Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file implements an abstract sparse conditional propagation algorithm, |
||
10 | // modeled after SCCP, but with a customizable lattice function. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H |
||
15 | #define LLVM_ANALYSIS_SPARSEPROPAGATION_H |
||
16 | |||
17 | #include "llvm/ADT/SmallPtrSet.h" |
||
18 | #include "llvm/IR/Constants.h" |
||
19 | #include "llvm/IR/Instructions.h" |
||
20 | #include "llvm/Support/Debug.h" |
||
21 | #include <set> |
||
22 | |||
23 | #define DEBUG_TYPE "sparseprop" |
||
24 | |||
25 | namespace llvm { |
||
26 | |||
27 | /// A template for translating between LLVM Values and LatticeKeys. Clients must |
||
28 | /// provide a specialization of LatticeKeyInfo for their LatticeKey type. |
||
29 | template <class LatticeKey> struct LatticeKeyInfo { |
||
30 | // static inline Value *getValueFromLatticeKey(LatticeKey Key); |
||
31 | // static inline LatticeKey getLatticeKeyFromValue(Value *V); |
||
32 | }; |
||
33 | |||
34 | template <class LatticeKey, class LatticeVal, |
||
35 | class KeyInfo = LatticeKeyInfo<LatticeKey>> |
||
36 | class SparseSolver; |
||
37 | |||
38 | /// AbstractLatticeFunction - This class is implemented by the dataflow instance |
||
39 | /// to specify what the lattice values are and how they handle merges etc. This |
||
40 | /// gives the client the power to compute lattice values from instructions, |
||
41 | /// constants, etc. The current requirement is that lattice values must be |
||
42 | /// copyable. At the moment, nothing tries to avoid copying. Additionally, |
||
43 | /// lattice keys must be able to be used as keys of a mapping data structure. |
||
44 | /// Internally, the generic solver currently uses a DenseMap to map lattice keys |
||
45 | /// to lattice values. If the lattice key is a non-standard type, a |
||
46 | /// specialization of DenseMapInfo must be provided. |
||
47 | template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction { |
||
48 | private: |
||
49 | LatticeVal UndefVal, OverdefinedVal, UntrackedVal; |
||
50 | |||
51 | public: |
||
52 | AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, |
||
53 | LatticeVal untrackedVal) { |
||
54 | UndefVal = undefVal; |
||
55 | OverdefinedVal = overdefinedVal; |
||
56 | UntrackedVal = untrackedVal; |
||
57 | } |
||
58 | |||
59 | virtual ~AbstractLatticeFunction() = default; |
||
60 | |||
61 | LatticeVal getUndefVal() const { return UndefVal; } |
||
62 | LatticeVal getOverdefinedVal() const { return OverdefinedVal; } |
||
63 | LatticeVal getUntrackedVal() const { return UntrackedVal; } |
||
64 | |||
65 | /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting |
||
66 | /// to the analysis (i.e., it would always return UntrackedVal), this |
||
67 | /// function can return true to avoid pointless work. |
||
68 | virtual bool IsUntrackedValue(LatticeKey Key) { return false; } |
||
69 | |||
70 | /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the |
||
71 | /// given LatticeKey. |
||
72 | virtual LatticeVal ComputeLatticeVal(LatticeKey Key) { |
||
73 | return getOverdefinedVal(); |
||
74 | } |
||
75 | |||
76 | /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is |
||
77 | /// one that the we want to handle through ComputeInstructionState. |
||
78 | virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; } |
||
79 | |||
80 | /// MergeValues - Compute and return the merge of the two specified lattice |
||
81 | /// values. Merging should only move one direction down the lattice to |
||
82 | /// guarantee convergence (toward overdefined). |
||
83 | virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { |
||
84 | return getOverdefinedVal(); // always safe, never useful. |
||
85 | } |
||
86 | |||
87 | /// ComputeInstructionState - Compute the LatticeKeys that change as a result |
||
88 | /// of executing instruction \p I. Their associated LatticeVals are store in |
||
89 | /// \p ChangedValues. |
||
90 | virtual void |
||
91 | ComputeInstructionState(Instruction &I, |
||
92 | DenseMap<LatticeKey, LatticeVal> &ChangedValues, |
||
93 | SparseSolver<LatticeKey, LatticeVal> &SS) = 0; |
||
94 | |||
95 | /// PrintLatticeVal - Render the given LatticeVal to the specified stream. |
||
96 | virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS); |
||
97 | |||
98 | /// PrintLatticeKey - Render the given LatticeKey to the specified stream. |
||
99 | virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS); |
||
100 | |||
101 | /// GetValueFromLatticeVal - If the given LatticeVal is representable as an |
