
| 721 | const APInt &DemandedElts, |
||
| 722 | bool Insert, bool Extract, |
||
| 723 | TTI::TargetCostKind CostKind) { |
||
| 724 | /// FIXME: a bitfield is not a reasonable abstraction for talking about |
||
| 725 | /// which elements are needed from a scalable vector |
||
| 726 | if (isa<ScalableVectorType>(InTy)) |
||
| 727 | return InstructionCost::getInvalid(); |
||
| 728 | auto *Ty = cast<FixedVectorType>(InTy); |
||
| 729 | |||
| 730 | assert(DemandedElts.getBitWidth() == Ty->getNumElements() && |
||
| 731 | "Vector size mismatch"); |
||
| 732 | |||
| 733 | InstructionCost Cost = 0; |
||
| 734 | |||
| 735 | for (int i = 0, e = Ty->getNumElements(); i < e; ++i) { |
||
| 736 | if (!DemandedElts[i]) |
||
| 737 | continue; |
||
| 738 | if (Insert) |
||
| 739 | Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty, |
||
| 740 | CostKind, i, nullptr, nullptr); |
||
| 741 | if (Extract) |
||
| 742 | Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, |
||
| 743 | CostKind, i, nullptr, nullptr); |
||
| 744 | } |
||
| 745 | |||
| 746 | return Cost; |
||
| 747 | } |
||
| 748 | |||
| 749 | /// Helper wrapper for the DemandedElts variant of getScalarizationOverhead. |
||
| 750 | InstructionCost getScalarizationOverhead(VectorType *InTy, bool Insert, |
||
| 751 | bool Extract, |
||
| 752 | TTI::TargetCostKind CostKind) { |
||
| 753 | if (isa<ScalableVectorType>(InTy)) |
||
| 754 | return InstructionCost::getInvalid(); |
||
| 755 | auto *Ty = cast<FixedVectorType>(InTy); |
||
| 756 | |||
| 757 | APInt DemandedElts = APInt::getAllOnes(Ty->getNumElements()); |
||
| 758 | return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract, |
||
| 759 | CostKind); |
||
| 760 | } |
||
| 761 | |||
| 762 | /// Estimate the overhead of scalarizing an instructions unique |
||
| 763 | /// non-constant operands. The (potentially vector) types to use for each of |
||
| 764 | /// argument are passes via Tys. |
||
| 765 | InstructionCost |
||
| 766 | getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
||
| 767 | ArrayRef<Type *> Tys, |
||
| 768 | TTI::TargetCostKind CostKind) { |
||
| 769 | assert(Args.size() == Tys.size() && "Expected matching Args and Tys"); |
||
| 770 | |||
| 771 | InstructionCost Cost = 0; |
||
| 772 | SmallPtrSet<const Value*, 4> UniqueOperands; |
||
| 773 | for (int I = 0, E = Args.size(); I != E; I++) { |
||
| 774 | // Disregard things like metadata arguments. |
||
| 775 | const Value *A = Args[I]; |
||
| 776 | Type *Ty = Tys[I]; |
||
| 777 | if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() && |
||
| 778 | !Ty->isPtrOrPtrVectorTy()) |
||
| 779 | continue; |
||
| 780 | |||
| 781 | if (!isa<Constant>(A) && UniqueOperands.insert(A).second) { |
||
| 782 | if (auto *VecTy = dyn_cast<VectorType>(Ty)) |
||
| 783 | Cost += getScalarizationOverhead(VecTy, /*Insert*/ false, |
||
| 784 | /*Extract*/ true, CostKind); |
||
| 785 | } |
||
| 786 | } |
||
| 787 | |||
| 788 | return Cost; |
||
| 789 | } |
||
| 790 | |||
| 791 | /// Estimate the overhead of scalarizing the inputs and outputs of an |
||
| 792 | /// instruction, with return type RetTy and arguments Args of type Tys. If |
||
| 793 | /// Args are unknown (empty), then the cost associated with one argument is |
||
| 794 | /// added as a heuristic. |
||
| 795 | InstructionCost getScalarizationOverhead(VectorType *RetTy, |
||
| 796 | ArrayRef<const Value *> Args, |
||
| 797 | ArrayRef<Type *> Tys, |
||
| 798 | TTI::TargetCostKind CostKind) { |
||
| 799 | InstructionCost Cost = getScalarizationOverhead( |
||
| 800 | RetTy, /*Insert*/ true, /*Extract*/ false, CostKind); |
||
| 801 | if (!Args.empty()) |
||
| 802 | Cost += getOperandsScalarizationOverhead(Args, Tys, CostKind); |
||
| 803 | else |
||
| 804 | // When no information on arguments is provided, we add the cost |
||
| 805 | // associated with one argument as a heuristic. |
||
| 806 | Cost += getScalarizationOverhead(RetTy, /*Insert*/ false, |
||
| 807 | /*Extract*/ true, CostKind); |
||
| 808 | |||
| 809 | return Cost; |
||
| 810 | } |
||
| 811 | |||
| 812 | /// Estimate the cost of type-legalization and the legalized type. |
||
| 813 | std::pair<InstructionCost, MVT> getTypeLegalizationCost(Type *Ty) const { |
||
| 814 | LLVMContext &C = Ty->getContext(); |
||
| 815 | EVT MTy = getTLI()->getValueType(DL, Ty); |
||
| 816 | |||
| 817 | InstructionCost Cost = 1; |
||
| 818 | // We keep legalizing the type until we find a legal kind. We assume that |
||
| 819 | // the only operation that costs anything is the split. After splitting |
||
| 820 | // we need to handle two types. |
||
| 821 | while (true) { |
||
| 822 | TargetLoweringBase::LegalizeKind LK = getTLI()->getTypeConversion(C, MTy); |
||
| 823 | |||
| 824 | if (LK.first == TargetLoweringBase::TypeScalarizeScalableVector) { |
||
| 825 | // Ensure we return a sensible simple VT here, since many callers of |
||
| 826 | // this function require it. |
||
| 827 | MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64; |
||
| 828 | return std::make_pair(InstructionCost::getInvalid(), VT); |
||
| 829 | } |
||
| 830 | |||
| 831 | if (LK.first == TargetLoweringBase::TypeLegal) |
||
| 832 | return std::make_pair(Cost, MTy.getSimpleVT()); |
||
| 833 | |||
| 834 | if (LK.first == TargetLoweringBase::TypeSplitVector || |
||
| 835 | LK.first == TargetLoweringBase::TypeExpandInteger) |
||
| 836 | Cost *= 2; |
||
| 837 | |||
| 838 | // Do not loop with f128 type. |
||
| 839 | if (MTy == LK.second) |
||
| 840 | return std::make_pair(Cost, MTy.getSimpleVT()); |
||
| 841 | |||
| 842 | // Keep legalizing the type. |
||
| 843 | MTy = LK.second; |
||
| 844 | } |
||
| 845 | } |
||
| 846 | |||
| 847 | unsigned getMaxInterleaveFactor(unsigned VF) { return 1; } |
||
| 848 | |||
| 849 | InstructionCost getArithmeticInstrCost( |
||
| 850 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
||
| 851 | TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None}, |
||
| 852 | TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None}, |
||
| 853 | ArrayRef<const Value *> Args = ArrayRef<const Value *>(), |
||
| 854 | const Instruction *CxtI = nullptr) { |
||
| 855 | // Check if any of the operands are vector operands. |
||
| 856 | const TargetLoweringBase *TLI = getTLI(); |
||
| 857 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
||
| 858 | assert(ISD && "Invalid opcode"); |
||
| 859 | |||
| 860 | // TODO: Handle more cost kinds. |
||
| 861 | if (CostKind != TTI::TCK_RecipThroughput) |
||
| 862 | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, |
||
| 863 | Opd1Info, Opd2Info, |
||
| 864 | Args, CxtI); |
||
| 865 | |||
| 866 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
||
| 867 | |||
| 868 | bool IsFloat = Ty->isFPOrFPVectorTy(); |
||
| 869 | // Assume that floating point arithmetic operations cost twice as much as |
||
| 870 | // integer operations. |
||
| 871 | InstructionCost OpCost = (IsFloat ? 2 : 1); |
||
| 872 | |||
| 873 | if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { |
||
| 874 | // The operation is legal. Assume it costs 1. |
||
| 875 | // TODO: Once we have extract/insert subvector cost we need to use them. |
||
| 876 | return LT.first * OpCost; |
||
| 877 | } |
||
| 878 | |||
| 879 | if (!TLI->isOperationExpand(ISD, LT.second)) { |
||
| 880 | // If the operation is custom lowered, then assume that the code is twice |
||
| 881 | // as expensive. |
||
| 882 | return LT.first * 2 * OpCost; |
||
| 883 | } |
||
| 884 | |||
| 885 | // An 'Expand' of URem and SRem is special because it may default |
||
| 886 | // to expanding the operation into a sequence of sub-operations |
||
| 887 | // i.e. X % Y -> X-(X/Y)*Y. |
||
| 888 | if (ISD == ISD::UREM || ISD == ISD::SREM) { |
||
| 889 | bool IsSigned = ISD == ISD::SREM; |
||
| 890 | if (TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, |
||
| 891 | LT.second) || |
||
| 892 | TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIV : ISD::UDIV, |
||
| 893 | LT.second)) { |
||
| 894 | unsigned DivOpc = IsSigned ? Instruction::SDiv : Instruction::UDiv; |
||
| 895 | InstructionCost DivCost = thisT()->getArithmeticInstrCost( |
||
| 896 | DivOpc, Ty, CostKind, Opd1Info, Opd2Info); |
||
| 897 | InstructionCost MulCost = |
||
| 898 | thisT()->getArithmeticInstrCost(Instruction::Mul, Ty, CostKind); |
||
| 899 | InstructionCost SubCost = |
||
| 900 | thisT()->getArithmeticInstrCost(Instruction::Sub, Ty, CostKind); |
||
| 901 | return DivCost + MulCost + SubCost; |
||
| 902 | } |
||
| 903 | } |
||
| 904 | |||
| 905 | // We cannot scalarize scalable vectors, so return Invalid. |
||
| 906 | if (isa<ScalableVectorType>(Ty)) |
||
| 907 | return InstructionCost::getInvalid(); |
||
| 908 | |||
| 909 | // Else, assume that we need to scalarize this op. |
||
| 910 | // TODO: If one of the types get legalized by splitting, handle this |
||
| 911 | // similarly to what getCastInstrCost() does. |
||
| 912 | if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) { |
||
| 913 | InstructionCost Cost = thisT()->getArithmeticInstrCost( |
||
| 914 | Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info, |
||
| 915 | Args, CxtI); |
||
| 916 | // Return the cost of multiple scalar invocation plus the cost of |
||
| 917 | // inserting and extracting the values. |
||
| 918 | SmallVector<Type *> Tys(Args.size(), Ty); |
||
| 919 | return getScalarizationOverhead(VTy, Args, Tys, CostKind) + |
||
| 920 | VTy->getNumElements() * Cost; |
||
| 921 | } |
||
| 922 | |||
| 923 | // We don't know anything about this scalar instruction. |
||
| 924 | return OpCost; |
||
| 925 | } |
||
| 926 | |||
| 927 | TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, |
||
| 928 | ArrayRef<int> Mask) const { |
||
| 929 | int Limit = Mask.size() * 2; |
||
| 930 | if (Mask.empty() || |
||
| 931 | // Extra check required by isSingleSourceMaskImpl function (called by |
||
| 932 | // ShuffleVectorInst::isSingleSourceMask). |
||
| 933 | any_of(Mask, [Limit](int I) { return I >= Limit; })) |
||
| 934 | return Kind; |
||
| 935 | int Index; |
||
| 936 | switch (Kind) { |
||
| 937 | case TTI::SK_PermuteSingleSrc: |
||
| 938 | if (ShuffleVectorInst::isReverseMask(Mask)) |
||
| 939 | return TTI::SK_Reverse; |
||
| 940 | if (ShuffleVectorInst::isZeroEltSplatMask(Mask)) |
||
| 941 | return TTI::SK_Broadcast; |
||
| 942 | break; |
||
| 943 | case TTI::SK_PermuteTwoSrc: |
||
| 944 | if (ShuffleVectorInst::isSelectMask(Mask)) |
||
| 945 | return TTI::SK_Select; |
