Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// \file |
||
9 | /// This file provides helpers for the implementation of |
||
10 | /// a TargetTransformInfo-conforming class. |
||
11 | /// |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H |
||
15 | #define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H |
||
16 | |||
17 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
||
18 | #include "llvm/Analysis/TargetTransformInfo.h" |
||
19 | #include "llvm/Analysis/VectorUtils.h" |
||
20 | #include "llvm/IR/DataLayout.h" |
||
21 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
||
22 | #include "llvm/IR/IntrinsicInst.h" |
||
23 | #include "llvm/IR/Operator.h" |
||
24 | #include "llvm/IR/PatternMatch.h" |
||
25 | #include <optional> |
||
26 | #include <utility> |
||
27 | |||
28 | namespace llvm { |
||
29 | |||
30 | class Function; |
||
31 | |||
32 | /// Base class for use as a mix-in that aids implementing |
||
33 | /// a TargetTransformInfo-compatible class. |
||
34 | class TargetTransformInfoImplBase { |
||
35 | protected: |
||
36 | typedef TargetTransformInfo TTI; |
||
37 | |||
38 | const DataLayout &DL; |
||
39 | |||
40 | explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {} |
||
41 | |||
42 | public: |
||
43 | // Provide value semantics. MSVC requires that we spell all of these out. |
||
44 | TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg) = default; |
||
45 | TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {} |
||
46 | |||
47 | const DataLayout &getDataLayout() const { return DL; } |
||
48 | |||
49 | InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, |
||
50 | ArrayRef<const Value *> Operands, |
||
51 | TTI::TargetCostKind CostKind) const { |
||
52 | // In the basic model, we just assume that all-constant GEPs will be folded |
||
53 | // into their uses via addressing modes. |
||
54 | for (const Value *Operand : Operands) |
||
55 | if (!isa<Constant>(Operand)) |
||
56 | return TTI::TCC_Basic; |
||
57 | |||
58 | return TTI::TCC_Free; |
||
59 | } |
||
60 | |||
61 | unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
||
62 | unsigned &JTSize, |
||
63 | ProfileSummaryInfo *PSI, |
||
64 | BlockFrequencyInfo *BFI) const { |
||
65 | (void)PSI; |
||
66 | (void)BFI; |
||
67 | JTSize = 0; |
||
68 | return SI.getNumCases(); |
||
69 | } |
||
70 | |||
71 | unsigned getInliningThresholdMultiplier() const { return 1; } |
||
72 | unsigned adjustInliningThreshold(const CallBase *CB) const { return 0; } |
||
73 | |||
74 | int getInlinerVectorBonusPercent() const { return 150; } |
||
75 | |||
76 | InstructionCost getMemcpyCost(const Instruction *I) const { |
||
77 | return TTI::TCC_Expensive; |
||
78 | } |
||
79 | |||
80 | // Although this default value is arbitrary, it is not random. It is assumed |
||
81 | // that a condition that evaluates the same way by a higher percentage than |
||
82 | // this is best represented as control flow. Therefore, the default value N |
||
83 | // should be set such that the win from N% correct executions is greater than |
||
84 | // the loss from (100 - N)% mispredicted executions for the majority of |
||
85 | // intended targets. |
||
86 | BranchProbability getPredictableBranchThreshold() const { |
||
87 | return BranchProbability(99, 100); |
||
88 | } |
||
89 | |||
90 | bool hasBranchDivergence() const { return false; } |
||
91 | |||
92 | bool useGPUDivergenceAnalysis() const { return false; } |
||
93 | |||
94 | bool isSourceOfDivergence(const Value *V) const { return false; } |
||
95 | |||
96 | bool isAlwaysUniform(const Value *V) const { return false; } |
||
97 | |||
98 | unsigned getFlatAddressSpace() const { return -1; } |
||
99 | |||
100 | bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, |
||
101 | Intrinsic::ID IID) const { |
||
102 | return false; |
||
103 | } |
||
104 | |||
105 | bool isNoopAddrSpaceCast(unsigned, unsigned) const { return false; } |
||
106 | bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const { |
||
107 | return AS == 0; |
||
108 | }; |
||
109 | |||
110 | unsigned getAssumedAddrSpace(const Value *V) const { return -1; } |
||
111 | |||
112 | bool isSingleThreaded() const { return false; } |
||
113 | |||
114 | std::pair<const Value *, unsigned> |
||
115 | getPredicatedAddrSpace(const Value *V) const { |
||
116 | return std::make_pair(nullptr, -1); |
||
117 | } |
||
118 | |||
119 | Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, |
||
120 | Value *NewV) const { |
||
121 | return nullptr; |
||
122 | } |
||
123 | |||
124 | bool isLoweredToCall(const Function *F) const { |
||
125 | assert(F && "A concrete function must be provided to this routine."); |
||
126 | |||
127 | // FIXME: These should almost certainly not be handled here, and instead |
||
128 | // handled with the help of TLI or the target itself. This was largely |
||
129 | // ported from existing analysis heuristics here so that such refactorings |
||
130 | // can take place in the future. |
||
131 | |||
132 | if (F->isIntrinsic()) |
||
133 | return false; |
||
134 | |||
135 | if (F->hasLocalLinkage() || !F->hasName()) |
||
136 | return true; |
||
137 | |||
138 | StringRef Name = F->getName(); |
||
139 | |||
140 | // These will all likely lower to a single selection DAG node. |
||
141 | if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || |
||
142 | Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || |
||
143 | Name == "fmin" || Name == "fminf" || Name == "fminl" || |
||
144 | Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" || |
||
145 | Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || |
||
146 | Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") |
||
147 | return false; |
||
148 | |||
149 | // These are all likely to be optimized into something smaller. |
||
150 | if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || |
||
151 | Name == "exp2l" || Name == "exp2f" || Name == "floor" || |
||
152 | Name == "floorf" || Name == "ceil" || Name == "round" || |
||
153 | Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" || |
||
154 | Name == "llabs") |
||
155 | return false; |
||
156 | |||
157 | return true; |
||
158 | } |
||
159 | |||
160 | bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
||
161 | AssumptionCache &AC, TargetLibraryInfo *LibInfo, |
||
162 | HardwareLoopInfo &HWLoopInfo) const { |
||
163 | return false; |
||
164 | } |
||
165 | |||
166 | bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, |
||
167 | AssumptionCache &AC, TargetLibraryInfo *TLI, |
||
