Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// | 
| 2 | // | ||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| 6 | // | ||
| 7 | //===----------------------------------------------------------------------===// | ||
| 8 | // | ||
| 9 | // This file defines the classes used to represent and build scalar expressions. | ||
| 10 | // | ||
| 11 | //===----------------------------------------------------------------------===// | ||
| 12 | |||
| 13 | #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H | ||
| 14 | #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H | ||
| 15 | |||
| 16 | #include "llvm/ADT/DenseMap.h" | ||
| 17 | #include "llvm/ADT/SmallPtrSet.h" | ||
| 18 | #include "llvm/ADT/SmallVector.h" | ||
| 19 | #include "llvm/ADT/iterator_range.h" | ||
| 20 | #include "llvm/Analysis/ScalarEvolution.h" | ||
| 21 | #include "llvm/IR/Constants.h" | ||
| 22 | #include "llvm/IR/ValueHandle.h" | ||
| 23 | #include "llvm/Support/Casting.h" | ||
| 24 | #include "llvm/Support/ErrorHandling.h" | ||
| 25 | #include <cassert> | ||
| 26 | #include <cstddef> | ||
| 27 | |||
| 28 | namespace llvm { | ||
| 29 | |||
| 30 | class APInt; | ||
| 31 | class Constant; | ||
| 32 | class ConstantInt; | ||
| 33 | class ConstantRange; | ||
| 34 | class Loop; | ||
| 35 | class Type; | ||
| 36 | class Value; | ||
| 37 | |||
| 38 | enum SCEVTypes : unsigned short { | ||
| 39 |   // These should be ordered in terms of increasing complexity to make the | ||
| 40 |   // folders simpler. | ||
| 41 | scConstant, | ||
| 42 | scTruncate, | ||
| 43 | scZeroExtend, | ||
| 44 | scSignExtend, | ||
| 45 | scAddExpr, | ||
| 46 | scMulExpr, | ||
| 47 | scUDivExpr, | ||
| 48 | scAddRecExpr, | ||
| 49 | scUMaxExpr, | ||
| 50 | scSMaxExpr, | ||
| 51 | scUMinExpr, | ||
| 52 | scSMinExpr, | ||
| 53 | scSequentialUMinExpr, | ||
| 54 | scPtrToInt, | ||
| 55 | scUnknown, | ||
| 56 | scCouldNotCompute | ||
| 57 | }; | ||
| 58 | |||
| 59 | /// This class represents a constant integer value. | ||
| 60 | class SCEVConstant : public SCEV { | ||
| 61 | friend class ScalarEvolution; | ||
| 62 | |||
| 63 | ConstantInt *V; | ||
| 64 | |||
| 65 | SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) | ||
| 66 | : SCEV(ID, scConstant, 1), V(v) {} | ||
| 67 | |||
| 68 | public: | ||
| 69 | ConstantInt *getValue() const { return V; } | ||
| 70 | const APInt &getAPInt() const { return getValue()->getValue(); } | ||
| 71 | |||
| 72 | Type *getType() const { return V->getType(); } | ||
| 73 | |||
| 74 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 75 | static bool classof(const SCEV *S) { return S->getSCEVType() == scConstant; } | ||
| 76 | }; | ||
| 77 | |||
| 78 | inline unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) { | ||
| 79 | APInt Size(16, 1); | ||
| 80 | for (const auto *Arg : Args) | ||
| 81 | Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize())); | ||
| 82 | return (unsigned short)Size.getZExtValue(); | ||
| 83 | } | ||
| 84 | |||
| 85 | /// This is the base class for unary cast operator classes. | ||
| 86 | class SCEVCastExpr : public SCEV { | ||
| 87 | protected: | ||
| 88 | const SCEV *Op; | ||
| 89 | Type *Ty; | ||
| 90 | |||
| 91 | SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, const SCEV *op, | ||
| 92 | Type *ty); | ||
| 93 | |||
| 94 | public: | ||
| 95 | const SCEV *getOperand() const { return Op; } | ||
| 96 | const SCEV *getOperand(unsigned i) const { | ||
| 97 | assert(i == 0 && "Operand index out of range!"); | ||
| 98 | return Op; | ||
| 99 |   } | ||
| 100 | ArrayRef<const SCEV *> operands() const { return Op; } | ||
| 101 | size_t getNumOperands() const { return 1; } | ||
| 102 | Type *getType() const { return Ty; } | ||
| 103 | |||
| 104 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 105 | static bool classof(const SCEV *S) { | ||
| 106 | return S->getSCEVType() == scPtrToInt || S->getSCEVType() == scTruncate || | ||
| 107 | S->getSCEVType() == scZeroExtend || S->getSCEVType() == scSignExtend; | ||
| 108 |   } | ||
| 109 | }; | ||
| 110 | |||
| 111 | /// This class represents a cast from a pointer to a pointer-sized integer | ||
| 112 | /// value. | ||
| 113 | class SCEVPtrToIntExpr : public SCEVCastExpr { | ||
| 114 | friend class ScalarEvolution; | ||
| 115 | |||
| 116 | SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, Type *ITy); | ||
| 117 | |||
| 118 | public: | ||
| 119 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 120 | static bool classof(const SCEV *S) { return S->getSCEVType() == scPtrToInt; } | ||
| 121 | }; | ||
| 122 | |||
| 123 | /// This is the base class for unary integral cast operator classes. | ||
| 124 | class SCEVIntegralCastExpr : public SCEVCastExpr { | ||
| 125 | protected: | ||
| 126 | SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, | ||
| 127 | const SCEV *op, Type *ty); | ||
| 128 | |||
| 129 | public: | ||
| 130 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 131 | static bool classof(const SCEV *S) { | ||
| 132 | return S->getSCEVType() == scTruncate || S->getSCEVType() == scZeroExtend || | ||
| 133 | S->getSCEVType() == scSignExtend; | ||