||
| 946 | if (ShuffleVectorInst::isTransposeMask(Mask)) |
||
| 947 | return TTI::SK_Transpose; |
||
| 948 | if (ShuffleVectorInst::isSpliceMask(Mask, Index)) |
||
| 949 | return TTI::SK_Splice; |
||
| 950 | break; |
||
| 951 | case TTI::SK_Select: |
||
| 952 | case TTI::SK_Reverse: |
||
| 953 | case TTI::SK_Broadcast: |
||
| 954 | case TTI::SK_Transpose: |
||
| 955 | case TTI::SK_InsertSubvector: |
||
| 956 | case TTI::SK_ExtractSubvector: |
||
| 957 | case TTI::SK_Splice: |
||
| 958 | break; |
||
| 959 | } |
||
| 960 | return Kind; |
||
| 961 | } |
||
| 962 | |||
| 963 | InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, |
||
| 964 | ArrayRef<int> Mask, |
||
| 965 | TTI::TargetCostKind CostKind, int Index, |
||
| 966 | VectorType *SubTp, |
||
| 967 | ArrayRef<const Value *> Args = std::nullopt) { |
||
| 968 | |||
| 969 | switch (improveShuffleKindFromMask(Kind, Mask)) { |
||
| 970 | case TTI::SK_Broadcast: |
||
| 971 | if (auto *FVT = dyn_cast<FixedVectorType>(Tp)) |
||
| 972 | return getBroadcastShuffleOverhead(FVT, CostKind); |
||
| 973 | return InstructionCost::getInvalid(); |
||
| 974 | case TTI::SK_Select: |
||
| 975 | case TTI::SK_Splice: |
||
| 976 | case TTI::SK_Reverse: |
||
| 977 | case TTI::SK_Transpose: |
||
| 978 | case TTI::SK_PermuteSingleSrc: |
||
| 979 | case TTI::SK_PermuteTwoSrc: |
||
| 980 | if (auto *FVT = dyn_cast<FixedVectorType>(Tp)) |
||
| 981 | return getPermuteShuffleOverhead(FVT, CostKind); |
||
| 982 | return InstructionCost::getInvalid(); |
||
| 983 | case TTI::SK_ExtractSubvector: |
||
| 984 | return getExtractSubvectorOverhead(Tp, CostKind, Index, |
||
| 985 | cast<FixedVectorType>(SubTp)); |
||
| 986 | case TTI::SK_InsertSubvector: |
||
| 987 | return getInsertSubvectorOverhead(Tp, CostKind, Index, |
||
| 988 | cast<FixedVectorType>(SubTp)); |
||
| 989 | } |
||
| 990 | llvm_unreachable("Unknown TTI::ShuffleKind"); |
||
| 991 | } |
||
| 992 | |||
| 993 | InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
||
| 994 | TTI::CastContextHint CCH, |
||
| 995 | TTI::TargetCostKind CostKind, |
||
| 996 | const Instruction *I = nullptr) { |
||
| 997 | if (BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I) == 0) |
||
| 998 | return 0; |
||
| 999 | |||
| 1000 | const TargetLoweringBase *TLI = getTLI(); |
||
| 1001 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
||
| 1002 | assert(ISD && "Invalid opcode"); |
||
| 1003 | std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src); |
||
| 1004 | std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Dst); |
||
| 1005 | |||
| 1006 | TypeSize SrcSize = SrcLT.second.getSizeInBits(); |
||
| 1007 | TypeSize DstSize = DstLT.second.getSizeInBits(); |
||
| 1008 | bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy(); |
||
| 1009 | bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy(); |
||
| 1010 | |||
| 1011 | switch (Opcode) { |
||
| 1012 | default: |
||
| 1013 | break; |
||
| 1014 | case Instruction::Trunc: |
||
| 1015 | // Check for NOOP conversions. |
||
| 1016 | if (TLI->isTruncateFree(SrcLT.second, DstLT.second)) |
||
| 1017 | return 0; |
||
| 1018 | [[fallthrough]]; |
||
| 1019 | case Instruction::BitCast: |
||
| 1020 | // Bitcast between types that are legalized to the same type are free and |
||
| 1021 | // assume int to/from ptr of the same size is also free. |
||
| 1022 | if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst && |
||
| 1023 | SrcSize == DstSize) |
||
| 1024 | return 0; |
||
| 1025 | break; |
||
| 1026 | case Instruction::FPExt: |
||
| 1027 | if (I && getTLI()->isExtFree(I)) |
||
| 1028 | return 0; |
||
| 1029 | break; |
||
| 1030 | case Instruction::ZExt: |
||
| 1031 | if (TLI->isZExtFree(SrcLT.second, DstLT.second)) |
||
| 1032 | return 0; |
||
| 1033 | [[fallthrough]]; |
||
| 1034 | case Instruction::SExt: |
||
| 1035 | if (I && getTLI()->isExtFree(I)) |
||
| 1036 | return 0; |
||
| 1037 | |||
| 1038 | // If this is a zext/sext of a load, return 0 if the corresponding |
||
| 1039 | // extending load exists on target and the result type is legal. |
||
| 1040 | if (CCH == TTI::CastContextHint::Normal) { |
||
| 1041 | EVT ExtVT = EVT::getEVT(Dst); |
||
| 1042 | EVT LoadVT = EVT::getEVT(Src); |
||
| 1043 | unsigned LType = |
||
| 1044 | ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD); |
||
| 1045 | if (DstLT.first == SrcLT.first && |
||
| 1046 | TLI->isLoadExtLegal(LType, ExtVT, LoadVT)) |
||
| 1047 | return 0; |
||
| 1048 | } |
||
| 1049 | break; |
||
| 1050 | case Instruction::AddrSpaceCast: |
||
| 1051 | if (TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(), |
||
| 1052 | Dst->getPointerAddressSpace())) |
||
| 1053 | return 0; |
||
| 1054 | break; |
||
| 1055 | } |
||
| 1056 | |||
| 1057 | auto *SrcVTy = dyn_cast<VectorType>(Src); |
||
| 1058 | auto *DstVTy = dyn_cast<VectorType>(Dst); |
||
| 1059 | |||
| 1060 | // If the cast is marked as legal (or promote) then assume low cost. |
||
| 1061 | if (SrcLT.first == DstLT.first && |
||
| 1062 | TLI->isOperationLegalOrPromote(ISD, DstLT.second)) |
||
| 1063 | return SrcLT.first; |
||
| 1064 | |||
| 1065 | // Handle scalar conversions. |
||
| 1066 | if (!SrcVTy && !DstVTy) { |
||
| 1067 | // Just check the op cost. If the operation is legal then assume it costs |
||
| 1068 | // 1. |
||
| 1069 | if (!TLI->isOperationExpand(ISD, DstLT.second)) |
||
| 1070 | return 1; |
||
| 1071 | |||
| 1072 | // Assume that illegal scalar instruction are expensive. |
||
| 1073 | return 4; |
||
| 1074 | } |
||
| 1075 | |||
| 1076 | // Check vector-to-vector casts. |
||
| 1077 | if (DstVTy && SrcVTy) { |
||
| 1078 | // If the cast is between same-sized registers, then the check is simple. |
||
| 1079 | if (SrcLT.first == DstLT.first && SrcSize == DstSize) { |
||
| 1080 | |||
| 1081 | // Assume that Zext is done using AND. |
||
| 1082 | if (Opcode == Instruction::ZExt) |
||
| 1083 | return SrcLT.first; |
||
| 1084 | |||
| 1085 | // Assume that sext is done using SHL and SRA. |
||
| 1086 | if (Opcode == Instruction::SExt) |
||
| 1087 | return SrcLT.first * 2; |
||
| 1088 | |||
| 1089 | // Just check the op cost. If the operation is legal then assume it |
||
| 1090 | // costs |
||
| 1091 | // 1 and multiply by the type-legalization overhead. |
||
| 1092 | if (!TLI->isOperationExpand(ISD, DstLT.second)) |
||
| 1093 | return SrcLT.first * 1; |
||
| 1094 | } |
||
| 1095 | |||
| 1096 | // If we are legalizing by splitting, query the concrete TTI for the cost |
||
| 1097 | // of casting the original vector twice. We also need to factor in the |
||
| 1098 | // cost of the split itself. Count that as 1, to be consistent with |
||
| 1099 | // getTypeLegalizationCost(). |
||
| 1100 | bool SplitSrc = |
||
| 1101 | TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) == |
||
| 1102 | TargetLowering::TypeSplitVector; |
||
| 1103 | bool SplitDst = |
||
| 1104 | TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) == |
||
| 1105 | TargetLowering::TypeSplitVector; |
||
| 1106 | if ((SplitSrc || SplitDst) && SrcVTy->getElementCount().isVector() && |
||
| 1107 | DstVTy->getElementCount().isVector()) { |
||
| 1108 | Type *SplitDstTy = VectorType::getHalfElementsVectorType(DstVTy); |
||
| 1109 | Type *SplitSrcTy = VectorType::getHalfElementsVectorType(SrcVTy); |
||
| 1110 | T *TTI = static_cast<T *>(this); |
||
| 1111 | // If both types need to be split then the split is free. |
||
| 1112 | InstructionCost SplitCost = |
||
| 1113 | (!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0; |
||
| 1114 | return SplitCost + |
||
| 1115 | (2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH, |
||
| 1116 | CostKind, I)); |
||
| 1117 | } |
||
| 1118 | |||
| 1119 | // Scalarization cost is Invalid, can't assume any num elements. |
||
| 1120 | if (isa<ScalableVectorType>(DstVTy)) |
||
| 1121 | return InstructionCost::getInvalid(); |
||
| 1122 | |||
| 1123 | // In other cases where the source or destination are illegal, assume |
||
| 1124 | // the operation will get scalarized. |
||
| 1125 | unsigned Num = cast<FixedVectorType>(DstVTy)->getNumElements(); |
||
| 1126 | InstructionCost Cost = thisT()->getCastInstrCost( |
||
| 1127 | Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind, I); |
||
| 1128 | |||
| 1129 | // Return the cost of multiple scalar invocation plus the cost of |
||
| 1130 | // inserting and extracting the values. |
||
| 1131 | return getScalarizationOverhead(DstVTy, /*Insert*/ true, /*Extract*/ true, |
||
| 1132 | CostKind) + |
||
| 1133 | Num * Cost; |
||
| 1134 | } |
||
| 1135 | |||
| 1136 | // We already handled vector-to-vector and scalar-to-scalar conversions. |
||
| 1137 | // This |
||
| 1138 | // is where we handle bitcast between vectors and scalars. We need to assume |
||
| 1139 | // that the conversion is scalarized in one way or another. |
||
| 1140 | if (Opcode == Instruction::BitCast) { |
||
| 1141 | // Illegal bitcasts are done by storing and loading from a stack slot. |
||
| 1142 | return (SrcVTy ? getScalarizationOverhead(SrcVTy, /*Insert*/ false, |
||
| 1143 | /*Extract*/ true, CostKind) |
||
| 1144 | : 0) + |
||
| 1145 | (DstVTy ? getScalarizationOverhead(DstVTy, /*Insert*/ true, |
||
| 1146 | /*Extract*/ false, CostKind) |
||
| 1147 | : 0); |
||
| 1148 | } |
||
| 1149 | |||
| 1150 | llvm_unreachable("Unhandled cast"); |
||
| 1151 | } |
||
| 1152 | |||
| 1153 | InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
||
| 1154 | VectorType *VecTy, unsigned Index) { |
||
| 1155 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
||
| 1156 | return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy, |
||
| 1157 | CostKind, Index, nullptr, nullptr) + |
||
| 1158 | thisT()->getCastInstrCost(Opcode, Dst, VecTy->getElementType(), |
||
| 1159 | TTI::CastContextHint::None, CostKind); |
||
| 1160 | } |
||
| 1161 | |||
| 1162 | InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, |
||
| 1163 | const Instruction *I = nullptr) { |
||
| 1164 | return BaseT::getCFInstrCost(Opcode, CostKind, I); |
||
| 1165 | } |
||
| 1166 | |||
| 1167 | InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
||
| 1168 | CmpInst::Predicate VecPred, |
||
| 1169 | TTI::TargetCostKind CostKind, |
||
| 1170 | const Instruction *I = nullptr) { |
||
| 1171 | const TargetLoweringBase *TLI = getTLI(); |
||
| 1172 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
||
| 1173 | assert(ISD && "Invalid opcode"); |
||
| 1174 | |||
| 1175 | // TODO: Handle other cost kinds. |