168 | DominatorTree *DT, |
||
169 | LoopVectorizationLegality *LVL, |
||
170 | InterleavedAccessInfo *IAI) const { |
||
171 | return false; |
||
172 | } |
||
173 | |||
174 | PredicationStyle emitGetActiveLaneMask() const { |
||
175 | return PredicationStyle::None; |
||
176 | } |
||
177 | |||
178 | std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC, |
||
179 | IntrinsicInst &II) const { |
||
180 | return std::nullopt; |
||
181 | } |
||
182 | |||
183 | std::optional<Value *> |
||
184 | simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, |
||
185 | APInt DemandedMask, KnownBits &Known, |
||
186 | bool &KnownBitsComputed) const { |
||
187 | return std::nullopt; |
||
188 | } |
||
189 | |||
190 | std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( |
||
191 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, |
||
192 | APInt &UndefElts2, APInt &UndefElts3, |
||
193 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
||
194 | SimplifyAndSetOp) const { |
||
195 | return std::nullopt; |
||
196 | } |
||
197 | |||
198 | void getUnrollingPreferences(Loop *, ScalarEvolution &, |
||
199 | TTI::UnrollingPreferences &, |
||
200 | OptimizationRemarkEmitter *) const {} |
||
201 | |||
202 | void getPeelingPreferences(Loop *, ScalarEvolution &, |
||
203 | TTI::PeelingPreferences &) const {} |
||
204 | |||
205 | bool isLegalAddImmediate(int64_t Imm) const { return false; } |
||
206 | |||
207 | bool isLegalICmpImmediate(int64_t Imm) const { return false; } |
||
208 | |||
209 | bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
||
210 | bool HasBaseReg, int64_t Scale, unsigned AddrSpace, |
||
211 | Instruction *I = nullptr) const { |
||
212 | // Guess that only reg and reg+reg addressing is allowed. This heuristic is |
||
213 | // taken from the implementation of LSR. |
||
214 | return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1); |
||
215 | } |
||
216 | |||
217 | bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const { |
||
218 | return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds, |
||
219 | C1.ScaleCost, C1.ImmCost, C1.SetupCost) < |
||
220 | std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds, |
||
221 | C2.ScaleCost, C2.ImmCost, C2.SetupCost); |
||
222 | } |
||
223 | |||
224 | bool isNumRegsMajorCostOfLSR() const { return true; } |
||
225 | |||
226 | bool isProfitableLSRChainElement(Instruction *I) const { return false; } |
||
227 | |||
228 | bool canMacroFuseCmp() const { return false; } |
||
229 | |||
230 | bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, |
||
231 | DominatorTree *DT, AssumptionCache *AC, |
||
232 | TargetLibraryInfo *LibInfo) const { |
||
233 | return false; |
||
234 | } |
||
235 | |||
236 | TTI::AddressingModeKind |
||
237 | getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const { |
||
238 | return TTI::AMK_None; |
||
239 | } |
||
240 | |||
241 | bool isLegalMaskedStore(Type *DataType, Align Alignment) const { |
||
242 | return false; |
||
243 | } |
||
244 | |||
245 | bool isLegalMaskedLoad(Type *DataType, Align Alignment) const { |
||
246 | return false; |
||
247 | } |
||
248 | |||
249 | bool isLegalNTStore(Type *DataType, Align Alignment) const { |
||
250 | // By default, assume nontemporal memory stores are available for stores |
||
251 | // that are aligned and have a size that is a power of 2. |
||
252 | unsigned DataSize = DL.getTypeStoreSize(DataType); |
||
253 | return Alignment >= DataSize && isPowerOf2_32(DataSize); |
||
254 | } |
||
255 | |||
256 | bool isLegalNTLoad(Type *DataType, Align Alignment) const { |
||
257 | // By default, assume nontemporal memory loads are available for loads that |
||
258 | // are aligned and have a size that is a power of 2. |
||
259 | unsigned DataSize = DL.getTypeStoreSize(DataType); |
||
260 | return Alignment >= DataSize && isPowerOf2_32(DataSize); |
||
261 | } |
||
262 | |||
263 | bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const { |
||
264 | return false; |
||
265 | } |
||
266 | |||
267 | bool isLegalMaskedScatter(Type *DataType, Align Alignment) const { |
||
268 | return false; |
||
269 | } |
||
270 | |||
271 | bool isLegalMaskedGather(Type *DataType, Align Alignment) const { |
||
272 | return false; |
||
273 | } |
||
274 | |||
275 | bool forceScalarizeMaskedGather(VectorType *DataType, Align Alignment) const { |
||
276 | return false; |
||
277 | } |
||
278 | |||
279 | bool forceScalarizeMaskedScatter(VectorType *DataType, |
||
280 | Align Alignment) const { |
||
281 | return false; |
||
282 | } |
||
283 | |||
284 | bool isLegalMaskedCompressStore(Type *DataType) const { return false; } |
||
285 | |||
286 | bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, |
||
287 | const SmallBitVector &OpcodeMask) const { |
||
288 | return false; |
||
289 | } |
||
290 | |||
291 | bool isLegalMaskedExpandLoad(Type *DataType) const { return false; } |
||
292 | |||
293 | bool enableOrderedReductions() const { return false; } |
||
294 | |||
295 | bool hasDivRemOp(Type *DataType, bool IsSigned) const { return false; } |
||
296 | |||
297 | bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const { |
||
298 | return false; |
||
299 | } |
||
300 | |||
301 | bool prefersVectorizedAddressing() const { return true; } |
||
302 | |||
303 | InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
||
304 | int64_t BaseOffset, bool HasBaseReg, |
||
305 | int64_t Scale, |
||
306 | unsigned AddrSpace) const { |
||
307 | // Guess that all legal addressing mode are free. |
||
308 | if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, |
||
309 | AddrSpace)) |
||
310 | return 0; |
||
311 | return -1; |
||
312 | } |
||
313 | |||
314 | bool LSRWithInstrQueries() const { return false; } |
||
315 | |||
316 | bool isTruncateFree(Type *Ty1, Type *Ty2) const { return false; } |
||
317 | |||
318 | bool isProfitableToHoist(Instruction *I) const { return true; } |
||
319 | |||
320 | bool useAA() const { return false; } |
||
321 | |||
322 | bool isTypeLegal(Type *Ty) const { return false; } |
||
323 | |||
324 | unsigned getRegUsageForType(Type *Ty) const { return 1; } |
||
325 | |||
326 | bool shouldBuildLookupTables() const { return true; } |
||
327 | |||
328 | bool shouldBuildLookupTablesForConstant(Constant *C) const { return true; } |
||
329 | |||
330 | bool shouldBuildRelLookupTables() const { return false; } |
||
331 | |||
332 | bool useColdCCForColdCall(Function &F) const { return false; } |
||
333 | |||
334 | InstructionCost getScalarizationOverhead(VectorType *Ty, |
||