| 134 |   } | ||
| 135 | }; | ||
| 136 | |||
| 137 | /// This class represents a truncation of an integer value to a | ||
| 138 | /// smaller integer value. | ||
| 139 | class SCEVTruncateExpr : public SCEVIntegralCastExpr { | ||
| 140 | friend class ScalarEvolution; | ||
| 141 | |||
| 142 | SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); | ||
| 143 | |||
| 144 | public: | ||
| 145 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 146 | static bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate; } | ||
| 147 | }; | ||
| 148 | |||
| 149 | /// This class represents a zero extension of a small integer value | ||
| 150 | /// to a larger integer value. | ||
| 151 | class SCEVZeroExtendExpr : public SCEVIntegralCastExpr { | ||
| 152 | friend class ScalarEvolution; | ||
| 153 | |||
| 154 | SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); | ||
| 155 | |||
| 156 | public: | ||
| 157 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 158 | static bool classof(const SCEV *S) { | ||
| 159 | return S->getSCEVType() == scZeroExtend; | ||
| 160 |   } | ||
| 161 | }; | ||
| 162 | |||
| 163 | /// This class represents a sign extension of a small integer value | ||
| 164 | /// to a larger integer value. | ||
| 165 | class SCEVSignExtendExpr : public SCEVIntegralCastExpr { | ||
| 166 | friend class ScalarEvolution; | ||
| 167 | |||
| 168 | SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); | ||
| 169 | |||
| 170 | public: | ||
| 171 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 172 | static bool classof(const SCEV *S) { | ||
| 173 | return S->getSCEVType() == scSignExtend; | ||
| 174 |   } | ||
| 175 | }; | ||
| 176 | |||
| 177 | /// This node is a base class providing common functionality for | ||
| 178 | /// n'ary operators. | ||
| 179 | class SCEVNAryExpr : public SCEV { | ||
| 180 | protected: | ||
| 181 |   // Since SCEVs are immutable, ScalarEvolution allocates operand | ||
| 182 |   // arrays with its SCEVAllocator, so this class just needs a simple | ||
| 183 |   // pointer rather than a more elaborate vector-like data structure. | ||
| 184 |   // This also avoids the need for a non-trivial destructor. | ||
| 185 | const SCEV *const *Operands; | ||
| 186 | size_t NumOperands; | ||
| 187 | |||
| 188 | SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, | ||
| 189 | const SCEV *const *O, size_t N) | ||
| 190 | : SCEV(ID, T, computeExpressionSize(ArrayRef(O, N))), Operands(O), | ||
| 191 | NumOperands(N) {} | ||
| 192 | |||
| 193 | public: | ||
| 194 | size_t getNumOperands() const { return NumOperands; } | ||
| 195 | |||
| 196 | const SCEV *getOperand(unsigned i) const { | ||
| 197 | assert(i < NumOperands && "Operand index out of range!"); | ||
| 198 | return Operands[i]; | ||
| 199 |   } | ||
| 200 | |||
| 201 | ArrayRef<const SCEV *> operands() const { | ||
| 202 | return ArrayRef(Operands, NumOperands); | ||
| 203 |   } | ||
| 204 | |||
| 205 | NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { | ||
| 206 | return (NoWrapFlags)(SubclassData & Mask); | ||
| 207 |   } | ||
| 208 | |||
| 209 | bool hasNoUnsignedWrap() const { | ||
| 210 | return getNoWrapFlags(FlagNUW) != FlagAnyWrap; | ||
| 211 |   } | ||
| 212 | |||
| 213 | bool hasNoSignedWrap() const { | ||
| 214 | return getNoWrapFlags(FlagNSW) != FlagAnyWrap; | ||
| 215 |   } | ||
| 216 | |||
| 217 | bool hasNoSelfWrap() const { return getNoWrapFlags(FlagNW) != FlagAnyWrap; } | ||
| 218 | |||
| 219 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 220 | static bool classof(const SCEV *S) { | ||
| 221 | return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || | ||
| 222 | S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || | ||
| 223 | S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr || | ||
| 224 | S->getSCEVType() == scSequentialUMinExpr || | ||
| 225 | S->getSCEVType() == scAddRecExpr; | ||
| 226 |   } | ||
| 227 | }; | ||
| 228 | |||
| 229 | /// This node is the base class for n'ary commutative operators. | ||
| 230 | class SCEVCommutativeExpr : public SCEVNAryExpr { | ||
| 231 | protected: | ||
| 232 | SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, | ||
| 233 | const SCEV *const *O, size_t N) | ||
| 234 | : SCEVNAryExpr(ID, T, O, N) {} | ||
| 235 | |||
| 236 | public: | ||
| 237 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 238 | static bool classof(const SCEV *S) { | ||
| 239 | return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || | ||
| 240 | S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || | ||
| 241 | S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr; | ||
| 242 |   } | ||
| 243 | |||
| 244 |   /// Set flags for a non-recurrence without clearing previously set flags. | ||
| 245 | void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; } | ||
| 246 | }; | ||
| 247 | |||
| 248 | /// This node represents an addition of some number of SCEVs. | ||
| 249 | class SCEVAddExpr : public SCEVCommutativeExpr { | ||
| 250 | friend class ScalarEvolution; | ||
| 251 | |||
| 252 | Type *Ty; | ||
| 253 | |||
