Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- TensorSpec.h - type descriptor for a tensor --------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
#ifndef LLVM_ANALYSIS_TENSORSPEC_H
10
#define LLVM_ANALYSIS_TENSORSPEC_H
11
 
12
#include "llvm/Config/llvm-config.h"
13
 
14
#include "llvm/ADT/StringMap.h"
15
#include "llvm/IR/LLVMContext.h"
16
#include "llvm/Support/JSON.h"
17
 
18
#include <memory>
19
#include <optional>
20
#include <vector>
21
 
22
namespace llvm {
23
/// TensorSpec encapsulates the specification of a tensor: its dimensions, or
24
/// "shape" (row-major), its type (see TensorSpec::getDataType specializations
25
/// for supported types), its name and port (see "TensorFlow: Large-Scale
26
/// Machine Learning on Heterogeneous Distributed Systems", section 4.2, para 2:
27
/// https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf)
28
///
29
/// Known tensor types. The left part is the C type, the right is a name we
30
/// can use to identify the type (to implement TensorSpec equality checks), and
31
/// to use, if needed, when mapping to an underlying evaluator's type system.
32
/// The main requirement is that the C type we use has the same size and
33
/// encoding (e.g. endian-ness) as the one used by the evaluator.
34
#define SUPPORTED_TENSOR_TYPES(M)                                              \
35
  M(float, Float)                                                              \
36
  M(double, Double)                                                            \
37
  M(int8_t, Int8)                                                              \
38
  M(uint8_t, UInt8)                                                            \
39
  M(int16_t, Int16)                                                            \
40
  M(uint16_t, UInt16)                                                          \
41
  M(int32_t, Int32)                                                            \
42
  M(uint32_t, UInt32)                                                          \
43
  M(int64_t, Int64)                                                            \
44
  M(uint64_t, UInt64)
45
 
46
enum class TensorType {
47
  Invalid,
48
#define _TENSOR_TYPE_ENUM_MEMBERS(_, Name) Name,
49
  SUPPORTED_TENSOR_TYPES(_TENSOR_TYPE_ENUM_MEMBERS)
50
#undef _TENSOR_TYPE_ENUM_MEMBERS
51
      Total
52
};
53
 
54
class TensorSpec final {
55
public:
56
  template <typename T>
57
  static TensorSpec createSpec(const std::string &Name,
58
                               const std::vector<int64_t> &Shape,
59
                               int Port = 0) {
60
    return TensorSpec(Name, Port, getDataType<T>(), sizeof(T), Shape);
61
  }
62
 
63
  const std::string &name() const { return Name; }
64
  int port() const { return Port; }
65
  TensorType type() const { return Type; }
66
  const std::vector<int64_t> &shape() const { return Shape; }
67
 
68
  bool operator==(const TensorSpec &Other) const {
69
    return Name == Other.Name && Port == Other.Port && Type == Other.Type &&
70
           Shape == Other.Shape;
71
  }
72
 
73
  bool operator!=(const TensorSpec &Other) const { return !(*this == Other); }
74
 
75
  /// Get the number of elements in a tensor with this shape.
76
  size_t getElementCount() const { return ElementCount; }
77
  /// Get the size, in bytes, of one element.
78
  size_t getElementByteSize() const { return ElementSize; }
79
  /// Get the total size of a memory buffer needed to store the whole tensor.
80
  size_t getTotalTensorBufferSize() const { return ElementCount * ElementSize; }
81
 
82
  template <typename T> bool isElementType() const {
83
    return getDataType<T>() == Type;
84
  }
85
 
86
  TensorSpec(const std::string &NewName, const TensorSpec &Other)
87
      : TensorSpec(NewName, Other.Port, Other.Type, Other.ElementSize,
88
                   Other.Shape) {}
89
 
90
  void toJSON(json::OStream &OS) const;
91
 
92
private:
93
  TensorSpec(const std::string &Name, int Port, TensorType Type,
94
             size_t ElementSize, const std::vector<int64_t> &Shape);
95
 
96
  template <typename T> static TensorType getDataType();
97
 
98
  std::string Name;
99
  int Port = 0;
100
  TensorType Type = TensorType::Invalid;
101
  std::vector<int64_t> Shape;
102
  size_t ElementCount = 0;
103
  size_t ElementSize = 0;
104
};
105
 
106
/// Construct a TensorSpec from a JSON dictionary of the form:
107
/// { "name": <string>,
108
///   "port": <int>,
109
///   "type": <string. Use LLVM's types, e.g. float, double, int64_t>,
110
///   "shape": <array of ints> }
111
/// For the "type" field, see the C++ primitive types used in
112
/// TFUTILS_SUPPORTED_TYPES.
113
std::optional<TensorSpec> getTensorSpecFromJSON(LLVMContext &Ctx,
114
                                                const json::Value &Value);
115
 
116
#define TFUTILS_GETDATATYPE_DEF(T, Name)                                       \
117
  template <> TensorType TensorSpec::getDataType<T>();
118
SUPPORTED_TENSOR_TYPES(TFUTILS_GETDATATYPE_DEF)
119
 
120
#undef TFUTILS_GETDATATYPE_DEF
121
} // namespace llvm
122
 
123
#endif // LLVM_ANALYSIS_TENSORSPEC_H