335 | const APInt &DemandedElts, |
||
336 | bool Insert, bool Extract, |
||
337 | TTI::TargetCostKind CostKind) const { |
||
338 | return 0; |
||
339 | } |
||
340 | |||
341 | InstructionCost |
||
342 | getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
||
343 | ArrayRef<Type *> Tys, |
||
344 | TTI::TargetCostKind CostKind) const { |
||
345 | return 0; |
||
346 | } |
||
347 | |||
348 | bool supportsEfficientVectorElementLoadStore() const { return false; } |
||
349 | |||
350 | bool supportsTailCalls() const { return true; } |
||
351 | |||
352 | bool supportsTailCallFor(const CallBase *CB) const { |
||
353 | return supportsTailCalls(); |
||
354 | } |
||
355 | |||
356 | bool enableAggressiveInterleaving(bool LoopHasReductions) const { |
||
357 | return false; |
||
358 | } |
||
359 | |||
360 | TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, |
||
361 | bool IsZeroCmp) const { |
||
362 | return {}; |
||
363 | } |
||
364 | |||
365 | bool enableSelectOptimize() const { return true; } |
||
366 | |||
367 | bool enableInterleavedAccessVectorization() const { return false; } |
||
368 | |||
369 | bool enableMaskedInterleavedAccessVectorization() const { return false; } |
||
370 | |||
371 | bool isFPVectorizationPotentiallyUnsafe() const { return false; } |
||
372 | |||
373 | bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, |
||
374 | unsigned AddressSpace, Align Alignment, |
||
375 | unsigned *Fast) const { |
||
376 | return false; |
||
377 | } |
||
378 | |||
379 | TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const { |
||
380 | return TTI::PSK_Software; |
||
381 | } |
||
382 | |||
383 | bool haveFastSqrt(Type *Ty) const { return false; } |
||
384 | |||
385 | bool isExpensiveToSpeculativelyExecute(const Instruction *I) { return true; } |
||
386 | |||
387 | bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { return true; } |
||
388 | |||
389 | InstructionCost getFPOpCost(Type *Ty) const { |
||
390 | return TargetTransformInfo::TCC_Basic; |
||
391 | } |
||
392 | |||
393 | InstructionCost getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, |
||
394 | const APInt &Imm, Type *Ty) const { |
||
395 | return 0; |
||
396 | } |
||
397 | |||
398 | InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, |
||
399 | TTI::TargetCostKind CostKind) const { |
||
400 | return TTI::TCC_Basic; |
||
401 | } |
||
402 | |||
403 | InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, |
||
404 | const APInt &Imm, Type *Ty, |
||
405 | TTI::TargetCostKind CostKind, |
||
406 | Instruction *Inst = nullptr) const { |
||
407 | return TTI::TCC_Free; |
||
408 | } |
||
409 | |||
410 | InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
||
411 | const APInt &Imm, Type *Ty, |
||
412 | TTI::TargetCostKind CostKind) const { |
||
413 | return TTI::TCC_Free; |
||
414 | } |
||
415 | |||
416 | unsigned getNumberOfRegisters(unsigned ClassID) const { return 8; } |
||
417 | |||
418 | unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const { |
||
419 | return Vector ? 1 : 0; |
||
420 | }; |
||
421 | |||
422 | const char *getRegisterClassName(unsigned ClassID) const { |
||
423 | switch (ClassID) { |
||
424 | default: |
||
425 | return "Generic::Unknown Register Class"; |
||
426 | case 0: |
||
427 | return "Generic::ScalarRC"; |
||
428 | case 1: |
||
429 | return "Generic::VectorRC"; |
||
430 | } |
||
431 | } |
||
432 | |||
433 | TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { |
||
434 | return TypeSize::getFixed(32); |
||
435 | } |
||
436 | |||
437 | unsigned getMinVectorRegisterBitWidth() const { return 128; } |
||
438 | |||
439 | std::optional<unsigned> getMaxVScale() const { return std::nullopt; } |
||
440 | std::optional<unsigned> getVScaleForTuning() const { return std::nullopt; } |
||
441 | |||
442 | bool |
||
443 | shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const { |
||
444 | return false; |
||
445 | } |
||
446 | |||
447 | ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const { |
||
448 | return ElementCount::get(0, IsScalable); |
||
449 | } |
||
450 | |||
451 | unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { return 0; } |
||
452 | unsigned getStoreMinimumVF(unsigned VF, Type *, Type *) const { return VF; } |
||
453 | |||
454 | bool shouldConsiderAddressTypePromotion( |
||
455 | const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { |
||
456 | AllowPromotionWithoutCommonHeader = false; |
||
457 | return false; |
||
458 | } |
||
459 | |||
460 | unsigned getCacheLineSize() const { return 0; } |
||
461 | std::optional<unsigned> |
||
462 | getCacheSize(TargetTransformInfo::CacheLevel Level) const { |
||
463 | switch (Level) { |
||
464 | case TargetTransformInfo::CacheLevel::L1D: |
||
465 | [[fallthrough]]; |
||
466 | case TargetTransformInfo::CacheLevel::L2D: |
||
467 | return std::nullopt; |
||
468 | } |
||
469 | llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); |
||
470 | } |
||
471 | |||
472 | std::optional<unsigned> |
||
473 | getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const { |
||
474 | switch (Level) { |
||
475 | case TargetTransformInfo::CacheLevel::L1D: |
||
476 | [[fallthrough]]; |
||
477 | case TargetTransformInfo::CacheLevel::L2D: |
||
478 | return std::nullopt; |
||
479 | } |
||
480 | |||
481 | llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); |
||
482 | } |
||
483 | |||
484 | unsigned getPrefetchDistance() const { return 0; } |
||
485 | unsigned getMinPrefetchStride(unsigned NumMemAccesses, |
||
486 | unsigned NumStridedMemAccesses, |
||
487 | unsigned NumPrefetches, bool HasCall) const { |
||
488 | return 1; |
||
489 | } |
||
490 | unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX; } |
||
491 | bool enableWritePrefetching() const { return false; } |
||
492 | bool shouldPrefetchAddressSpace(unsigned AS) const { return !AS; } |
||
493 | |||
494 | unsigned getMaxInterleaveFactor(unsigned VF) const { return 1; } |
||
495 | |||
496 | InstructionCost getArithmeticInstrCost( |
||
497 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
||
498 | TTI::OperandValueInfo Opd1Info, TTI::OperandValueInfo Opd2Info, |
||
499 | ArrayRef<const Value *> Args, |
||
500 | const Instruction *CxtI = nullptr) const { |
||
501 | // FIXME: A number of transformation tests seem to require these values |
||
502 | // which seems a little odd for how arbitary there are. |
||
503 | switch (Opcode) { |
||
504 | default: |
||
505 | break; |
||
506 | case Instruction::FDiv: |
||
507 | case Instruction::FRem: |
||