| 254 | SCEVAddExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) | ||
| 255 | : SCEVCommutativeExpr(ID, scAddExpr, O, N) { | ||
| 256 | auto *FirstPointerTypedOp = find_if(operands(), [](const SCEV *Op) { | ||
| 257 | return Op->getType()->isPointerTy(); | ||
| 258 | }); | ||
| 259 | if (FirstPointerTypedOp != operands().end()) | ||
| 260 | Ty = (*FirstPointerTypedOp)->getType(); | ||
| 261 |     else | ||
| 262 | Ty = getOperand(0)->getType(); | ||
| 263 |   } | ||
| 264 | |||
| 265 | public: | ||
| 266 | Type *getType() const { return Ty; } | ||
| 267 | |||
| 268 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 269 | static bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr; } | ||
| 270 | }; | ||
| 271 | |||
| 272 | /// This node represents multiplication of some number of SCEVs. | ||
| 273 | class SCEVMulExpr : public SCEVCommutativeExpr { | ||
| 274 | friend class ScalarEvolution; | ||
| 275 | |||
| 276 | SCEVMulExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) | ||
| 277 | : SCEVCommutativeExpr(ID, scMulExpr, O, N) {} | ||
| 278 | |||
| 279 | public: | ||
| 280 | Type *getType() const { return getOperand(0)->getType(); } | ||
| 281 | |||
| 282 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 283 | static bool classof(const SCEV *S) { return S->getSCEVType() == scMulExpr; } | ||
| 284 | }; | ||
| 285 | |||
| 286 | /// This class represents a binary unsigned division operation. | ||
| 287 | class SCEVUDivExpr : public SCEV { | ||
| 288 | friend class ScalarEvolution; | ||
| 289 | |||
| 290 | std::array<const SCEV *, 2> Operands; | ||
| 291 | |||
| 292 | SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) | ||
| 293 | : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})) { | ||
| 294 | Operands[0] = lhs; | ||
| 295 | Operands[1] = rhs; | ||
| 296 |   } | ||
| 297 | |||
| 298 | public: | ||
| 299 | const SCEV *getLHS() const { return Operands[0]; } | ||
| 300 | const SCEV *getRHS() const { return Operands[1]; } | ||
| 301 | size_t getNumOperands() const { return 2; } | ||
| 302 | const SCEV *getOperand(unsigned i) const { | ||
| 303 | assert((i == 0 || i == 1) && "Operand index out of range!"); | ||
| 304 | return i == 0 ? getLHS() : getRHS(); | ||
| 305 |   } | ||
| 306 | |||
| 307 | ArrayRef<const SCEV *> operands() const { return Operands; } | ||
| 308 | |||
| 309 | Type *getType() const { | ||
| 310 |     // In most cases the types of LHS and RHS will be the same, but in some | ||
| 311 |     // crazy cases one or the other may be a pointer. ScalarEvolution doesn't | ||
| 312 |     // depend on the type for correctness, but handling types carefully can | ||
| 313 |     // avoid extra casts in the SCEVExpander. The LHS is more likely to be | ||
| 314 |     // a pointer type than the RHS, so use the RHS' type here. | ||
| 315 | return getRHS()->getType(); | ||
| 316 |   } | ||
| 317 | |||
| 318 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 319 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUDivExpr; } | ||
| 320 | }; | ||
| 321 | |||
| 322 | /// This node represents a polynomial recurrence on the trip count | ||
| 323 | /// of the specified loop.  This is the primary focus of the | ||
| 324 | /// ScalarEvolution framework; all the other SCEV subclasses are | ||
| 325 | /// mostly just supporting infrastructure to allow SCEVAddRecExpr | ||
| 326 | /// expressions to be created and analyzed. | ||
| 327 | /// | ||
| 328 | /// All operands of an AddRec are required to be loop invariant. | ||
| 329 | /// | ||
| 330 | class SCEVAddRecExpr : public SCEVNAryExpr { | ||
| 331 | friend class ScalarEvolution; | ||
| 332 | |||
| 333 | const Loop *L; | ||
| 334 | |||
| 335 | SCEVAddRecExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N, | ||
| 336 | const Loop *l) | ||
| 337 | : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {} | ||
| 338 | |||
| 339 | public: | ||
| 340 | Type *getType() const { return getStart()->getType(); } | ||
| 341 | const SCEV *getStart() const { return Operands[0]; } | ||
| 342 | const Loop *getLoop() const { return L; } | ||
| 343 | |||
| 344 |   /// Constructs and returns the recurrence indicating how much this | ||
| 345 |   /// expression steps by.  If this is a polynomial of degree N, it | ||
| 346 |   /// returns a chrec of degree N-1.  We cannot determine whether | ||
| 347 |   /// the step recurrence has self-wraparound. | ||
| 348 | const SCEV *getStepRecurrence(ScalarEvolution &SE) const { | ||
| 349 | if (isAffine()) | ||
| 350 | return getOperand(1); | ||
| 351 | return SE.getAddRecExpr( | ||
| 352 | SmallVector<const SCEV *, 3>(operands().drop_front()), getLoop(), | ||
| 353 | FlagAnyWrap); | ||
| 354 |   } | ||
| 355 | |||
| 356 |   /// Return true if this represents an expression A + B*x where A | ||
| 357 |   /// and B are loop invariant values. | ||
| 358 | bool isAffine() const { | ||
| 359 |     // We know that the start value is invariant.  This expression is thus | ||
| 360 |     // affine iff the step is also invariant. | ||
| 361 | return getNumOperands() == 2; | ||
| 362 |   } | ||
| 363 | |||