||
| 1176 | if (CostKind != TTI::TCK_RecipThroughput) |
||
| 1177 | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, |
||
| 1178 | I); |
||
| 1179 | |||
| 1180 | // Selects on vectors are actually vector selects. |
||
| 1181 | if (ISD == ISD::SELECT) { |
||
| 1182 | assert(CondTy && "CondTy must exist"); |
||
| 1183 | if (CondTy->isVectorTy()) |
||
| 1184 | ISD = ISD::VSELECT; |
||
| 1185 | } |
||
| 1186 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); |
||
| 1187 | |||
| 1188 | if (!(ValTy->isVectorTy() && !LT.second.isVector()) && |
||
| 1189 | !TLI->isOperationExpand(ISD, LT.second)) { |
||
| 1190 | // The operation is legal. Assume it costs 1. Multiply |
||
| 1191 | // by the type-legalization overhead. |
||
| 1192 | return LT.first * 1; |
||
| 1193 | } |
||
| 1194 | |||
| 1195 | // Otherwise, assume that the cast is scalarized. |
||
| 1196 | // TODO: If one of the types get legalized by splitting, handle this |
||
| 1197 | // similarly to what getCastInstrCost() does. |
||
| 1198 | if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { |
||
| 1199 | if (isa<ScalableVectorType>(ValTy)) |
||
| 1200 | return InstructionCost::getInvalid(); |
||
| 1201 | |||
| 1202 | unsigned Num = cast<FixedVectorType>(ValVTy)->getNumElements(); |
||
| 1203 | if (CondTy) |
||
| 1204 | CondTy = CondTy->getScalarType(); |
||
| 1205 | InstructionCost Cost = thisT()->getCmpSelInstrCost( |
||
| 1206 | Opcode, ValVTy->getScalarType(), CondTy, VecPred, CostKind, I); |
||
| 1207 | |||
| 1208 | // Return the cost of multiple scalar invocation plus the cost of |
||
| 1209 | // inserting and extracting the values. |
||
| 1210 | return getScalarizationOverhead(ValVTy, /*Insert*/ true, |
||
| 1211 | /*Extract*/ false, CostKind) + |
||
| 1212 | Num * Cost; |
||
| 1213 | } |
||
| 1214 | |||
| 1215 | // Unknown scalar opcode. |
||
| 1216 | return 1; |
||
| 1217 | } |
||
| 1218 | |||
| 1219 | InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, |
||
| 1220 | TTI::TargetCostKind CostKind, |
||
| 1221 | unsigned Index, Value *Op0, Value *Op1) { |
||
| 1222 | return getRegUsageForType(Val->getScalarType()); |
||
| 1223 | } |
||
| 1224 | |||
| 1225 | InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, |
||
| 1226 | TTI::TargetCostKind CostKind, |
||
| 1227 | unsigned Index) { |
||
| 1228 | Value *Op0 = nullptr; |
||
| 1229 | Value *Op1 = nullptr; |
||
| 1230 | if (auto *IE = dyn_cast<InsertElementInst>(&I)) { |
||
| 1231 | Op0 = IE->getOperand(0); |
||
| 1232 | Op1 = IE->getOperand(1); |
||
| 1233 | } |
||
| 1234 | return thisT()->getVectorInstrCost(I.getOpcode(), Val, CostKind, Index, Op0, |
||
| 1235 | Op1); |
||
| 1236 | } |
||
| 1237 | |||
| 1238 | InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, |
||
| 1239 | int VF, |
||
| 1240 | const APInt &DemandedDstElts, |
||
| 1241 | TTI::TargetCostKind CostKind) { |
||
| 1242 | assert(DemandedDstElts.getBitWidth() == (unsigned)VF * ReplicationFactor && |
||
| 1243 | "Unexpected size of DemandedDstElts."); |
||
| 1244 | |||
| 1245 | InstructionCost Cost; |
||
| 1246 | |||
| 1247 | auto *SrcVT = FixedVectorType::get(EltTy, VF); |
||
| 1248 | auto *ReplicatedVT = FixedVectorType::get(EltTy, VF * ReplicationFactor); |
||
| 1249 | |||
| 1250 | // The Mask shuffling cost is extract all the elements of the Mask |
||
| 1251 | // and insert each of them Factor times into the wide vector: |
||
| 1252 | // |
||
| 1253 | // E.g. an interleaved group with factor 3: |
||
| 1254 | // %mask = icmp ult <8 x i32> %vec1, %vec2 |
||
| 1255 | // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef, |
||
| 1256 | // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7> |
||
| 1257 | // The cost is estimated as extract all mask elements from the <8xi1> mask |
||
| 1258 | // vector and insert them factor times into the <24xi1> shuffled mask |
||
| 1259 | // vector. |
||
| 1260 | APInt DemandedSrcElts = APIntOps::ScaleBitMask(DemandedDstElts, VF); |
||
| 1261 | Cost += thisT()->getScalarizationOverhead(SrcVT, DemandedSrcElts, |
||
| 1262 | /*Insert*/ false, |
||
| 1263 | /*Extract*/ true, CostKind); |
||
| 1264 | Cost += thisT()->getScalarizationOverhead(ReplicatedVT, DemandedDstElts, |
||
| 1265 | /*Insert*/ true, |
||
| 1266 | /*Extract*/ false, CostKind); |
||
| 1267 | |||
| 1268 | return Cost; |
||
| 1269 | } |
||
| 1270 | |||
| 1271 | InstructionCost |
||
| 1272 | getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment, |
||
| 1273 | unsigned AddressSpace, TTI::TargetCostKind CostKind, |
||
| 1274 | TTI::OperandValueInfo OpInfo = {TTI::OK_AnyValue, TTI::OP_None}, |
||
| 1275 | const Instruction *I = nullptr) { |
||
| 1276 | assert(!Src->isVoidTy() && "Invalid type"); |
||
| 1277 | // Assume types, such as structs, are expensive. |
||
| 1278 | if (getTLI()->getValueType(DL, Src, true) == MVT::Other) |
||
| 1279 | return 4; |
||
| 1280 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); |
||
| 1281 | |||
| 1282 | // Assuming that all loads of legal types cost 1. |
||
| 1283 | InstructionCost Cost = LT.first; |
||
| 1284 | if (CostKind != TTI::TCK_RecipThroughput) |
||
| 1285 | return Cost; |
||
| 1286 | |||
| 1287 | const DataLayout &DL = this->getDataLayout(); |
||
| 1288 | if (Src->isVectorTy() && |
||
| 1289 | // In practice it's not currently possible to have a change in lane |
||
| 1290 | // length for extending loads or truncating stores so both types should |
||
| 1291 | // have the same scalable property. |
||
| 1292 | TypeSize::isKnownLT(DL.getTypeStoreSizeInBits(Src), |
||
| 1293 | LT.second.getSizeInBits())) { |
||
| 1294 | // This is a vector load that legalizes to a larger type than the vector |
||
| 1295 | // itself. Unless the corresponding extending load or truncating store is |
||
| 1296 | // legal, then this will scalarize. |
||
| 1297 | TargetLowering::LegalizeAction LA = TargetLowering::Expand; |
||
| 1298 | EVT MemVT = getTLI()->getValueType(DL, Src); |
||
| 1299 | if (Opcode == Instruction::Store) |
||
| 1300 | LA = getTLI()->getTruncStoreAction(LT.second, MemVT); |
||
| 1301 | else |
||
| 1302 | LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT); |
||
| 1303 | |||
| 1304 | if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) { |
||
| 1305 | // This is a vector load/store for some illegal type that is scalarized. |
||
| 1306 | // We must account for the cost of building or decomposing the vector. |
||
| 1307 | Cost += getScalarizationOverhead( |
||
| 1308 | cast<VectorType>(Src), Opcode != Instruction::Store, |
||
| 1309 | Opcode == Instruction::Store, CostKind); |
||
| 1310 | } |
||
| 1311 | } |
||
| 1312 | |||
| 1313 | return Cost; |
||
| 1314 | } |
||
| 1315 | |||
| 1316 | InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *DataTy, |
||
| 1317 | Align Alignment, unsigned AddressSpace, |
||
| 1318 | TTI::TargetCostKind CostKind) { |
||
| 1319 | return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, true, false, |
||
| 1320 | CostKind); |
||
| 1321 | } |
||
| 1322 | |||
| 1323 | InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, |
||
| 1324 | const Value *Ptr, bool VariableMask, |
||
| 1325 | Align Alignment, |
||
| 1326 | TTI::TargetCostKind CostKind, |
||
| 1327 | const Instruction *I = nullptr) { |
||
| 1328 | return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, VariableMask, |
||
| 1329 | true, CostKind); |
||
| 1330 | } |
||
| 1331 | |||
| 1332 | InstructionCost getInterleavedMemoryOpCost( |
||
| 1333 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
||
| 1334 | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
||
| 1335 | bool UseMaskForCond = false, bool UseMaskForGaps = false) { |
||
| 1336 | |||
| 1337 | // We cannot scalarize scalable vectors, so return Invalid. |
||
| 1338 | if (isa<ScalableVectorType>(VecTy)) |
||
| 1339 | return InstructionCost::getInvalid(); |
||
| 1340 | |||
| 1341 | auto *VT = cast<FixedVectorType>(VecTy); |
||
| 1342 | |||
| 1343 | unsigned NumElts = VT->getNumElements(); |
||
| 1344 | assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); |
||
| 1345 | |||
| 1346 | unsigned NumSubElts = NumElts / Factor; |
||
| 1347 | auto *SubVT = FixedVectorType::get(VT->getElementType(), NumSubElts); |
||
| 1348 | |||
| 1349 | // Firstly, the cost of load/store operation. |
||
| 1350 | InstructionCost Cost; |
||
| 1351 | if (UseMaskForCond || UseMaskForGaps) |
||
| 1352 | Cost = thisT()->getMaskedMemoryOpCost(Opcode, VecTy, Alignment, |
||
| 1353 | AddressSpace, CostKind); |
||
| 1354 | else |
||
| 1355 | Cost = thisT()->getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace, |
||
| 1356 | CostKind); |
||
| 1357 | |||
| 1358 | // Legalize the vector type, and get the legalized and unlegalized type |
||
| 1359 | // sizes. |
||
| 1360 | MVT VecTyLT = getTypeLegalizationCost(VecTy).second; |
||
| 1361 | unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy); |
||
| 1362 | unsigned VecTyLTSize = VecTyLT.getStoreSize(); |
||
| 1363 | |||
| 1364 | // Scale the cost of the memory operation by the fraction of legalized |
||
| 1365 | // instructions that will actually be used. We shouldn't account for the |
||
| 1366 | // cost of dead instructions since they will be removed. |
||
| 1367 | // |
||
| 1368 | // E.g., An interleaved load of factor 8: |
||
| 1369 | // %vec = load <16 x i64>, <16 x i64>* %ptr |
||
| 1370 | // %v0 = shufflevector %vec, undef, <0, 8> |
||
| 1371 | // |
||
| 1372 | // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be |
||
| 1373 | // used (those corresponding to elements [0:1] and [8:9] of the unlegalized |
||
| 1374 | // type). The other loads are unused. |
||
| 1375 | // |
||
| 1376 | // TODO: Note that legalization can turn masked loads/stores into unmasked |
||
| 1377 | // (legalized) loads/stores. This can be reflected in the cost. |
||
| 1378 | if (Cost.isValid() && VecTySize > VecTyLTSize) { |
||
| 1379 | // The number of loads of a legal type it will take to represent a load |
||
| 1380 | // of the unlegalized vector type. |
||
| 1381 | unsigned NumLegalInsts = divideCeil(VecTySize, VecTyLTSize); |
||
| 1382 | |||
| 1383 | // The number of elements of the unlegalized type that correspond to a |
||
| 1384 | // single legal instruction. |
||
| 1385 | unsigned NumEltsPerLegalInst = divideCeil(NumElts, NumLegalInsts); |
||
| 1386 | |||
| 1387 | // Determine which legal instructions will be used. |
||
| 1388 | BitVector UsedInsts(NumLegalInsts, false); |
||