||
102 | /// LLVM value, return it; otherwise, return nullptr. If a type is given, the |
||
103 | /// returned value must have the same type. This function is used by the |
||
104 | /// generic solver in attempting to resolve branch and switch conditions. |
||
105 | virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) { |
||
106 | return nullptr; |
||
107 | } |
||
108 | }; |
||
109 | |||
110 | /// SparseSolver - This class is a general purpose solver for Sparse Conditional |
||
111 | /// Propagation with a programmable lattice function. |
||
112 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
113 | class SparseSolver { |
||
114 | |||
115 | /// LatticeFunc - This is the object that knows the lattice and how to |
||
116 | /// compute transfer functions. |
||
117 | AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc; |
||
118 | |||
119 | /// ValueState - Holds the LatticeVals associated with LatticeKeys. |
||
120 | DenseMap<LatticeKey, LatticeVal> ValueState; |
||
121 | |||
122 | /// BBExecutable - Holds the basic blocks that are executable. |
||
123 | SmallPtrSet<BasicBlock *, 16> BBExecutable; |
||
124 | |||
125 | /// ValueWorkList - Holds values that should be processed. |
||
126 | SmallVector<Value *, 64> ValueWorkList; |
||
127 | |||
128 | /// BBWorkList - Holds basic blocks that should be processed. |
||
129 | SmallVector<BasicBlock *, 64> BBWorkList; |
||
130 | |||
131 | using Edge = std::pair<BasicBlock *, BasicBlock *>; |
||
132 | |||
133 | /// KnownFeasibleEdges - Entries in this set are edges which have already had |
||
134 | /// PHI nodes retriggered. |
||
135 | std::set<Edge> KnownFeasibleEdges; |
||
136 | |||
137 | public: |
||
138 | explicit SparseSolver( |
||
139 | AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice) |
||
140 | : LatticeFunc(Lattice) {} |
||
141 | SparseSolver(const SparseSolver &) = delete; |
||
142 | SparseSolver &operator=(const SparseSolver &) = delete; |
||
143 | |||
144 | /// Solve - Solve for constants and executable blocks. |
||
145 | void Solve(); |
||
146 | |||
147 | void Print(raw_ostream &OS) const; |
||
148 | |||
149 | /// getExistingValueState - Return the LatticeVal object corresponding to the |
||
150 | /// given value from the ValueState map. If the value is not in the map, |
||
151 | /// UntrackedVal is returned, unlike the getValueState method. |
||
152 | LatticeVal getExistingValueState(LatticeKey Key) const { |
||
153 | auto I = ValueState.find(Key); |
||
154 | return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); |
||
155 | } |
||
156 | |||
157 | /// getValueState - Return the LatticeVal object corresponding to the given |
||
158 | /// value from the ValueState map. If the value is not in the map, its state |
||
159 | /// is initialized. |
||
160 | LatticeVal getValueState(LatticeKey Key); |
||
161 | |||
162 | /// isEdgeFeasible - Return true if the control flow edge from the 'From' |
||
163 | /// basic block to the 'To' basic block is currently feasible. If |
||
164 | /// AggressiveUndef is true, then this treats values with unknown lattice |
||
165 | /// values as undefined. This is generally only useful when solving the |
||
166 | /// lattice, not when querying it. |
||
167 | bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, |
||
168 | bool AggressiveUndef = false); |
||
169 | |||
170 | /// isBlockExecutable - Return true if there are any known feasible |
||
171 | /// edges into the basic block. This is generally only useful when |
||
172 | /// querying the lattice. |
||
173 | bool isBlockExecutable(BasicBlock *BB) const { |
||
174 | return BBExecutable.count(BB); |
||
175 | } |
||
176 | |||
177 | /// MarkBlockExecutable - This method can be used by clients to mark all of |
||
178 | /// the blocks that are known to be intrinsically live in the processed unit. |
||
179 | void MarkBlockExecutable(BasicBlock *BB); |
||
180 | |||
181 | private: |
||
182 | /// UpdateState - When the state of some LatticeKey is potentially updated to |
||
183 | /// the given LatticeVal, this function notices and adds the LLVM value |
||
184 | /// corresponding the key to the work list, if needed. |
||
185 | void UpdateState(LatticeKey Key, LatticeVal LV); |
||
186 | |||
187 | /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
||
188 | /// work list if it is not already executable. |
||
189 | void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); |
||
190 | |||
191 | /// getFeasibleSuccessors - Return a vector of booleans to indicate which |
||
192 | /// successors are reachable from a given terminator instruction. |
