Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file implements an abstract sparse conditional propagation algorithm, |
||
| 10 | // modeled after SCCP, but with a customizable lattice function. |
||
| 11 | // |
||
| 12 | //===----------------------------------------------------------------------===// |
||
| 13 | |||
| 14 | #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H |
||
| 15 | #define LLVM_ANALYSIS_SPARSEPROPAGATION_H |
||
| 16 | |||
| 17 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 18 | #include "llvm/IR/Constants.h" |
||
| 19 | #include "llvm/IR/Instructions.h" |
||
| 20 | #include "llvm/Support/Debug.h" |
||
| 21 | #include <set> |
||
| 22 | |||
| 23 | #define DEBUG_TYPE "sparseprop" |
||
| 24 | |||
| 25 | namespace llvm { |
||
| 26 | |||
| 27 | /// A template for translating between LLVM Values and LatticeKeys. Clients must |
||
| 28 | /// provide a specialization of LatticeKeyInfo for their LatticeKey type. |
||
| 29 | template <class LatticeKey> struct LatticeKeyInfo { |
||
| 30 | // static inline Value *getValueFromLatticeKey(LatticeKey Key); |
||
| 31 | // static inline LatticeKey getLatticeKeyFromValue(Value *V); |
||
| 32 | }; |
||
| 33 | |||
| 34 | template <class LatticeKey, class LatticeVal, |
||
| 35 | class KeyInfo = LatticeKeyInfo<LatticeKey>> |
||
| 36 | class SparseSolver; |
||
| 37 | |||
| 38 | /// AbstractLatticeFunction - This class is implemented by the dataflow instance |
||
| 39 | /// to specify what the lattice values are and how they handle merges etc. This |
||
| 40 | /// gives the client the power to compute lattice values from instructions, |
||
| 41 | /// constants, etc. The current requirement is that lattice values must be |
||
| 42 | /// copyable. At the moment, nothing tries to avoid copying. Additionally, |
||
| 43 | /// lattice keys must be able to be used as keys of a mapping data structure. |
||
| 44 | /// Internally, the generic solver currently uses a DenseMap to map lattice keys |
||
| 45 | /// to lattice values. If the lattice key is a non-standard type, a |
||
| 46 | /// specialization of DenseMapInfo must be provided. |
||
| 47 | template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction { |
||
| 48 | private: |
||
| 49 | LatticeVal UndefVal, OverdefinedVal, UntrackedVal; |
||
| 50 | |||
| 51 | public: |
||
| 52 | AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, |
||
| 53 | LatticeVal untrackedVal) { |
||
| 54 | UndefVal = undefVal; |
||
| 55 | OverdefinedVal = overdefinedVal; |
||
| 56 | UntrackedVal = untrackedVal; |
||
| 57 | } |
||
| 58 | |||
| 59 | virtual ~AbstractLatticeFunction() = default; |
||
| 60 | |||
| 61 | LatticeVal getUndefVal() const { return UndefVal; } |
||
| 62 | LatticeVal getOverdefinedVal() const { return OverdefinedVal; } |
||
| 63 | LatticeVal getUntrackedVal() const { return UntrackedVal; } |
||
| 64 | |||
| 65 | /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting |
||
| 66 | /// to the analysis (i.e., it would always return UntrackedVal), this |
||
| 67 | /// function can return true to avoid pointless work. |
||
| 68 | virtual bool IsUntrackedValue(LatticeKey Key) { return false; } |
||
| 69 | |||
| 70 | /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the |
||
| 71 | /// given LatticeKey. |
||
| 72 | virtual LatticeVal ComputeLatticeVal(LatticeKey Key) { |
||
| 73 | return getOverdefinedVal(); |
||
| 74 | } |
||
| 75 | |||
| 76 | /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is |
||
| 77 | /// one that the we want to handle through ComputeInstructionState. |
||
| 78 | virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; } |
||
| 79 | |||
| 80 | /// MergeValues - Compute and return the merge of the two specified lattice |
||
| 81 | /// values. Merging should only move one direction down the lattice to |
||
| 82 | /// guarantee convergence (toward overdefined). |
||
| 83 | virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { |
||
| 84 | return getOverdefinedVal(); // always safe, never useful. |
