Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements an abstract sparse conditional propagation algorithm,
10
// modeled after SCCP, but with a customizable lattice function.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
15
#define LLVM_ANALYSIS_SPARSEPROPAGATION_H
16
 
17
#include "llvm/ADT/SmallPtrSet.h"
18
#include "llvm/IR/Constants.h"
19
#include "llvm/IR/Instructions.h"
20
#include "llvm/Support/Debug.h"
21
#include <set>
22
 
23
#define DEBUG_TYPE "sparseprop"
24
 
25
namespace llvm {
26
 
27
/// A template for translating between LLVM Values and LatticeKeys. Clients must
28
/// provide a specialization of LatticeKeyInfo for their LatticeKey type.
29
template <class LatticeKey> struct LatticeKeyInfo {
30
  // static inline Value *getValueFromLatticeKey(LatticeKey Key);
31
  // static inline LatticeKey getLatticeKeyFromValue(Value *V);
32
};
33
 
34
template <class LatticeKey, class LatticeVal,
35
          class KeyInfo = LatticeKeyInfo<LatticeKey>>
36
class SparseSolver;
37
 
38
/// AbstractLatticeFunction - This class is implemented by the dataflow instance
39
/// to specify what the lattice values are and how they handle merges etc.  This
40
/// gives the client the power to compute lattice values from instructions,
41
/// constants, etc.  The current requirement is that lattice values must be
42
/// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
43
/// lattice keys must be able to be used as keys of a mapping data structure.
44
/// Internally, the generic solver currently uses a DenseMap to map lattice keys
45
/// to lattice values.  If the lattice key is a non-standard type, a
46
/// specialization of DenseMapInfo must be provided.
47
template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
48
private:
49
  LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
50
 
51
public:
52
  AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
53
                          LatticeVal untrackedVal) {
54
    UndefVal = undefVal;
55
    OverdefinedVal = overdefinedVal;
56
    UntrackedVal = untrackedVal;
57
  }
58
 
59
  virtual ~AbstractLatticeFunction() = default;
60
 
61
  LatticeVal getUndefVal()       const { return UndefVal; }
62
  LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
63
  LatticeVal getUntrackedVal()   const { return UntrackedVal; }
64
 
65
  /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
66
  /// to the analysis (i.e., it would always return UntrackedVal), this
67
  /// function can return true to avoid pointless work.
68
  virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
69
 
70
  /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
71
  /// given LatticeKey.
72
  virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
73
    return getOverdefinedVal();
74
  }
75
 
76
  /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
77
  /// one that the we want to handle through ComputeInstructionState.
78
  virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
79
 
80
  /// MergeValues - Compute and return the merge of the two specified lattice
81
  /// values.  Merging should only move one direction down the lattice to
82
  /// guarantee convergence (toward overdefined).
83
  virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
84
    return getOverdefinedVal(); // always safe, never useful.
85
  }
86
 
87
  /// ComputeInstructionState - Compute the LatticeKeys that change as a result
88
  /// of executing instruction \p I. Their associated LatticeVals are store in
89
  /// \p ChangedValues.
90
  virtual void
91
  ComputeInstructionState(Instruction &I,
92
                          DenseMap<LatticeKey, LatticeVal> &ChangedValues,
93
                          SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
94
 
95
  /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
96
  virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
97
 
98
  /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
99
  virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
100
 
101
  /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
102
  /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
103
  /// returned value must have the same type. This function is used by the
104
  /// generic solver in attempting to resolve branch and switch conditions.
105
  virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
106
    return nullptr;
107
  }
108
};
109
 
110
/// SparseSolver - This class is a general purpose solver for Sparse Conditional
111
/// Propagation with a programmable lattice function.
112
template <class LatticeKey, class LatticeVal, class KeyInfo>
113
class SparseSolver {
114
 
115
  /// LatticeFunc - This is the object that knows the lattice and how to
116
  /// compute transfer functions.
117
  AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
118
 
119
  /// ValueState - Holds the LatticeVals associated with LatticeKeys.
120
  DenseMap<LatticeKey, LatticeVal> ValueState;
121
 
122
  /// BBExecutable - Holds the basic blocks that are executable.
123
  SmallPtrSet<BasicBlock *, 16> BBExecutable;
124
 
125
  /// ValueWorkList - Holds values that should be processed.
126
  SmallVector<Value *, 64> ValueWorkList;
127
 
128
  /// BBWorkList - Holds basic blocks that should be processed.
129
  SmallVector<BasicBlock *, 64> BBWorkList;
130
 