| 1389 | for (unsigned Index : Indices) |
||
| 1390 | for (unsigned Elt = 0; Elt < NumSubElts; ++Elt) |
||
| 1391 | UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst); |
||
| 1392 | |||
| 1393 | // Scale the cost of the load by the fraction of legal instructions that |
||
| 1394 | // will be used. |
||
| 1395 | Cost = divideCeil(UsedInsts.count() * *Cost.getValue(), NumLegalInsts); |
||
| 1396 | } |
||
| 1397 | |||
| 1398 | // Then plus the cost of interleave operation. |
||
| 1399 | assert(Indices.size() <= Factor && |
||
| 1400 | "Interleaved memory op has too many members"); |
||
| 1401 | |||
| 1402 | const APInt DemandedAllSubElts = APInt::getAllOnes(NumSubElts); |
||
| 1403 | const APInt DemandedAllResultElts = APInt::getAllOnes(NumElts); |
||
| 1404 | |||
| 1405 | APInt DemandedLoadStoreElts = APInt::getZero(NumElts); |
||
| 1406 | for (unsigned Index : Indices) { |
||
| 1407 | assert(Index < Factor && "Invalid index for interleaved memory op"); |
||
| 1408 | for (unsigned Elm = 0; Elm < NumSubElts; Elm++) |
||
| 1409 | DemandedLoadStoreElts.setBit(Index + Elm * Factor); |
||
| 1410 | } |
||
| 1411 | |||
| 1412 | if (Opcode == Instruction::Load) { |
||
| 1413 | // The interleave cost is similar to extract sub vectors' elements |
||
| 1414 | // from the wide vector, and insert them into sub vectors. |
||
| 1415 | // |
||
| 1416 | // E.g. An interleaved load of factor 2 (with one member of index 0): |
||
| 1417 | // %vec = load <8 x i32>, <8 x i32>* %ptr |
||
| 1418 | // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0 |
||
| 1419 | // The cost is estimated as extract elements at 0, 2, 4, 6 from the |
||
| 1420 | // <8 x i32> vector and insert them into a <4 x i32> vector. |
||
| 1421 | InstructionCost InsSubCost = thisT()->getScalarizationOverhead( |
||
| 1422 | SubVT, DemandedAllSubElts, |
||
| 1423 | /*Insert*/ true, /*Extract*/ false, CostKind); |
||
| 1424 | Cost += Indices.size() * InsSubCost; |
||
| 1425 | Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts, |
||
| 1426 | /*Insert*/ false, |
||
| 1427 | /*Extract*/ true, CostKind); |
||
| 1428 | } else { |
||
| 1429 | // The interleave cost is extract elements from sub vectors, and |
||
| 1430 | // insert them into the wide vector. |
||
| 1431 | // |
||
| 1432 | // E.g. An interleaved store of factor 3 with 2 members at indices 0,1: |
||
| 1433 | // (using VF=4): |
||
| 1434 | // %v0_v1 = shuffle %v0, %v1, <0,4,undef,1,5,undef,2,6,undef,3,7,undef> |
||
| 1435 | // %gaps.mask = <true, true, false, true, true, false, |
||
| 1436 | // true, true, false, true, true, false> |
||
| 1437 | // call llvm.masked.store <12 x i32> %v0_v1, <12 x i32>* %ptr, |
||
| 1438 | // i32 Align, <12 x i1> %gaps.mask |
||
| 1439 | // The cost is estimated as extract all elements (of actual members, |
||
| 1440 | // excluding gaps) from both <4 x i32> vectors and insert into the <12 x |
||
| 1441 | // i32> vector. |
||
| 1442 | InstructionCost ExtSubCost = thisT()->getScalarizationOverhead( |
||
| 1443 | SubVT, DemandedAllSubElts, |
||
| 1444 | /*Insert*/ false, /*Extract*/ true, CostKind); |
||
| 1445 | Cost += ExtSubCost * Indices.size(); |
||
| 1446 | Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts, |
||
| 1447 | /*Insert*/ true, |
||
| 1448 | /*Extract*/ false, CostKind); |
||
| 1449 | } |
||
| 1450 | |||
| 1451 | if (!UseMaskForCond) |
||
| 1452 | return Cost; |
||
| 1453 | |||
| 1454 | Type *I8Type = Type::getInt8Ty(VT->getContext()); |
||
| 1455 | |||
| 1456 | Cost += thisT()->getReplicationShuffleCost( |
||
| 1457 | I8Type, Factor, NumSubElts, |
||
| 1458 | UseMaskForGaps ? DemandedLoadStoreElts : DemandedAllResultElts, |
||
| 1459 | CostKind); |
||
| 1460 | |||
| 1461 | // The Gaps mask is invariant and created outside the loop, therefore the |
||
| 1462 | // cost of creating it is not accounted for here. However if we have both |
||
| 1463 | // a MaskForGaps and some other mask that guards the execution of the |
||
| 1464 | // memory access, we need to account for the cost of And-ing the two masks |
||
| 1465 | // inside the loop. |
||
| 1466 | if (UseMaskForGaps) { |
||
| 1467 | auto *MaskVT = FixedVectorType::get(I8Type, NumElts); |
||
| 1468 | Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT, |
||
| 1469 | CostKind); |
||
| 1470 | } |
||
| 1471 | |||
| 1472 | return Cost; |
||
| 1473 | } |
||
| 1474 | |||
| 1475 | /// Get intrinsic cost based on arguments. |
||
| 1476 | InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
||
| 1477 | TTI::TargetCostKind CostKind) { |
||
| 1478 | // Check for generically free intrinsics. |
||
| 1479 | if (BaseT::getIntrinsicInstrCost(ICA, CostKind) == 0) |
||
| 1480 | return 0; |
||
| 1481 | |||
| 1482 | // Assume that target intrinsics are cheap. |
||
| 1483 | Intrinsic::ID IID = ICA.getID(); |
||
| 1484 | if (Function::isTargetIntrinsic(IID)) |
||
| 1485 | return TargetTransformInfo::TCC_Basic; |
||
| 1486 | |||
| 1487 | if (ICA.isTypeBasedOnly()) |
||
| 1488 | return getTypeBasedIntrinsicInstrCost(ICA, CostKind); |
||
| 1489 | |||
| 1490 | Type *RetTy = ICA.getReturnType(); |
||
| 1491 | |||
| 1492 | ElementCount RetVF = |
||
| 1493 | (RetTy->isVectorTy() ? cast<VectorType>(RetTy)->getElementCount() |
||
| 1494 | : ElementCount::getFixed(1)); |
||
| 1495 | const IntrinsicInst *I = ICA.getInst(); |
||
| 1496 | const SmallVectorImpl<const Value *> &Args = ICA.getArgs(); |
||
| 1497 | FastMathFlags FMF = ICA.getFlags(); |
||
| 1498 | switch (IID) { |
||
| 1499 | default: |
||
| 1500 | break; |
||
| 1501 | |||
| 1502 | case Intrinsic::powi: |
||
| 1503 | if (auto *RHSC = dyn_cast<ConstantInt>(Args[1])) { |
||
| 1504 | bool ShouldOptForSize = I->getParent()->getParent()->hasOptSize(); |
||
| 1505 | if (getTLI()->isBeneficialToExpandPowI(RHSC->getSExtValue(), |
||
| 1506 | ShouldOptForSize)) { |
||
| 1507 | // The cost is modeled on the expansion performed by ExpandPowI in |
||
| 1508 | // SelectionDAGBuilder. |
||
| 1509 | APInt Exponent = RHSC->getValue().abs(); |
||
| 1510 | unsigned ActiveBits = Exponent.getActiveBits(); |
||
| 1511 | unsigned PopCount = Exponent.countPopulation(); |
||
| 1512 | InstructionCost Cost = (ActiveBits + PopCount - 2) * |
||
| 1513 | thisT()->getArithmeticInstrCost( |
||
| 1514 | Instruction::FMul, RetTy, CostKind); |
||
| 1515 | if (RHSC->getSExtValue() < 0) |
||
| 1516 | Cost += thisT()->getArithmeticInstrCost(Instruction::FDiv, RetTy, |
||
| 1517 | CostKind); |
||
| 1518 | return Cost; |
||
| 1519 | } |
||
| 1520 | } |
||
| 1521 | break; |
||
| 1522 | case Intrinsic::cttz: |
||
| 1523 | // FIXME: If necessary, this should go in target-specific overrides. |
||
| 1524 | if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCttz(RetTy)) |
||
| 1525 | return TargetTransformInfo::TCC_Basic; |
||
| 1526 | break; |
||
| 1527 | |||
| 1528 | case Intrinsic::ctlz: |
||
| 1529 | // FIXME: If necessary, this should go in target-specific overrides. |
||
| 1530 | if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCtlz(RetTy)) |
||
| 1531 | return TargetTransformInfo::TCC_Basic; |
||
| 1532 | break; |
||
| 1533 | |||
| 1534 | case Intrinsic::memcpy: |
||
| 1535 | return thisT()->getMemcpyCost(ICA.getInst()); |
||
| 1536 | |||
| 1537 | case Intrinsic::masked_scatter: { |
||
| 1538 | const Value *Mask = Args[3]; |
||
| 1539 | bool VarMask = !isa<Constant>(Mask); |
||
| 1540 | Align Alignment = cast<ConstantInt>(Args[2])->getAlignValue(); |
||
| 1541 | return thisT()->getGatherScatterOpCost(Instruction::Store, |
||
| 1542 | ICA.getArgTypes()[0], Args[1], |
||
| 1543 | VarMask, Alignment, CostKind, I); |
||
| 1544 | } |
||
| 1545 | case Intrinsic::masked_gather: { |
||
| 1546 | const Value *Mask = Args[2]; |
||
| 1547 | bool VarMask = !isa<Constant>(Mask); |
||
| 1548 | Align Alignment = cast<ConstantInt>(Args[1])->getAlignValue(); |
||
| 1549 | return thisT()->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0], |
||
| 1550 | VarMask, Alignment, CostKind, I); |
||
| 1551 | } |
||
| 1552 | case Intrinsic::experimental_stepvector: { |
||
| 1553 | if (isa<ScalableVectorType>(RetTy)) |
||
| 1554 | return BaseT::getIntrinsicInstrCost(ICA, CostKind); |
||
| 1555 | // The cost of materialising a constant integer vector. |
||
| 1556 | return TargetTransformInfo::TCC_Basic; |
||
| 1557 | } |
||
| 1558 | case Intrinsic::vector_extract: { |
||
| 1559 | // FIXME: Handle case where a scalable vector is extracted from a scalable |
||
| 1560 | // vector |
||
| 1561 | if (isa<ScalableVectorType>(RetTy)) |
||
| 1562 | return BaseT::getIntrinsicInstrCost(ICA, CostKind); |
||
| 1563 | unsigned Index = cast<ConstantInt>(Args[1])->getZExtValue(); |
||
| 1564 | return thisT()->getShuffleCost( |
||
| 1565 | TTI::SK_ExtractSubvector, cast<VectorType>(Args[0]->getType()), |
||
| 1566 | std::nullopt, CostKind, Index, cast<VectorType>(RetTy)); |
||
| 1567 | } |
||
| 1568 | case Intrinsic::vector_insert: { |
||
| 1569 | // FIXME: Handle case where a scalable vector is inserted into a scalable |
||
| 1570 | // vector |
||
| 1571 | if (isa<ScalableVectorType>(Args[1]->getType())) |
||
| 1572 | return BaseT::getIntrinsicInstrCost(ICA, CostKind); |
||
| 1573 | unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue(); |
||
| 1574 | return thisT()->getShuffleCost( |
||
| 1575 | TTI::SK_InsertSubvector, cast<VectorType>(Args[0]->getType()), |
||
| 1576 | std::nullopt, CostKind, Index, cast<VectorType>(Args[1]->getType())); |
||
| 1577 | } |
||
| 1578 | case Intrinsic::experimental_vector_reverse: { |
||
| 1579 | return thisT()->getShuffleCost( |
||
| 1580 | TTI::SK_Reverse, cast<VectorType>(Args[0]->getType()), std::nullopt, |
||
| 1581 | CostKind, 0, cast<VectorType>(RetTy)); |
||
| 1582 | } |
||
| 1583 | case Intrinsic::experimental_vector_splice: { |
||
| 1584 | unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue(); |
||
| 1585 | return thisT()->getShuffleCost( |
||
| 1586 | TTI::SK_Splice, cast<VectorType>(Args[0]->getType()), std::nullopt, |
||
| 1587 | CostKind, Index, cast<VectorType>(RetTy)); |
||
| 1588 | } |
||
| 1589 | case Intrinsic::vector_reduce_add: |
||
| 1590 | case Intrinsic::vector_reduce_mul: |
||
| 1591 | case Intrinsic::vector_reduce_and: |
||
| 1592 | case Intrinsic::vector_reduce_or: |
||
| 1593 | case Intrinsic::vector_reduce_xor: |
||
| 1594 | case Intrinsic::vector_reduce_smax: |
||
| 1595 | case Intrinsic::vector_reduce_smin: |
||
| 1596 | case Intrinsic::vector_reduce_fmax: |
||