||
| 85 | } |
||
| 86 | |||
| 87 | /// ComputeInstructionState - Compute the LatticeKeys that change as a result |
||
| 88 | /// of executing instruction \p I. Their associated LatticeVals are store in |
||
| 89 | /// \p ChangedValues. |
||
| 90 | virtual void |
||
| 91 | ComputeInstructionState(Instruction &I, |
||
| 92 | DenseMap<LatticeKey, LatticeVal> &ChangedValues, |
||
| 93 | SparseSolver<LatticeKey, LatticeVal> &SS) = 0; |
||
| 94 | |||
| 95 | /// PrintLatticeVal - Render the given LatticeVal to the specified stream. |
||
| 96 | virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS); |
||
| 97 | |||
| 98 | /// PrintLatticeKey - Render the given LatticeKey to the specified stream. |
||
| 99 | virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS); |
||
| 100 | |||
| 101 | /// GetValueFromLatticeVal - If the given LatticeVal is representable as an |
||
| 102 | /// LLVM value, return it; otherwise, return nullptr. If a type is given, the |
||
| 103 | /// returned value must have the same type. This function is used by the |
||
| 104 | /// generic solver in attempting to resolve branch and switch conditions. |
||
| 105 | virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) { |
||
| 106 | return nullptr; |
||
| 107 | } |
||
| 108 | }; |
||
| 109 | |||
| 110 | /// SparseSolver - This class is a general purpose solver for Sparse Conditional |
||
| 111 | /// Propagation with a programmable lattice function. |
||
| 112 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 113 | class SparseSolver { |
||
| 114 | |||
| 115 | /// LatticeFunc - This is the object that knows the lattice and how to |
||
| 116 | /// compute transfer functions. |
||
| 117 | AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc; |
||
| 118 | |||
| 119 | /// ValueState - Holds the LatticeVals associated with LatticeKeys. |
||
| 120 | DenseMap<LatticeKey, LatticeVal> ValueState; |
||
| 121 | |||
| 122 | /// BBExecutable - Holds the basic blocks that are executable. |
||
| 123 | SmallPtrSet<BasicBlock *, 16> BBExecutable; |
||
| 124 | |||
| 125 | /// ValueWorkList - Holds values that should be processed. |
||
| 126 | SmallVector<Value *, 64> ValueWorkList; |
||
| 127 | |||
| 128 | /// BBWorkList - Holds basic blocks that should be processed. |
||
| 129 | SmallVector<BasicBlock *, 64> BBWorkList; |
||
| 130 | |||
| 131 | using Edge = std::pair<BasicBlock *, BasicBlock *>; |
||
| 132 | |||
| 133 | /// KnownFeasibleEdges - Entries in this set are edges which have already had |
||
| 134 | /// PHI nodes retriggered. |
||
| 135 | std::set<Edge> KnownFeasibleEdges; |
||
| 136 | |||
| 137 | public: |
||
| 138 | explicit SparseSolver( |
||
| 139 | AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice) |
||
| 140 | : LatticeFunc(Lattice) {} |
||
| 141 | SparseSolver(const SparseSolver &) = delete; |
||
| 142 | SparseSolver &operator=(const SparseSolver &) = delete; |
||
| 143 | |||
| 144 | /// Solve - Solve for constants and executable blocks. |
||
| 145 | void Solve(); |
||
| 146 | |||
| 147 | void Print(raw_ostream &OS) const; |
||
| 148 | |||
| 149 | /// getExistingValueState - Return the LatticeVal object corresponding to the |
||
| 150 | /// given value from the ValueState map. If the value is not in the map, |
||
| 151 | /// UntrackedVal is returned, unlike the getValueState method. |
||
| 152 | LatticeVal getExistingValueState(LatticeKey Key) const { |
||
| 153 | auto I = ValueState.find(Key); |
||
| 154 | return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); |
||
| 155 | } |
||
| 156 | |||
| 157 | /// getValueState - Return the LatticeVal object corresponding to the given |
||
| 158 | /// value from the ValueState map. If the value is not in the map, its state |
||
| 159 | /// is initialized. |
||
| 160 | LatticeVal getValueState(LatticeKey Key); |
||
| 161 | |||
| 162 | /// isEdgeFeasible - Return true if the control flow edge from the 'From' |
||
| 163 | /// basic block to the 'To' basic block is currently feasible. If |