| 364 |   /// Return true if this represents an expression A + B*x + C*x^2 | ||
| 365 |   /// where A, B and C are loop invariant values.  This corresponds | ||
| 366 |   /// to an addrec of the form {L,+,M,+,N} | ||
| 367 | bool isQuadratic() const { return getNumOperands() == 3; } | ||
| 368 | |||
| 369 |   /// Set flags for a recurrence without clearing any previously set flags. | ||
| 370 |   /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here | ||
| 371 |   /// to make it easier to propagate flags. | ||
| 372 | void setNoWrapFlags(NoWrapFlags Flags) { | ||
| 373 | if (Flags & (FlagNUW | FlagNSW)) | ||
| 374 | Flags = ScalarEvolution::setFlags(Flags, FlagNW); | ||
| 375 | SubclassData |= Flags; | ||
| 376 |   } | ||
| 377 | |||
| 378 |   /// Return the value of this chain of recurrences at the specified | ||
| 379 |   /// iteration number. | ||
| 380 | const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const; | ||
| 381 | |||
| 382 |   /// Return the value of this chain of recurrences at the specified iteration | ||
| 383 |   /// number. Takes an explicit list of operands to represent an AddRec. | ||
| 384 | static const SCEV *evaluateAtIteration(ArrayRef<const SCEV *> Operands, | ||
| 385 | const SCEV *It, ScalarEvolution &SE); | ||
| 386 | |||
| 387 |   /// Return the number of iterations of this loop that produce | ||
| 388 |   /// values in the specified constant range.  Another way of | ||
| 389 |   /// looking at this is that it returns the first iteration number | ||
| 390 |   /// where the value is not in the condition, thus computing the | ||
| 391 |   /// exit count.  If the iteration count can't be computed, an | ||
| 392 |   /// instance of SCEVCouldNotCompute is returned. | ||
| 393 | const SCEV *getNumIterationsInRange(const ConstantRange &Range, | ||
| 394 | ScalarEvolution &SE) const; | ||
| 395 | |||
| 396 |   /// Return an expression representing the value of this expression | ||
| 397 |   /// one iteration of the loop ahead. | ||
| 398 | const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const; | ||
| 399 | |||
| 400 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 401 | static bool classof(const SCEV *S) { | ||
| 402 | return S->getSCEVType() == scAddRecExpr; | ||
| 403 |   } | ||
| 404 | }; | ||
| 405 | |||
| 406 | /// This node is the base class min/max selections. | ||
| 407 | class SCEVMinMaxExpr : public SCEVCommutativeExpr { | ||
| 408 | friend class ScalarEvolution; | ||
| 409 | |||
| 410 | static bool isMinMaxType(enum SCEVTypes T) { | ||
| 411 | return T == scSMaxExpr || T == scUMaxExpr || T == scSMinExpr || | ||
| 412 | T == scUMinExpr; | ||
| 413 |   } | ||
| 414 | |||
| 415 | protected: | ||
| 416 |   /// Note: Constructing subclasses via this constructor is allowed | ||
| 417 | SCEVMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, | ||
| 418 | const SCEV *const *O, size_t N) | ||
| 419 | : SCEVCommutativeExpr(ID, T, O, N) { | ||
| 420 | assert(isMinMaxType(T)); | ||
| 421 |     // Min and max never overflow | ||
| 422 | setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); | ||
| 423 |   } | ||
| 424 | |||
| 425 | public: | ||
| 426 | Type *getType() const { return getOperand(0)->getType(); } | ||
| 427 | |||
| 428 | static bool classof(const SCEV *S) { return isMinMaxType(S->getSCEVType()); } | ||
| 429 | |||
| 430 | static enum SCEVTypes negate(enum SCEVTypes T) { | ||
| 431 | switch (T) { | ||
| 432 | case scSMaxExpr: | ||
| 433 | return scSMinExpr; | ||
| 434 | case scSMinExpr: | ||
| 435 | return scSMaxExpr; | ||
| 436 | case scUMaxExpr: | ||
| 437 | return scUMinExpr; | ||
| 438 | case scUMinExpr: | ||
| 439 | return scUMaxExpr; | ||
| 440 | default: | ||
| 441 | llvm_unreachable("Not a min or max SCEV type!"); | ||
| 442 |     } | ||
| 443 |   } | ||
| 444 | }; | ||
| 445 | |||
| 446 | /// This class represents a signed maximum selection. | ||
| 447 | class SCEVSMaxExpr : public SCEVMinMaxExpr { | ||
| 448 | friend class ScalarEvolution; | ||
| 449 | |||
| 450 | SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) | ||
| 451 | : SCEVMinMaxExpr(ID, scSMaxExpr, O, N) {} | ||
| 452 | |||
| 453 | public: | ||
| 454 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 455 | static bool classof(const SCEV *S) { return S->getSCEVType() == scSMaxExpr; } | ||
| 456 | }; | ||
| 457 | |||
| 458 | /// This class represents an unsigned maximum selection. | ||
| 459 | class SCEVUMaxExpr : public SCEVMinMaxExpr { | ||
| 460 | friend class ScalarEvolution; | ||
| 461 | |||
| 462 | SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) | ||
| 463 | : SCEVMinMaxExpr(ID, scUMaxExpr, O, N) {} | ||
| 464 | |||
| 465 | public: | ||
| 466 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 467 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUMaxExpr; } | ||
| 468 | }; | ||
| 469 | |||
| 470 | /// This class represents a signed minimum selection. | ||
| 471 | class SCEVSMinExpr : public SCEVMinMaxExpr { | ||
| 472 | friend class ScalarEvolution; | ||
| 473 | |||
| 474 | SCEVSMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) | ||
| 475 | : SCEVMinMaxExpr(ID, scSMinExpr, O, N) {} | ||