||
193 | void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs, |
||
194 | bool AggressiveUndef); |
||
195 | |||
196 | void visitInst(Instruction &I); |
||
197 | void visitPHINode(PHINode &I); |
||
198 | void visitTerminator(Instruction &TI); |
||
199 | }; |
||
200 | |||
201 | //===----------------------------------------------------------------------===// |
||
202 | // AbstractLatticeFunction Implementation |
||
203 | //===----------------------------------------------------------------------===// |
||
204 | |||
205 | template <class LatticeKey, class LatticeVal> |
||
206 | void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal( |
||
207 | LatticeVal V, raw_ostream &OS) { |
||
208 | if (V == UndefVal) |
||
209 | OS << "undefined"; |
||
210 | else if (V == OverdefinedVal) |
||
211 | OS << "overdefined"; |
||
212 | else if (V == UntrackedVal) |
||
213 | OS << "untracked"; |
||
214 | else |
||
215 | OS << "unknown lattice value"; |
||
216 | } |
||
217 | |||
218 | template <class LatticeKey, class LatticeVal> |
||
219 | void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey( |
||
220 | LatticeKey Key, raw_ostream &OS) { |
||
221 | OS << "unknown lattice key"; |
||
222 | } |
||
223 | |||
224 | //===----------------------------------------------------------------------===// |
||
225 | // SparseSolver Implementation |
||
226 | //===----------------------------------------------------------------------===// |
||
227 | |||
228 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
229 | LatticeVal |
||
230 | SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) { |
||
231 | auto I = ValueState.find(Key); |
||
232 | if (I != ValueState.end()) |
||
233 | return I->second; // Common case, in the map |
||
234 | |||
235 | if (LatticeFunc->IsUntrackedValue(Key)) |
||
236 | return LatticeFunc->getUntrackedVal(); |
||
237 | LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key); |
||
238 | |||
239 | // If this value is untracked, don't add it to the map. |
||
240 | if (LV == LatticeFunc->getUntrackedVal()) |
||
241 | return LV; |
||
242 | return ValueState[Key] = std::move(LV); |
||
243 | } |
||
244 | |||
245 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
246 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key, |
||
247 | LatticeVal LV) { |
||
248 | auto I = ValueState.find(Key); |
||
249 | if (I != ValueState.end() && I->second == LV) |
||
250 | return; // No change. |
||
251 | |||
252 | // Update the state of the given LatticeKey and add its corresponding LLVM |
||
253 | // value to the work list. |
||
254 | ValueState[Key] = std::move(LV); |
||
255 | if (Value *V = KeyInfo::getValueFromLatticeKey(Key)) |
||
256 | ValueWorkList.push_back(V); |
||
257 | } |
||
258 | |||
259 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
260 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable( |
||
261 | BasicBlock *BB) { |
||
262 | if (!BBExecutable.insert(BB).second) |
||
263 | return; |
||
264 | LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); |
||
265 | BBWorkList.push_back(BB); // Add the block to the work list! |
||
266 | } |
||
267 | |||
268 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
269 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable( |
||
270 | BasicBlock *Source, BasicBlock *Dest) { |
||
271 | if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) |
||
272 | return; // This edge is already known to be executable! |
||
273 | |||
274 | LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() |
||
275 | << " -> " << Dest->getName() << "\n"); |
||
276 | |||
277 | if (BBExecutable.count(Dest)) { |
||
278 | // The destination is already executable, but we just made an edge |
||
279 | // feasible that wasn't before. Revisit the PHI nodes in the block |
||
280 | // because they have potentially new operands. |
||
281 | for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) |
||
282 | visitPHINode(*cast<PHINode>(I)); |
||
283 | } else { |
||
284 | MarkBlockExecutable(Dest); |
||
285 | } |
||
286 | } |
||
287 | |||
288 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
289 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors( |
||
290 | Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) { |
||
291 | Succs.resize(TI.getNumSuccessors()); |
||
292 | if (TI.getNumSuccessors() == 0) |
||
293 | return; |
||
294 | |||
295 | if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { |
||
296 | if (BI->isUnconditional()) { |
||
297 | Succs[0] = true; |
||
298 | return; |
||
299 | } |
||
300 | |||
301 | LatticeVal BCValue; |
||