| 1597 | case Intrinsic::vector_reduce_fmin: |
||
| 1598 | case Intrinsic::vector_reduce_umax: |
||
| 1599 | case Intrinsic::vector_reduce_umin: { |
||
| 1600 | IntrinsicCostAttributes Attrs(IID, RetTy, Args[0]->getType(), FMF, I, 1); |
||
| 1601 | return getTypeBasedIntrinsicInstrCost(Attrs, CostKind); |
||
| 1602 | } |
||
| 1603 | case Intrinsic::vector_reduce_fadd: |
||
| 1604 | case Intrinsic::vector_reduce_fmul: { |
||
| 1605 | IntrinsicCostAttributes Attrs( |
||
| 1606 | IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF, I, 1); |
||
| 1607 | return getTypeBasedIntrinsicInstrCost(Attrs, CostKind); |
||
| 1608 | } |
||
| 1609 | case Intrinsic::fshl: |
||
| 1610 | case Intrinsic::fshr: { |
||
| 1611 | const Value *X = Args[0]; |
||
| 1612 | const Value *Y = Args[1]; |
||
| 1613 | const Value *Z = Args[2]; |
||
| 1614 | const TTI::OperandValueInfo OpInfoX = TTI::getOperandInfo(X); |
||
| 1615 | const TTI::OperandValueInfo OpInfoY = TTI::getOperandInfo(Y); |
||
| 1616 | const TTI::OperandValueInfo OpInfoZ = TTI::getOperandInfo(Z); |
||
| 1617 | const TTI::OperandValueInfo OpInfoBW = |
||
| 1618 | {TTI::OK_UniformConstantValue, |
||
| 1619 | isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2 |
||
| 1620 | : TTI::OP_None}; |
||
| 1621 | |||
| 1622 | // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) |
||
| 1623 | // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) |
||
| 1624 | InstructionCost Cost = 0; |
||
| 1625 | Cost += |
||
| 1626 | thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind); |
||
| 1627 | Cost += |
||
| 1628 | thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind); |
||
| 1629 | Cost += thisT()->getArithmeticInstrCost( |
||
| 1630 | BinaryOperator::Shl, RetTy, CostKind, OpInfoX, |
||
| 1631 | {OpInfoZ.Kind, TTI::OP_None}); |
||
| 1632 | Cost += thisT()->getArithmeticInstrCost( |
||
| 1633 | BinaryOperator::LShr, RetTy, CostKind, OpInfoY, |
||
| 1634 | {OpInfoZ.Kind, TTI::OP_None}); |
||
| 1635 | // Non-constant shift amounts requires a modulo. |
||
| 1636 | if (!OpInfoZ.isConstant()) |
||
| 1637 | Cost += thisT()->getArithmeticInstrCost(BinaryOperator::URem, RetTy, |
||
| 1638 | CostKind, OpInfoZ, OpInfoBW); |
||
| 1639 | // For non-rotates (X != Y) we must add shift-by-zero handling costs. |
||
| 1640 | if (X != Y) { |
||
| 1641 | Type *CondTy = RetTy->getWithNewBitWidth(1); |
||
| 1642 | Cost += |
||
| 1643 | thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy, |
||
| 1644 | CmpInst::ICMP_EQ, CostKind); |
||
| 1645 | Cost += |
||
| 1646 | thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy, |
||
| 1647 | CmpInst::ICMP_EQ, CostKind); |
||
| 1648 | } |
||
| 1649 | return Cost; |
||
| 1650 | } |
||
| 1651 | case Intrinsic::get_active_lane_mask: { |
||
| 1652 | EVT ResVT = getTLI()->getValueType(DL, RetTy, true); |
||
| 1653 | EVT ArgType = getTLI()->getValueType(DL, ICA.getArgTypes()[0], true); |
||
| 1654 | |||
| 1655 | // If we're not expanding the intrinsic then we assume this is cheap |
||
| 1656 | // to implement. |
||
| 1657 | if (!getTLI()->shouldExpandGetActiveLaneMask(ResVT, ArgType)) { |
||
| 1658 | return getTypeLegalizationCost(RetTy).first; |
||
| 1659 | } |
||
| 1660 | |||
| 1661 | // Create the expanded types that will be used to calculate the uadd_sat |
||
| 1662 | // operation. |
||
| 1663 | Type *ExpRetTy = VectorType::get( |
||
| 1664 | ICA.getArgTypes()[0], cast<VectorType>(RetTy)->getElementCount()); |
||
| 1665 | IntrinsicCostAttributes Attrs(Intrinsic::uadd_sat, ExpRetTy, {}, FMF); |
||
| 1666 | InstructionCost Cost = |
||
| 1667 | thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind); |
||
| 1668 | Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, ExpRetTy, RetTy, |
||
| 1669 | CmpInst::ICMP_ULT, CostKind); |
||
| 1670 | return Cost; |
||
| 1671 | } |
||
| 1672 | } |
||
| 1673 | |||
| 1674 | // Assume that we need to scalarize this intrinsic. |
||
| 1675 | // Compute the scalarization overhead based on Args for a vector |
||
| 1676 | // intrinsic. |
||
| 1677 | InstructionCost ScalarizationCost = InstructionCost::getInvalid(); |
||
| 1678 | if (RetVF.isVector() && !RetVF.isScalable()) { |
||
| 1679 | ScalarizationCost = 0; |
||
| 1680 | if (!RetTy->isVoidTy()) |
||
| 1681 | ScalarizationCost += getScalarizationOverhead( |
||
| 1682 | cast<VectorType>(RetTy), |
||
| 1683 | /*Insert*/ true, /*Extract*/ false, CostKind); |
||
| 1684 | ScalarizationCost += |
||
| 1685 | getOperandsScalarizationOverhead(Args, ICA.getArgTypes(), CostKind); |
||
| 1686 | } |
||
| 1687 | |||
| 1688 | IntrinsicCostAttributes Attrs(IID, RetTy, ICA.getArgTypes(), FMF, I, |
||
| 1689 | ScalarizationCost); |
||
| 1690 | return thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind); |
||
| 1691 | } |
||
| 1692 | |||
| 1693 | /// Get intrinsic cost based on argument types. |
||
| 1694 | /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the |
||
| 1695 | /// cost of scalarizing the arguments and the return value will be computed |
||
| 1696 | /// based on types. |
||
| 1697 | InstructionCost |
||
| 1698 | getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
||
| 1699 | TTI::TargetCostKind CostKind) { |
||
| 1700 | Intrinsic::ID IID = ICA.getID(); |
||
| 1701 | Type *RetTy = ICA.getReturnType(); |
||
| 1702 | const SmallVectorImpl<Type *> &Tys = ICA.getArgTypes(); |
||
| 1703 | FastMathFlags FMF = ICA.getFlags(); |
||
| 1704 | InstructionCost ScalarizationCostPassed = ICA.getScalarizationCost(); |
||
| 1705 | bool SkipScalarizationCost = ICA.skipScalarizationCost(); |
||
| 1706 | |||
| 1707 | VectorType *VecOpTy = nullptr; |
||
| 1708 | if (!Tys.empty()) { |
||
| 1709 | // The vector reduction operand is operand 0 except for fadd/fmul. |
||
| 1710 | // Their operand 0 is a scalar start value, so the vector op is operand 1. |
||
| 1711 | unsigned VecTyIndex = 0; |
||
| 1712 | if (IID == Intrinsic::vector_reduce_fadd || |
||
| 1713 | IID == Intrinsic::vector_reduce_fmul) |
||
| 1714 | VecTyIndex = 1; |
||
| 1715 | assert(Tys.size() > VecTyIndex && "Unexpected IntrinsicCostAttributes"); |
||
| 1716 | VecOpTy = dyn_cast<VectorType>(Tys[VecTyIndex]); |
||
| 1717 | } |
||
| 1718 | |||
| 1719 | // Library call cost - other than size, make it expensive. |
||
| 1720 | unsigned SingleCallCost = CostKind == TTI::TCK_CodeSize ? 1 : 10; |
||
| 1721 | unsigned ISD = 0; |
||
| 1722 | switch (IID) { |
||
| 1723 | default: { |
||
| 1724 | // Scalable vectors cannot be scalarized, so return Invalid. |
||
| 1725 | if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) { |
||
| 1726 | return isa<ScalableVectorType>(Ty); |
||
| 1727 | })) |
||
| 1728 | return InstructionCost::getInvalid(); |
||
| 1729 | |||
| 1730 | // Assume that we need to scalarize this intrinsic. |
||
| 1731 | InstructionCost ScalarizationCost = |
||
| 1732 | SkipScalarizationCost ? ScalarizationCostPassed : 0; |
||
| 1733 | unsigned ScalarCalls = 1; |
||
| 1734 | Type *ScalarRetTy = RetTy; |
||
| 1735 | if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) { |
||
| 1736 | if (!SkipScalarizationCost) |
||
| 1737 | ScalarizationCost = getScalarizationOverhead( |
||
| 1738 | RetVTy, /*Insert*/ true, /*Extract*/ false, CostKind); |
||
| 1739 | ScalarCalls = std::max(ScalarCalls, |
||
| 1740 | cast<FixedVectorType>(RetVTy)->getNumElements()); |
||
| 1741 | ScalarRetTy = RetTy->getScalarType(); |
||
| 1742 | } |
||
| 1743 | SmallVector<Type *, 4> ScalarTys; |
||
| 1744 | for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { |
||
| 1745 | Type *Ty = Tys[i]; |
||
| 1746 | if (auto *VTy = dyn_cast<VectorType>(Ty)) { |
||
| 1747 | if (!SkipScalarizationCost) |
||
| 1748 | ScalarizationCost += getScalarizationOverhead( |
||
| 1749 | VTy, /*Insert*/ false, /*Extract*/ true, CostKind); |
||
| 1750 | ScalarCalls = std::max(ScalarCalls, |
||
| 1751 | cast<FixedVectorType>(VTy)->getNumElements()); |
||
| 1752 | Ty = Ty->getScalarType(); |
||
| 1753 | } |
||
| 1754 | ScalarTys.push_back(Ty); |
||
| 1755 | } |
||
| 1756 | if (ScalarCalls == 1) |
||
| 1757 | return 1; // Return cost of a scalar intrinsic. Assume it to be cheap. |
||
| 1758 | |||
| 1759 | IntrinsicCostAttributes ScalarAttrs(IID, ScalarRetTy, ScalarTys, FMF); |
||
| 1760 | InstructionCost ScalarCost = |
||
| 1761 | thisT()->getIntrinsicInstrCost(ScalarAttrs, CostKind); |
||
| 1762 | |||
| 1763 | return ScalarCalls * ScalarCost + ScalarizationCost; |
||
| 1764 | } |
||
| 1765 | // Look for intrinsics that can be lowered directly or turned into a scalar |
||
| 1766 | // intrinsic call. |
||
| 1767 | case Intrinsic::sqrt: |
||
| 1768 | ISD = ISD::FSQRT; |
||
| 1769 | break; |
||
| 1770 | case Intrinsic::sin: |
||
| 1771 | ISD = ISD::FSIN; |
||
| 1772 | break; |
||
| 1773 | case Intrinsic::cos: |
||
| 1774 | ISD = ISD::FCOS; |
||
| 1775 | break; |
||
| 1776 | case Intrinsic::exp: |
||
| 1777 | ISD = ISD::FEXP; |
||
| 1778 | break; |
||
| 1779 | case Intrinsic::exp2: |
||
| 1780 | ISD = ISD::FEXP2; |
||
| 1781 | break; |
||
| 1782 | case Intrinsic::log: |
||
| 1783 | ISD = ISD::FLOG; |
||
| 1784 | break; |
||
| 1785 | case Intrinsic::log10: |
||
| 1786 | ISD = ISD::FLOG10; |
||
| 1787 | break; |
||
| 1788 | case Intrinsic::log2: |
||
| 1789 | ISD = ISD::FLOG2; |
||
| 1790 | break; |
||
| 1791 | case Intrinsic::fabs: |
||
| 1792 | ISD = ISD::FABS; |
||
| 1793 | break; |
||
| 1794 | case Intrinsic::canonicalize: |
||
| 1795 | ISD = ISD::FCANONICALIZE; |
||
| 1796 | break; |
||
| 1797 | case Intrinsic::minnum: |
||
| 1798 | ISD = ISD::FMINNUM; |
||
| 1799 | break; |
||
| 1800 | case Intrinsic::maxnum: |
||
| 1801 | ISD = ISD::FMAXNUM; |
||
| 1802 | break; |
||
| 1803 | case Intrinsic::minimum: |
||
| 1804 | ISD = ISD::FMINIMUM; |
||
| 1805 | break; |
||
| 1806 | case Intrinsic::maximum: |
||
| 1807 | ISD = ISD::FMAXIMUM; |
||
| 1808 | break; |
||
| 1809 | case Intrinsic::copysign: |
||
| 1810 | ISD = ISD::FCOPYSIGN; |
||
| 1811 | break; |
||
| 1812 | case Intrinsic::floor: |
||
| 1813 | ISD = ISD::FFLOOR; |
||
| 1814 | break; |
||
| 1815 | case Intrinsic::ceil: |
||
| 1816 | ISD = ISD::FCEIL; |
||
| 1817 | break; |
||
| 1818 | case Intrinsic::trunc: |
||
| 1819 | ISD = ISD::FTRUNC; |
||
| 1820 | break; |
||
| 1821 | case Intrinsic::nearbyint: |
||
| 1822 | ISD = ISD::FNEARBYINT; |
||
| 1823 | break; |
||
| 1824 | case Intrinsic::rint: |
||
| 1825 | ISD = ISD::FRINT; |
||
| 1826 | break; |
||
| 1827 | case Intrinsic::round: |
||
| 1828 | ISD = ISD::FROUND; |
||