| 476 | |||
| 477 | public: | ||
| 478 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 479 | static bool classof(const SCEV *S) { return S->getSCEVType() == scSMinExpr; } | ||
| 480 | }; | ||
| 481 | |||
| 482 | /// This class represents an unsigned minimum selection. | ||
| 483 | class SCEVUMinExpr : public SCEVMinMaxExpr { | ||
| 484 | friend class ScalarEvolution; | ||
| 485 | |||
| 486 | SCEVUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) | ||
| 487 | : SCEVMinMaxExpr(ID, scUMinExpr, O, N) {} | ||
| 488 | |||
| 489 | public: | ||
| 490 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 491 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUMinExpr; } | ||
| 492 | }; | ||
| 493 | |||
| 494 | /// This node is the base class for sequential/in-order min/max selections. | ||
| 495 | /// Note that their fundamental difference from SCEVMinMaxExpr's is that they | ||
| 496 | /// are early-returning upon reaching saturation point. | ||
| 497 | /// I.e. given `0 umin_seq poison`, the result will be `0`, | ||
| 498 | /// while the result of `0 umin poison` is `poison`. | ||
| 499 | class SCEVSequentialMinMaxExpr : public SCEVNAryExpr { | ||
| 500 | friend class ScalarEvolution; | ||
| 501 | |||
| 502 | static bool isSequentialMinMaxType(enum SCEVTypes T) { | ||
| 503 | return T == scSequentialUMinExpr; | ||
| 504 |   } | ||
| 505 | |||
| 506 |   /// Set flags for a non-recurrence without clearing previously set flags. | ||
| 507 | void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; } | ||
| 508 | |||
| 509 | protected: | ||
| 510 |   /// Note: Constructing subclasses via this constructor is allowed | ||
| 511 | SCEVSequentialMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, | ||
| 512 | const SCEV *const *O, size_t N) | ||
| 513 | : SCEVNAryExpr(ID, T, O, N) { | ||
| 514 | assert(isSequentialMinMaxType(T)); | ||
| 515 |     // Min and max never overflow | ||
| 516 | setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); | ||
| 517 |   } | ||
| 518 | |||
| 519 | public: | ||
| 520 | Type *getType() const { return getOperand(0)->getType(); } | ||
| 521 | |||
| 522 | static SCEVTypes getEquivalentNonSequentialSCEVType(SCEVTypes Ty) { | ||
| 523 | assert(isSequentialMinMaxType(Ty)); | ||
| 524 | switch (Ty) { | ||
| 525 | case scSequentialUMinExpr: | ||
| 526 | return scUMinExpr; | ||
| 527 | default: | ||
| 528 | llvm_unreachable("Not a sequential min/max type."); | ||
| 529 |     } | ||
| 530 |   } | ||
| 531 | |||
| 532 | SCEVTypes getEquivalentNonSequentialSCEVType() const { | ||
| 533 | return getEquivalentNonSequentialSCEVType(getSCEVType()); | ||
| 534 |   } | ||
| 535 | |||
| 536 | static bool classof(const SCEV *S) { | ||
| 537 | return isSequentialMinMaxType(S->getSCEVType()); | ||
| 538 |   } | ||
| 539 | }; | ||
| 540 | |||
| 541 | /// This class represents a sequential/in-order unsigned minimum selection. | ||
| 542 | class SCEVSequentialUMinExpr : public SCEVSequentialMinMaxExpr { | ||
| 543 | friend class ScalarEvolution; | ||
| 544 | |||
| 545 | SCEVSequentialUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, | ||
| 546 | size_t N) | ||
| 547 | : SCEVSequentialMinMaxExpr(ID, scSequentialUMinExpr, O, N) {} | ||
| 548 | |||
| 549 | public: | ||
| 550 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 551 | static bool classof(const SCEV *S) { | ||
| 552 | return S->getSCEVType() == scSequentialUMinExpr; | ||
| 553 |   } | ||
| 554 | }; | ||
| 555 | |||
| 556 | /// This means that we are dealing with an entirely unknown SCEV | ||
| 557 | /// value, and only represent it as its LLVM Value.  This is the | ||
| 558 | /// "bottom" value for the analysis. | ||
| 559 | class SCEVUnknown final : public SCEV, private CallbackVH { | ||
| 560 | friend class ScalarEvolution; | ||
| 561 | |||
| 562 |   /// The parent ScalarEvolution value. This is used to update the | ||
| 563 |   /// parent's maps when the value associated with a SCEVUnknown is | ||
| 564 |   /// deleted or RAUW'd. | ||
| 565 | ScalarEvolution *SE; | ||
| 566 | |||
| 567 |   /// The next pointer in the linked list of all SCEVUnknown | ||
| 568 |   /// instances owned by a ScalarEvolution. | ||
| 569 | SCEVUnknown *Next; | ||
| 570 | |||
| 571 | SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, ScalarEvolution *se, | ||
| 572 | SCEVUnknown *next) | ||
| 573 | : SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {} | ||
| 574 | |||
| 575 |   // Implement CallbackVH. | ||
| 576 | void deleted() override; | ||
| 577 | void allUsesReplacedWith(Value *New) override; | ||
| 578 | |||
| 579 | public: | ||
| 580 | Value *getValue() const { return getValPtr(); } | ||
| 581 | |||
| 582 |   /// @{ | ||
| 583 |   /// Test whether this is a special constant representing a type | ||
| 584 |   /// size, alignment, or field offset in a target-independent | ||
| 585 |   /// manner, and hasn't happened to have been folded with other | ||
| 586 |   /// operations into something unrecognizable. This is mainly only | ||
| 587 |   /// useful for pretty-printing and other situations where it isn't | ||