302 | if (AggressiveUndef) |
||
303 | BCValue = |
||
304 | getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition())); |
||
305 | else |
||
306 | BCValue = getExistingValueState( |
||
307 | KeyInfo::getLatticeKeyFromValue(BI->getCondition())); |
||
308 | |||
309 | if (BCValue == LatticeFunc->getOverdefinedVal() || |
||
310 | BCValue == LatticeFunc->getUntrackedVal()) { |
||
311 | // Overdefined condition variables can branch either way. |
||
312 | Succs[0] = Succs[1] = true; |
||
313 | return; |
||
314 | } |
||
315 | |||
316 | // If undefined, neither is feasible yet. |
||
317 | if (BCValue == LatticeFunc->getUndefVal()) |
||
318 | return; |
||
319 | |||
320 | Constant *C = |
||
321 | dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( |
||
322 | std::move(BCValue), BI->getCondition()->getType())); |
||
323 | if (!C || !isa<ConstantInt>(C)) { |
||
324 | // Non-constant values can go either way. |
||
325 | Succs[0] = Succs[1] = true; |
||
326 | return; |
||
327 | } |
||
328 | |||
329 | // Constant condition variables mean the branch can only go a single way |
||
330 | Succs[C->isNullValue()] = true; |
||
331 | return; |
||
332 | } |
||
333 | |||
334 | if (!isa<SwitchInst>(TI)) { |
||
335 | // Unknown termintor, assume all successors are feasible. |
||
336 | Succs.assign(Succs.size(), true); |
||
337 | return; |
||
338 | } |
||
339 | |||
340 | SwitchInst &SI = cast<SwitchInst>(TI); |
||
341 | LatticeVal SCValue; |
||
342 | if (AggressiveUndef) |
||
343 | SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition())); |
||
344 | else |
||
345 | SCValue = getExistingValueState( |
||
346 | KeyInfo::getLatticeKeyFromValue(SI.getCondition())); |
||
347 | |||
348 | if (SCValue == LatticeFunc->getOverdefinedVal() || |
||
349 | SCValue == LatticeFunc->getUntrackedVal()) { |
||
350 | // All destinations are executable! |
||
351 | Succs.assign(TI.getNumSuccessors(), true); |
||
352 | return; |
||
353 | } |
||
354 | |||
355 | // If undefined, neither is feasible yet. |
||
356 | if (SCValue == LatticeFunc->getUndefVal()) |
||
357 | return; |
||
358 | |||
359 | Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( |
||
360 | std::move(SCValue), SI.getCondition()->getType())); |
||
361 | if (!C || !isa<ConstantInt>(C)) { |
||
362 | // All destinations are executable! |
||
363 | Succs.assign(TI.getNumSuccessors(), true); |
||
364 | return; |
||
365 | } |
||
366 | SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C)); |
||
367 | Succs[Case.getSuccessorIndex()] = true; |
||
368 | } |
||
369 | |||
370 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
371 | bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible( |
||
372 | BasicBlock *From, BasicBlock *To, bool AggressiveUndef) { |
||
373 | SmallVector<bool, 16> SuccFeasible; |
||
374 | Instruction *TI = From->getTerminator(); |
||
375 | getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); |
||
376 | |||
377 | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
||
378 | if (TI->getSuccessor(i) == To && SuccFeasible[i]) |
||
379 | return true; |
||
380 | |||
381 | return false; |
||
382 | } |
||
383 | |||
384 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
385 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator( |
||
386 | Instruction &TI) { |
||
387 | SmallVector<bool, 16> SuccFeasible; |
||
388 | getFeasibleSuccessors(TI, SuccFeasible, true); |
||
389 | |||
390 | BasicBlock *BB = TI.getParent(); |
||
391 | |||
392 | // Mark all feasible successors executable... |
||
393 | for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
||
394 | if (SuccFeasible[i]) |
||
395 | markEdgeExecutable(BB, TI.getSuccessor(i)); |
||
396 | } |
||
397 | |||
398 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
399 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) { |
||
400 | // The lattice function may store more information on a PHINode than could be |
||
401 | // computed from its incoming values. For example, SSI form stores its sigma |
||
402 | // functions as PHINodes with a single incoming value. |
||
403 | if (LatticeFunc->IsSpecialCasedPHI(&PN)) { |
||
404 | DenseMap<LatticeKey, LatticeVal> ChangedValues; |
||
405 | LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this); |
||
406 | for (auto &ChangedValue : ChangedValues) |
||
407 | if (ChangedValue.second != LatticeFunc->getUntrackedVal()) |
||
408 | UpdateState(std::move(ChangedValue.first), |
||
409 | std::move(ChangedValue.second)); |
||
410 | return; |
||
411 | } |
||
412 | |||
413 | LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN); |
||