| 1829 | break; |
||
| 1830 | case Intrinsic::roundeven: |
||
| 1831 | ISD = ISD::FROUNDEVEN; |
||
| 1832 | break; |
||
| 1833 | case Intrinsic::pow: |
||
| 1834 | ISD = ISD::FPOW; |
||
| 1835 | break; |
||
| 1836 | case Intrinsic::fma: |
||
| 1837 | ISD = ISD::FMA; |
||
| 1838 | break; |
||
| 1839 | case Intrinsic::fmuladd: |
||
| 1840 | ISD = ISD::FMA; |
||
| 1841 | break; |
||
| 1842 | case Intrinsic::experimental_constrained_fmuladd: |
||
| 1843 | ISD = ISD::STRICT_FMA; |
||
| 1844 | break; |
||
| 1845 | // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free. |
||
| 1846 | case Intrinsic::lifetime_start: |
||
| 1847 | case Intrinsic::lifetime_end: |
||
| 1848 | case Intrinsic::sideeffect: |
||
| 1849 | case Intrinsic::pseudoprobe: |
||
| 1850 | case Intrinsic::arithmetic_fence: |
||
| 1851 | return 0; |
||
| 1852 | case Intrinsic::masked_store: { |
||
| 1853 | Type *Ty = Tys[0]; |
||
| 1854 | Align TyAlign = thisT()->DL.getABITypeAlign(Ty); |
||
| 1855 | return thisT()->getMaskedMemoryOpCost(Instruction::Store, Ty, TyAlign, 0, |
||
| 1856 | CostKind); |
||
| 1857 | } |
||
| 1858 | case Intrinsic::masked_load: { |
||
| 1859 | Type *Ty = RetTy; |
||
| 1860 | Align TyAlign = thisT()->DL.getABITypeAlign(Ty); |
||
| 1861 | return thisT()->getMaskedMemoryOpCost(Instruction::Load, Ty, TyAlign, 0, |
||
| 1862 | CostKind); |
||
| 1863 | } |
||
| 1864 | case Intrinsic::vector_reduce_add: |
||
| 1865 | return thisT()->getArithmeticReductionCost(Instruction::Add, VecOpTy, |
||
| 1866 | std::nullopt, CostKind); |
||
| 1867 | case Intrinsic::vector_reduce_mul: |
||
| 1868 | return thisT()->getArithmeticReductionCost(Instruction::Mul, VecOpTy, |
||
| 1869 | std::nullopt, CostKind); |
||
| 1870 | case Intrinsic::vector_reduce_and: |
||
| 1871 | return thisT()->getArithmeticReductionCost(Instruction::And, VecOpTy, |
||
| 1872 | std::nullopt, CostKind); |
||
| 1873 | case Intrinsic::vector_reduce_or: |
||
| 1874 | return thisT()->getArithmeticReductionCost(Instruction::Or, VecOpTy, |
||
| 1875 | std::nullopt, CostKind); |
||
| 1876 | case Intrinsic::vector_reduce_xor: |
||
| 1877 | return thisT()->getArithmeticReductionCost(Instruction::Xor, VecOpTy, |
||
| 1878 | std::nullopt, CostKind); |
||
| 1879 | case Intrinsic::vector_reduce_fadd: |
||
| 1880 | return thisT()->getArithmeticReductionCost(Instruction::FAdd, VecOpTy, |
||
| 1881 | FMF, CostKind); |
||
| 1882 | case Intrinsic::vector_reduce_fmul: |
||
| 1883 | return thisT()->getArithmeticReductionCost(Instruction::FMul, VecOpTy, |
||
| 1884 | FMF, CostKind); |
||
| 1885 | case Intrinsic::vector_reduce_smax: |
||
| 1886 | case Intrinsic::vector_reduce_smin: |
||
| 1887 | case Intrinsic::vector_reduce_fmax: |
||
| 1888 | case Intrinsic::vector_reduce_fmin: |
||
| 1889 | return thisT()->getMinMaxReductionCost( |
||
| 1890 | VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)), |
||
| 1891 | /*IsUnsigned=*/false, CostKind); |
||
| 1892 | case Intrinsic::vector_reduce_umax: |
||
| 1893 | case Intrinsic::vector_reduce_umin: |
||
| 1894 | return thisT()->getMinMaxReductionCost( |
||
| 1895 | VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)), |
||
| 1896 | /*IsUnsigned=*/true, CostKind); |
||
| 1897 | case Intrinsic::abs: { |
||
| 1898 | // abs(X) = select(icmp(X,0),X,sub(0,X)) |
||
| 1899 | Type *CondTy = RetTy->getWithNewBitWidth(1); |
||
| 1900 | CmpInst::Predicate Pred = CmpInst::ICMP_SGT; |
||
| 1901 | InstructionCost Cost = 0; |
||
| 1902 | Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy, |
||
| 1903 | Pred, CostKind); |
||
| 1904 | Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy, |
||
| 1905 | Pred, CostKind); |
||
| 1906 | // TODO: Should we add an OperandValueProperties::OP_Zero property? |
||
| 1907 | Cost += thisT()->getArithmeticInstrCost( |
||
| 1908 | BinaryOperator::Sub, RetTy, CostKind, {TTI::OK_UniformConstantValue, TTI::OP_None}); |
||
| 1909 | return Cost; |
||
| 1910 | } |
||
| 1911 | case Intrinsic::smax: |
||
| 1912 | case Intrinsic::smin: |
||
| 1913 | case Intrinsic::umax: |
||
| 1914 | case Intrinsic::umin: { |
||
| 1915 | // minmax(X,Y) = select(icmp(X,Y),X,Y) |
||
| 1916 | Type *CondTy = RetTy->getWithNewBitWidth(1); |
||
| 1917 | bool IsUnsigned = IID == Intrinsic::umax || IID == Intrinsic::umin; |
||
| 1918 | CmpInst::Predicate Pred = |
||
| 1919 | IsUnsigned ? CmpInst::ICMP_UGT : CmpInst::ICMP_SGT; |
||
| 1920 | InstructionCost Cost = 0; |
||
| 1921 | Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy, |
||
| 1922 | Pred, CostKind); |
||
| 1923 | Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy, |
||
| 1924 | Pred, CostKind); |
||
| 1925 | return Cost; |
||
| 1926 | } |
||
| 1927 | case Intrinsic::sadd_sat: |
||
| 1928 | case Intrinsic::ssub_sat: { |
||
| 1929 | Type *CondTy = RetTy->getWithNewBitWidth(1); |
||
| 1930 | |||
| 1931 | Type *OpTy = StructType::create({RetTy, CondTy}); |
||
| 1932 | Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat |
||
| 1933 | ? Intrinsic::sadd_with_overflow |
||
| 1934 | : Intrinsic::ssub_with_overflow; |
||
| 1935 | CmpInst::Predicate Pred = CmpInst::ICMP_SGT; |
||
| 1936 | |||
| 1937 | // SatMax -> Overflow && SumDiff < 0 |
||
| 1938 | // SatMin -> Overflow && SumDiff >= 0 |
||
| 1939 | InstructionCost Cost = 0; |
||
| 1940 | IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF, |
||
| 1941 | nullptr, ScalarizationCostPassed); |
||
| 1942 | Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind); |
||
| 1943 | Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy, |
||
| 1944 | Pred, CostKind); |
||
| 1945 | Cost += 2 * thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, |
||
| 1946 | CondTy, Pred, CostKind); |
||
| 1947 | return Cost; |
||
| 1948 | } |
||
| 1949 | case Intrinsic::uadd_sat: |
||
| 1950 | case Intrinsic::usub_sat: { |
||
| 1951 | Type *CondTy = RetTy->getWithNewBitWidth(1); |
||
| 1952 | |||
| 1953 | Type *OpTy = StructType::create({RetTy, CondTy}); |
||
| 1954 | Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat |
||
| 1955 | ? Intrinsic::uadd_with_overflow |
||
| 1956 | : Intrinsic::usub_with_overflow; |
||
| 1957 | |||
| 1958 | InstructionCost Cost = 0; |
||
| 1959 | IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF, |
||
| 1960 | nullptr, ScalarizationCostPassed); |
||
| 1961 | Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind); |
||
| 1962 | Cost += |
||
| 1963 | thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy, |
||
| 1964 | CmpInst::BAD_ICMP_PREDICATE, CostKind); |
||
| 1965 | return Cost; |
||
| 1966 | } |
||
| 1967 | case Intrinsic::smul_fix: |
||
| 1968 | case Intrinsic::umul_fix: { |
||
| 1969 | unsigned ExtSize = RetTy->getScalarSizeInBits() * 2; |
||
| 1970 | Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize); |
||
| 1971 | |||
| 1972 | unsigned ExtOp = |
||
| 1973 | IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt; |
||
| 1974 | TTI::CastContextHint CCH = TTI::CastContextHint::None; |
||
| 1975 | |||
| 1976 | InstructionCost Cost = 0; |
||
| 1977 | Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH, CostKind); |
||
| 1978 | Cost += |
||
| 1979 | thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind); |
||
| 1980 | Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy, |
||
| 1981 | CCH, CostKind); |
||
| 1982 | Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, RetTy, |
||
| 1983 | CostKind, |
||
| 1984 | {TTI::OK_AnyValue, TTI::OP_None}, |
||
| 1985 | {TTI::OK_UniformConstantValue, TTI::OP_None}); |
||
| 1986 | Cost += thisT()->getArithmeticInstrCost(Instruction::Shl, RetTy, CostKind, |
||
| 1987 | {TTI::OK_AnyValue, TTI::OP_None}, |
||
| 1988 | {TTI::OK_UniformConstantValue, TTI::OP_None}); |
||
| 1989 | Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy, CostKind); |
||
| 1990 | return Cost; |
||
| 1991 | } |
||
| 1992 | case Intrinsic::sadd_with_overflow: |
||
| 1993 | case Intrinsic::ssub_with_overflow: { |
||
| 1994 | Type *SumTy = RetTy->getContainedType(0); |
||
| 1995 | Type *OverflowTy = RetTy->getContainedType(1); |
||
| 1996 | unsigned Opcode = IID == Intrinsic::sadd_with_overflow |
||
| 1997 | ? BinaryOperator::Add |
||
| 1998 | : BinaryOperator::Sub; |
||
| 1999 | |||
| 2000 | // Add: |
||
| 2001 | // Overflow -> (Result < LHS) ^ (RHS < 0) |
||
| 2002 | // Sub: |
||
| 2003 | // Overflow -> (Result < LHS) ^ (RHS > 0) |
||
| 2004 | InstructionCost Cost = 0; |
||
| 2005 | Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind); |
||
| 2006 | Cost += 2 * thisT()->getCmpSelInstrCost( |
||
| 2007 | Instruction::ICmp, SumTy, OverflowTy, |
||
| 2008 | CmpInst::ICMP_SGT, CostKind); |
||
| 2009 | Cost += thisT()->getArithmeticInstrCost(BinaryOperator::Xor, OverflowTy, |
||
| 2010 | CostKind); |
||
| 2011 | return Cost; |
||
| 2012 | } |
||
| 2013 | case Intrinsic::uadd_with_overflow: |
||
| 2014 | case Intrinsic::usub_with_overflow: { |
||
| 2015 | Type *SumTy = RetTy->getContainedType(0); |
||
| 2016 | Type *OverflowTy = RetTy->getContainedType(1); |
||
| 2017 | unsigned Opcode = IID == Intrinsic::uadd_with_overflow |
||
| 2018 | ? BinaryOperator::Add |
||
| 2019 | : BinaryOperator::Sub; |
||
| 2020 | CmpInst::Predicate Pred = IID == Intrinsic::uadd_with_overflow |
||
| 2021 | ? CmpInst::ICMP_ULT |
||
| 2022 | : CmpInst::ICMP_UGT; |
||
| 2023 | |||
| 2024 | InstructionCost Cost = 0; |
||
| 2025 | Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind); |
||
| 2026 | Cost += |
||
| 2027 | thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy, OverflowTy, |
||
| 2028 | Pred, CostKind); |
||
| 2029 | return Cost; |
||
| 2030 | } |
||
| 2031 | case Intrinsic::smul_with_overflow: |
||
| 2032 | case Intrinsic::umul_with_overflow: { |
||
| 2033 | Type *MulTy = RetTy->getContainedType(0); |
||
| 2034 | Type *OverflowTy = RetTy->getContainedType(1); |
||
| 2035 | unsigned ExtSize = MulTy->getScalarSizeInBits() * 2; |
||
| 2036 | Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize); |
||
| 2037 | bool IsSigned = IID == Intrinsic::smul_with_overflow; |
||
| 2038 | |||
| 2039 | unsigned ExtOp = IsSigned ? Instruction::SExt : Instruction::ZExt; |
||
| 2040 | TTI::CastContextHint CCH = TTI::CastContextHint::None; |
||
| 2041 | |||
| 2042 | InstructionCost Cost = 0; |
||
| 2043 | Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH, CostKind); |
||
| 2044 | Cost += |
||
| 2045 | thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind); |
||
| 2046 | Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy, |