131
  using Edge = std::pair<BasicBlock *, BasicBlock *>;
132
 
133
  /// KnownFeasibleEdges - Entries in this set are edges which have already had
134
  /// PHI nodes retriggered.
135
  std::set<Edge> KnownFeasibleEdges;
136
 
137
public:
138
  explicit SparseSolver(
139
      AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
140
      : LatticeFunc(Lattice) {}
141
  SparseSolver(const SparseSolver &) = delete;
142
  SparseSolver &operator=(const SparseSolver &) = delete;
143
 
144
  /// Solve - Solve for constants and executable blocks.
145
  void Solve();
146
 
147
  void Print(raw_ostream &OS) const;
148
 
149
  /// getExistingValueState - Return the LatticeVal object corresponding to the
150
  /// given value from the ValueState map. If the value is not in the map,
151
  /// UntrackedVal is returned, unlike the getValueState method.
152
  LatticeVal getExistingValueState(LatticeKey Key) const {
153
    auto I = ValueState.find(Key);
154
    return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
155
  }
156
 
157
  /// getValueState - Return the LatticeVal object corresponding to the given
158
  /// value from the ValueState map. If the value is not in the map, its state
159
  /// is initialized.
160
  LatticeVal getValueState(LatticeKey Key);
161
 
162
  /// isEdgeFeasible - Return true if the control flow edge from the 'From'
163
  /// basic block to the 'To' basic block is currently feasible.  If
164
  /// AggressiveUndef is true, then this treats values with unknown lattice
165
  /// values as undefined.  This is generally only useful when solving the
166
  /// lattice, not when querying it.
167
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
168
                      bool AggressiveUndef = false);
169
 
170
  /// isBlockExecutable - Return true if there are any known feasible
171
  /// edges into the basic block.  This is generally only useful when
172
  /// querying the lattice.
173
  bool isBlockExecutable(BasicBlock *BB) const {
174
    return BBExecutable.count(BB);
175
  }
176
 
177
  /// MarkBlockExecutable - This method can be used by clients to mark all of
178
  /// the blocks that are known to be intrinsically live in the processed unit.
179
  void MarkBlockExecutable(BasicBlock *BB);
180
 
181
private:
182
  /// UpdateState - When the state of some LatticeKey is potentially updated to
183
  /// the given LatticeVal, this function notices and adds the LLVM value
184
  /// corresponding the key to the work list, if needed.
185
  void UpdateState(LatticeKey Key, LatticeVal LV);
186
 
187
  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
188
  /// work list if it is not already executable.
189
  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
190
 
191
  /// getFeasibleSuccessors - Return a vector of booleans to indicate which
192
  /// successors are reachable from a given terminator instruction.
193
  void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
194
                             bool AggressiveUndef);
195
 
196
  void visitInst(Instruction &I);
197
  void visitPHINode(PHINode &I);
198
  void visitTerminator(Instruction &TI);
199
};
200
 
201
//===----------------------------------------------------------------------===//
202
//                  AbstractLatticeFunction Implementation
203
//===----------------------------------------------------------------------===//
204
 
205
template <class LatticeKey, class LatticeVal>
206
void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
207
    LatticeVal V, raw_ostream &OS) {
208
  if (V == UndefVal)
209
    OS << "undefined";
210
  else if (V == OverdefinedVal)
211
    OS << "overdefined";
212
  else if (V == UntrackedVal)
213
    OS << "untracked";
214
  else
215
    OS << "unknown lattice value";
216
}
217
 
218
template <class LatticeKey, class LatticeVal>
219
void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
220
    LatticeKey Key, raw_ostream &OS) {
221
  OS << "unknown lattice key";
222
}
223
 
224
//===----------------------------------------------------------------------===//
225
//                          SparseSolver Implementation
226
//===----------------------------------------------------------------------===//
227
 
228
template <class LatticeKey, class LatticeVal, class KeyInfo>
229
LatticeVal
230
SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
231
  auto I = ValueState.find(Key);
232
  if (I != ValueState.end())
233
    return I->second; // Common case, in the map
234
 
235
  if (LatticeFunc->IsUntrackedValue(Key))
236
    return LatticeFunc->getUntrackedVal();
237
  LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
238
 
239
  // If this value is untracked, don't add it to the map.
240
  if (LV == LatticeFunc->getUntrackedVal())
241
    return LV;
242
  return ValueState[Key] = std::move(LV);
243
}
244
 
245
template <class LatticeKey, class LatticeVal, class KeyInfo>
246
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
247
                                                                LatticeVal LV) {
248
  auto I = ValueState.find(Key);
249
  if (I != ValueState.end() && I->second == LV)
250
    return; // No change.
251
 