414 | LatticeVal PNIV = getValueState(Key); |
||
415 | LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); |
||
416 | |||
417 | // If this value is already overdefined (common) just return. |
||
418 | if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) |
||
419 | return; // Quick exit |
||
420 | |||
421 | // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, |
||
422 | // and slow us down a lot. Just mark them overdefined. |
||
423 | if (PN.getNumIncomingValues() > 64) { |
||
424 | UpdateState(Key, Overdefined); |
||
425 | return; |
||
426 | } |
||
427 | |||
428 | // Look at all of the executable operands of the PHI node. If any of them |
||
429 | // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the |
||
430 | // transfer function to give us the merge of the incoming values. |
||
431 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
||
432 | // If the edge is not yet known to be feasible, it doesn't impact the PHI. |
||
433 | if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) |
||
434 | continue; |
||
435 | |||
436 | // Merge in this value. |
||
437 | LatticeVal OpVal = |
||
438 | getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i))); |
||
439 | if (OpVal != PNIV) |
||
440 | PNIV = LatticeFunc->MergeValues(PNIV, OpVal); |
||
441 | |||
442 | if (PNIV == Overdefined) |
||
443 | break; // Rest of input values don't matter. |
||
444 | } |
||
445 | |||
446 | // Update the PHI with the compute value, which is the merge of the inputs. |
||
447 | UpdateState(Key, PNIV); |
||
448 | } |
||
449 | |||
450 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
451 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) { |
||
452 | // PHIs are handled by the propagation logic, they are never passed into the |
||
453 | // transfer functions. |
||
454 | if (PHINode *PN = dyn_cast<PHINode>(&I)) |
||
455 | return visitPHINode(*PN); |
||
456 | |||
457 | // Otherwise, ask the transfer function what the result is. If this is |
||
458 | // something that we care about, remember it. |
||
459 | DenseMap<LatticeKey, LatticeVal> ChangedValues; |
||
460 | LatticeFunc->ComputeInstructionState(I, ChangedValues, *this); |
||
461 | for (auto &ChangedValue : ChangedValues) |
||
462 | if (ChangedValue.second != LatticeFunc->getUntrackedVal()) |
||
463 | UpdateState(ChangedValue.first, ChangedValue.second); |
||
464 | |||
465 | if (I.isTerminator()) |
||
466 | visitTerminator(I); |
||
467 | } |
||
468 | |||
469 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
470 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() { |
||
471 | // Process the work lists until they are empty! |
||
472 | while (!BBWorkList.empty() || !ValueWorkList.empty()) { |
||
473 | // Process the value work list. |
||
474 | while (!ValueWorkList.empty()) { |
||
475 | Value *V = ValueWorkList.pop_back_val(); |
||
476 | |||
477 | LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n"); |
||
478 | |||
479 | // "V" got into the work list because it made a transition. See if any |
||
480 | // users are both live and in need of updating. |
||
481 | for (User *U : V->users()) |
||
482 | if (Instruction *Inst = dyn_cast<Instruction>(U)) |
||
483 | if (BBExecutable.count(Inst->getParent())) // Inst is executable? |
||
484 | visitInst(*Inst); |
||
485 | } |
||
486 | |||
487 | // Process the basic block work list. |
||
488 | while (!BBWorkList.empty()) { |
||
489 | BasicBlock *BB = BBWorkList.pop_back_val(); |
||
490 | |||
491 | LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB); |
||
492 | |||
493 | // Notify all instructions in this basic block that they are newly |
||
494 | // executable. |
||
495 | for (Instruction &I : *BB) |
||
496 | visitInst(I); |
||
497 | } |
||
498 | } |
||
499 | } |
||
500 | |||
501 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
||
502 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print( |
||
503 | raw_ostream &OS) const { |
||
504 | if (ValueState.empty()) |
||
505 | return; |
||
506 | |||
507 | LatticeKey Key; |
||
508 | LatticeVal LV; |
||
509 | |||
510 | OS << "ValueState:\n"; |
||
511 | for (auto &Entry : ValueState) { |
||
512 | std::tie(Key, LV) = Entry; |
||
513 | if (LV == LatticeFunc->getUntrackedVal()) |
||
514 | continue; |
||
515 | OS << "\t"; |
||
516 | LatticeFunc->PrintLatticeVal(LV, OS); |
||
517 | OS << ": "; |
||
518 | LatticeFunc->PrintLatticeKey(Key, OS); |
||
519 | OS << "\n"; |
||
520 | } |
||
521 | } |
||
522 | } // end namespace llvm |
||
523 | |||
524 | #undef DEBUG_TYPE |
||
525 | |||
526 | #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H |