||
| 164 | /// AggressiveUndef is true, then this treats values with unknown lattice |
||
| 165 | /// values as undefined. This is generally only useful when solving the |
||
| 166 | /// lattice, not when querying it. |
||
| 167 | bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, |
||
| 168 | bool AggressiveUndef = false); |
||
| 169 | |||
| 170 | /// isBlockExecutable - Return true if there are any known feasible |
||
| 171 | /// edges into the basic block. This is generally only useful when |
||
| 172 | /// querying the lattice. |
||
| 173 | bool isBlockExecutable(BasicBlock *BB) const { |
||
| 174 | return BBExecutable.count(BB); |
||
| 175 | } |
||
| 176 | |||
| 177 | /// MarkBlockExecutable - This method can be used by clients to mark all of |
||
| 178 | /// the blocks that are known to be intrinsically live in the processed unit. |
||
| 179 | void MarkBlockExecutable(BasicBlock *BB); |
||
| 180 | |||
| 181 | private: |
||
| 182 | /// UpdateState - When the state of some LatticeKey is potentially updated to |
||
| 183 | /// the given LatticeVal, this function notices and adds the LLVM value |
||
| 184 | /// corresponding the key to the work list, if needed. |
||
| 185 | void UpdateState(LatticeKey Key, LatticeVal LV); |
||
| 186 | |||
| 187 | /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
||
| 188 | /// work list if it is not already executable. |
||
| 189 | void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); |
||
| 190 | |||
| 191 | /// getFeasibleSuccessors - Return a vector of booleans to indicate which |
||
| 192 | /// successors are reachable from a given terminator instruction. |
||
| 193 | void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs, |
||
| 194 | bool AggressiveUndef); |
||
| 195 | |||
| 196 | void visitInst(Instruction &I); |
||
| 197 | void visitPHINode(PHINode &I); |
||
| 198 | void visitTerminator(Instruction &TI); |
||
| 199 | }; |
||
| 200 | |||
| 201 | //===----------------------------------------------------------------------===// |
||
| 202 | // AbstractLatticeFunction Implementation |
||
| 203 | //===----------------------------------------------------------------------===// |
||
| 204 | |||
| 205 | template <class LatticeKey, class LatticeVal> |
||
| 206 | void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal( |
||
| 207 | LatticeVal V, raw_ostream &OS) { |
||
| 208 | if (V == UndefVal) |
||
| 209 | OS << "undefined"; |
||
| 210 | else if (V == OverdefinedVal) |
||
| 211 | OS << "overdefined"; |
||
| 212 | else if (V == UntrackedVal) |
||
| 213 | OS << "untracked"; |
||
| 214 | else |
||
| 215 | OS << "unknown lattice value"; |
||
| 216 | } |
||
| 217 | |||
| 218 | template <class LatticeKey, class LatticeVal> |
||
| 219 | void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey( |
||
| 220 | LatticeKey Key, raw_ostream &OS) { |
||
| 221 | OS << "unknown lattice key"; |
||
| 222 | } |
||
| 223 | |||
| 224 | //===----------------------------------------------------------------------===// |
||
| 225 | // SparseSolver Implementation |
||
| 226 | //===----------------------------------------------------------------------===// |
||
| 227 | |||
| 228 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 229 | LatticeVal |
||
| 230 | SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) { |
||
| 231 | auto I = ValueState.find(Key); |
||
| 232 | if (I != ValueState.end()) |
||
| 233 | return I->second; // Common case, in the map |
||
| 234 | |||
| 235 | if (LatticeFunc->IsUntrackedValue(Key)) |
||
| 236 | return LatticeFunc->getUntrackedVal(); |
||
| 237 | LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key); |
||
| 238 | |||
| 239 | // If this value is untracked, don't add it to the map. |
||
| 240 | if (LV == LatticeFunc->getUntrackedVal()) |
||
| 241 | return LV; |
||
| 242 | return ValueState[Key] = std::move(LV); |
||
| 243 | } |
||
| 244 | |||
| 245 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 246 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key, |
||
| 247 | LatticeVal LV) { |
||
| 248 | auto I = ValueState.find(Key); |
||
| 249 | if (I != ValueState.end() && I->second == LV) |
||
| 250 | return; // No change. |
||
| 251 | |||
| 252 | // Update the state of the given LatticeKey and add its corresponding LLVM |
||
| 253 | // value to the work list. |
||
| 254 | ValueState[Key] = std::move(LV); |
||
| 255 | if (Value *V = KeyInfo::getValueFromLatticeKey(Key)) |
||
| 256 | ValueWorkList.push_back(V); |
||
| 257 | } |
||
| 258 | |||
| 259 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 260 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable( |
||
| 261 | BasicBlock *BB) { |
||
| 262 | if (!BBExecutable.insert(BB).second) |
||
| 263 | return; |
||
| 264 | LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); |
||
| 265 | BBWorkList.push_back(BB); // Add the block to the work list! |
||
| 266 | } |
||
| 267 | |||
| 268 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 269 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable( |
||
| 270 | BasicBlock *Source, BasicBlock *Dest) { |
||
| 271 | if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) |
||
| 272 | return; // This edge is already known to be executable! |
||
| 273 | |||
| 274 | LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() |
||
| 275 | << " -> " << Dest->getName() << "\n"); |
||
| 276 | |||
| 277 | if (BBExecutable.count(Dest)) { |
||
| 278 | // The destination is already executable, but we just made an edge |
||
| 279 | // feasible that wasn't before. Revisit the PHI nodes in the block |
||
| 280 | // because they have potentially new operands. |
||
| 281 | for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) |
||
| 282 | visitPHINode(*cast<PHINode>(I)); |
||
| 283 | } else { |
||
| 284 | MarkBlockExecutable(Dest); |
||
| 285 | } |
||
| 286 | } |
||
| 287 | |||
| 288 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 289 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors( |
||
| 290 | Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) { |
||
| 291 | Succs.resize(TI.getNumSuccessors()); |
||
| 292 | if (TI.getNumSuccessors() == 0) |
||
| 293 | return; |
||
| 294 | |||
| 295 | if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { |
||
| 296 | if (BI->isUnconditional()) { |
||
| 297 | Succs[0] = true; |
||
| 298 | return; |
||
| 299 | } |
||
| 300 | |||
| 301 | LatticeVal BCValue; |
||
| 302 | if (AggressiveUndef) |
||
| 303 | BCValue = |
||
| 304 | getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition())); |
||
| 305 | else |
||
| 306 | BCValue = getExistingValueState( |
||
| 307 | KeyInfo::getLatticeKeyFromValue(BI->getCondition())); |
||
| 308 | |||
| 309 | if (BCValue == LatticeFunc->getOverdefinedVal() || |
||
| 310 | BCValue == LatticeFunc->getUntrackedVal()) { |
||
| 311 | // Overdefined condition variables can branch either way. |
||
| 312 | Succs[0] = Succs[1] = true; |
||
| 313 | return; |
||
| 314 | } |
||
| 315 | |||
| 316 | // If undefined, neither is feasible yet. |
||
| 317 | if (BCValue == LatticeFunc->getUndefVal()) |
||
| 318 | return; |
||
| 319 | |||
| 320 | Constant *C = |
||
| 321 | dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( |
||
| 322 | std::move(BCValue), BI->getCondition()->getType())); |
||
| 323 | if (!C || !isa<ConstantInt>(C)) { |
||
| 324 | // Non-constant values can go either way. |
||
| 325 | Succs[0] = Succs[1] = true; |
||
| 326 | return; |
||
| 327 | } |
||
| 328 | |||
| 329 | // Constant condition variables mean the branch can only go a single way |
||
| 330 | Succs[C->isNullValue()] = true; |
||
| 331 | return; |
||
| 332 | } |
||
| 333 | |||
| 334 | if (!isa<SwitchInst>(TI)) { |
||
| 335 | // Unknown termintor, assume all successors are feasible. |
||
| 336 | Succs.assign(Succs.size(), true); |
||
| 337 | return; |
||
| 338 | } |
||
| 339 | |||
| 340 | SwitchInst &SI = cast<SwitchInst>(TI); |
||
| 341 | LatticeVal SCValue; |
||
| 342 | if (AggressiveUndef) |
||
| 343 | SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition())); |
||
| 344 | else |
||
| 345 | SCValue = getExistingValueState( |
||
| 346 | KeyInfo::getLatticeKeyFromValue(SI.getCondition())); |
||
| 347 | |||
| 348 | if (SCValue == LatticeFunc->getOverdefinedVal() || |
||
| 349 | SCValue == LatticeFunc->getUntrackedVal()) { |
||
| 350 | // All destinations are executable! |
||
| 351 | Succs.assign(TI.getNumSuccessors(), true); |
||
| 352 | return; |
||
| 353 | } |
||
| 354 | |||
| 355 | // If undefined, neither is feasible yet. |
||
| 356 | if (SCValue == LatticeFunc->getUndefVal()) |
||
| 357 | return; |
||
| 358 | |||
| 359 | Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( |
||
| 360 | std::move(SCValue), SI.getCondition()->getType())); |
||
| 361 | if (!C || !isa<ConstantInt>(C)) { |
||
| 362 | // All destinations are executable! |
||
| 363 | Succs.assign(TI.getNumSuccessors(), true); |
||
| 364 | return; |
||
| 365 | } |
||
| 366 | SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C)); |
||
| 367 | Succs[Case.getSuccessorIndex()] = true; |
||
| 368 | } |
||
| 369 | |||
| 370 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 371 | bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible( |
||
| 372 | BasicBlock *From, BasicBlock *To, bool AggressiveUndef) { |
||
| 373 | SmallVector<bool, 16> SuccFeasible; |
||
| 374 | Instruction *TI = From->getTerminator(); |
||
| 375 | getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); |
||
| 376 | |||
| 377 | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
||
| 378 | if (TI->getSuccessor(i) == To && SuccFeasible[i]) |
||
| 379 | return true; |
||
| 380 | |||
| 381 | return false; |
||
| 382 | } |
||
| 383 | |||
| 384 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 385 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator( |
||
| 386 | Instruction &TI) { |
||
| 387 | SmallVector<bool, 16> SuccFeasible; |
||
| 388 | getFeasibleSuccessors(TI, SuccFeasible, true); |
||
| 389 | |||
| 390 | BasicBlock *BB = TI.getParent(); |
||
| 391 | |||
| 392 | // Mark all feasible successors executable... |
||
| 393 | for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
||
| 394 | if (SuccFeasible[i]) |
||
| 395 | markEdgeExecutable(BB, TI.getSuccessor(i)); |
||
| 396 | } |
||
| 397 | |||
| 398 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 399 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) { |
||
| 400 | // The lattice function may store more information on a PHINode than could be |
||
| 401 | // computed from its incoming values. For example, SSI form stores its sigma |
||
| 402 | // functions as PHINodes with a single incoming value. |
||
| 403 | if (LatticeFunc->IsSpecialCasedPHI(&PN)) { |
||
| 404 | DenseMap<LatticeKey, LatticeVal> ChangedValues; |
||
| 405 | LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this); |
||
| 406 | for (auto &ChangedValue : ChangedValues) |
||
| 407 | if (ChangedValue.second != LatticeFunc->getUntrackedVal()) |
||
| 408 | UpdateState(std::move(ChangedValue.first), |
||
| 409 | std::move(ChangedValue.second)); |
||
| 410 | return; |
||
| 411 | } |
||
| 412 | |||
| 413 | LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN); |
||
| 414 | LatticeVal PNIV = getValueState(Key); |
||
| 415 | LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); |
||
| 416 | |||
| 417 | // If this value is already overdefined (common) just return. |
||
| 418 | if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) |
||
| 419 | return; // Quick exit |
||
| 420 | |||
| 421 | // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, |
||
| 422 | // and slow us down a lot. Just mark them overdefined. |
||
| 423 | if (PN.getNumIncomingValues() > 64) { |
||
| 424 | UpdateState(Key, Overdefined); |
||
| 425 | return; |
||
| 426 | } |
||
| 427 | |||
| 428 | // Look at all of the executable operands of the PHI node. If any of them |
||
| 429 | // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the |
||