252
  // Update the state of the given LatticeKey and add its corresponding LLVM
253
  // value to the work list.
254
  ValueState[Key] = std::move(LV);
255
  if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
256
    ValueWorkList.push_back(V);
257
}
258
 
259
template <class LatticeKey, class LatticeVal, class KeyInfo>
260
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
261
    BasicBlock *BB) {
262
  if (!BBExecutable.insert(BB).second)
263
    return;
264
  LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
265
  BBWorkList.push_back(BB); // Add the block to the work list!
266
}
267
 
268
template <class LatticeKey, class LatticeVal, class KeyInfo>
269
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
270
    BasicBlock *Source, BasicBlock *Dest) {
271
  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
272
    return; // This edge is already known to be executable!
273
 
274
  LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
275
                    << " -> " << Dest->getName() << "\n");
276
 
277
  if (BBExecutable.count(Dest)) {
278
    // The destination is already executable, but we just made an edge
279
    // feasible that wasn't before.  Revisit the PHI nodes in the block
280
    // because they have potentially new operands.
281
    for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
282
      visitPHINode(*cast<PHINode>(I));
283
  } else {
284
    MarkBlockExecutable(Dest);
285
  }
286
}
287
 
288
template <class LatticeKey, class LatticeVal, class KeyInfo>
289
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
290
    Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
291
  Succs.resize(TI.getNumSuccessors());
292
  if (TI.getNumSuccessors() == 0)
293
    return;
294
 
295
  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
296
    if (BI->isUnconditional()) {
297
      Succs[0] = true;
298
      return;
299
    }
300
 
301
    LatticeVal BCValue;
302
    if (AggressiveUndef)
303
      BCValue =
304
          getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
305
    else
306
      BCValue = getExistingValueState(
307
          KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
308
 
309
    if (BCValue == LatticeFunc->getOverdefinedVal() ||
310
        BCValue == LatticeFunc->getUntrackedVal()) {
311
      // Overdefined condition variables can branch either way.
312
      Succs[0] = Succs[1] = true;
313
      return;
314
    }
315
 
316
    // If undefined, neither is feasible yet.
317
    if (BCValue == LatticeFunc->getUndefVal())
318
      return;
319
 
320
    Constant *C =
321
        dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
322
            std::move(BCValue), BI->getCondition()->getType()));
323
    if (!C || !isa<ConstantInt>(C)) {
324
      // Non-constant values can go either way.
325
      Succs[0] = Succs[1] = true;
326
      return;
327
    }
328
 
329
    // Constant condition variables mean the branch can only go a single way
330
    Succs[C->isNullValue()] = true;
331
    return;
332
  }
333
 
334
  if (!isa<SwitchInst>(TI)) {
335
    // Unknown termintor, assume all successors are feasible.
336
    Succs.assign(Succs.size(), true);
337
    return;
338
  }
339
 
340
  SwitchInst &SI = cast<SwitchInst>(TI);
341
  LatticeVal SCValue;
342
  if (AggressiveUndef)
343
    SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
344
  else
345
    SCValue = getExistingValueState(
346
        KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
347
 
348
  if (SCValue == LatticeFunc->getOverdefinedVal() ||
349
      SCValue == LatticeFunc->getUntrackedVal()) {
350
    // All destinations are executable!
351
    Succs.assign(TI.getNumSuccessors(), true);
352
    return;
353
  }
354
 
355
  // If undefined, neither is feasible yet.
356
  if (SCValue == LatticeFunc->getUndefVal())
357
    return;
358
 
359
  Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
360
      std::move(SCValue), SI.getCondition()->getType()));
361
  if (!C || !isa<ConstantInt>(C)) {
362
    // All destinations are executable!
363
    Succs.assign(TI.getNumSuccessors(), true);
364
    return;
365
  }
366
  SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
367
  Succs[Case.getSuccessorIndex()] = true;
368
}
369
 
370
template <class LatticeKey, class LatticeVal, class KeyInfo>
371
bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
372
    BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
373
  SmallVector<bool, 16> SuccFeasible;
374
  Instruction *TI = From->getTerminator();
375
  getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
376
 
377
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
378
    if (TI->getSuccessor(i) == To && SuccFeasible[i])
379
      return true;
380
 
381
  return false;
382
}
383
 
384
template <class LatticeKey, class LatticeVal, class KeyInfo>
385
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
386
    Instruction &TI) {
387
  SmallVector<bool, 16> SuccFeasible;
388
  getFeasibleSuccessors(TI, SuccFeasible, true);
389
 