||
| 2047 | CCH, CostKind); |
||
| 2048 | Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, ExtTy, |
||
| 2049 | CostKind, |
||
| 2050 | {TTI::OK_AnyValue, TTI::OP_None}, |
||
| 2051 | {TTI::OK_UniformConstantValue, TTI::OP_None}); |
||
| 2052 | |||
| 2053 | if (IsSigned) |
||
| 2054 | Cost += thisT()->getArithmeticInstrCost(Instruction::AShr, MulTy, |
||
| 2055 | CostKind, |
||
| 2056 | {TTI::OK_AnyValue, TTI::OP_None}, |
||
| 2057 | {TTI::OK_UniformConstantValue, TTI::OP_None}); |
||
| 2058 | |||
| 2059 | Cost += thisT()->getCmpSelInstrCost( |
||
| 2060 | BinaryOperator::ICmp, MulTy, OverflowTy, CmpInst::ICMP_NE, CostKind); |
||
| 2061 | return Cost; |
||
| 2062 | } |
||
| 2063 | case Intrinsic::fptosi_sat: |
||
| 2064 | case Intrinsic::fptoui_sat: { |
||
| 2065 | if (Tys.empty()) |
||
| 2066 | break; |
||
| 2067 | Type *FromTy = Tys[0]; |
||
| 2068 | bool IsSigned = IID == Intrinsic::fptosi_sat; |
||
| 2069 | |||
| 2070 | InstructionCost Cost = 0; |
||
| 2071 | IntrinsicCostAttributes Attrs1(Intrinsic::minnum, FromTy, |
||
| 2072 | {FromTy, FromTy}); |
||
| 2073 | Cost += thisT()->getIntrinsicInstrCost(Attrs1, CostKind); |
||
| 2074 | IntrinsicCostAttributes Attrs2(Intrinsic::maxnum, FromTy, |
||
| 2075 | {FromTy, FromTy}); |
||
| 2076 | Cost += thisT()->getIntrinsicInstrCost(Attrs2, CostKind); |
||
| 2077 | Cost += thisT()->getCastInstrCost( |
||
| 2078 | IsSigned ? Instruction::FPToSI : Instruction::FPToUI, RetTy, FromTy, |
||
| 2079 | TTI::CastContextHint::None, CostKind); |
||
| 2080 | if (IsSigned) { |
||
| 2081 | Type *CondTy = RetTy->getWithNewBitWidth(1); |
||
| 2082 | Cost += thisT()->getCmpSelInstrCost( |
||
| 2083 | BinaryOperator::FCmp, FromTy, CondTy, CmpInst::FCMP_UNO, CostKind); |
||
| 2084 | Cost += thisT()->getCmpSelInstrCost( |
||
| 2085 | BinaryOperator::Select, RetTy, CondTy, CmpInst::FCMP_UNO, CostKind); |
||
| 2086 | } |
||
| 2087 | return Cost; |
||
| 2088 | } |
||
| 2089 | case Intrinsic::ctpop: |
||
| 2090 | ISD = ISD::CTPOP; |
||
| 2091 | // In case of legalization use TCC_Expensive. This is cheaper than a |
||
| 2092 | // library call but still not a cheap instruction. |
||
| 2093 | SingleCallCost = TargetTransformInfo::TCC_Expensive; |
||
| 2094 | break; |
||
| 2095 | case Intrinsic::ctlz: |
||
| 2096 | ISD = ISD::CTLZ; |
||
| 2097 | break; |
||
| 2098 | case Intrinsic::cttz: |
||
| 2099 | ISD = ISD::CTTZ; |
||
| 2100 | break; |
||
| 2101 | case Intrinsic::bswap: |
||
| 2102 | ISD = ISD::BSWAP; |
||
| 2103 | break; |
||
| 2104 | case Intrinsic::bitreverse: |
||
| 2105 | ISD = ISD::BITREVERSE; |
||
| 2106 | break; |
||
| 2107 | } |
||
| 2108 | |||
| 2109 | const TargetLoweringBase *TLI = getTLI(); |
||
| 2110 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy); |
||
| 2111 | |||
| 2112 | if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { |
||
| 2113 | if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() && |
||
| 2114 | TLI->isFAbsFree(LT.second)) { |
||
| 2115 | return 0; |
||
| 2116 | } |
||
| 2117 | |||
| 2118 | // The operation is legal. Assume it costs 1. |
||
| 2119 | // If the type is split to multiple registers, assume that there is some |
||
| 2120 | // overhead to this. |
||
| 2121 | // TODO: Once we have extract/insert subvector cost we need to use them. |
||
| 2122 | if (LT.first > 1) |
||
| 2123 | return (LT.first * 2); |
||
| 2124 | else |
||
| 2125 | return (LT.first * 1); |
||
| 2126 | } else if (!TLI->isOperationExpand(ISD, LT.second)) { |
||
| 2127 | // If the operation is custom lowered then assume |
||
| 2128 | // that the code is twice as expensive. |
||
| 2129 | return (LT.first * 2); |
||
| 2130 | } |
||
| 2131 | |||
| 2132 | // If we can't lower fmuladd into an FMA estimate the cost as a floating |
||
| 2133 | // point mul followed by an add. |
||
| 2134 | if (IID == Intrinsic::fmuladd) |
||
| 2135 | return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy, |
||
| 2136 | CostKind) + |
||
| 2137 | thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy, |
||
| 2138 | CostKind); |
||
| 2139 | if (IID == Intrinsic::experimental_constrained_fmuladd) { |
||
| 2140 | IntrinsicCostAttributes FMulAttrs( |
||
| 2141 | Intrinsic::experimental_constrained_fmul, RetTy, Tys); |
||
| 2142 | IntrinsicCostAttributes FAddAttrs( |
||
| 2143 | Intrinsic::experimental_constrained_fadd, RetTy, Tys); |
||
| 2144 | return thisT()->getIntrinsicInstrCost(FMulAttrs, CostKind) + |
||
| 2145 | thisT()->getIntrinsicInstrCost(FAddAttrs, CostKind); |
||
| 2146 | } |
||
| 2147 | |||
| 2148 | // Else, assume that we need to scalarize this intrinsic. For math builtins |
||
| 2149 | // this will emit a costly libcall, adding call overhead and spills. Make it |
||
| 2150 | // very expensive. |
||
| 2151 | if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) { |
||
| 2152 | // Scalable vectors cannot be scalarized, so return Invalid. |
||
| 2153 | if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) { |
||
| 2154 | return isa<ScalableVectorType>(Ty); |
||
| 2155 | })) |
||
| 2156 | return InstructionCost::getInvalid(); |
||
| 2157 | |||
| 2158 | InstructionCost ScalarizationCost = |
||
| 2159 | SkipScalarizationCost |
||
| 2160 | ? ScalarizationCostPassed |
||
| 2161 | : getScalarizationOverhead(RetVTy, /*Insert*/ true, |
||
| 2162 | /*Extract*/ false, CostKind); |
||
| 2163 | |||
| 2164 | unsigned ScalarCalls = cast<FixedVectorType>(RetVTy)->getNumElements(); |
||
| 2165 | SmallVector<Type *, 4> ScalarTys; |
||
| 2166 | for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { |
||
| 2167 | Type *Ty = Tys[i]; |
||
| 2168 | if (Ty->isVectorTy()) |
||
| 2169 | Ty = Ty->getScalarType(); |
||
| 2170 | ScalarTys.push_back(Ty); |
||
| 2171 | } |
||
| 2172 | IntrinsicCostAttributes Attrs(IID, RetTy->getScalarType(), ScalarTys, FMF); |
||
| 2173 | InstructionCost ScalarCost = |
||
| 2174 | thisT()->getIntrinsicInstrCost(Attrs, CostKind); |
||
| 2175 | for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { |
||
| 2176 | if (auto *VTy = dyn_cast<VectorType>(Tys[i])) { |
||
| 2177 | if (!ICA.skipScalarizationCost()) |
||
| 2178 | ScalarizationCost += getScalarizationOverhead( |
||
| 2179 | VTy, /*Insert*/ false, /*Extract*/ true, CostKind); |
||
| 2180 | ScalarCalls = std::max(ScalarCalls, |
||
| 2181 | cast<FixedVectorType>(VTy)->getNumElements()); |
||
| 2182 | } |
||
| 2183 | } |
||
| 2184 | return ScalarCalls * ScalarCost + ScalarizationCost; |
||
| 2185 | } |
||
| 2186 | |||
| 2187 | // This is going to be turned into a library call, make it expensive. |
||
| 2188 | return SingleCallCost; |
||
| 2189 | } |
||
| 2190 | |||
| 2191 | /// Compute a cost of the given call instruction. |
||
| 2192 | /// |
||
| 2193 | /// Compute the cost of calling function F with return type RetTy and |
||
| 2194 | /// argument types Tys. F might be nullptr, in this case the cost of an |
||
| 2195 | /// arbitrary call with the specified signature will be returned. |
||
| 2196 | /// This is used, for instance, when we estimate call of a vector |
||
| 2197 | /// counterpart of the given function. |
||
| 2198 | /// \param F Called function, might be nullptr. |
||
| 2199 | /// \param RetTy Return value types. |
||
| 2200 | /// \param Tys Argument types. |
||
| 2201 | /// \returns The cost of Call instruction. |
||
| 2202 | InstructionCost getCallInstrCost(Function *F, Type *RetTy, |
||
| 2203 | ArrayRef<Type *> Tys, |
||
| 2204 | TTI::TargetCostKind CostKind) { |
||
| 2205 | return 10; |
||
| 2206 | } |
||
| 2207 | |||
| 2208 | unsigned getNumberOfParts(Type *Tp) { |
||
| 2209 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); |
||
| 2210 | return LT.first.isValid() ? *LT.first.getValue() : 0; |
||
| 2211 | } |
||
| 2212 | |||
| 2213 | InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *, |
||
| 2214 | const SCEV *) { |
||
| 2215 | return 0; |
||
| 2216 | } |
||
| 2217 | |||
| 2218 | /// Try to calculate arithmetic and shuffle op costs for reduction intrinsics. |
||
| 2219 | /// We're assuming that reduction operation are performing the following way: |
||
| 2220 | /// |
||
| 2221 | /// %val1 = shufflevector<n x t> %val, <n x t> %undef, |
||
| 2222 | /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef> |
||
| 2223 | /// \----------------v-------------/ \----------v------------/ |
||
| 2224 | /// n/2 elements n/2 elements |
||
| 2225 | /// %red1 = op <n x t> %val, <n x t> val1 |
||
| 2226 | /// After this operation we have a vector %red1 where only the first n/2 |
||
| 2227 | /// elements are meaningful, the second n/2 elements are undefined and can be |
||
| 2228 | /// dropped. All other operations are actually working with the vector of |
||
| 2229 | /// length n/2, not n, though the real vector length is still n. |
||
| 2230 | /// %val2 = shufflevector<n x t> %red1, <n x t> %undef, |
||
| 2231 | /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef> |
||
| 2232 | /// \----------------v-------------/ \----------v------------/ |
||
| 2233 | /// n/4 elements 3*n/4 elements |
||
| 2234 | /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of |
||
| 2235 | /// length n/2, the resulting vector has length n/4 etc. |
||
| 2236 | /// |
||
| 2237 | /// The cost model should take into account that the actual length of the |
||
| 2238 | /// vector is reduced on each iteration. |
||
| 2239 | InstructionCost getTreeReductionCost(unsigned Opcode, VectorType *Ty, |
||
| 2240 | TTI::TargetCostKind CostKind) { |
||
| 2241 | // Targets must implement a default value for the scalable case, since |
||
| 2242 | // we don't know how many lanes the vector has. |
||
| 2243 | if (isa<ScalableVectorType>(Ty)) |
||
| 2244 | return InstructionCost::getInvalid(); |
||
| 2245 | |||
| 2246 | Type *ScalarTy = Ty->getElementType(); |
||
| 2247 | unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements(); |
||
| 2248 | if ((Opcode == Instruction::Or || Opcode == Instruction::And) && |
||
| 2249 | ScalarTy == IntegerType::getInt1Ty(Ty->getContext()) && |
||
| 2250 | NumVecElts >= 2) { |
||
| 2251 | // Or reduction for i1 is represented as: |
||
| 2252 | // %val = bitcast <ReduxWidth x i1> to iReduxWidth |
||
| 2253 | // %res = cmp ne iReduxWidth %val, 0 |
||
| 2254 | // And reduction for i1 is represented as: |
||
| 2255 | // %val = bitcast <ReduxWidth x i1> to iReduxWidth |
||
| 2256 | // %res = cmp eq iReduxWidth %val, 11111 |
||
| 2257 | Type *ValTy = IntegerType::get(Ty->getContext(), NumVecElts); |
||