508 | case Instruction::SDiv: |
||
509 | case Instruction::SRem: |
||
510 | case Instruction::UDiv: |
||
511 | case Instruction::URem: |
||
512 | // FIXME: Unlikely to be true for CodeSize. |
||
513 | return TTI::TCC_Expensive; |
||
514 | } |
||
515 | |||
516 | // Assume a 3cy latency for fp arithmetic ops. |
||
517 | if (CostKind == TTI::TCK_Latency) |
||
518 | if (Ty->getScalarType()->isFloatingPointTy()) |
||
519 | return 3; |
||
520 | |||
521 | return 1; |
||
522 | } |
||
523 | |||
524 | InstructionCost |
||
525 | getShuffleCost(TTI::ShuffleKind Kind, VectorType *Ty, ArrayRef<int> Mask, |
||
526 | TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, |
||
527 | ArrayRef<const Value *> Args = std::nullopt) const { |
||
528 | return 1; |
||
529 | } |
||
530 | |||
531 | InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
||
532 | TTI::CastContextHint CCH, |
||
533 | TTI::TargetCostKind CostKind, |
||
534 | const Instruction *I) const { |
||
535 | switch (Opcode) { |
||
536 | default: |
||
537 | break; |
||
538 | case Instruction::IntToPtr: { |
||
539 | unsigned SrcSize = Src->getScalarSizeInBits(); |
||
540 | if (DL.isLegalInteger(SrcSize) && |
||
541 | SrcSize <= DL.getPointerTypeSizeInBits(Dst)) |
||
542 | return 0; |
||
543 | break; |
||
544 | } |
||
545 | case Instruction::PtrToInt: { |
||
546 | unsigned DstSize = Dst->getScalarSizeInBits(); |
||
547 | if (DL.isLegalInteger(DstSize) && |
||
548 | DstSize >= DL.getPointerTypeSizeInBits(Src)) |
||
549 | return 0; |
||
550 | break; |
||
551 | } |
||
552 | case Instruction::BitCast: |
||
553 | if (Dst == Src || (Dst->isPointerTy() && Src->isPointerTy())) |
||
554 | // Identity and pointer-to-pointer casts are free. |
||
555 | return 0; |
||
556 | break; |
||
557 | case Instruction::Trunc: { |
||
558 | // trunc to a native type is free (assuming the target has compare and |
||
559 | // shift-right of the same width). |
||
560 | TypeSize DstSize = DL.getTypeSizeInBits(Dst); |
||
561 | if (!DstSize.isScalable() && DL.isLegalInteger(DstSize.getFixedValue())) |
||
562 | return 0; |
||
563 | break; |
||
564 | } |
||
565 | } |
||
566 | return 1; |
||
567 | } |
||
568 | |||
569 | InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
||
570 | VectorType *VecTy, |
||
571 | unsigned Index) const { |
||
572 | return 1; |
||
573 | } |
||
574 | |||
575 | InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, |
||
576 | const Instruction *I = nullptr) const { |
||
577 | // A phi would be free, unless we're costing the throughput because it |
||
578 | // will require a register. |
||
579 | if (Opcode == Instruction::PHI && CostKind != TTI::TCK_RecipThroughput) |
||
580 | return 0; |
||
581 | return 1; |
||
582 | } |
||
583 | |||
584 | InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
||
585 | CmpInst::Predicate VecPred, |
||
586 | TTI::TargetCostKind CostKind, |
||
587 | const Instruction *I) const { |
||
588 | return 1; |
||
589 | } |
||
590 | |||
591 | InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, |
||
592 | TTI::TargetCostKind CostKind, |
||
593 | unsigned Index, Value *Op0, |
||
594 | Value *Op1) const { |
||
595 | return 1; |
||
596 | } |
||
597 | |||
598 | InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, |
||
599 | TTI::TargetCostKind CostKind, |
||
600 | unsigned Index) const { |
||
601 | return 1; |
||
602 | } |
||
603 | |||
604 | unsigned getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, |
||
605 | const APInt &DemandedDstElts, |
||
606 | TTI::TargetCostKind CostKind) { |
||
607 | return 1; |
||
608 | } |
||
609 | |||
610 | InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
611 | unsigned AddressSpace, |
||
612 | TTI::TargetCostKind CostKind, |
||
613 | TTI::OperandValueInfo OpInfo, |
||
614 | const Instruction *I) const { |
||
615 | return 1; |
||
616 | } |
||
617 | |||
618 | InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
||
619 | unsigned AddressSpace, |
||
620 | TTI::TargetCostKind CostKind, |
||
621 | const Instruction *I) const { |
||
622 | return 1; |
||
623 | } |
||
624 | |||
625 | InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, |
||
626 | Align Alignment, unsigned AddressSpace, |
||
627 | TTI::TargetCostKind CostKind) const { |
||
628 | return 1; |
||
629 | } |
||
630 | |||
631 | InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, |
||
632 | const Value *Ptr, bool VariableMask, |
||
633 | Align Alignment, |
||
634 | TTI::TargetCostKind CostKind, |
||
635 | const Instruction *I = nullptr) const { |
||
636 | return 1; |
||
637 | } |
||
638 | |||
639 | unsigned getInterleavedMemoryOpCost( |
||
640 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
||
641 | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
||
642 | bool UseMaskForCond, bool UseMaskForGaps) const { |
||
643 | return 1; |
||
644 | } |
||
645 | |||
646 | InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
||
647 | TTI::TargetCostKind CostKind) const { |
||
648 | switch (ICA.getID()) { |
||
649 | default: |
||
650 | break; |
||
651 | case Intrinsic::annotation: |
||
652 | case Intrinsic::assume: |
||
653 | case Intrinsic::sideeffect: |
||
654 | case Intrinsic::pseudoprobe: |
||
655 | case Intrinsic::arithmetic_fence: |
||
656 | case Intrinsic::dbg_declare: |
||
657 | case Intrinsic::dbg_value: |
||
658 | case Intrinsic::dbg_label: |
||
659 | case Intrinsic::invariant_start: |
||
660 | case Intrinsic::invariant_end: |
||
661 | case Intrinsic::launder_invariant_group: |
||
662 | case Intrinsic::strip_invariant_group: |
||
663 | case Intrinsic::is_constant: |
||
664 | case Intrinsic::lifetime_start: |
||
665 | case Intrinsic::lifetime_end: |
||
666 | case Intrinsic::experimental_noalias_scope_decl: |
||
667 | case Intrinsic::objectsize: |
||
668 | case Intrinsic::ptr_annotation: |
||
669 | case Intrinsic::var_annotation: |
||
670 | case Intrinsic::experimental_gc_result: |
||
671 | case Intrinsic::experimental_gc_relocate: |
||
672 | case Intrinsic::coro_alloc: |
||
673 | case Intrinsic::coro_begin: |
||
674 | case Intrinsic::coro_free: |
||
675 | case Intrinsic::coro_end: |
||
676 | case Intrinsic::coro_frame: |
||
677 | case Intrinsic::coro_size: |
||
678 | case Intrinsic::coro_align: |
||
679 | case Intrinsic::coro_suspend: |
||
680 | case Intrinsic::coro_subfn_addr: |
||
681 | case Intrinsic::threadlocal_address: |
||
682 | // These intrinsics don't actually represent code after lowering. |
||
683 | return 0; |
||
684 | } |
||
685 | return 1; |
||
686 | } |
||
687 | |||
688 | InstructionCost getCallInstrCost(Function *F, Type *RetTy, |
||
689 | ArrayRef<Type *> Tys, |
||
690 | TTI::TargetCostKind CostKind) const { |
||
691 | return 1; |
||
692 | } |
||
693 | |||
694 | // Assume that we have a register of the right size for the type. |
||
695 | unsigned getNumberOfParts(Type *Tp) const { return 1; } |
||
696 | |||
697 | InstructionCost getAddressComputationCost(Type *Tp, ScalarEvolution *, |
||
698 | const SCEV *) const { |
||
699 | return 0; |
||
700 | } |
||
701 | |||
702 | InstructionCost getArithmeticReductionCost(unsigned, VectorType *, |
||
703 | std::optional<FastMathFlags> FMF, |
||
704 | TTI::TargetCostKind) const { |
||
705 | return 1; |
||
706 | } |
||
707 | |||
708 | InstructionCost getMinMaxReductionCost(VectorType *, VectorType *, bool, |
||
709 | TTI::TargetCostKind) const { |
||
710 | return 1; |
||
711 | } |
||
712 | |||
713 | InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, |
||
714 | Type *ResTy, VectorType *Ty, |
||
715 | std::optional<FastMathFlags> FMF, |
||
716 | TTI::TargetCostKind CostKind) const { |
||
717 | return 1; |
||
718 | } |
||
719 | |||
720 | InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, |
||
721 | VectorType *Ty, |
||
722 | TTI::TargetCostKind CostKind) const { |
||
723 | return 1; |
||
724 | } |
||
725 | |||
726 | InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { |
||
727 | return 0; |
||
728 | } |
||
729 | |||
730 | bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const { |
||
731 | return false; |
||
732 | } |
||
733 | |||
734 | unsigned getAtomicMemIntrinsicMaxElementSize() const { |
||
735 | // Note for overrides: You must ensure for all element unordered-atomic |
||
736 | // memory intrinsics that all power-of-2 element sizes up to, and |
||
737 | // including, the return value of this method have a corresponding |
||
738 | // runtime lib call. These runtime lib call definitions can be found |
||
739 | // in RuntimeLibcalls.h |
||
740 | return 0; |
||
741 | } |
||
742 | |||
743 | Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
||
744 | Type *ExpectedType) const { |
||
745 | return nullptr; |
||
746 | } |
||
747 | |||
748 | Type * |
||
749 | getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, |
||
750 | unsigned SrcAddrSpace, unsigned DestAddrSpace, |
||
751 | unsigned SrcAlign, unsigned DestAlign, |
||
752 | std::optional<uint32_t> AtomicElementSize) const { |
||
753 | return AtomicElementSize ? Type::getIntNTy(Context, *AtomicElementSize * 8) |
||
754 | : Type::getInt8Ty(Context); |
||
755 | } |
||
756 | |||
757 | void getMemcpyLoopResidualLoweringType( |
||
758 | SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, |
||
759 | unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, |
||
760 | unsigned SrcAlign, unsigned DestAlign, |
||
761 | std::optional<uint32_t> AtomicCpySize) const { |
||
762 | unsigned OpSizeInBytes = AtomicCpySize ? *AtomicCpySize : 1; |
||
763 | Type *OpType = Type::getIntNTy(Context, OpSizeInBytes * 8); |
||
764 | for (unsigned i = 0; i != RemainingBytes; i += OpSizeInBytes) |
||
765 | OpsOut.push_back(OpType); |
||
766 | } |
||
767 | |||
768 | bool areInlineCompatible(const Function *Caller, |
||
769 | const Function *Callee) const { |
||
770 | return (Caller->getFnAttribute("target-cpu") == |
||
771 | Callee->getFnAttribute("target-cpu")) && |
||
772 | (Caller->getFnAttribute("target-features") == |
||
773 | Callee->getFnAttribute("target-features")); |
||
774 | } |
||
775 | |||
776 | bool areTypesABICompatible(const Function *Caller, const Function *Callee, |
||
777 | const ArrayRef<Type *> &Types) const { |
||
778 | return (Caller->getFnAttribute("target-cpu") == |
||
779 | Callee->getFnAttribute("target-cpu")) && |
||
780 | (Caller->getFnAttribute("target-features") == |
||
781 | Callee->getFnAttribute("target-features")); |
||
782 | } |
||
783 | |||
784 | bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty, |
||
785 | const DataLayout &DL) const { |
||
786 | return false; |
||
787 | } |
||
788 | |||
789 | bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty, |
||
790 | const DataLayout &DL) const { |
||
791 | return false; |
||
792 | } |
||
793 | |||
794 | unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; } |
||
795 | |||
796 | bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; } |
||
797 | |||
798 | bool isLegalToVectorizeStore(StoreInst *SI) const { return true; } |
||
799 | |||
800 | bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, |
||
801 | unsigned AddrSpace) const { |
||
802 | return true; |
||
803 | } |
||
804 | |||
805 | bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, |
||
806 | unsigned AddrSpace) const { |
||
807 | return true; |
||
808 | } |
||
809 | |||
810 | bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, |
||
811 | ElementCount VF) const { |
||
812 | return true; |
||
813 | } |
||
814 | |||
815 | bool isElementTypeLegalForScalableVector(Type *Ty) const { return true; } |
||
816 | |||
817 | unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
||
818 | unsigned ChainSizeInBytes, |
||
819 | VectorType *VecTy) const { |
||
820 | return VF; |
||
821 | } |
||
822 | |||
823 | unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
||
824 | unsigned ChainSizeInBytes, |
||
825 | VectorType *VecTy) const { |
||
826 | return VF; |
||
827 | } |
||
828 | |||
829 | bool preferInLoopReduction(unsigned Opcode, Type *Ty, |
||
830 | TTI::ReductionFlags Flags) const { |
||
831 | return false; |
||
832 | } |
||
833 | |||
834 | bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, |
||
835 | TTI::ReductionFlags Flags) const { |
||
836 | return false; |
||
837 | } |
||
838 | |||
839 | bool preferEpilogueVectorization() const { |
||
840 | return true; |
||
841 | } |
||
842 | |||
843 | bool shouldExpandReduction(const IntrinsicInst *II) const { return true; } |
||
844 | |||
845 | unsigned getGISelRematGlobalCost() const { return 1; } |
||
846 | |||
847 | unsigned getMinTripCountTailFoldingThreshold() const { return 0; } |
||
848 | |||
849 | bool supportsScalableVectors() const { return false; } |
||
850 | |||
851 | bool enableScalableVectorization() const { return false; } |
||
852 | |||
853 | bool hasActiveVectorLength(unsigned Opcode, Type *DataType, |
||
854 | Align Alignment) const { |
||
855 | return false; |
||
856 | } |
||
857 | |||
858 | TargetTransformInfo::VPLegalization |
||
859 | getVPLegalizationStrategy(const VPIntrinsic &PI) const { |
||
860 | return TargetTransformInfo::VPLegalization( |
||
861 | /* EVLParamStrategy */ TargetTransformInfo::VPLegalization::Discard, |
||
862 | /* OperatorStrategy */ TargetTransformInfo::VPLegalization::Convert); |
||
863 | } |
||
864 | |||
865 | protected: |
||
866 | // Obtain the minimum required size to hold the value (without the sign) |
||
867 | // In case of a vector it returns the min required size for one element. |
||
868 | unsigned minRequiredElementSize(const Value *Val, bool &isSigned) const { |
||
869 | if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) { |
||
870 | const auto *VectorValue = cast<Constant>(Val); |
||
871 | |||
872 | // In case of a vector need to pick the max between the min |
||
873 | // required size for each element |
||
874 | auto *VT = cast<FixedVectorType>(Val->getType()); |
||
875 | |||
876 | // Assume unsigned elements |
||
877 | isSigned = false; |
||
878 | |||
879 | // The max required size is the size of the vector element type |
||
880 | unsigned MaxRequiredSize = |
||
881 | VT->getElementType()->getPrimitiveSizeInBits().getFixedValue(); |
||
882 | |||
883 | unsigned MinRequiredSize = 0; |
||
884 | for (unsigned i = 0, e = VT->getNumElements(); i < e; ++i) { |
||
885 | if (auto *IntElement = |
||
886 | dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) { |
||
887 | bool signedElement = IntElement->getValue().isNegative(); |
||
888 | // Get the element min required size. |
||
889 | unsigned ElementMinRequiredSize = |
||
890 | IntElement->getValue().getMinSignedBits() - 1; |
||
891 | // In case one element is signed then all the vector is signed. |
||
892 | isSigned |= signedElement; |
||
893 | // Save the max required bit size between all the elements. |
||
894 | MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize); |
||
895 | } else { |
||
896 | // not an int constant element |
||
897 | return MaxRequiredSize; |
||
898 | } |
||
899 | } |
||
900 | return MinRequiredSize; |
||
901 | } |
||
902 | |||
903 | if (const auto *CI = dyn_cast<ConstantInt>(Val)) { |
||
904 | isSigned = CI->getValue().isNegative(); |
||
905 | return CI->getValue().getMinSignedBits() - 1; |
||
906 | } |
||
907 | |||
908 | if (const auto *Cast = dyn_cast<SExtInst>(Val)) { |
||
909 | isSigned = true; |
||
910 | return Cast->getSrcTy()->getScalarSizeInBits() - 1; |
||
911 | } |
||
912 | |||
913 | if (const auto *Cast = dyn_cast<ZExtInst>(Val)) { |
||
914 | isSigned = false; |
||
915 | return Cast->getSrcTy()->getScalarSizeInBits(); |
||
916 | } |
||
917 | |||
918 | isSigned = false; |
||
919 | return Val->getType()->getScalarSizeInBits(); |
||
920 | } |
||
921 | |||
922 | bool isStridedAccess(const SCEV *Ptr) const { |
||
923 | return Ptr && isa<SCEVAddRecExpr>(Ptr); |
||
924 | } |
||
925 | |||
926 | const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE, |
||
927 | const SCEV *Ptr) const { |
||
928 | if (!isStridedAccess(Ptr)) |
||
929 | return nullptr; |
||
930 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr); |
||
931 | return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE)); |
||
932 | } |
||
933 | |||
934 | bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr, |
||
935 | int64_t MergeDistance) const { |
||
936 | const SCEVConstant *Step = getConstantStrideStep(SE, Ptr); |
||
937 | if (!Step) |
||
938 | return false; |
||
939 | APInt StrideVal = Step->getAPInt(); |
||
940 | if (StrideVal.getBitWidth() > 64) |
||
941 | return false; |
||
942 | // FIXME: Need to take absolute value for negative stride case. |
||
943 | return StrideVal.getSExtValue() < MergeDistance; |
||
944 | } |
||
945 | }; |
||
946 | |||
947 | /// CRTP base class for use as a mix-in that aids implementing |
||
948 | /// a TargetTransformInfo-compatible class. |
||
949 | template <typename T> |
||
950 | class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase { |
||
951 | private: |
||
952 | typedef TargetTransformInfoImplBase BaseT; |
||
953 | |||
954 | protected: |
||
955 | explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {} |
||
956 | |||
957 | public: |
||
958 | using BaseT::getGEPCost; |
||
959 | |||
960 | InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, |
||
961 | ArrayRef<const Value *> Operands, |
||
962 | TTI::TargetCostKind CostKind) { |
||
963 | assert(PointeeType && Ptr && "can't get GEPCost of nullptr"); |
||
964 | assert(cast<PointerType>(Ptr->getType()->getScalarType()) |
||
965 | ->isOpaqueOrPointeeTypeMatches(PointeeType) && |
||
966 | "explicit pointee type doesn't match operand's pointee type"); |
||
967 | auto *BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts()); |
||
968 | bool HasBaseReg = (BaseGV == nullptr); |
||
969 | |||
970 | auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType()); |
||
971 | APInt BaseOffset(PtrSizeBits, 0); |
||
972 | int64_t Scale = 0; |
||
973 | |||
974 | auto GTI = gep_type_begin(PointeeType, Operands); |
||
975 | Type *TargetType = nullptr; |
||
976 | |||
977 | // Handle the case where the GEP instruction has a single operand, |
||
978 | // the basis, therefore TargetType is a nullptr. |
||
979 | if (Operands.empty()) |
||
980 | return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic; |
||
981 | |||
982 | for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) { |
||
983 | TargetType = GTI.getIndexedType(); |
||
984 | // We assume that the cost of Scalar GEP with constant index and the |
||
985 | // cost of Vector GEP with splat constant index are the same. |
||
986 | const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); |
||
987 | if (!ConstIdx) |
||
988 | if (auto Splat = getSplatValue(*I)) |
||
989 | ConstIdx = dyn_cast<ConstantInt>(Splat); |
||
990 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
||
991 | // For structures the index is always splat or scalar constant |
||
992 | assert(ConstIdx && "Unexpected GEP index"); |
||
993 | uint64_t Field = ConstIdx->getZExtValue(); |
||
994 | BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field); |
||
995 | } else { |
||
996 | // If this operand is a scalable type, bail out early. |
||
997 | // TODO: handle scalable vectors |
||
998 | if (isa<ScalableVectorType>(TargetType)) |
||
999 | return TTI::TCC_Basic; |
||
1000 | int64_t ElementSize = |
||
1001 | DL.getTypeAllocSize(GTI.getIndexedType()).getFixedValue(); |
||
1002 | if (ConstIdx) { |
||
1003 | BaseOffset += |
||
1004 | ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize; |
||
1005 | } else { |
||
1006 | // Needs scale register. |
||
1007 | if (Scale != 0) |
||
1008 | // No addressing mode takes two scale registers. |
||
1009 | return TTI::TCC_Basic; |
||
1010 | Scale = ElementSize; |
||
1011 | } |
||
1012 | } |
||
1013 | } |
||
1014 | |||
1015 | if (static_cast<T *>(this)->isLegalAddressingMode( |
||
1016 | TargetType, const_cast<GlobalValue *>(BaseGV), |
||
1017 | BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, |
||
1018 | Ptr->getType()->getPointerAddressSpace())) |
||
1019 | return TTI::TCC_Free; |
||
1020 | return TTI::TCC_Basic; |
||
1021 | } |
||
1022 | |||
1023 | InstructionCost getInstructionCost(const User *U, |
||
1024 | ArrayRef<const Value *> Operands, |
||
1025 | TTI::TargetCostKind CostKind) { |
||
1026 | using namespace llvm::PatternMatch; |
||
1027 | |||
1028 | auto *TargetTTI = static_cast<T *>(this); |
||
1029 | // Handle non-intrinsic calls, invokes, and callbr. |
||
1030 | // FIXME: Unlikely to be true for anything but CodeSize. |
||
1031 | auto *CB = dyn_cast<CallBase>(U); |
||
1032 | if (CB && !isa<IntrinsicInst>(U)) { |
||
1033 | if (const Function *F = CB->getCalledFunction()) { |
||
1034 | if (!TargetTTI->isLoweredToCall(F)) |
||
1035 | return TTI::TCC_Basic; // Give a basic cost if it will be lowered |
||
1036 | |||
1037 | return TTI::TCC_Basic * (F->getFunctionType()->getNumParams() + 1); |
||
1038 | } |
||
1039 | // For indirect or other calls, scale cost by number of arguments. |
||
1040 | return TTI::TCC_Basic * (CB->arg_size() + 1); |
||
1041 | } |
||
1042 | |||
1043 | Type *Ty = U->getType(); |
||
1044 | unsigned Opcode = Operator::getOpcode(U); |
||
1045 | auto *I = dyn_cast<Instruction>(U); |
||
1046 | switch (Opcode) { |
||
1047 | default: |
||
1048 | break; |
||
1049 | case Instruction::Call: { |
||
1050 | assert(isa<IntrinsicInst>(U) && "Unexpected non-intrinsic call"); |
||
1051 | auto *Intrinsic = cast<IntrinsicInst>(U); |
||
1052 | IntrinsicCostAttributes CostAttrs(Intrinsic->getIntrinsicID(), *CB); |
||
1053 | return TargetTTI->getIntrinsicInstrCost(CostAttrs, CostKind); |
||
1054 | } |
||
1055 | case Instruction::Br: |
||
1056 | case Instruction::Ret: |
||
1057 | case Instruction::PHI: |
||
1058 | case Instruction::Switch: |
||
1059 | return TargetTTI->getCFInstrCost(Opcode, CostKind, I); |
||
1060 | case Instruction::ExtractValue: |
||
1061 | case Instruction::Freeze: |
||
1062 | return TTI::TCC_Free; |
||
1063 | case Instruction::Alloca: |
||
1064 | if (cast<AllocaInst>(U)->isStaticAlloca()) |
||
1065 | return TTI::TCC_Free; |
||
1066 | break; |
||
1067 | case Instruction::GetElementPtr: { |
||
1068 | const auto *GEP = cast<GEPOperator>(U); |
||
1069 | return TargetTTI->getGEPCost(GEP->getSourceElementType(), |
||
1070 | GEP->getPointerOperand(), |
||
1071 | Operands.drop_front(), CostKind); |
||
1072 | } |
||
1073 | case Instruction::Add: |
||
1074 | case Instruction::FAdd: |
||
1075 | case Instruction::Sub: |
||
1076 | case Instruction::FSub: |
||
1077 | case Instruction::Mul: |
||
1078 | case Instruction::FMul: |
||
1079 | case Instruction::UDiv: |
||
1080 | case Instruction::SDiv: |
||
1081 | case Instruction::FDiv: |
||
1082 | case Instruction::URem: |
||
1083 | case Instruction::SRem: |
||
1084 | case Instruction::FRem: |
||
1085 | case Instruction::Shl: |
||
1086 | case Instruction::LShr: |
||
1087 | case Instruction::AShr: |
||
1088 | case Instruction::And: |
||
1089 | case Instruction::Or: |
||
1090 | case Instruction::Xor: |
||
1091 | case Instruction::FNeg: { |
||
1092 | const TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(U->getOperand(0)); |
||
1093 | TTI::OperandValueInfo Op2Info; |
||
1094 | if (Opcode != Instruction::FNeg) |
||
1095 | Op2Info = TTI::getOperandInfo(U->getOperand(1)); |
||
1096 | SmallVector<const Value *, 2> Operands(U->operand_values()); |
||
1097 | return TargetTTI->getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, |
||
1098 | Op2Info, Operands, I); |
||
1099 | } |
||
1100 | case Instruction::IntToPtr: |
||
1101 | case Instruction::PtrToInt: |
||
1102 | case Instruction::SIToFP: |
||
1103 | case Instruction::UIToFP: |
||
1104 | case Instruction::FPToUI: |
||
1105 | case Instruction::FPToSI: |
||
1106 | case Instruction::Trunc: |
||
1107 | case Instruction::FPTrunc: |
||
1108 | case Instruction::BitCast: |
||
1109 | case Instruction::FPExt: |
||
1110 | case Instruction::SExt: |
||
1111 | case Instruction::ZExt: |
||
1112 | case Instruction::AddrSpaceCast: { |
||
1113 | Type *OpTy = U->getOperand(0)->getType(); |
||
1114 | return TargetTTI->getCastInstrCost( |
||
1115 | Opcode, Ty, OpTy, TTI::getCastContextHint(I), CostKind, I); |
||
1116 | } |
||
1117 | case Instruction::Store: { |
||
1118 | auto *SI = cast<StoreInst>(U); |
||
1119 | Type *ValTy = U->getOperand(0)->getType(); |
||
1120 | TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(U->getOperand(0)); |
||
1121 | return TargetTTI->getMemoryOpCost(Opcode, ValTy, SI->getAlign(), |
||
1122 | SI->getPointerAddressSpace(), CostKind, |
||
1123 | OpInfo, I); |
||
1124 | } |
||
1125 | case Instruction::Load: { |
||
1126 | // FIXME: Arbitary cost which could come from the backend. |
||
1127 | if (CostKind == TTI::TCK_Latency) |
||
1128 | return 4; |
||
1129 | auto *LI = cast<LoadInst>(U); |
||
1130 | Type *LoadType = U->getType(); |
||
1131 | // If there is a non-register sized type, the cost estimation may expand |
||
1132 | // it to be several instructions to load into multiple registers on the |
||
1133 | // target. But, if the only use of the load is a trunc instruction to a |
||
1134 | // register sized type, the instruction selector can combine these |
||
1135 | // instructions to be a single load. So, in this case, we use the |
||
1136 | // destination type of the trunc instruction rather than the load to |
||
1137 | // accurately estimate the cost of this load instruction. |
||
1138 | if (CostKind == TTI::TCK_CodeSize && LI->hasOneUse() && |
||
1139 | !LoadType->isVectorTy()) { |
||
1140 | if (const TruncInst *TI = dyn_cast<TruncInst>(*LI->user_begin())) |
||
1141 | LoadType = TI->getDestTy(); |
||
1142 | } |
||
1143 | return TargetTTI->getMemoryOpCost(Opcode, LoadType, LI->getAlign(), |
||
1144 | LI->getPointerAddressSpace(), CostKind, |
||
1145 | {TTI::OK_AnyValue, TTI::OP_None}, I); |
||
1146 | } |
||
1147 | case Instruction::Select: { |
||
1148 | const Value *Op0, *Op1; |
||
1149 | if (match(U, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || |
||
1150 | match(U, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { |
||
1151 | // select x, y, false --> x & y |
||
1152 | // select x, true, y --> x | y |
||
1153 | const auto Op1Info = TTI::getOperandInfo(Op0); |
||
1154 | const auto Op2Info = TTI::getOperandInfo(Op1); |
||
1155 | assert(Op0->getType()->getScalarSizeInBits() == 1 && |
||
1156 | Op1->getType()->getScalarSizeInBits() == 1); |
||
1157 | |||
1158 | SmallVector<const Value *, 2> Operands{Op0, Op1}; |
||
1159 | return TargetTTI->getArithmeticInstrCost( |
||
1160 | match(U, m_LogicalOr()) ? Instruction::Or : Instruction::And, Ty, |
||
1161 | CostKind, Op1Info, Op2Info, Operands, I); |
||
1162 | } |
||
1163 | Type *CondTy = U->getOperand(0)->getType(); |
||
1164 | return TargetTTI->getCmpSelInstrCost(Opcode, U->getType(), CondTy, |
||
1165 | CmpInst::BAD_ICMP_PREDICATE, |
||
1166 | CostKind, I); |
||
1167 | } |
||
1168 | case Instruction::ICmp: |
||
1169 | case Instruction::FCmp: { |
||
1170 | Type *ValTy = U->getOperand(0)->getType(); |
||
1171 | // TODO: Also handle ICmp/FCmp constant expressions. |
||
1172 | return TargetTTI->getCmpSelInstrCost(Opcode, ValTy, U->getType(), |
||
1173 | I ? cast<CmpInst>(I)->getPredicate() |
||
1174 | : CmpInst::BAD_ICMP_PREDICATE, |
||
1175 | CostKind, I); |
||
1176 | } |
||
1177 | case Instruction::InsertElement: { |
||
1178 | auto *IE = dyn_cast<InsertElementInst>(U); |
||
1179 | if (!IE) |
||
1180 | return TTI::TCC_Basic; // FIXME |
||
1181 | unsigned Idx = -1; |
||
1182 | if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) |
||
1183 | if (CI->getValue().getActiveBits() <= 32) |
||
1184 | Idx = CI->getZExtValue(); |
||
1185 | return TargetTTI->getVectorInstrCost(*IE, Ty, CostKind, Idx); |
||
1186 | } |
||
1187 | case Instruction::ShuffleVector: { |
||
1188 | auto *Shuffle = dyn_cast<ShuffleVectorInst>(U); |
||
1189 | if (!Shuffle) |
||
1190 | return TTI::TCC_Basic; // FIXME |
||
1191 | |||
1192 | auto *VecTy = cast<VectorType>(U->getType()); |
||
1193 | auto *VecSrcTy = cast<VectorType>(U->getOperand(0)->getType()); |
||
1194 | int NumSubElts, SubIndex; |
||
1195 | |||
1196 | if (Shuffle->changesLength()) { |
||
1197 | // Treat a 'subvector widening' as a free shuffle. |
||
1198 | if (Shuffle->increasesLength() && Shuffle->isIdentityWithPadding()) |
||
1199 | return 0; |
||
1200 | |||
1201 | if (Shuffle->isExtractSubvectorMask(SubIndex)) |
||
1202 | return TargetTTI->getShuffleCost(TTI::SK_ExtractSubvector, VecSrcTy, |
||
1203 | Shuffle->getShuffleMask(), CostKind, |
||
1204 | SubIndex, VecTy, Operands); |
||
1205 | |||
1206 | if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex)) |
||
1207 | return TargetTTI->getShuffleCost( |
||
1208 | TTI::SK_InsertSubvector, VecTy, Shuffle->getShuffleMask(), |
||
1209 | CostKind, SubIndex, |
||
1210 | FixedVectorType::get(VecTy->getScalarType(), NumSubElts), |
||
1211 | Operands); |
||
1212 | |||
1213 | int ReplicationFactor, VF; |
||
1214 | if (Shuffle->isReplicationMask(ReplicationFactor, VF)) { |
||
1215 | APInt DemandedDstElts = |
||
1216 | APInt::getNullValue(Shuffle->getShuffleMask().size()); |
||
1217 | for (auto I : enumerate(Shuffle->getShuffleMask())) { |
||
1218 | if (I.value() != UndefMaskElem) |
||
1219 | DemandedDstElts.setBit(I.index()); |
||
1220 | } |
||
1221 | return TargetTTI->getReplicationShuffleCost( |
||
1222 | VecSrcTy->getElementType(), ReplicationFactor, VF, |
||
1223 | DemandedDstElts, CostKind); |
||
1224 | } |
||
1225 | |||
1226 | return CostKind == TTI::TCK_RecipThroughput ? -1 : 1; |
||
1227 | } |
||
1228 | |||
1229 | if (Shuffle->isIdentity()) |
||
1230 | return 0; |
||
1231 | |||
1232 | if (Shuffle->isReverse()) |
||
1233 | return TargetTTI->getShuffleCost(TTI::SK_Reverse, VecTy, |
||
1234 | Shuffle->getShuffleMask(), CostKind, 0, |
||
1235 | nullptr, Operands); |
||
1236 | |||
1237 | if (Shuffle->isSelect()) |
||
1238 | return TargetTTI->getShuffleCost(TTI::SK_Select, VecTy, |
||
1239 | Shuffle->getShuffleMask(), CostKind, 0, |
||
1240 | nullptr, Operands); |
||
1241 | |||
1242 | if (Shuffle->isTranspose()) |
||
1243 | return TargetTTI->getShuffleCost(TTI::SK_Transpose, VecTy, |
||
1244 | Shuffle->getShuffleMask(), CostKind, 0, |
||
1245 | nullptr, Operands); |
||
1246 | |||
1247 | if (Shuffle->isZeroEltSplat()) |
||
1248 | return TargetTTI->getShuffleCost(TTI::SK_Broadcast, VecTy, |
||
1249 | Shuffle->getShuffleMask(), CostKind, 0, |
||
1250 | nullptr, Operands); |
||
1251 | |||
1252 | if (Shuffle->isSingleSource()) |
||
1253 | return TargetTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, VecTy, |
||
1254 | Shuffle->getShuffleMask(), CostKind, 0, |
||
1255 | nullptr, Operands); |
||
1256 | |||
1257 | if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex)) |
||
1258 | return TargetTTI->getShuffleCost( |
||
1259 | TTI::SK_InsertSubvector, VecTy, Shuffle->getShuffleMask(), CostKind, |
||
1260 | SubIndex, FixedVectorType::get(VecTy->getScalarType(), NumSubElts), |
||
1261 | Operands); |
||
1262 | |||
1263 | if (Shuffle->isSplice(SubIndex)) |
||
1264 | return TargetTTI->getShuffleCost(TTI::SK_Splice, VecTy, |
||
1265 | Shuffle->getShuffleMask(), CostKind, |
||
1266 | SubIndex, nullptr, Operands); |
||
1267 | |||
1268 | return TargetTTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, |
||
1269 | Shuffle->getShuffleMask(), CostKind, 0, |
||
1270 | nullptr, Operands); |
||
1271 | } |
||
1272 | case Instruction::ExtractElement: { |
||
1273 | auto *EEI = dyn_cast<ExtractElementInst>(U); |
||
1274 | if (!EEI) |
||
1275 | return TTI::TCC_Basic; // FIXME |
||
1276 | unsigned Idx = -1; |
||
1277 | if (auto *CI = dyn_cast<ConstantInt>(EEI->getOperand(1))) |
||
1278 | if (CI->getValue().getActiveBits() <= 32) |
||
1279 | Idx = CI->getZExtValue(); |
||
1280 | Type *DstTy = U->getOperand(0)->getType(); |
||
1281 | return TargetTTI->getVectorInstrCost(*EEI, DstTy, CostKind, Idx); |
||
1282 | } |
||
1283 | } |
||
1284 | |||
1285 | // By default, just classify everything as 'basic' or -1 to represent that |
||
1286 | // don't know the throughput cost. |
||
1287 | return CostKind == TTI::TCK_RecipThroughput ? -1 : TTI::TCC_Basic; |
||
1288 | } |
||
1289 | |||
1290 | bool isExpensiveToSpeculativelyExecute(const Instruction *I) { |
||
1291 | auto *TargetTTI = static_cast<T *>(this); |
||
1292 | SmallVector<const Value *, 4> Ops(I->operand_values()); |
||
1293 | InstructionCost Cost = TargetTTI->getInstructionCost( |
||
1294 | I, Ops, TargetTransformInfo::TCK_SizeAndLatency); |
||
1295 | return Cost >= TargetTransformInfo::TCC_Expensive; |
||
1296 | } |
||
1297 | }; |
||
1298 | } // namespace llvm |
||
1299 | |||
1300 | #endif |