| 588 |   /// absolutely required for these to succeed. | ||
| 589 | bool isSizeOf(Type *&AllocTy) const; | ||
| 590 | bool isAlignOf(Type *&AllocTy) const; | ||
| 591 | bool isOffsetOf(Type *&STy, Constant *&FieldNo) const; | ||
| 592 |   /// @} | ||
| 593 | |||
| 594 | Type *getType() const { return getValPtr()->getType(); } | ||
| 595 | |||
| 596 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 597 | static bool classof(const SCEV *S) { return S->getSCEVType() == scUnknown; } | ||
| 598 | }; | ||
| 599 | |||
| 600 | /// This class defines a simple visitor class that may be used for | ||
| 601 | /// various SCEV analysis purposes. | ||
| 602 | template <typename SC, typename RetVal = void> struct SCEVVisitor { | ||
| 603 | RetVal visit(const SCEV *S) { | ||
| 604 | switch (S->getSCEVType()) { | ||
| 605 | case scConstant: | ||
| 606 | return ((SC *)this)->visitConstant((const SCEVConstant *)S); | ||
| 607 | case scPtrToInt: | ||
| 608 | return ((SC *)this)->visitPtrToIntExpr((const SCEVPtrToIntExpr *)S); | ||
| 609 | case scTruncate: | ||
| 610 | return ((SC *)this)->visitTruncateExpr((const SCEVTruncateExpr *)S); | ||
| 611 | case scZeroExtend: | ||
| 612 | return ((SC *)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr *)S); | ||
| 613 | case scSignExtend: | ||
| 614 | return ((SC *)this)->visitSignExtendExpr((const SCEVSignExtendExpr *)S); | ||
| 615 | case scAddExpr: | ||
| 616 | return ((SC *)this)->visitAddExpr((const SCEVAddExpr *)S); | ||
| 617 | case scMulExpr: | ||
| 618 | return ((SC *)this)->visitMulExpr((const SCEVMulExpr *)S); | ||
| 619 | case scUDivExpr: | ||
| 620 | return ((SC *)this)->visitUDivExpr((const SCEVUDivExpr *)S); | ||
| 621 | case scAddRecExpr: | ||
| 622 | return ((SC *)this)->visitAddRecExpr((const SCEVAddRecExpr *)S); | ||
| 623 | case scSMaxExpr: | ||
| 624 | return ((SC *)this)->visitSMaxExpr((const SCEVSMaxExpr *)S); | ||
| 625 | case scUMaxExpr: | ||
| 626 | return ((SC *)this)->visitUMaxExpr((const SCEVUMaxExpr *)S); | ||
| 627 | case scSMinExpr: | ||
| 628 | return ((SC *)this)->visitSMinExpr((const SCEVSMinExpr *)S); | ||
| 629 | case scUMinExpr: | ||
| 630 | return ((SC *)this)->visitUMinExpr((const SCEVUMinExpr *)S); | ||
| 631 | case scSequentialUMinExpr: | ||
| 632 | return ((SC *)this) | ||
| 633 | ->visitSequentialUMinExpr((const SCEVSequentialUMinExpr *)S); | ||
| 634 | case scUnknown: | ||
| 635 | return ((SC *)this)->visitUnknown((const SCEVUnknown *)S); | ||
| 636 | case scCouldNotCompute: | ||
| 637 | return ((SC *)this)->visitCouldNotCompute((const SCEVCouldNotCompute *)S); | ||
| 638 |     } | ||
| 639 | llvm_unreachable("Unknown SCEV kind!"); | ||
| 640 |   } | ||
| 641 | |||
| 642 | RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { | ||
| 643 | llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); | ||
| 644 |   } | ||
| 645 | }; | ||
| 646 | |||
| 647 | /// Visit all nodes in the expression tree using worklist traversal. | ||
| 648 | /// | ||
| 649 | /// Visitor implements: | ||
| 650 | ///   // return true to follow this node. | ||
| 651 | ///   bool follow(const SCEV *S); | ||
| 652 | ///   // return true to terminate the search. | ||
| 653 | ///   bool isDone(); | ||
| 654 | template <typename SV> class SCEVTraversal { | ||
| 655 | SV &Visitor; | ||
| 656 | SmallVector<const SCEV *, 8> Worklist; | ||
| 657 | SmallPtrSet<const SCEV *, 8> Visited; | ||
| 658 | |||
| 659 | void push(const SCEV *S) { | ||
| 660 | if (Visited.insert(S).second && Visitor.follow(S)) | ||
| 661 | Worklist.push_back(S); | ||
| 662 |   } | ||
| 663 | |||
| 664 | public: | ||
| 665 | SCEVTraversal(SV &V) : Visitor(V) {} | ||
| 666 | |||
| 667 | void visitAll(const SCEV *Root) { | ||
| 668 | push(Root); | ||
| 669 | while (!Worklist.empty() && !Visitor.isDone()) { | ||
| 670 | const SCEV *S = Worklist.pop_back_val(); | ||
| 671 | |||
| 672 | switch (S->getSCEVType()) { | ||
| 673 | case scConstant: | ||
| 674 | case scUnknown: | ||
| 675 | continue; | ||
| 676 | case scPtrToInt: | ||
| 677 | case scTruncate: | ||
| 678 | case scZeroExtend: | ||
| 679 | case scSignExtend: | ||
| 680 | case scAddExpr: | ||
| 681 | case scMulExpr: | ||
| 682 | case scUDivExpr: | ||
| 683 | case scSMaxExpr: | ||
| 684 | case scUMaxExpr: | ||
| 685 | case scSMinExpr: | ||
| 686 | case scUMinExpr: | ||
| 687 | case scSequentialUMinExpr: | ||
| 688 | case scAddRecExpr: | ||
| 689 | for (const auto *Op : S->operands()) { | ||
| 690 | push(Op); | ||
| 691 | if (Visitor.isDone()) | ||
| 692 | break; | ||
| 693 |         } | ||
| 694 | continue; | ||
| 695 | case scCouldNotCompute: | ||
| 696 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); | ||
| 697 |       } | ||
| 698 | llvm_unreachable("Unknown SCEV kind!"); | ||
| 699 |     } | ||
| 700 |   } | ||
| 701 | }; | ||
| 702 | |||
| 703 | /// Use SCEVTraversal to visit all nodes in the given expression tree. | ||
| 704 | template <typename SV> void visitAll(const SCEV *Root, SV &Visitor) { | ||
| 705 | SCEVTraversal<SV> T(Visitor); | ||
| 706 | T.visitAll(Root); | ||
| 707 | } | ||
| 708 | |||