| 2258 | return thisT()->getCastInstrCost(Instruction::BitCast, ValTy, Ty, |
||
| 2259 | TTI::CastContextHint::None, CostKind) + |
||
| 2260 | thisT()->getCmpSelInstrCost(Instruction::ICmp, ValTy, |
||
| 2261 | CmpInst::makeCmpResultType(ValTy), |
||
| 2262 | CmpInst::BAD_ICMP_PREDICATE, CostKind); |
||
| 2263 | } |
||
| 2264 | unsigned NumReduxLevels = Log2_32(NumVecElts); |
||
| 2265 | InstructionCost ArithCost = 0; |
||
| 2266 | InstructionCost ShuffleCost = 0; |
||
| 2267 | std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty); |
||
| 2268 | unsigned LongVectorCount = 0; |
||
| 2269 | unsigned MVTLen = |
||
| 2270 | LT.second.isVector() ? LT.second.getVectorNumElements() : 1; |
||
| 2271 | while (NumVecElts > MVTLen) { |
||
| 2272 | NumVecElts /= 2; |
||
| 2273 | VectorType *SubTy = FixedVectorType::get(ScalarTy, NumVecElts); |
||
| 2274 | ShuffleCost += |
||
| 2275 | thisT()->getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt, |
||
| 2276 | CostKind, NumVecElts, SubTy); |
||
| 2277 | ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy, CostKind); |
||
| 2278 | Ty = SubTy; |
||
| 2279 | ++LongVectorCount; |
||
| 2280 | } |
||
| 2281 | |||
| 2282 | NumReduxLevels -= LongVectorCount; |
||
| 2283 | |||
| 2284 | // The minimal length of the vector is limited by the real length of vector |
||
| 2285 | // operations performed on the current platform. That's why several final |
||
| 2286 | // reduction operations are performed on the vectors with the same |
||
| 2287 | // architecture-dependent length. |
||
| 2288 | |||
| 2289 | // By default reductions need one shuffle per reduction level. |
||
| 2290 | ShuffleCost += |
||
| 2291 | NumReduxLevels * thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, |
||
| 2292 | std::nullopt, CostKind, 0, Ty); |
||
| 2293 | ArithCost += |
||
| 2294 | NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty, CostKind); |
||
| 2295 | return ShuffleCost + ArithCost + |
||
| 2296 | thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, |
||
| 2297 | CostKind, 0, nullptr, nullptr); |
||
| 2298 | } |
||
| 2299 | |||
| 2300 | /// Try to calculate the cost of performing strict (in-order) reductions, |
||
| 2301 | /// which involves doing a sequence of floating point additions in lane |
||
| 2302 | /// order, starting with an initial value. For example, consider a scalar |
||
| 2303 | /// initial value 'InitVal' of type float and a vector of type <4 x float>: |
||
| 2304 | /// |
||
| 2305 | /// Vector = <float %v0, float %v1, float %v2, float %v3> |
||
| 2306 | /// |
||
| 2307 | /// %add1 = %InitVal + %v0 |
||
| 2308 | /// %add2 = %add1 + %v1 |
||
| 2309 | /// %add3 = %add2 + %v2 |
||
| 2310 | /// %add4 = %add3 + %v3 |
||
| 2311 | /// |
||
| 2312 | /// As a simple estimate we can say the cost of such a reduction is 4 times |
||
| 2313 | /// the cost of a scalar FP addition. We can only estimate the costs for |
||
| 2314 | /// fixed-width vectors here because for scalable vectors we do not know the |
||
| 2315 | /// runtime number of operations. |
||
| 2316 | InstructionCost getOrderedReductionCost(unsigned Opcode, VectorType *Ty, |
||
| 2317 | TTI::TargetCostKind CostKind) { |
||
| 2318 | // Targets must implement a default value for the scalable case, since |
||
| 2319 | // we don't know how many lanes the vector has. |
||
| 2320 | if (isa<ScalableVectorType>(Ty)) |
||
| 2321 | return InstructionCost::getInvalid(); |
||
| 2322 | |||
| 2323 | auto *VTy = cast<FixedVectorType>(Ty); |
||
| 2324 | InstructionCost ExtractCost = getScalarizationOverhead( |
||
| 2325 | VTy, /*Insert=*/false, /*Extract=*/true, CostKind); |
||
| 2326 | InstructionCost ArithCost = thisT()->getArithmeticInstrCost( |
||
| 2327 | Opcode, VTy->getElementType(), CostKind); |
||
| 2328 | ArithCost *= VTy->getNumElements(); |
||
| 2329 | |||
| 2330 | return ExtractCost + ArithCost; |
||
| 2331 | } |
||
| 2332 | |||
| 2333 | InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, |
||
| 2334 | std::optional<FastMathFlags> FMF, |
||
| 2335 | TTI::TargetCostKind CostKind) { |
||
| 2336 | if (TTI::requiresOrderedReduction(FMF)) |
||
| 2337 | return getOrderedReductionCost(Opcode, Ty, CostKind); |
||
| 2338 | return getTreeReductionCost(Opcode, Ty, CostKind); |
||
| 2339 | } |
||
| 2340 | |||
| 2341 | /// Try to calculate op costs for min/max reduction operations. |
||
| 2342 | /// \param CondTy Conditional type for the Select instruction. |
||
| 2343 | InstructionCost getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, |
||
| 2344 | bool IsUnsigned, |
||
| 2345 | TTI::TargetCostKind CostKind) { |
||
| 2346 | // Targets must implement a default value for the scalable case, since |
||
| 2347 | // we don't know how many lanes the vector has. |
||
| 2348 | if (isa<ScalableVectorType>(Ty)) |
||
| 2349 | return InstructionCost::getInvalid(); |
||
| 2350 | |||
| 2351 | Type *ScalarTy = Ty->getElementType(); |
||
| 2352 | Type *ScalarCondTy = CondTy->getElementType(); |
||
| 2353 | unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements(); |
||
| 2354 | unsigned NumReduxLevels = Log2_32(NumVecElts); |
||
| 2355 | unsigned CmpOpcode; |
||
| 2356 | if (Ty->isFPOrFPVectorTy()) { |
||
| 2357 | CmpOpcode = Instruction::FCmp; |
||
| 2358 | } else { |
||
| 2359 | assert(Ty->isIntOrIntVectorTy() && |
||
| 2360 | "expecting floating point or integer type for min/max reduction"); |
||
| 2361 | CmpOpcode = Instruction::ICmp; |
||
| 2362 | } |
||
| 2363 | InstructionCost MinMaxCost = 0; |
||
| 2364 | InstructionCost ShuffleCost = 0; |
||
| 2365 | std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty); |
||
| 2366 | unsigned LongVectorCount = 0; |
||
| 2367 | unsigned MVTLen = |
||
| 2368 | LT.second.isVector() ? LT.second.getVectorNumElements() : 1; |
||
| 2369 | while (NumVecElts > MVTLen) { |
||
| 2370 | NumVecElts /= 2; |
||
| 2371 | auto *SubTy = FixedVectorType::get(ScalarTy, NumVecElts); |
||
| 2372 | CondTy = FixedVectorType::get(ScalarCondTy, NumVecElts); |
||
| 2373 | |||
| 2374 | ShuffleCost += |
||
| 2375 | thisT()->getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt, |
||
| 2376 | CostKind, NumVecElts, SubTy); |
||
| 2377 | MinMaxCost += |
||
| 2378 | thisT()->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy, |
||
| 2379 | CmpInst::BAD_ICMP_PREDICATE, CostKind) + |
||
| 2380 | thisT()->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy, |
||
| 2381 | CmpInst::BAD_ICMP_PREDICATE, CostKind); |
||
| 2382 | Ty = SubTy; |
||
| 2383 | ++LongVectorCount; |
||
| 2384 | } |
||
| 2385 | |||
| 2386 | NumReduxLevels -= LongVectorCount; |
||
| 2387 | |||
| 2388 | // The minimal length of the vector is limited by the real length of vector |
||
| 2389 | // operations performed on the current platform. That's why several final |
||
| 2390 | // reduction opertions are perfomed on the vectors with the same |
||
| 2391 | // architecture-dependent length. |
||
| 2392 | ShuffleCost += |
||
| 2393 | NumReduxLevels * thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, |
||
| 2394 | std::nullopt, CostKind, 0, Ty); |
||
| 2395 | MinMaxCost += |
||
| 2396 | NumReduxLevels * |
||
| 2397 | (thisT()->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, |
||
| 2398 | CmpInst::BAD_ICMP_PREDICATE, CostKind) + |
||
| 2399 | thisT()->getCmpSelInstrCost(Instruction::Select, Ty, CondTy, |
||
| 2400 | CmpInst::BAD_ICMP_PREDICATE, CostKind)); |
||
| 2401 | // The last min/max should be in vector registers and we counted it above. |
||
| 2402 | // So just need a single extractelement. |
||
| 2403 | return ShuffleCost + MinMaxCost + |
||
| 2404 | thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, |
||
| 2405 | CostKind, 0, nullptr, nullptr); |
||
| 2406 | } |
||
| 2407 | |||
| 2408 | InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, |
||
| 2409 | Type *ResTy, VectorType *Ty, |
||
| 2410 | std::optional<FastMathFlags> FMF, |
||
| 2411 | TTI::TargetCostKind CostKind) { |
||
| 2412 | // Without any native support, this is equivalent to the cost of |
||
| 2413 | // vecreduce.opcode(ext(Ty A)). |
||
| 2414 | VectorType *ExtTy = VectorType::get(ResTy, Ty); |
||
| 2415 | InstructionCost RedCost = |
||
| 2416 | thisT()->getArithmeticReductionCost(Opcode, ExtTy, FMF, CostKind); |
||
| 2417 | InstructionCost ExtCost = thisT()->getCastInstrCost( |
||
| 2418 | IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty, |
||
| 2419 | TTI::CastContextHint::None, CostKind); |
||
| 2420 | |||
| 2421 | return RedCost + ExtCost; |
||
| 2422 | } |
||
| 2423 | |||
| 2424 | InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, |
||
| 2425 | VectorType *Ty, |
||
| 2426 | TTI::TargetCostKind CostKind) { |
||
| 2427 | // Without any native support, this is equivalent to the cost of |
||
| 2428 | // vecreduce.add(mul(ext(Ty A), ext(Ty B))) or |
||
| 2429 | // vecreduce.add(mul(A, B)). |
||
| 2430 | VectorType *ExtTy = VectorType::get(ResTy, Ty); |
||
| 2431 | InstructionCost RedCost = thisT()->getArithmeticReductionCost( |
||
| 2432 | Instruction::Add, ExtTy, std::nullopt, CostKind); |
||
| 2433 | InstructionCost ExtCost = thisT()->getCastInstrCost( |
||
| 2434 | IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty, |
||
| 2435 | TTI::CastContextHint::None, CostKind); |
||
| 2436 | |||
| 2437 | InstructionCost MulCost = |
||
| 2438 | thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind); |
||
| 2439 | |||
| 2440 | return RedCost + MulCost + 2 * ExtCost; |
||
| 2441 | } |
||
| 2442 | |||
| 2443 | InstructionCost getVectorSplitCost() { return 1; } |
||
| 2444 | |||
| 2445 | /// @} |
||
| 2446 | }; |
||
| 2447 | |||
| 2448 | /// Concrete BasicTTIImpl that can be used if no further customization |
||
| 2449 | /// is needed. |
||
| 2450 | class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> { |
||
| 2451 | using BaseT = BasicTTIImplBase<BasicTTIImpl>; |
||
| 2452 | |||
| 2453 | friend class BasicTTIImplBase<BasicTTIImpl>; |
||
| 2454 | |||
| 2455 | const TargetSubtargetInfo *ST; |
||
| 2456 | const TargetLoweringBase *TLI; |
||
| 2457 | |||
| 2458 | const TargetSubtargetInfo *getST() const { return ST; } |
||
| 2459 | const TargetLoweringBase *getTLI() const { return TLI; } |
||
| 2460 | |||
| 2461 | public: |
||
| 2462 | explicit BasicTTIImpl(const TargetMachine *TM, const Function &F); |
||
| 2463 | }; |
||
| 2464 | |||
| 2465 | } // end namespace llvm |
||
| 2466 | |||
| 2467 | #endif // LLVM_CODEGEN_BASICTTIIMPL_H |