| 430 | // transfer function to give us the merge of the incoming values. |
||
| 431 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
||
| 432 | // If the edge is not yet known to be feasible, it doesn't impact the PHI. |
||
| 433 | if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) |
||
| 434 | continue; |
||
| 435 | |||
| 436 | // Merge in this value. |
||
| 437 | LatticeVal OpVal = |
||
| 438 | getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i))); |
||
| 439 | if (OpVal != PNIV) |
||
| 440 | PNIV = LatticeFunc->MergeValues(PNIV, OpVal); |
||
| 441 | |||
| 442 | if (PNIV == Overdefined) |
||
| 443 | break; // Rest of input values don't matter. |
||
| 444 | } |
||
| 445 | |||
| 446 | // Update the PHI with the compute value, which is the merge of the inputs. |
||
| 447 | UpdateState(Key, PNIV); |
||
| 448 | } |
||
| 449 | |||
| 450 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 451 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) { |
||
| 452 | // PHIs are handled by the propagation logic, they are never passed into the |
||
| 453 | // transfer functions. |
||
| 454 | if (PHINode *PN = dyn_cast<PHINode>(&I)) |
||
| 455 | return visitPHINode(*PN); |
||
| 456 | |||
| 457 | // Otherwise, ask the transfer function what the result is. If this is |
||
| 458 | // something that we care about, remember it. |
||
| 459 | DenseMap<LatticeKey, LatticeVal> ChangedValues; |
||
| 460 | LatticeFunc->ComputeInstructionState(I, ChangedValues, *this); |
||
| 461 | for (auto &ChangedValue : ChangedValues) |
||
| 462 | if (ChangedValue.second != LatticeFunc->getUntrackedVal()) |
||
| 463 | UpdateState(ChangedValue.first, ChangedValue.second); |
||
| 464 | |||
| 465 | if (I.isTerminator()) |
||
| 466 | visitTerminator(I); |
||
| 467 | } |
||
| 468 | |||
| 469 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 470 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() { |
||
| 471 | // Process the work lists until they are empty! |
||
| 472 | while (!BBWorkList.empty() || !ValueWorkList.empty()) { |
||
| 473 | // Process the value work list. |
||
| 474 | while (!ValueWorkList.empty()) { |
||
| 475 | Value *V = ValueWorkList.pop_back_val(); |
||
| 476 | |||
| 477 | LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n"); |
||
| 478 | |||
| 479 | // "V" got into the work list because it made a transition. See if any |
||
| 480 | // users are both live and in need of updating. |
||
| 481 | for (User *U : V->users()) |
||
| 482 | if (Instruction *Inst = dyn_cast<Instruction>(U)) |
||
| 483 | if (BBExecutable.count(Inst->getParent())) // Inst is executable? |
||
| 484 | visitInst(*Inst); |
||
| 485 | } |
||
| 486 | |||
| 487 | // Process the basic block work list. |
||
| 488 | while (!BBWorkList.empty()) { |
||
| 489 | BasicBlock *BB = BBWorkList.pop_back_val(); |
||
| 490 | |||
| 491 | LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB); |
||
| 492 | |||
| 493 | // Notify all instructions in this basic block that they are newly |
||
| 494 | // executable. |
||
| 495 | for (Instruction &I : *BB) |
||
| 496 | visitInst(I); |
||
| 497 | } |
||
| 498 | } |
||
| 499 | } |
||
| 500 | |||
| 501 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
| 502 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print( |
||
| 503 | raw_ostream &OS) const { |
||
| 504 | if (ValueState.empty()) |
||
| 505 | return; |
||
| 506 | |||
| 507 | LatticeKey Key; |
||
| 508 | LatticeVal LV; |
||
| 509 | |||
| 510 | OS << "ValueState:\n"; |
||
| 511 | for (auto &Entry : ValueState) { |
||
| 512 | std::tie(Key, LV) = Entry; |
||
| 513 | if (LV == LatticeFunc->getUntrackedVal()) |
||
| 514 | continue; |
||
| 515 | OS << "\t"; |
||
| 516 | LatticeFunc->PrintLatticeVal(LV, OS); |
||
| 517 | OS << ": "; |
||
| 518 | LatticeFunc->PrintLatticeKey(Key, OS); |
||
| 519 | OS << "\n"; |
||
| 520 | } |
||
| 521 | } |
||
| 522 | } // end namespace llvm |
||
| 523 | |||
| 524 | #undef DEBUG_TYPE |
||
| 525 | |||
| 526 | #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H |