| 709 | /// Return true if any node in \p Root satisfies the predicate \p Pred. | ||
| 710 | template <typename PredTy> | ||
| 711 | bool SCEVExprContains(const SCEV *Root, PredTy Pred) { | ||
| 712 | struct FindClosure { | ||
| 713 | bool Found = false; | ||
| 714 |     PredTy Pred; | ||
| 715 | |||
| 716 | FindClosure(PredTy Pred) : Pred(Pred) {} | ||
| 717 | |||
| 718 | bool follow(const SCEV *S) { | ||
| 719 | if (!Pred(S)) | ||
| 720 | return true; | ||
| 721 | |||
| 722 | Found = true; | ||
| 723 | return false; | ||
| 724 |     } | ||
| 725 | |||
| 726 | bool isDone() const { return Found; } | ||
| 727 | }; | ||
| 728 | |||
| 729 | FindClosure FC(Pred); | ||
| 730 | visitAll(Root, FC); | ||
| 731 | return FC.Found; | ||
| 732 | } | ||
| 733 | |||
| 734 | /// This visitor recursively visits a SCEV expression and re-writes it. | ||
| 735 | /// The result from each visit is cached, so it will return the same | ||
| 736 | /// SCEV for the same input. | ||
| 737 | template <typename SC> | ||
| 738 | class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> { | ||
| 739 | protected: | ||
| 740 | ScalarEvolution &SE; | ||
| 741 |   // Memoize the result of each visit so that we only compute once for | ||
| 742 |   // the same input SCEV. This is to avoid redundant computations when | ||
| 743 |   // a SCEV is referenced by multiple SCEVs. Without memoization, this | ||
| 744 |   // visit algorithm would have exponential time complexity in the worst | ||
| 745 |   // case, causing the compiler to hang on certain tests. | ||
| 746 | DenseMap<const SCEV *, const SCEV *> RewriteResults; | ||
| 747 | |||
| 748 | public: | ||
| 749 | SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {} | ||
| 750 | |||
| 751 | const SCEV *visit(const SCEV *S) { | ||
| 752 | auto It = RewriteResults.find(S); | ||
| 753 | if (It != RewriteResults.end()) | ||
| 754 | return It->second; | ||
| 755 | auto *Visited = SCEVVisitor<SC, const SCEV *>::visit(S); | ||
| 756 | auto Result = RewriteResults.try_emplace(S, Visited); | ||
| 757 | assert(Result.second && "Should insert a new entry"); | ||
| 758 | return Result.first->second; | ||
| 759 |   } | ||
| 760 | |||
| 761 | const SCEV *visitConstant(const SCEVConstant *Constant) { return Constant; } | ||
| 762 | |||
| 763 | const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { | ||
| 764 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); | ||
| 765 | return Operand == Expr->getOperand() | ||
| 766 |                ? Expr | ||
| 767 | : SE.getPtrToIntExpr(Operand, Expr->getType()); | ||
| 768 |   } | ||
| 769 | |||
| 770 | const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { | ||
| 771 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); | ||
| 772 | return Operand == Expr->getOperand() | ||
| 773 |                ? Expr | ||
| 774 | : SE.getTruncateExpr(Operand, Expr->getType()); | ||
| 775 |   } | ||
| 776 | |||
| 777 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { | ||
| 778 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); | ||
| 779 | return Operand == Expr->getOperand() | ||
| 780 |                ? Expr | ||
| 781 | : SE.getZeroExtendExpr(Operand, Expr->getType()); | ||
| 782 |   } | ||
| 783 | |||
| 784 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { | ||
| 785 | const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); | ||
| 786 | return Operand == Expr->getOperand() | ||
| 787 |                ? Expr | ||
| 788 | : SE.getSignExtendExpr(Operand, Expr->getType()); | ||
| 789 |   } | ||
| 790 | |||
| 791 | const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { | ||
| 792 | SmallVector<const SCEV *, 2> Operands; | ||
| 793 | bool Changed = false; | ||
| 794 | for (const auto *Op : Expr->operands()) { | ||
| 795 | Operands.push_back(((SC *)this)->visit(Op)); | ||
| 796 | Changed |= Op != Operands.back(); | ||
| 797 |     } | ||
| 798 | return !Changed ? Expr : SE.getAddExpr(Operands); | ||
| 799 |   } | ||
| 800 | |||
| 801 | const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { | ||
| 802 | SmallVector<const SCEV *, 2> Operands; | ||
| 803 | bool Changed = false; | ||
| 804 | for (const auto *Op : Expr->operands()) { | ||
| 805 | Operands.push_back(((SC *)this)->visit(Op)); | ||
| 806 | Changed |= Op != Operands.back(); | ||
| 807 |     } | ||
| 808 | return !Changed ? Expr : SE.getMulExpr(Operands); | ||
| 809 |   } | ||
| 810 | |||
| 811 | const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { | ||
| 812 | auto *LHS = ((SC *)this)->visit(Expr->getLHS()); | ||
| 813 | auto *RHS = ((SC *)this)->visit(Expr->getRHS()); | ||
| 814 | bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS(); | ||
| 815 | return !Changed ? Expr : SE.getUDivExpr(LHS, RHS); | ||
| 816 |   } | ||
| 817 | |||
| 818 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { | ||
| 819 | SmallVector<const SCEV *, 2> Operands; | ||
| 820 | bool Changed = false; | ||
| 821 | for (const auto *Op : Expr->operands()) { | ||
| 822 | Operands.push_back(((SC *)this)->visit(Op)); | ||
| 823 | Changed |= Op != Operands.back(); | ||
| 824 |     } | ||
| 825 | return !Changed ? Expr | ||