390
  BasicBlock *BB = TI.getParent();
391
 
392
  // Mark all feasible successors executable...
393
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
394
    if (SuccFeasible[i])
395
      markEdgeExecutable(BB, TI.getSuccessor(i));
396
}
397
 
398
template <class LatticeKey, class LatticeVal, class KeyInfo>
399
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
400
  // The lattice function may store more information on a PHINode than could be
401
  // computed from its incoming values.  For example, SSI form stores its sigma
402
  // functions as PHINodes with a single incoming value.
403
  if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
404
    DenseMap<LatticeKey, LatticeVal> ChangedValues;
405
    LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
406
    for (auto &ChangedValue : ChangedValues)
407
      if (ChangedValue.second != LatticeFunc->getUntrackedVal())
408
        UpdateState(std::move(ChangedValue.first),
409
                    std::move(ChangedValue.second));
410
    return;
411
  }
412
 
413
  LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
414
  LatticeVal PNIV = getValueState(Key);
415
  LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
416
 
417
  // If this value is already overdefined (common) just return.
418
  if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
419
    return; // Quick exit
420
 
421
  // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
422
  // and slow us down a lot.  Just mark them overdefined.
423
  if (PN.getNumIncomingValues() > 64) {
424
    UpdateState(Key, Overdefined);
425
    return;
426
  }
427
 
428
  // Look at all of the executable operands of the PHI node.  If any of them
429
  // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
430
  // transfer function to give us the merge of the incoming values.
431
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
432
    // If the edge is not yet known to be feasible, it doesn't impact the PHI.
433
    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
434
      continue;
435
 
436
    // Merge in this value.
437
    LatticeVal OpVal =
438
        getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
439
    if (OpVal != PNIV)
440
      PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
441
 
442
    if (PNIV == Overdefined)
443
      break; // Rest of input values don't matter.
444
  }
445
 
446
  // Update the PHI with the compute value, which is the merge of the inputs.
447
  UpdateState(Key, PNIV);
448
}
449
 
450
template <class LatticeKey, class LatticeVal, class KeyInfo>
451
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
452
  // PHIs are handled by the propagation logic, they are never passed into the
453
  // transfer functions.
454
  if (PHINode *PN = dyn_cast<PHINode>(&I))
455
    return visitPHINode(*PN);
456
 
457
  // Otherwise, ask the transfer function what the result is.  If this is
458
  // something that we care about, remember it.
459
  DenseMap<LatticeKey, LatticeVal> ChangedValues;
460
  LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
461
  for (auto &ChangedValue : ChangedValues)
462
    if (ChangedValue.second != LatticeFunc->getUntrackedVal())
463
      UpdateState(ChangedValue.first, ChangedValue.second);
464
 
465
  if (I.isTerminator())
466
    visitTerminator(I);
467
}
468
 
469
template <class LatticeKey, class LatticeVal, class KeyInfo>
470
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
471
  // Process the work lists until they are empty!
472
  while (!BBWorkList.empty() || !ValueWorkList.empty()) {
473
    // Process the value work list.
474
    while (!ValueWorkList.empty()) {
475
      Value *V = ValueWorkList.pop_back_val();
476
 
477
      LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
478
 
479
      // "V" got into the work list because it made a transition. See if any
480
      // users are both live and in need of updating.
481
      for (User *U : V->users())
482
        if (Instruction *Inst = dyn_cast<Instruction>(U))
483
          if (BBExecutable.count(Inst->getParent())) // Inst is executable?
484
            visitInst(*Inst);
485
    }
486
 
487
    // Process the basic block work list.
488
    while (!BBWorkList.empty()) {
489
      BasicBlock *BB = BBWorkList.pop_back_val();
490
 
491
      LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
492
 
493
      // Notify all instructions in this basic block that they are newly
494
      // executable.
495
      for (Instruction &I : *BB)
496
        visitInst(I);
497
    }
498
  }
499
}
500
 
501
template <class LatticeKey, class LatticeVal, class KeyInfo>
502
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
503
    raw_ostream &OS) const {
504
  if (ValueState.empty())
505
    return;
506
 
507
  LatticeKey Key;
508
  LatticeVal LV;
509
 
510
  OS << "ValueState:\n";
511
  for (auto &Entry : ValueState) {
512
    std::tie(Key, LV) = Entry;
513
    if (LV == LatticeFunc->getUntrackedVal())
514
      continue;
515
    OS << "\t";
516
    LatticeFunc->PrintLatticeVal(LV, OS);
517
    OS << ": ";
518
    LatticeFunc->PrintLatticeKey(Key, OS);
519
    OS << "\n";
520
  }
521
}
522
} // end namespace llvm
523
 
524
#undef DEBUG_TYPE
525
 
526
#endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H