| 826 | : SE.getAddRecExpr(Operands, Expr->getLoop(), | ||
| 827 | Expr->getNoWrapFlags()); | ||
| 828 |   } | ||
| 829 | |||
| 830 | const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { | ||
| 831 | SmallVector<const SCEV *, 2> Operands; | ||
| 832 | bool Changed = false; | ||
| 833 | for (const auto *Op : Expr->operands()) { | ||
| 834 | Operands.push_back(((SC *)this)->visit(Op)); | ||
| 835 | Changed |= Op != Operands.back(); | ||
| 836 |     } | ||
| 837 | return !Changed ? Expr : SE.getSMaxExpr(Operands); | ||
| 838 |   } | ||
| 839 | |||
| 840 | const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { | ||
| 841 | SmallVector<const SCEV *, 2> Operands; | ||
| 842 | bool Changed = false; | ||
| 843 | for (const auto *Op : Expr->operands()) { | ||
| 844 | Operands.push_back(((SC *)this)->visit(Op)); | ||
| 845 | Changed |= Op != Operands.back(); | ||
| 846 |     } | ||
| 847 | return !Changed ? Expr : SE.getUMaxExpr(Operands); | ||
| 848 |   } | ||
| 849 | |||
| 850 | const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { | ||
| 851 | SmallVector<const SCEV *, 2> Operands; | ||
| 852 | bool Changed = false; | ||
| 853 | for (const auto *Op : Expr->operands()) { | ||
| 854 | Operands.push_back(((SC *)this)->visit(Op)); | ||
| 855 | Changed |= Op != Operands.back(); | ||
| 856 |     } | ||
| 857 | return !Changed ? Expr : SE.getSMinExpr(Operands); | ||
| 858 |   } | ||
| 859 | |||
| 860 | const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { | ||
| 861 | SmallVector<const SCEV *, 2> Operands; | ||
| 862 | bool Changed = false; | ||
| 863 | for (const auto *Op : Expr->operands()) { | ||
| 864 | Operands.push_back(((SC *)this)->visit(Op)); | ||
| 865 | Changed |= Op != Operands.back(); | ||
| 866 |     } | ||
| 867 | return !Changed ? Expr : SE.getUMinExpr(Operands); | ||
| 868 |   } | ||
| 869 | |||
| 870 | const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { | ||
| 871 | SmallVector<const SCEV *, 2> Operands; | ||
| 872 | bool Changed = false; | ||
| 873 | for (const auto *Op : Expr->operands()) { | ||
| 874 | Operands.push_back(((SC *)this)->visit(Op)); | ||
| 875 | Changed |= Op != Operands.back(); | ||
| 876 |     } | ||
| 877 | return !Changed ? Expr : SE.getUMinExpr(Operands, /*Sequential=*/true); | ||
| 878 |   } | ||
| 879 | |||
| 880 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { return Expr; } | ||
| 881 | |||
| 882 | const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { | ||
| 883 | return Expr; | ||
| 884 |   } | ||
| 885 | }; | ||
| 886 | |||
| 887 | using ValueToValueMap = DenseMap<const Value *, Value *>; | ||
| 888 | using ValueToSCEVMapTy = DenseMap<const Value *, const SCEV *>; | ||
| 889 | |||
| 890 | /// The SCEVParameterRewriter takes a scalar evolution expression and updates | ||
| 891 | /// the SCEVUnknown components following the Map (Value -> SCEV). | ||
| 892 | class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> { | ||
| 893 | public: | ||
| 894 | static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, | ||
| 895 | ValueToSCEVMapTy &Map) { | ||
| 896 | SCEVParameterRewriter Rewriter(SE, Map); | ||
| 897 | return Rewriter.visit(Scev); | ||
| 898 |   } | ||
| 899 | |||
| 900 | SCEVParameterRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) | ||
| 901 | : SCEVRewriteVisitor(SE), Map(M) {} | ||
| 902 | |||
| 903 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | ||
| 904 | auto I = Map.find(Expr->getValue()); | ||
| 905 | if (I == Map.end()) | ||
| 906 | return Expr; | ||
| 907 | return I->second; | ||
| 908 |   } | ||
| 909 | |||
| 910 | private: | ||
| 911 | ValueToSCEVMapTy ⤅ | ||
| 912 | }; | ||
| 913 | |||
| 914 | using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>; | ||
| 915 | |||
| 916 | /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies | ||
| 917 | /// the Map (Loop -> SCEV) to all AddRecExprs. | ||
| 918 | class SCEVLoopAddRecRewriter | ||
| 919 | : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> { | ||
| 920 | public: | ||
| 921 | SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M) | ||
| 922 | : SCEVRewriteVisitor(SE), Map(M) {} | ||
| 923 | |||
| 924 | static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map, | ||
| 925 | ScalarEvolution &SE) { | ||
| 926 | SCEVLoopAddRecRewriter Rewriter(SE, Map); | ||
| 927 | return Rewriter.visit(Scev); | ||
| 928 |   } | ||
| 929 | |||
| 930 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { | ||
| 931 | SmallVector<const SCEV *, 2> Operands; | ||
| 932 | for (const SCEV *Op : Expr->operands()) | ||
| 933 | Operands.push_back(visit(Op)); | ||
| 934 | |||
| 935 | const Loop *L = Expr->getLoop(); | ||
| 936 | if (0 == Map.count(L)) | ||
| 937 | return SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags()); | ||
| 938 | |||
| 939 | return SCEVAddRecExpr::evaluateAtIteration(Operands, Map[L], SE); | ||
| 940 |   } | ||
| 941 | |||
| 942 | private: | ||
| 943 | LoopToScevMapT ⤅ | ||
| 944 | }; | ||
| 945 | |||
| 946 | } // end namespace llvm | ||
| 947 | |||
| 948 | #endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |