Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// | 
| 2 | // | ||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| 6 | // | ||
| 7 | //===----------------------------------------------------------------------===// | ||
| 8 | // | ||
| 9 | // The ScalarEvolution class is an LLVM pass which can be used to analyze and | ||
| 10 | // categorize scalar expressions in loops.  It specializes in recognizing | ||
| 11 | // general induction variables, representing them with the abstract and opaque | ||
| 12 | // SCEV class.  Given this analysis, trip counts of loops and other important | ||
| 13 | // properties can be obtained. | ||
| 14 | // | ||
| 15 | // This analysis is primarily useful for induction variable substitution and | ||
| 16 | // strength reduction. | ||
| 17 | // | ||
| 18 | //===----------------------------------------------------------------------===// | ||
| 19 | |||
| 20 | #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H | ||
| 21 | #define LLVM_ANALYSIS_SCALAREVOLUTION_H | ||
| 22 | |||
| 23 | #include "llvm/ADT/APInt.h" | ||
| 24 | #include "llvm/ADT/ArrayRef.h" | ||
| 25 | #include "llvm/ADT/DenseMap.h" | ||
| 26 | #include "llvm/ADT/DenseMapInfo.h" | ||
| 27 | #include "llvm/ADT/FoldingSet.h" | ||
| 28 | #include "llvm/ADT/PointerIntPair.h" | ||
| 29 | #include "llvm/ADT/SetVector.h" | ||
| 30 | #include "llvm/ADT/SmallPtrSet.h" | ||
| 31 | #include "llvm/ADT/SmallVector.h" | ||
| 32 | #include "llvm/IR/ConstantRange.h" | ||
| 33 | #include "llvm/IR/InstrTypes.h" | ||
| 34 | #include "llvm/IR/Instructions.h" | ||
| 35 | #include "llvm/IR/PassManager.h" | ||
| 36 | #include "llvm/IR/ValueHandle.h" | ||
| 37 | #include "llvm/IR/ValueMap.h" | ||
| 38 | #include "llvm/Pass.h" | ||
| 39 | #include <cassert> | ||
| 40 | #include <cstdint> | ||
| 41 | #include <memory> | ||
| 42 | #include <optional> | ||
| 43 | #include <utility> | ||
| 44 | |||
| 45 | namespace llvm { | ||
| 46 | |||
| 47 | class OverflowingBinaryOperator; | ||
| 48 | class AssumptionCache; | ||
| 49 | class BasicBlock; | ||
| 50 | class Constant; | ||
| 51 | class ConstantInt; | ||
| 52 | class DataLayout; | ||
| 53 | class DominatorTree; | ||
| 54 | class Function; | ||
| 55 | class GEPOperator; | ||
| 56 | class Instruction; | ||
| 57 | class LLVMContext; | ||
| 58 | class Loop; | ||
| 59 | class LoopInfo; | ||
| 60 | class raw_ostream; | ||
| 61 | class ScalarEvolution; | ||
| 62 | class SCEVAddRecExpr; | ||
| 63 | class SCEVUnknown; | ||
| 64 | class StructType; | ||
| 65 | class TargetLibraryInfo; | ||
| 66 | class Type; | ||
| 67 | class Value; | ||
| 68 | enum SCEVTypes : unsigned short; | ||
| 69 | |||
| 70 | extern bool VerifySCEV; | ||
| 71 | |||
| 72 | /// This class represents an analyzed expression in the program.  These are | ||
| 73 | /// opaque objects that the client is not allowed to do much with directly. | ||
| 74 | /// | ||
| 75 | class SCEV : public FoldingSetNode { | ||
| 76 | friend struct FoldingSetTrait<SCEV>; | ||
| 77 | |||
| 78 |   /// A reference to an Interned FoldingSetNodeID for this node.  The | ||
| 79 |   /// ScalarEvolution's BumpPtrAllocator holds the data. | ||
| 80 |   FoldingSetNodeIDRef FastID; | ||
| 81 | |||
| 82 |   // The SCEV baseclass this node corresponds to | ||
| 83 | const SCEVTypes SCEVType; | ||
| 84 | |||
| 85 | protected: | ||
| 86 |   // Estimated complexity of this node's expression tree size. | ||
| 87 | const unsigned short ExpressionSize; | ||
| 88 | |||
| 89 |   /// This field is initialized to zero and may be used in subclasses to store | ||
| 90 |   /// miscellaneous information. | ||
| 91 | unsigned short SubclassData = 0; | ||
| 92 | |||
| 93 | public: | ||
| 94 |   /// NoWrapFlags are bitfield indices into SubclassData. | ||
| 95 |   /// | ||
| 96 |   /// Add and Mul expressions may have no-unsigned-wrap <NUW> or | ||
| 97 |   /// no-signed-wrap <NSW> properties, which are derived from the IR | ||
| 98 |   /// operator. NSW is a misnomer that we use to mean no signed overflow or | ||
| 99 |   /// underflow. | ||
| 100 |   /// | ||
| 101 |   /// AddRec expressions may have a no-self-wraparound <NW> property if, in | ||
| 102 |   /// the integer domain, abs(step) * max-iteration(loop) <= | ||
| 103 |   /// unsigned-max(bitwidth).  This means that the recurrence will never reach | ||
| 104 |   /// its start value if the step is non-zero.  Computing the same value on | ||
| 105 |   /// each iteration is not considered wrapping, and recurrences with step = 0 | ||
| 106 |   /// are trivially <NW>.  <NW> is independent of the sign of step and the | ||
| 107 |   /// value the add recurrence starts with. | ||
| 108 |   /// | ||
| 109 |   /// Note that NUW and NSW are also valid properties of a recurrence, and | ||
| 110 |   /// either implies NW. For convenience, NW will be set for a recurrence | ||
| 111 |   /// whenever either NUW or NSW are set. | ||
| 112 |   /// | ||
| 113 |   /// We require that the flag on a SCEV apply to the entire scope in which | ||
| 114 |   /// that SCEV is defined.  A SCEV's scope is set of locations dominated by | ||
| 115 |   /// a defining location, which is in turn described by the following rules: | ||
| 116 |   /// * A SCEVUnknown is at the point of definition of the Value. | ||
| 117 |   /// * A SCEVConstant is defined at all points. | ||
| 118 |   /// * A SCEVAddRec is defined starting with the header of the associated | ||
| 119 |   ///   loop. | ||
| 120 |   /// * All other SCEVs are defined at the earlest point all operands are | ||
| 121 |   ///   defined. | ||
| 122 |   /// | ||
| 123 |   /// The above rules describe a maximally hoisted form (without regards to | ||
| 124 |   /// potential control dependence).  A SCEV is defined anywhere a | ||
| 125 |   /// corresponding instruction could be defined in said maximally hoisted | ||
| 126 |   /// form.  Note that SCEVUDivExpr (currently the only expression type which | ||
| 127 |   /// can trap) can be defined per these rules in regions where it would trap | ||
| 128 |   /// at runtime.  A SCEV being defined does not require the existence of any | ||
| 129 |   /// instruction within the defined scope. | ||
| 130 | enum NoWrapFlags { | ||
| 131 | FlagAnyWrap = 0, // No guarantee. | ||
| 132 | FlagNW = (1 << 0), // No self-wrap. | ||
| 133 | FlagNUW = (1 << 1), // No unsigned wrap. | ||
| 134 | FlagNSW = (1 << 2), // No signed wrap. | ||
| 135 | NoWrapMask = (1 << 3) - 1 | ||
| 136 | }; | ||
| 137 | |||
| 138 | explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, | ||
| 139 | unsigned short ExpressionSize) | ||
| 140 | : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {} | ||
| 141 | SCEV(const SCEV &) = delete; | ||
| 142 | SCEV &operator=(const SCEV &) = delete; | ||
| 143 | |||
| 144 | SCEVTypes getSCEVType() const { return SCEVType; } | ||
| 145 | |||
| 146 |   /// Return the LLVM type of this SCEV expression. | ||
| 147 | Type *getType() const; | ||
| 148 | |||
| 149 |   /// Return operands of this SCEV expression. | ||
| 150 | ArrayRef<const SCEV *> operands() const; | ||
| 151 | |||
| 152 |   /// Return true if the expression is a constant zero. | ||
| 153 | bool isZero() const; | ||
| 154 | |||
| 155 |   /// Return true if the expression is a constant one. | ||
| 156 | bool isOne() const; | ||
| 157 | |||
| 158 |   /// Return true if the expression is a constant all-ones value. | ||
| 159 | bool isAllOnesValue() const; | ||
| 160 | |||
| 161 |   /// Return true if the specified scev is negated, but not a constant. | ||
| 162 | bool isNonConstantNegative() const; | ||
| 163 | |||
| 164 |   // Returns estimated size of the mathematical expression represented by this | ||
| 165 |   // SCEV. The rules of its calculation are following: | ||
| 166 |   // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1; | ||
| 167 |   // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula: | ||
| 168 |   //    (1 + Size(Op1) + ... + Size(OpN)). | ||
| 169 |   // This value gives us an estimation of time we need to traverse through this | ||
| 170 |   // SCEV and all its operands recursively. We may use it to avoid performing | ||
| 171 |   // heavy transformations on SCEVs of excessive size for sake of saving the | ||
| 172 |   // compilation time. | ||
| 173 | unsigned short getExpressionSize() const { | ||
| 174 | return ExpressionSize; | ||
| 175 |   } | ||
| 176 | |||
| 177 |   /// Print out the internal representation of this scalar to the specified | ||
| 178 |   /// stream.  This should really only be used for debugging purposes. | ||
| 179 | void print(raw_ostream &OS) const; | ||
| 180 | |||
| 181 |   /// This method is used for debugging. | ||
| 182 | void dump() const; | ||
| 183 | }; | ||
| 184 | |||
| 185 | // Specialize FoldingSetTrait for SCEV to avoid needing to compute | ||
| 186 | // temporary FoldingSetNodeID values. | ||
| 187 | template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> { | ||
| 188 | static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; } | ||
| 189 | |||
| 190 | static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, | ||
| 191 | FoldingSetNodeID &TempID) { | ||
| 192 | return ID == X.FastID; | ||
| 193 |   } | ||
| 194 | |||
| 195 | static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) { | ||
| 196 | return X.FastID.ComputeHash(); | ||
| 197 |   } | ||
| 198 | }; | ||
| 199 | |||
| 200 | inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { | ||
| 201 | S.print(OS); | ||
| 202 | return OS; | ||
| 203 | } | ||
| 204 | |||
| 205 | /// An object of this class is returned by queries that could not be answered. | ||
| 206 | /// For example, if you ask for the number of iterations of a linked-list | ||
| 207 | /// traversal loop, you will get one of these.  None of the standard SCEV | ||
| 208 | /// operations are valid on this class, it is just a marker. | ||
| 209 | struct SCEVCouldNotCompute : public SCEV { | ||
| 210 | SCEVCouldNotCompute(); | ||
| 211 | |||
| 212 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 213 | static bool classof(const SCEV *S); | ||
| 214 | }; | ||
| 215 | |||
| 216 | /// This class represents an assumption made using SCEV expressions which can | ||
| 217 | /// be checked at run-time. | ||
| 218 | class SCEVPredicate : public FoldingSetNode { | ||
| 219 | friend struct FoldingSetTrait<SCEVPredicate>; | ||
| 220 | |||
| 221 |   /// A reference to an Interned FoldingSetNodeID for this node.  The | ||
| 222 |   /// ScalarEvolution's BumpPtrAllocator holds the data. | ||
| 223 |   FoldingSetNodeIDRef FastID; | ||
| 224 | |||
| 225 | public: | ||
| 226 | enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap }; | ||
| 227 | |||
| 228 | protected: | ||
| 229 |   SCEVPredicateKind Kind; | ||
| 230 | ~SCEVPredicate() = default; | ||
| 231 | SCEVPredicate(const SCEVPredicate &) = default; | ||
| 232 | SCEVPredicate &operator=(const SCEVPredicate &) = default; | ||
| 233 | |||
| 234 | public: | ||
| 235 | SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind); | ||
| 236 | |||
| 237 | SCEVPredicateKind getKind() const { return Kind; } | ||
| 238 | |||
| 239 |   /// Returns the estimated complexity of this predicate.  This is roughly | ||
| 240 |   /// measured in the number of run-time checks required. | ||
| 241 | virtual unsigned getComplexity() const { return 1; } | ||
| 242 | |||
| 243 |   /// Returns true if the predicate is always true. This means that no | ||
| 244 |   /// assumptions were made and nothing needs to be checked at run-time. | ||
| 245 | virtual bool isAlwaysTrue() const = 0; | ||
| 246 | |||
| 247 |   /// Returns true if this predicate implies \p N. | ||
| 248 | virtual bool implies(const SCEVPredicate *N) const = 0; | ||
| 249 | |||
| 250 |   /// Prints a textual representation of this predicate with an indentation of | ||
| 251 |   /// \p Depth. | ||
| 252 | virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0; | ||
| 253 | }; | ||
| 254 | |||
| 255 | inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) { | ||
| 256 | P.print(OS); | ||
| 257 | return OS; | ||
| 258 | } | ||
| 259 | |||
| 260 | // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute | ||
| 261 | // temporary FoldingSetNodeID values. | ||
| 262 | template <> | ||
| 263 | struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> { | ||
| 264 | static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) { | ||
| 265 | ID = X.FastID; | ||
| 266 |   } | ||
| 267 | |||
| 268 | static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, | ||
| 269 | unsigned IDHash, FoldingSetNodeID &TempID) { | ||
| 270 | return ID == X.FastID; | ||
| 271 |   } | ||
| 272 | |||
| 273 | static unsigned ComputeHash(const SCEVPredicate &X, | ||
| 274 | FoldingSetNodeID &TempID) { | ||
| 275 | return X.FastID.ComputeHash(); | ||
| 276 |   } | ||
| 277 | }; | ||
| 278 | |||
| 279 | /// This class represents an assumption that the expression LHS Pred RHS | ||
| 280 | /// evaluates to true, and this can be checked at run-time. | ||
| 281 | class SCEVComparePredicate final : public SCEVPredicate { | ||
| 282 |   /// We assume that LHS Pred RHS is true. | ||
| 283 | const ICmpInst::Predicate Pred; | ||
| 284 | const SCEV *LHS; | ||
| 285 | const SCEV *RHS; | ||
| 286 | |||
| 287 | public: | ||
| 288 | SCEVComparePredicate(const FoldingSetNodeIDRef ID, | ||
| 289 | const ICmpInst::Predicate Pred, | ||
| 290 | const SCEV *LHS, const SCEV *RHS); | ||
| 291 | |||
| 292 |   /// Implementation of the SCEVPredicate interface | ||
| 293 | bool implies(const SCEVPredicate *N) const override; | ||
| 294 | void print(raw_ostream &OS, unsigned Depth = 0) const override; | ||
| 295 | bool isAlwaysTrue() const override; | ||
| 296 | |||
| 297 | ICmpInst::Predicate getPredicate() const { return Pred; } | ||
| 298 | |||
| 299 |   /// Returns the left hand side of the predicate. | ||
| 300 | const SCEV *getLHS() const { return LHS; } | ||
| 301 | |||
| 302 |   /// Returns the right hand side of the predicate. | ||
| 303 | const SCEV *getRHS() const { return RHS; } | ||
| 304 | |||
| 305 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 306 | static bool classof(const SCEVPredicate *P) { | ||
| 307 | return P->getKind() == P_Compare; | ||
| 308 |   } | ||
| 309 | }; | ||
| 310 | |||
| 311 | /// This class represents an assumption made on an AddRec expression. Given an | ||
| 312 | /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw | ||
| 313 | /// flags (defined below) in the first X iterations of the loop, where X is a | ||
| 314 | /// SCEV expression returned by getPredicatedBackedgeTakenCount). | ||
| 315 | /// | ||
| 316 | /// Note that this does not imply that X is equal to the backedge taken | ||
| 317 | /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a | ||
| 318 | /// predicated backedge taken count of X, we only guarantee that {0,+,1} has | ||
| 319 | /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we | ||
| 320 | /// have more than X iterations. | ||
| 321 | class SCEVWrapPredicate final : public SCEVPredicate { | ||
| 322 | public: | ||
| 323 |   /// Similar to SCEV::NoWrapFlags, but with slightly different semantics | ||
| 324 |   /// for FlagNUSW. The increment is considered to be signed, and a + b | ||
| 325 |   /// (where b is the increment) is considered to wrap if: | ||
| 326 |   ///    zext(a + b) != zext(a) + sext(b) | ||
| 327 |   /// | ||
| 328 |   /// If Signed is a function that takes an n-bit tuple and maps to the | ||
| 329 |   /// integer domain as the tuples value interpreted as twos complement, | ||
| 330 |   /// and Unsigned a function that takes an n-bit tuple and maps to the | ||
| 331 |   /// integer domain as as the base two value of input tuple, then a + b | ||
| 332 |   /// has IncrementNUSW iff: | ||
| 333 |   /// | ||
| 334 |   /// 0 <= Unsigned(a) + Signed(b) < 2^n | ||
| 335 |   /// | ||
| 336 |   /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW. | ||
| 337 |   /// | ||
| 338 |   /// Note that the IncrementNUSW flag is not commutative: if base + inc | ||
| 339 |   /// has IncrementNUSW, then inc + base doesn't neccessarily have this | ||
| 340 |   /// property. The reason for this is that this is used for sign/zero | ||
| 341 |   /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is | ||
| 342 |   /// assumed. A {base,+,inc} expression is already non-commutative with | ||
| 343 |   /// regards to base and inc, since it is interpreted as: | ||
| 344 |   ///     (((base + inc) + inc) + inc) ... | ||
| 345 | enum IncrementWrapFlags { | ||
| 346 | IncrementAnyWrap = 0, // No guarantee. | ||
| 347 | IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap. | ||
| 348 | IncrementNSSW = (1 << 1), // No signed with signed increment wrap | ||
| 349 |                               // (equivalent with SCEV::NSW) | ||
| 350 | IncrementNoWrapMask = (1 << 2) - 1 | ||
| 351 | }; | ||
| 352 | |||
| 353 |   /// Convenient IncrementWrapFlags manipulation methods. | ||
| 354 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags | ||
| 355 | clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, | ||
| 356 | SCEVWrapPredicate::IncrementWrapFlags OffFlags) { | ||
| 357 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); | ||
| 358 | assert((OffFlags & IncrementNoWrapMask) == OffFlags && | ||
| 359 | "Invalid flags value!"); | ||
| 360 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags); | ||
| 361 |   } | ||
| 362 | |||
| 363 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags | ||
| 364 | maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) { | ||
| 365 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); | ||
| 366 | assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!"); | ||
| 367 | |||
| 368 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask); | ||
| 369 |   } | ||
| 370 | |||
| 371 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags | ||
| 372 | setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, | ||
| 373 | SCEVWrapPredicate::IncrementWrapFlags OnFlags) { | ||
| 374 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); | ||
| 375 | assert((OnFlags & IncrementNoWrapMask) == OnFlags && | ||
| 376 | "Invalid flags value!"); | ||
| 377 | |||
| 378 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags); | ||
| 379 |   } | ||
| 380 | |||
| 381 |   /// Returns the set of SCEVWrapPredicate no wrap flags implied by a | ||
| 382 |   /// SCEVAddRecExpr. | ||
| 383 | [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags | ||
| 384 | getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE); | ||
| 385 | |||
| 386 | private: | ||
| 387 | const SCEVAddRecExpr *AR; | ||
| 388 |   IncrementWrapFlags Flags; | ||
| 389 | |||
| 390 | public: | ||
| 391 | explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID, | ||
| 392 | const SCEVAddRecExpr *AR, | ||
| 393 | IncrementWrapFlags Flags); | ||
| 394 | |||
| 395 |   /// Returns the set assumed no overflow flags. | ||
| 396 | IncrementWrapFlags getFlags() const { return Flags; } | ||
| 397 | |||
| 398 |   /// Implementation of the SCEVPredicate interface | ||
| 399 | const SCEVAddRecExpr *getExpr() const; | ||
| 400 | bool implies(const SCEVPredicate *N) const override; | ||
| 401 | void print(raw_ostream &OS, unsigned Depth = 0) const override; | ||
| 402 | bool isAlwaysTrue() const override; | ||
| 403 | |||
| 404 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 405 | static bool classof(const SCEVPredicate *P) { | ||
| 406 | return P->getKind() == P_Wrap; | ||
| 407 |   } | ||
| 408 | }; | ||
| 409 | |||
| 410 | /// This class represents a composition of other SCEV predicates, and is the | ||
| 411 | /// class that most clients will interact with.  This is equivalent to a | ||
| 412 | /// logical "AND" of all the predicates in the union. | ||
| 413 | /// | ||
| 414 | /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the | ||
| 415 | /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound. | ||
| 416 | class SCEVUnionPredicate final : public SCEVPredicate { | ||
| 417 | private: | ||
| 418 | using PredicateMap = | ||
| 419 | DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>; | ||
| 420 | |||
| 421 |   /// Vector with references to all predicates in this union. | ||
| 422 | SmallVector<const SCEVPredicate *, 16> Preds; | ||
| 423 | |||
| 424 |   /// Adds a predicate to this union. | ||
| 425 | void add(const SCEVPredicate *N); | ||
| 426 | |||
| 427 | public: | ||
| 428 | SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds); | ||
| 429 | |||
| 430 | const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const { | ||
| 431 | return Preds; | ||
| 432 |   } | ||
| 433 | |||
| 434 |   /// Implementation of the SCEVPredicate interface | ||
| 435 | bool isAlwaysTrue() const override; | ||
| 436 | bool implies(const SCEVPredicate *N) const override; | ||
| 437 | void print(raw_ostream &OS, unsigned Depth) const override; | ||
| 438 | |||
| 439 |   /// We estimate the complexity of a union predicate as the size number of | ||
| 440 |   /// predicates in the union. | ||
| 441 | unsigned getComplexity() const override { return Preds.size(); } | ||
| 442 | |||
| 443 |   /// Methods for support type inquiry through isa, cast, and dyn_cast: | ||
| 444 | static bool classof(const SCEVPredicate *P) { | ||
| 445 | return P->getKind() == P_Union; | ||
| 446 |   } | ||
| 447 | }; | ||
| 448 | |||
| 449 | /// The main scalar evolution driver. Because client code (intentionally) | ||
| 450 | /// can't do much with the SCEV objects directly, they must ask this class | ||
| 451 | /// for services. | ||
| 452 | class ScalarEvolution { | ||
| 453 | friend class ScalarEvolutionsTest; | ||
| 454 | |||
| 455 | public: | ||
| 456 |   /// An enum describing the relationship between a SCEV and a loop. | ||
| 457 | enum LoopDisposition { | ||
| 458 |     LoopVariant,   ///< The SCEV is loop-variant (unknown). | ||
| 459 |     LoopInvariant, ///< The SCEV is loop-invariant. | ||
| 460 |     LoopComputable ///< The SCEV varies predictably with the loop. | ||
| 461 | }; | ||
| 462 | |||
| 463 |   /// An enum describing the relationship between a SCEV and a basic block. | ||
| 464 | enum BlockDisposition { | ||
| 465 |     DoesNotDominateBlock,  ///< The SCEV does not dominate the block. | ||
| 466 |     DominatesBlock,        ///< The SCEV dominates the block. | ||
| 467 |     ProperlyDominatesBlock ///< The SCEV properly dominates the block. | ||
| 468 | }; | ||
| 469 | |||
| 470 |   /// Convenient NoWrapFlags manipulation that hides enum casts and is | ||
| 471 |   /// visible in the ScalarEvolution name space. | ||
| 472 | [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, | ||
| 473 | int Mask) { | ||
| 474 | return (SCEV::NoWrapFlags)(Flags & Mask); | ||
| 475 |   } | ||
| 476 | [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, | ||
| 477 | SCEV::NoWrapFlags OnFlags) { | ||
| 478 | return (SCEV::NoWrapFlags)(Flags | OnFlags); | ||
| 479 |   } | ||
| 480 | [[nodiscard]] static SCEV::NoWrapFlags | ||
| 481 | clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) { | ||
| 482 | return (SCEV::NoWrapFlags)(Flags & ~OffFlags); | ||
| 483 |   } | ||
| 484 | [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags, | ||
| 485 | SCEV::NoWrapFlags TestFlags) { | ||
| 486 | return TestFlags == maskFlags(Flags, TestFlags); | ||
| 487 | }; | ||
| 488 | |||
| 489 | ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC, | ||
| 490 | DominatorTree &DT, LoopInfo &LI); | ||
| 491 | ScalarEvolution(ScalarEvolution &&Arg); | ||
| 492 | ~ScalarEvolution(); | ||
| 493 | |||
| 494 | LLVMContext &getContext() const { return F.getContext(); } | ||
| 495 | |||
| 496 |   /// Test if values of the given type are analyzable within the SCEV | ||
| 497 |   /// framework. This primarily includes integer types, and it can optionally | ||
| 498 |   /// include pointer types if the ScalarEvolution class has access to | ||
| 499 |   /// target-specific information. | ||
| 500 | bool isSCEVable(Type *Ty) const; | ||
| 501 | |||
| 502 |   /// Return the size in bits of the specified type, for which isSCEVable must | ||
| 503 |   /// return true. | ||
| 504 | uint64_t getTypeSizeInBits(Type *Ty) const; | ||
| 505 | |||
| 506 |   /// Return a type with the same bitwidth as the given type and which | ||
| 507 |   /// represents how SCEV will treat the given type, for which isSCEVable must | ||
| 508 |   /// return true. For pointer types, this is the pointer-sized integer type. | ||
| 509 | Type *getEffectiveSCEVType(Type *Ty) const; | ||
| 510 | |||
| 511 |   // Returns a wider type among {Ty1, Ty2}. | ||
| 512 | Type *getWiderType(Type *Ty1, Type *Ty2) const; | ||
| 513 | |||
| 514 |   /// Return true if there exists a point in the program at which both | ||
| 515 |   /// A and B could be operands to the same instruction. | ||
| 516 |   /// SCEV expressions are generally assumed to correspond to instructions | ||
| 517 |   /// which could exists in IR.  In general, this requires that there exists | ||
| 518 |   /// a use point in the program where all operands dominate the use. | ||
| 519 |   /// | ||
| 520 |   /// Example: | ||
| 521 |   /// loop { | ||
| 522 |   ///   if | ||
| 523 |   ///     loop { v1 = load @global1; } | ||
| 524 |   ///   else | ||
| 525 |   ///     loop { v2 = load @global2; } | ||
| 526 |   /// } | ||
| 527 |   /// No SCEV with operand V1, and v2 can exist in this program. | ||
| 528 | bool instructionCouldExistWitthOperands(const SCEV *A, const SCEV *B); | ||
| 529 | |||
| 530 |   /// Return true if the SCEV is a scAddRecExpr or it contains | ||
| 531 |   /// scAddRecExpr. The result will be cached in HasRecMap. | ||
| 532 | bool containsAddRecurrence(const SCEV *S); | ||
| 533 | |||
| 534 |   /// Is operation \p BinOp between \p LHS and \p RHS provably does not have | ||
| 535 |   /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the | ||
| 536 |   /// no-overflow fact should be true in the context of this instruction. | ||
| 537 | bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, | ||
| 538 | const SCEV *LHS, const SCEV *RHS, | ||
| 539 | const Instruction *CtxI = nullptr); | ||
| 540 | |||
| 541 |   /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into | ||
| 542 |   /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet. | ||
| 543 |   /// Does not mutate the original instruction. Returns std::nullopt if it could | ||
| 544 |   /// not deduce more precise flags than the instruction already has, otherwise | ||
| 545 |   /// returns proven flags. | ||
| 546 | std::optional<SCEV::NoWrapFlags> | ||
| 547 | getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO); | ||
| 548 | |||
| 549 |   /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops. | ||
| 550 | void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops); | ||
| 551 | |||
| 552 |   /// Return true if the SCEV expression contains an undef value. | ||
| 553 | bool containsUndefs(const SCEV *S) const; | ||
| 554 | |||
| 555 |   /// Return true if the SCEV expression contains a Value that has been | ||
| 556 |   /// optimised out and is now a nullptr. | ||
| 557 | bool containsErasedValue(const SCEV *S) const; | ||
| 558 | |||
| 559 |   /// Return a SCEV expression for the full generality of the specified | ||
| 560 |   /// expression. | ||
| 561 | const SCEV *getSCEV(Value *V); | ||
| 562 | |||
| 563 | const SCEV *getConstant(ConstantInt *V); | ||
| 564 | const SCEV *getConstant(const APInt &Val); | ||
| 565 | const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false); | ||
| 566 | const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0); | ||
| 567 | const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty); | ||
| 568 | const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); | ||
| 569 | const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); | ||
| 570 | const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty, | ||
| 571 | unsigned Depth = 0); | ||
| 572 | const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); | ||
| 573 | const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty, | ||
| 574 | unsigned Depth = 0); | ||
| 575 | const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty); | ||
| 576 | const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty); | ||
| 577 | const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops, | ||
| 578 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, | ||
| 579 | unsigned Depth = 0); | ||
| 580 | const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS, | ||
| 581 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, | ||
| 582 | unsigned Depth = 0) { | ||
| 583 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; | ||
| 584 | return getAddExpr(Ops, Flags, Depth); | ||
| 585 |   } | ||
| 586 | const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, | ||
| 587 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, | ||
| 588 | unsigned Depth = 0) { | ||
| 589 | SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; | ||
| 590 | return getAddExpr(Ops, Flags, Depth); | ||
| 591 |   } | ||
| 592 | const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops, | ||
| 593 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, | ||
| 594 | unsigned Depth = 0); | ||
| 595 | const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS, | ||
| 596 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, | ||
| 597 | unsigned Depth = 0) { | ||
| 598 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; | ||
| 599 | return getMulExpr(Ops, Flags, Depth); | ||
| 600 |   } | ||
| 601 | const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, | ||
| 602 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, | ||
| 603 | unsigned Depth = 0) { | ||
| 604 | SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; | ||
| 605 | return getMulExpr(Ops, Flags, Depth); | ||
| 606 |   } | ||
| 607 | const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS); | ||
| 608 | const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS); | ||
| 609 | const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS); | ||
| 610 | const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, | ||
| 611 | SCEV::NoWrapFlags Flags); | ||
| 612 | const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, | ||
| 613 | const Loop *L, SCEV::NoWrapFlags Flags); | ||
| 614 | const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands, | ||
| 615 | const Loop *L, SCEV::NoWrapFlags Flags) { | ||
| 616 | SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end()); | ||
| 617 | return getAddRecExpr(NewOp, L, Flags); | ||
| 618 |   } | ||
| 619 | |||
| 620 |   /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some | ||
| 621 |   /// Predicates. If successful return these <AddRecExpr, Predicates>; | ||
| 622 |   /// The function is intended to be called from PSCEV (the caller will decide | ||
| 623 |   /// whether to actually add the predicates and carry out the rewrites). | ||
| 624 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | ||
| 625 | createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI); | ||
| 626 | |||
| 627 |   /// Returns an expression for a GEP | ||
| 628 |   /// | ||
| 629 |   /// \p GEP The GEP. The indices contained in the GEP itself are ignored, | ||
| 630 |   /// instead we use IndexExprs. | ||
| 631 |   /// \p IndexExprs The expressions for the indices. | ||
| 632 | const SCEV *getGEPExpr(GEPOperator *GEP, | ||
| 633 | const SmallVectorImpl<const SCEV *> &IndexExprs); | ||
| 634 | const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW); | ||
| 635 | const SCEV *getMinMaxExpr(SCEVTypes Kind, | ||
| 636 | SmallVectorImpl<const SCEV *> &Operands); | ||
| 637 | const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind, | ||
| 638 | SmallVectorImpl<const SCEV *> &Operands); | ||
| 639 | const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS); | ||
| 640 | const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands); | ||
| 641 | const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS); | ||
| 642 | const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands); | ||
| 643 | const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS); | ||
| 644 | const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands); | ||
| 645 | const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS, | ||
| 646 | bool Sequential = false); | ||
| 647 | const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands, | ||
| 648 | bool Sequential = false); | ||
| 649 | const SCEV *getUnknown(Value *V); | ||
| 650 | const SCEV *getCouldNotCompute(); | ||
| 651 | |||
| 652 |   /// Return a SCEV for the constant 0 of a specific type. | ||
| 653 | const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); } | ||
| 654 | |||
| 655 |   /// Return a SCEV for the constant 1 of a specific type. | ||
| 656 | const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); } | ||
| 657 | |||
| 658 |   /// Return a SCEV for the constant -1 of a specific type. | ||
| 659 | const SCEV *getMinusOne(Type *Ty) { | ||
| 660 | return getConstant(Ty, -1, /*isSigned=*/true); | ||
| 661 |   } | ||
| 662 | |||
| 663 |   /// Return an expression for sizeof ScalableTy that is type IntTy, where | ||
| 664 |   /// ScalableTy is a scalable vector type. | ||
| 665 | const SCEV *getSizeOfScalableVectorExpr(Type *IntTy, | ||
| 666 | ScalableVectorType *ScalableTy); | ||
| 667 | |||
| 668 |   /// Return an expression for the alloc size of AllocTy that is type IntTy | ||
| 669 | const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy); | ||
| 670 | |||
| 671 |   /// Return an expression for the store size of StoreTy that is type IntTy | ||
| 672 | const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy); | ||
| 673 | |||
| 674 |   /// Return an expression for offsetof on the given field with type IntTy | ||
| 675 | const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo); | ||
| 676 | |||
| 677 |   /// Return the SCEV object corresponding to -V. | ||
| 678 | const SCEV *getNegativeSCEV(const SCEV *V, | ||
| 679 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); | ||
| 680 | |||
| 681 |   /// Return the SCEV object corresponding to ~V. | ||
| 682 | const SCEV *getNotSCEV(const SCEV *V); | ||
| 683 | |||
| 684 |   /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1. | ||
| 685 |   /// | ||
| 686 |   /// If the LHS and RHS are pointers which don't share a common base | ||
| 687 |   /// (according to getPointerBase()), this returns a SCEVCouldNotCompute. | ||
| 688 |   /// To compute the difference between two unrelated pointers, you can | ||
| 689 |   /// explicitly convert the arguments using getPtrToIntExpr(), for pointer | ||
| 690 |   /// types that support it. | ||
| 691 | const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS, | ||
| 692 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, | ||
| 693 | unsigned Depth = 0); | ||
| 694 | |||
| 695 |   /// Compute ceil(N / D). N and D are treated as unsigned values. | ||
| 696 |   /// | ||
| 697 |   /// Since SCEV doesn't have native ceiling division, this generates a | ||
| 698 |   /// SCEV expression of the following form: | ||
| 699 |   /// | ||
| 700 |   /// umin(N, 1) + floor((N - umin(N, 1)) / D) | ||
| 701 |   /// | ||
| 702 |   /// A denominator of zero or poison is handled the same way as getUDivExpr(). | ||
| 703 | const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D); | ||
| 704 | |||
| 705 |   /// Return a SCEV corresponding to a conversion of the input value to the | ||
| 706 |   /// specified type.  If the type must be extended, it is zero extended. | ||
| 707 | const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty, | ||
| 708 | unsigned Depth = 0); | ||
| 709 | |||
| 710 |   /// Return a SCEV corresponding to a conversion of the input value to the | ||
| 711 |   /// specified type.  If the type must be extended, it is sign extended. | ||
| 712 | const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty, | ||
| 713 | unsigned Depth = 0); | ||
| 714 | |||
| 715 |   /// Return a SCEV corresponding to a conversion of the input value to the | ||
| 716 |   /// specified type.  If the type must be extended, it is zero extended.  The | ||
| 717 |   /// conversion must not be narrowing. | ||
| 718 | const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty); | ||
| 719 | |||
| 720 |   /// Return a SCEV corresponding to a conversion of the input value to the | ||
| 721 |   /// specified type.  If the type must be extended, it is sign extended.  The | ||
| 722 |   /// conversion must not be narrowing. | ||
| 723 | const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty); | ||
| 724 | |||
| 725 |   /// Return a SCEV corresponding to a conversion of the input value to the | ||
| 726 |   /// specified type. If the type must be extended, it is extended with | ||
| 727 |   /// unspecified bits. The conversion must not be narrowing. | ||
| 728 | const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty); | ||
| 729 | |||
| 730 |   /// Return a SCEV corresponding to a conversion of the input value to the | ||
| 731 |   /// specified type.  The conversion must not be widening. | ||
| 732 | const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty); | ||
| 733 | |||
| 734 |   /// Promote the operands to the wider of the types using zero-extension, and | ||
| 735 |   /// then perform a umax operation with them. | ||
| 736 | const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS); | ||
| 737 | |||
| 738 |   /// Promote the operands to the wider of the types using zero-extension, and | ||
| 739 |   /// then perform a umin operation with them. | ||
| 740 | const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, | ||
| 741 | bool Sequential = false); | ||
| 742 | |||
| 743 |   /// Promote the operands to the wider of the types using zero-extension, and | ||
| 744 |   /// then perform a umin operation with them. N-ary function. | ||
| 745 | const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, | ||
| 746 | bool Sequential = false); | ||
| 747 | |||
| 748 |   /// Transitively follow the chain of pointer-type operands until reaching a | ||
| 749 |   /// SCEV that does not have a single pointer operand. This returns a | ||
| 750 |   /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner | ||
| 751 |   /// cases do exist. | ||
| 752 | const SCEV *getPointerBase(const SCEV *V); | ||
| 753 | |||
| 754 |   /// Compute an expression equivalent to S - getPointerBase(S). | ||
| 755 | const SCEV *removePointerBase(const SCEV *S); | ||
| 756 | |||
| 757 |   /// Return a SCEV expression for the specified value at the specified scope | ||
| 758 |   /// in the program.  The L value specifies a loop nest to evaluate the | ||
| 759 |   /// expression at, where null is the top-level or a specified loop is | ||
| 760 |   /// immediately inside of the loop. | ||
| 761 |   /// | ||
| 762 |   /// This method can be used to compute the exit value for a variable defined | ||
| 763 |   /// in a loop by querying what the value will hold in the parent loop. | ||
| 764 |   /// | ||
| 765 |   /// In the case that a relevant loop exit value cannot be computed, the | ||
| 766 |   /// original value V is returned. | ||
| 767 | const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L); | ||
| 768 | |||
| 769 |   /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L). | ||
| 770 | const SCEV *getSCEVAtScope(Value *V, const Loop *L); | ||
| 771 | |||
| 772 |   /// Test whether entry to the loop is protected by a conditional between LHS | ||
| 773 |   /// and RHS.  This is used to help avoid max expressions in loop trip | ||
| 774 |   /// counts, and to eliminate casts. | ||
| 775 | bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, | ||
| 776 | const SCEV *LHS, const SCEV *RHS); | ||
| 777 | |||
| 778 |   /// Test whether entry to the basic block is protected by a conditional | ||
| 779 |   /// between LHS and RHS. | ||
| 780 | bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, | ||
| 781 | ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 782 | const SCEV *RHS); | ||
| 783 | |||
| 784 |   /// Test whether the backedge of the loop is protected by a conditional | ||
| 785 |   /// between LHS and RHS.  This is used to eliminate casts. | ||
| 786 | bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, | ||
| 787 | const SCEV *LHS, const SCEV *RHS); | ||
| 788 | |||
| 789 |   /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip | ||
| 790 |   /// count".  A "trip count" is the number of times the header of the loop | ||
| 791 |   /// will execute if an exit is taken after the specified number of backedges | ||
| 792 |   /// have been taken.  (e.g. TripCount = ExitCount + 1).  Note that the | ||
| 793 |   /// expression can overflow if ExitCount = UINT_MAX.  \p Extend controls | ||
| 794 |   /// how potential overflow is handled.  If true, a wider result type is | ||
| 795 |   /// returned. ex: EC = 255 (i8), TC = 256 (i9).  If false, result unsigned | ||
| 796 |   /// wraps with 2s-complement semantics.  ex: EC = 255 (i8), TC = 0 (i8) | ||
| 797 | const SCEV *getTripCountFromExitCount(const SCEV *ExitCount, | ||
| 798 | bool Extend = true); | ||
| 799 | |||
| 800 |   /// Returns the exact trip count of the loop if we can compute it, and | ||
| 801 |   /// the result is a small constant.  '0' is used to represent an unknown | ||
| 802 |   /// or non-constant trip count.  Note that a trip count is simply one more | ||
| 803 |   /// than the backedge taken count for the loop. | ||
| 804 | unsigned getSmallConstantTripCount(const Loop *L); | ||
| 805 | |||
| 806 |   /// Return the exact trip count for this loop if we exit through ExitingBlock. | ||
| 807 |   /// '0' is used to represent an unknown or non-constant trip count.  Note | ||
| 808 |   /// that a trip count is simply one more than the backedge taken count for | ||
| 809 |   /// the same exit. | ||
| 810 |   /// This "trip count" assumes that control exits via ExitingBlock. More | ||
| 811 |   /// precisely, it is the number of times that control will reach ExitingBlock | ||
| 812 |   /// before taking the branch. For loops with multiple exits, it may not be | ||
| 813 |   /// the number times that the loop header executes if the loop exits | ||
| 814 |   /// prematurely via another branch. | ||
| 815 | unsigned getSmallConstantTripCount(const Loop *L, | ||
| 816 | const BasicBlock *ExitingBlock); | ||
| 817 | |||
| 818 |   /// Returns the upper bound of the loop trip count as a normal unsigned | ||
| 819 |   /// value. | ||
| 820 |   /// Returns 0 if the trip count is unknown or not constant. | ||
| 821 | unsigned getSmallConstantMaxTripCount(const Loop *L); | ||
| 822 | |||
| 823 |   /// Returns the upper bound of the loop trip count infered from array size. | ||
| 824 |   /// Can not access bytes starting outside the statically allocated size | ||
| 825 |   /// without being immediate UB. | ||
| 826 |   /// Returns SCEVCouldNotCompute if the trip count could not inferred | ||
| 827 |   /// from array accesses. | ||
| 828 | const SCEV *getConstantMaxTripCountFromArray(const Loop *L); | ||
| 829 | |||
| 830 |   /// Returns the largest constant divisor of the trip count as a normal | ||
| 831 |   /// unsigned value, if possible. This means that the actual trip count is | ||
| 832 |   /// always a multiple of the returned value. Returns 1 if the trip count is | ||
| 833 |   /// unknown or not guaranteed to be the multiple of a constant., Will also | ||
| 834 |   /// return 1 if the trip count is very large (>= 2^32). | ||
| 835 |   /// Note that the argument is an exit count for loop L, NOT a trip count. | ||
| 836 | unsigned getSmallConstantTripMultiple(const Loop *L, | ||
| 837 | const SCEV *ExitCount); | ||
| 838 | |||
| 839 |   /// Returns the largest constant divisor of the trip count of the | ||
| 840 |   /// loop.  Will return 1 if no trip count could be computed, or if a | ||
| 841 |   /// divisor could not be found. | ||
| 842 | unsigned getSmallConstantTripMultiple(const Loop *L); | ||
| 843 | |||
| 844 |   /// Returns the largest constant divisor of the trip count of this loop as a | ||
| 845 |   /// normal unsigned value, if possible. This means that the actual trip | ||
| 846 |   /// count is always a multiple of the returned value (don't forget the trip | ||
| 847 |   /// count could very well be zero as well!). As explained in the comments | ||
| 848 |   /// for getSmallConstantTripCount, this assumes that control exits the loop | ||
| 849 |   /// via ExitingBlock. | ||
| 850 | unsigned getSmallConstantTripMultiple(const Loop *L, | ||
| 851 | const BasicBlock *ExitingBlock); | ||
| 852 | |||
| 853 |   /// The terms "backedge taken count" and "exit count" are used | ||
| 854 |   /// interchangeably to refer to the number of times the backedge of a loop  | ||
| 855 |   /// has executed before the loop is exited. | ||
| 856 | enum ExitCountKind { | ||
| 857 |     /// An expression exactly describing the number of times the backedge has | ||
| 858 |     /// executed when a loop is exited. | ||
| 859 | Exact, | ||
| 860 |     /// A constant which provides an upper bound on the exact trip count. | ||
| 861 | ConstantMaximum, | ||
| 862 |     /// An expression which provides an upper bound on the exact trip count. | ||
| 863 | SymbolicMaximum, | ||
| 864 | }; | ||
| 865 | |||
| 866 |   /// Return the number of times the backedge executes before the given exit | ||
| 867 |   /// would be taken; if not exactly computable, return SCEVCouldNotCompute.  | ||
| 868 |   /// For a single exit loop, this value is equivelent to the result of | ||
| 869 |   /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit) | ||
| 870 |   /// before the backedge is executed (ExitCount + 1) times.  Note that there | ||
| 871 |   /// is no guarantee about *which* exit is taken on the exiting iteration. | ||
| 872 | const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock, | ||
| 873 | ExitCountKind Kind = Exact); | ||
| 874 | |||
| 875 |   /// If the specified loop has a predictable backedge-taken count, return it, | ||
| 876 |   /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is | ||
| 877 |   /// the number of times the loop header will be branched to from within the | ||
| 878 |   /// loop, assuming there are no abnormal exists like exception throws. This is | ||
| 879 |   /// one less than the trip count of the loop, since it doesn't count the first | ||
| 880 |   /// iteration, when the header is branched to from outside the loop. | ||
| 881 |   /// | ||
| 882 |   /// Note that it is not valid to call this method on a loop without a | ||
| 883 |   /// loop-invariant backedge-taken count (see | ||
| 884 |   /// hasLoopInvariantBackedgeTakenCount). | ||
| 885 | const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact); | ||
| 886 | |||
| 887 |   /// Similar to getBackedgeTakenCount, except it will add a set of | ||
| 888 |   /// SCEV predicates to Predicates that are required to be true in order for | ||
| 889 |   /// the answer to be correct. Predicates can be checked with run-time | ||
| 890 |   /// checks and can be used to perform loop versioning. | ||
| 891 | const SCEV *getPredicatedBackedgeTakenCount(const Loop *L, | ||
| 892 | SmallVector<const SCEVPredicate *, 4> &Predicates); | ||
| 893 | |||
| 894 |   /// When successful, this returns a SCEVConstant that is greater than or equal | ||
| 895 |   /// to (i.e. a "conservative over-approximation") of the value returend by | ||
| 896 |   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the | ||
| 897 |   /// SCEVCouldNotCompute object. | ||
| 898 | const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) { | ||
| 899 | return getBackedgeTakenCount(L, ConstantMaximum); | ||
| 900 |   } | ||
| 901 | |||
| 902 |   /// When successful, this returns a SCEV that is greater than or equal | ||
| 903 |   /// to (i.e. a "conservative over-approximation") of the value returend by | ||
| 904 |   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the | ||
| 905 |   /// SCEVCouldNotCompute object. | ||
| 906 | const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) { | ||
| 907 | return getBackedgeTakenCount(L, SymbolicMaximum); | ||
| 908 |   } | ||
| 909 | |||
| 910 |   /// Return true if the backedge taken count is either the value returned by | ||
| 911 |   /// getConstantMaxBackedgeTakenCount or zero. | ||
| 912 | bool isBackedgeTakenCountMaxOrZero(const Loop *L); | ||
| 913 | |||
| 914 |   /// Return true if the specified loop has an analyzable loop-invariant | ||
| 915 |   /// backedge-taken count. | ||
| 916 | bool hasLoopInvariantBackedgeTakenCount(const Loop *L); | ||
| 917 | |||
| 918 |   // This method should be called by the client when it made any change that | ||
| 919 |   // would invalidate SCEV's answers, and the client wants to remove all loop | ||
| 920 |   // information held internally by ScalarEvolution. This is intended to be used | ||
| 921 |   // when the alternative to forget a loop is too expensive (i.e. large loop | ||
| 922 |   // bodies). | ||
| 923 | void forgetAllLoops(); | ||
| 924 | |||
| 925 |   /// This method should be called by the client when it has changed a loop in | ||
| 926 |   /// a way that may effect ScalarEvolution's ability to compute a trip count, | ||
| 927 |   /// or if the loop is deleted.  This call is potentially expensive for large | ||
| 928 |   /// loop bodies. | ||
| 929 | void forgetLoop(const Loop *L); | ||
| 930 | |||
| 931 |   // This method invokes forgetLoop for the outermost loop of the given loop | ||
| 932 |   // \p L, making ScalarEvolution forget about all this subtree. This needs to | ||
| 933 |   // be done whenever we make a transform that may affect the parameters of the | ||
| 934 |   // outer loop, such as exit counts for branches. | ||
| 935 | void forgetTopmostLoop(const Loop *L); | ||
| 936 | |||
| 937 |   /// This method should be called by the client when it has changed a value | ||
| 938 |   /// in a way that may effect its value, or which may disconnect it from a | ||
| 939 |   /// def-use chain linking it to a loop. | ||
| 940 | void forgetValue(Value *V); | ||
| 941 | |||
| 942 |   /// Called when the client has changed the disposition of values in | ||
| 943 |   /// this loop. | ||
| 944 |   /// | ||
| 945 |   /// We don't have a way to invalidate per-loop dispositions. Clear and | ||
| 946 |   /// recompute is simpler. | ||
| 947 | void forgetLoopDispositions(); | ||
| 948 | |||
| 949 |   /// Called when the client has changed the disposition of values in | ||
| 950 |   /// a loop or block. | ||
| 951 |   /// | ||
| 952 |   /// We don't have a way to invalidate per-loop/per-block dispositions. Clear | ||
| 953 |   /// and recompute is simpler. | ||
| 954 | void forgetBlockAndLoopDispositions(Value *V = nullptr); | ||
| 955 | |||
| 956 |   /// Determine the minimum number of zero bits that S is guaranteed to end in | ||
| 957 |   /// (at every loop iteration).  It is, at the same time, the minimum number | ||
| 958 |   /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2. | ||
| 959 |   /// If S is guaranteed to be 0, it returns the bitwidth of S. | ||
| 960 | uint32_t GetMinTrailingZeros(const SCEV *S); | ||
| 961 | |||
| 962 |   /// Determine the unsigned range for a particular SCEV. | ||
| 963 |   /// NOTE: This returns a copy of the reference returned by getRangeRef. | ||
| 964 | ConstantRange getUnsignedRange(const SCEV *S) { | ||
| 965 | return getRangeRef(S, HINT_RANGE_UNSIGNED); | ||
| 966 |   } | ||
| 967 | |||
| 968 |   /// Determine the min of the unsigned range for a particular SCEV. | ||
| 969 | APInt getUnsignedRangeMin(const SCEV *S) { | ||
| 970 | return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin(); | ||
| 971 |   } | ||
| 972 | |||
| 973 |   /// Determine the max of the unsigned range for a particular SCEV. | ||
| 974 | APInt getUnsignedRangeMax(const SCEV *S) { | ||
| 975 | return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax(); | ||
| 976 |   } | ||
| 977 | |||
| 978 |   /// Determine the signed range for a particular SCEV. | ||
| 979 |   /// NOTE: This returns a copy of the reference returned by getRangeRef. | ||
| 980 | ConstantRange getSignedRange(const SCEV *S) { | ||
| 981 | return getRangeRef(S, HINT_RANGE_SIGNED); | ||
| 982 |   } | ||
| 983 | |||
| 984 |   /// Determine the min of the signed range for a particular SCEV. | ||
| 985 | APInt getSignedRangeMin(const SCEV *S) { | ||
| 986 | return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin(); | ||
| 987 |   } | ||
| 988 | |||
| 989 |   /// Determine the max of the signed range for a particular SCEV. | ||
| 990 | APInt getSignedRangeMax(const SCEV *S) { | ||
| 991 | return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax(); | ||
| 992 |   } | ||
| 993 | |||
| 994 |   /// Test if the given expression is known to be negative. | ||
| 995 | bool isKnownNegative(const SCEV *S); | ||
| 996 | |||
| 997 |   /// Test if the given expression is known to be positive. | ||
| 998 | bool isKnownPositive(const SCEV *S); | ||
| 999 | |||
| 1000 |   /// Test if the given expression is known to be non-negative. | ||
| 1001 | bool isKnownNonNegative(const SCEV *S); | ||
| 1002 | |||
| 1003 |   /// Test if the given expression is known to be non-positive. | ||
| 1004 | bool isKnownNonPositive(const SCEV *S); | ||
| 1005 | |||
| 1006 |   /// Test if the given expression is known to be non-zero. | ||
| 1007 | bool isKnownNonZero(const SCEV *S); | ||
| 1008 | |||
| 1009 |   /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from | ||
| 1010 |   /// \p S by substitution of all AddRec sub-expression related to loop \p L | ||
| 1011 |   /// with initial value of that SCEV. The second is obtained from \p S by | ||
| 1012 |   /// substitution of all AddRec sub-expressions related to loop \p L with post | ||
| 1013 |   /// increment of this AddRec in the loop \p L. In both cases all other AddRec | ||
| 1014 |   /// sub-expressions (not related to \p L) remain the same. | ||
| 1015 |   /// If the \p S contains non-invariant unknown SCEV the function returns | ||
| 1016 |   /// CouldNotCompute SCEV in both values of std::pair. | ||
| 1017 |   /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1 | ||
| 1018 |   /// the function returns pair: | ||
| 1019 |   /// first = {0, +, 1}<L2> | ||
| 1020 |   /// second = {1, +, 1}<L1> + {0, +, 1}<L2> | ||
| 1021 |   /// We can see that for the first AddRec sub-expression it was replaced with | ||
| 1022 |   /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post | ||
| 1023 |   /// increment value) for the second one. In both cases AddRec expression | ||
| 1024 |   /// related to L2 remains the same. | ||
| 1025 | std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L, | ||
| 1026 | const SCEV *S); | ||
| 1027 | |||
| 1028 |   /// We'd like to check the predicate on every iteration of the most dominated | ||
| 1029 |   /// loop between loops used in LHS and RHS. | ||
| 1030 |   /// To do this we use the following list of steps: | ||
| 1031 |   /// 1. Collect set S all loops on which either LHS or RHS depend. | ||
| 1032 |   /// 2. If S is non-empty | ||
| 1033 |   /// a. Let PD be the element of S which is dominated by all other elements. | ||
| 1034 |   /// b. Let E(LHS) be value of LHS on entry of PD. | ||
| 1035 |   ///    To get E(LHS), we should just take LHS and replace all AddRecs that are | ||
| 1036 |   ///    attached to PD on with their entry values. | ||
| 1037 |   ///    Define E(RHS) in the same way. | ||
| 1038 |   /// c. Let B(LHS) be value of L on backedge of PD. | ||
| 1039 |   ///    To get B(LHS), we should just take LHS and replace all AddRecs that are | ||
| 1040 |   ///    attached to PD on with their backedge values. | ||
| 1041 |   ///    Define B(RHS) in the same way. | ||
| 1042 |   /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD, | ||
| 1043 |   ///    so we can assert on that. | ||
| 1044 |   /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) && | ||
| 1045 |   ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS)) | ||
| 1046 | bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 1047 | const SCEV *RHS); | ||
| 1048 | |||
| 1049 |   /// Test if the given expression is known to satisfy the condition described | ||
| 1050 |   /// by Pred, LHS, and RHS. | ||
| 1051 | bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 1052 | const SCEV *RHS); | ||
| 1053 | |||
| 1054 |   /// Check whether the condition described by Pred, LHS, and RHS is true or | ||
| 1055 |   /// false. If we know it, return the evaluation of this condition. If neither | ||
| 1056 |   /// is proved, return std::nullopt. | ||
| 1057 | std::optional<bool> evaluatePredicate(ICmpInst::Predicate Pred, | ||
| 1058 | const SCEV *LHS, const SCEV *RHS); | ||
| 1059 | |||
| 1060 |   /// Test if the given expression is known to satisfy the condition described | ||
| 1061 |   /// by Pred, LHS, and RHS in the given Context. | ||
| 1062 | bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 1063 | const SCEV *RHS, const Instruction *CtxI); | ||
| 1064 | |||
| 1065 |   /// Check whether the condition described by Pred, LHS, and RHS is true or | ||
| 1066 |   /// false in the given \p Context. If we know it, return the evaluation of | ||
| 1067 |   /// this condition. If neither is proved, return std::nullopt. | ||
| 1068 | std::optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred, | ||
| 1069 | const SCEV *LHS, const SCEV *RHS, | ||
| 1070 | const Instruction *CtxI); | ||
| 1071 | |||
| 1072 |   /// Test if the condition described by Pred, LHS, RHS is known to be true on | ||
| 1073 |   /// every iteration of the loop of the recurrency LHS. | ||
| 1074 | bool isKnownOnEveryIteration(ICmpInst::Predicate Pred, | ||
| 1075 | const SCEVAddRecExpr *LHS, const SCEV *RHS); | ||
| 1076 | |||
| 1077 |   /// Information about the number of loop iterations for which a loop exit's | ||
| 1078 |   /// branch condition evaluates to the not-taken path.  This is a temporary | ||
| 1079 |   /// pair of exact and max expressions that are eventually summarized in | ||
| 1080 |   /// ExitNotTakenInfo and BackedgeTakenInfo. | ||
| 1081 | struct ExitLimit { | ||
| 1082 | const SCEV *ExactNotTaken; // The exit is not taken exactly this many times | ||
| 1083 | const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many | ||
| 1084 |                                      // times | ||
| 1085 | const SCEV *SymbolicMaxNotTaken; | ||
| 1086 | |||
| 1087 |     // Not taken either exactly ConstantMaxNotTaken or zero times | ||
| 1088 | bool MaxOrZero = false; | ||
| 1089 | |||
| 1090 |     /// A set of predicate guards for this ExitLimit. The result is only valid | ||
| 1091 |     /// if all of the predicates in \c Predicates evaluate to 'true' at | ||
| 1092 |     /// run-time. | ||
| 1093 | SmallPtrSet<const SCEVPredicate *, 4> Predicates; | ||
| 1094 | |||
| 1095 | void addPredicate(const SCEVPredicate *P) { | ||
| 1096 | assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!"); | ||
| 1097 | Predicates.insert(P); | ||
| 1098 |     } | ||
| 1099 | |||
| 1100 |     /// Construct either an exact exit limit from a constant, or an unknown | ||
| 1101 |     /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed | ||
| 1102 |     /// as arguments and asserts enforce that internally. | ||
| 1103 | /*implicit*/ ExitLimit(const SCEV *E); | ||
| 1104 | |||
| 1105 |     ExitLimit( | ||
| 1106 | const SCEV *E, const SCEV *ConstantMaxNotTaken, | ||
| 1107 | const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, | ||
| 1108 | ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList = | ||
| 1109 | std::nullopt); | ||
| 1110 | |||
| 1111 | ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken, | ||
| 1112 | const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, | ||
| 1113 | const SmallPtrSetImpl<const SCEVPredicate *> &PredSet); | ||
| 1114 | |||
| 1115 |     /// Test whether this ExitLimit contains any computed information, or | ||
| 1116 |     /// whether it's all SCEVCouldNotCompute values. | ||
| 1117 | bool hasAnyInfo() const { | ||
| 1118 | return !isa<SCEVCouldNotCompute>(ExactNotTaken) || | ||
| 1119 | !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken); | ||
| 1120 |     } | ||
| 1121 | |||
| 1122 |     /// Test whether this ExitLimit contains all information. | ||
| 1123 | bool hasFullInfo() const { | ||
| 1124 | return !isa<SCEVCouldNotCompute>(ExactNotTaken); | ||
| 1125 |     } | ||
| 1126 | }; | ||
| 1127 | |||
| 1128 |   /// Compute the number of times the backedge of the specified loop will | ||
| 1129 |   /// execute if its exit condition were a conditional branch of ExitCond. | ||
| 1130 |   /// | ||
| 1131 |   /// \p ControlsExit is true if ExitCond directly controls the exit | ||
| 1132 |   /// branch. In this case, we can assume that the loop exits only if the | ||
| 1133 |   /// condition is true and can infer that failing to meet the condition prior | ||
| 1134 |   /// to integer wraparound results in undefined behavior. | ||
| 1135 |   /// | ||
| 1136 |   /// If \p AllowPredicates is set, this call will try to use a minimal set of | ||
| 1137 |   /// SCEV predicates in order to return an exact answer. | ||
| 1138 | ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, | ||
| 1139 | bool ExitIfTrue, bool ControlsExit, | ||
| 1140 | bool AllowPredicates = false); | ||
| 1141 | |||
| 1142 |   /// A predicate is said to be monotonically increasing if may go from being | ||
| 1143 |   /// false to being true as the loop iterates, but never the other way | ||
| 1144 |   /// around.  A predicate is said to be monotonically decreasing if may go | ||
| 1145 |   /// from being true to being false as the loop iterates, but never the other | ||
| 1146 |   /// way around. | ||
| 1147 | enum MonotonicPredicateType { | ||
| 1148 | MonotonicallyIncreasing, | ||
| 1149 | MonotonicallyDecreasing | ||
| 1150 | }; | ||
| 1151 | |||
| 1152 |   /// If, for all loop invariant X, the predicate "LHS `Pred` X" is | ||
| 1153 |   /// monotonically increasing or decreasing, returns | ||
| 1154 |   /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing) | ||
| 1155 |   /// respectively. If we could not prove either of these facts, returns | ||
| 1156 |   /// std::nullopt. | ||
| 1157 | std::optional<MonotonicPredicateType> | ||
| 1158 | getMonotonicPredicateType(const SCEVAddRecExpr *LHS, | ||
| 1159 | ICmpInst::Predicate Pred); | ||
| 1160 | |||
| 1161 | struct LoopInvariantPredicate { | ||
| 1162 | ICmpInst::Predicate Pred; | ||
| 1163 | const SCEV *LHS; | ||
| 1164 | const SCEV *RHS; | ||
| 1165 | |||
| 1166 | LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 1167 | const SCEV *RHS) | ||
| 1168 | : Pred(Pred), LHS(LHS), RHS(RHS) {} | ||
| 1169 | }; | ||
| 1170 |   /// If the result of the predicate LHS `Pred` RHS is loop invariant with | ||
| 1171 |   /// respect to L, return a LoopInvariantPredicate with LHS and RHS being | ||
| 1172 |   /// invariants, available at L's entry. Otherwise, return std::nullopt. | ||
| 1173 | std::optional<LoopInvariantPredicate> | ||
| 1174 | getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 1175 | const SCEV *RHS, const Loop *L, | ||
| 1176 | const Instruction *CtxI = nullptr); | ||
| 1177 | |||
| 1178 |   /// If the result of the predicate LHS `Pred` RHS is loop invariant with | ||
| 1179 |   /// respect to L at given Context during at least first MaxIter iterations, | ||
| 1180 |   /// return a LoopInvariantPredicate with LHS and RHS being invariants, | ||
| 1181 |   /// available at L's entry. Otherwise, return std::nullopt. The predicate | ||
| 1182 |   /// should be the loop's exit condition. | ||
| 1183 | std::optional<LoopInvariantPredicate> | ||
| 1184 | getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred, | ||
| 1185 | const SCEV *LHS, | ||
| 1186 | const SCEV *RHS, const Loop *L, | ||
| 1187 | const Instruction *CtxI, | ||
| 1188 | const SCEV *MaxIter); | ||
| 1189 | |||
| 1190 | std::optional<LoopInvariantPredicate> | ||
| 1191 |   getLoopInvariantExitCondDuringFirstIterationsImpl( | ||
| 1192 | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, | ||
| 1193 | const Instruction *CtxI, const SCEV *MaxIter); | ||
| 1194 | |||
| 1195 |   /// Simplify LHS and RHS in a comparison with predicate Pred. Return true | ||
| 1196 |   /// iff any changes were made. If the operands are provably equal or | ||
| 1197 |   /// unequal, LHS and RHS are set to the same value and Pred is set to either | ||
| 1198 |   /// ICMP_EQ or ICMP_NE. ControllingFiniteLoop is set if this comparison | ||
| 1199 |   /// controls the exit of a loop known to have a finite number of iterations. | ||
| 1200 | bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS, | ||
| 1201 | const SCEV *&RHS, unsigned Depth = 0, | ||
| 1202 | bool ControllingFiniteLoop = false); | ||
| 1203 | |||
| 1204 |   /// Return the "disposition" of the given SCEV with respect to the given | ||
| 1205 |   /// loop. | ||
| 1206 | LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L); | ||
| 1207 | |||
| 1208 |   /// Return true if the value of the given SCEV is unchanging in the | ||
| 1209 |   /// specified loop. | ||
| 1210 | bool isLoopInvariant(const SCEV *S, const Loop *L); | ||
| 1211 | |||
| 1212 |   /// Determine if the SCEV can be evaluated at loop's entry. It is true if it | ||
| 1213 |   /// doesn't depend on a SCEVUnknown of an instruction which is dominated by | ||
| 1214 |   /// the header of loop L. | ||
| 1215 | bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L); | ||
| 1216 | |||
| 1217 |   /// Return true if the given SCEV changes value in a known way in the | ||
| 1218 |   /// specified loop.  This property being true implies that the value is | ||
| 1219 |   /// variant in the loop AND that we can emit an expression to compute the | ||
| 1220 |   /// value of the expression at any particular loop iteration. | ||
| 1221 | bool hasComputableLoopEvolution(const SCEV *S, const Loop *L); | ||
| 1222 | |||
| 1223 |   /// Return the "disposition" of the given SCEV with respect to the given | ||
| 1224 |   /// block. | ||
| 1225 | BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB); | ||
| 1226 | |||
| 1227 |   /// Return true if elements that makes up the given SCEV dominate the | ||
| 1228 |   /// specified basic block. | ||
| 1229 | bool dominates(const SCEV *S, const BasicBlock *BB); | ||
| 1230 | |||
| 1231 |   /// Return true if elements that makes up the given SCEV properly dominate | ||
| 1232 |   /// the specified basic block. | ||
| 1233 | bool properlyDominates(const SCEV *S, const BasicBlock *BB); | ||
| 1234 | |||
| 1235 |   /// Test whether the given SCEV has Op as a direct or indirect operand. | ||
| 1236 | bool hasOperand(const SCEV *S, const SCEV *Op) const; | ||
| 1237 | |||
| 1238 |   /// Return the size of an element read or written by Inst. | ||
| 1239 | const SCEV *getElementSize(Instruction *Inst); | ||
| 1240 | |||
| 1241 | void print(raw_ostream &OS) const; | ||
| 1242 | void verify() const; | ||
| 1243 | bool invalidate(Function &F, const PreservedAnalyses &PA, | ||
| 1244 | FunctionAnalysisManager::Invalidator &Inv); | ||
| 1245 | |||
| 1246 |   /// Return the DataLayout associated with the module this SCEV instance is | ||
| 1247 |   /// operating on. | ||
| 1248 | const DataLayout &getDataLayout() const { | ||
| 1249 | return F.getParent()->getDataLayout(); | ||
| 1250 |   } | ||
| 1251 | |||
| 1252 | const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS); | ||
| 1253 | const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred, | ||
| 1254 | const SCEV *LHS, const SCEV *RHS); | ||
| 1255 | |||
| 1256 | const SCEVPredicate * | ||
| 1257 | getWrapPredicate(const SCEVAddRecExpr *AR, | ||
| 1258 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags); | ||
| 1259 | |||
| 1260 |   /// Re-writes the SCEV according to the Predicates in \p A. | ||
| 1261 | const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L, | ||
| 1262 | const SCEVPredicate &A); | ||
| 1263 |   /// Tries to convert the \p S expression to an AddRec expression, | ||
| 1264 |   /// adding additional predicates to \p Preds as required. | ||
| 1265 | const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates( | ||
| 1266 | const SCEV *S, const Loop *L, | ||
| 1267 | SmallPtrSetImpl<const SCEVPredicate *> &Preds); | ||
| 1268 | |||
| 1269 |   /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a | ||
| 1270 |   /// constant, and std::nullopt if it isn't. | ||
| 1271 |   /// | ||
| 1272 |   /// This is intended to be a cheaper version of getMinusSCEV.  We can be | ||
| 1273 |   /// frugal here since we just bail out of actually constructing and | ||
| 1274 |   /// canonicalizing an expression in the cases where the result isn't going | ||
| 1275 |   /// to be a constant. | ||
| 1276 | std::optional<APInt> computeConstantDifference(const SCEV *LHS, | ||
| 1277 | const SCEV *RHS); | ||
| 1278 | |||
| 1279 |   /// Update no-wrap flags of an AddRec. This may drop the cached info about | ||
| 1280 |   /// this AddRec (such as range info) in case if new flags may potentially | ||
| 1281 |   /// sharpen it. | ||
| 1282 | void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags); | ||
| 1283 | |||
| 1284 |   /// Try to apply information from loop guards for \p L to \p Expr. | ||
| 1285 | const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L); | ||
| 1286 | |||
| 1287 |   /// Return true if the loop has no abnormal exits. That is, if the loop | ||
| 1288 |   /// is not infinite, it must exit through an explicit edge in the CFG. | ||
| 1289 |   /// (As opposed to either a) throwing out of the function or b) entering a | ||
| 1290 |   /// well defined infinite loop in some callee.) | ||
| 1291 | bool loopHasNoAbnormalExits(const Loop *L) { | ||
| 1292 | return getLoopProperties(L).HasNoAbnormalExits; | ||
| 1293 |   } | ||
| 1294 | |||
| 1295 |   /// Return true if this loop is finite by assumption.  That is, | ||
| 1296 |   /// to be infinite, it must also be undefined. | ||
| 1297 | bool loopIsFiniteByAssumption(const Loop *L); | ||
| 1298 | |||
| 1299 | class FoldID { | ||
| 1300 | SmallVector<unsigned, 5> Bits; | ||
| 1301 | |||
| 1302 | public: | ||
| 1303 | void addInteger(unsigned long I) { | ||
| 1304 | if (sizeof(long) == sizeof(int)) | ||
| 1305 | addInteger(unsigned(I)); | ||
| 1306 | else if (sizeof(long) == sizeof(long long)) | ||
| 1307 | addInteger((unsigned long long)I); | ||
| 1308 |       else | ||
| 1309 | llvm_unreachable("unexpected sizeof(long)"); | ||
| 1310 |     } | ||
| 1311 | void addInteger(unsigned I) { Bits.push_back(I); } | ||
| 1312 | void addInteger(int I) { Bits.push_back(I); } | ||
| 1313 | |||
| 1314 | void addInteger(unsigned long long I) { | ||
| 1315 | addInteger(unsigned(I)); | ||
| 1316 | addInteger(unsigned(I >> 32)); | ||
| 1317 |     } | ||
| 1318 | |||
| 1319 | void addPointer(const void *Ptr) { | ||
| 1320 |       // Note: this adds pointers to the hash using sizes and endianness that | ||
| 1321 |       // depend on the host. It doesn't matter, however, because hashing on | ||
| 1322 |       // pointer values is inherently unstable. Nothing should depend on the | ||
| 1323 |       // ordering of nodes in the folding set. | ||
| 1324 | static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long), | ||
| 1325 | "unexpected pointer size"); | ||
| 1326 | addInteger(reinterpret_cast<uintptr_t>(Ptr)); | ||
| 1327 |     } | ||
| 1328 | |||
| 1329 | unsigned computeHash() const { | ||
| 1330 | unsigned Hash = Bits.size(); | ||
| 1331 | for (unsigned I = 0; I != Bits.size(); ++I) | ||
| 1332 | Hash = detail::combineHashValue(Hash, Bits[I]); | ||
| 1333 | return Hash; | ||
| 1334 |     } | ||
| 1335 | bool operator==(const FoldID &RHS) const { | ||
| 1336 | if (Bits.size() != RHS.Bits.size()) | ||
| 1337 | return false; | ||
| 1338 | for (unsigned I = 0; I != Bits.size(); ++I) | ||
| 1339 | if (Bits[I] != RHS.Bits[I]) | ||
| 1340 | return false; | ||
| 1341 | return true; | ||
| 1342 |     } | ||
| 1343 | }; | ||
| 1344 | |||
| 1345 | private: | ||
| 1346 |   /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a | ||
| 1347 |   /// Value is deleted. | ||
| 1348 | class SCEVCallbackVH final : public CallbackVH { | ||
| 1349 | ScalarEvolution *SE; | ||
| 1350 | |||
| 1351 | void deleted() override; | ||
| 1352 | void allUsesReplacedWith(Value *New) override; | ||
| 1353 | |||
| 1354 | public: | ||
| 1355 | SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr); | ||
| 1356 | }; | ||
| 1357 | |||
| 1358 | friend class SCEVCallbackVH; | ||
| 1359 | friend class SCEVExpander; | ||
| 1360 | friend class SCEVUnknown; | ||
| 1361 | |||
| 1362 |   /// The function we are analyzing. | ||
| 1363 | Function &F; | ||
| 1364 | |||
| 1365 |   /// Does the module have any calls to the llvm.experimental.guard intrinsic | ||
| 1366 |   /// at all?  If this is false, we avoid doing work that will only help if | ||
| 1367 |   /// thare are guards present in the IR. | ||
| 1368 | bool HasGuards; | ||
| 1369 | |||
| 1370 |   /// The target library information for the target we are targeting. | ||
| 1371 | TargetLibraryInfo &TLI; | ||
| 1372 | |||
| 1373 |   /// The tracker for \@llvm.assume intrinsics in this function. | ||
| 1374 | AssumptionCache &AC; | ||
| 1375 | |||
| 1376 |   /// The dominator tree. | ||
| 1377 | DominatorTree &DT; | ||
| 1378 | |||
| 1379 |   /// The loop information for the function we are currently analyzing. | ||
| 1380 | LoopInfo &LI; | ||
| 1381 | |||
| 1382 |   /// This SCEV is used to represent unknown trip counts and things. | ||
| 1383 | std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute; | ||
| 1384 | |||
| 1385 |   /// The type for HasRecMap. | ||
| 1386 | using HasRecMapType = DenseMap<const SCEV *, bool>; | ||
| 1387 | |||
| 1388 |   /// This is a cache to record whether a SCEV contains any scAddRecExpr. | ||
| 1389 |   HasRecMapType HasRecMap; | ||
| 1390 | |||
| 1391 |   /// The type for ExprValueMap. | ||
| 1392 | using ValueSetVector = SmallSetVector<Value *, 4>; | ||
| 1393 | using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>; | ||
| 1394 | |||
| 1395 |   /// ExprValueMap -- This map records the original values from which | ||
| 1396 |   /// the SCEV expr is generated from. | ||
| 1397 |   ExprValueMapType ExprValueMap; | ||
| 1398 | |||
| 1399 |   /// The type for ValueExprMap. | ||
| 1400 | using ValueExprMapType = | ||
| 1401 | DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>; | ||
| 1402 | |||
| 1403 |   /// This is a cache of the values we have analyzed so far. | ||
| 1404 |   ValueExprMapType ValueExprMap; | ||
| 1405 | |||
| 1406 |   /// This is a cache for expressions that got folded to a different existing | ||
| 1407 |   /// SCEV. | ||
| 1408 | DenseMap<FoldID, const SCEV *> FoldCache; | ||
| 1409 | DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser; | ||
| 1410 | |||
| 1411 |   /// Mark predicate values currently being processed by isImpliedCond. | ||
| 1412 | SmallPtrSet<const Value *, 6> PendingLoopPredicates; | ||
| 1413 | |||
| 1414 |   /// Mark SCEVUnknown Phis currently being processed by getRangeRef. | ||
| 1415 | SmallPtrSet<const PHINode *, 6> PendingPhiRanges; | ||
| 1416 | |||
| 1417 |   /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter. | ||
| 1418 | SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter; | ||
| 1419 | |||
| 1420 |   // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge. | ||
| 1421 | SmallPtrSet<const PHINode *, 6> PendingMerges; | ||
| 1422 | |||
| 1423 |   /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of | ||
| 1424 |   /// conditions dominating the backedge of a loop. | ||
| 1425 | bool WalkingBEDominatingConds = false; | ||
| 1426 | |||
| 1427 |   /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a | ||
| 1428 |   /// predicate by splitting it into a set of independent predicates. | ||
| 1429 | bool ProvingSplitPredicate = false; | ||
| 1430 | |||
| 1431 |   /// Memoized values for the GetMinTrailingZeros | ||
| 1432 | DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache; | ||
| 1433 | |||
| 1434 |   /// Return the Value set from which the SCEV expr is generated. | ||
| 1435 | ArrayRef<Value *> getSCEVValues(const SCEV *S); | ||
| 1436 | |||
| 1437 |   /// Private helper method for the GetMinTrailingZeros method | ||
| 1438 | uint32_t GetMinTrailingZerosImpl(const SCEV *S); | ||
| 1439 | |||
| 1440 |   /// Information about the number of times a particular loop exit may be | ||
| 1441 |   /// reached before exiting the loop. | ||
| 1442 | struct ExitNotTakenInfo { | ||
| 1443 | PoisoningVH<BasicBlock> ExitingBlock; | ||
| 1444 | const SCEV *ExactNotTaken; | ||
| 1445 | const SCEV *ConstantMaxNotTaken; | ||
| 1446 | const SCEV *SymbolicMaxNotTaken; | ||
| 1447 | SmallPtrSet<const SCEVPredicate *, 4> Predicates; | ||
| 1448 | |||
| 1449 | explicit ExitNotTakenInfo( | ||
| 1450 | PoisoningVH<BasicBlock> ExitingBlock, const SCEV *ExactNotTaken, | ||
| 1451 | const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken, | ||
| 1452 | const SmallPtrSet<const SCEVPredicate *, 4> &Predicates) | ||
| 1453 | : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken), | ||
| 1454 | ConstantMaxNotTaken(ConstantMaxNotTaken), | ||
| 1455 | SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {} | ||
| 1456 | |||
| 1457 | bool hasAlwaysTruePredicate() const { | ||
| 1458 | return Predicates.empty(); | ||
| 1459 |     } | ||
| 1460 | }; | ||
| 1461 | |||
| 1462 |   /// Information about the backedge-taken count of a loop. This currently | ||
| 1463 |   /// includes an exact count and a maximum count. | ||
| 1464 |   /// | ||
| 1465 | class BackedgeTakenInfo { | ||
| 1466 | friend class ScalarEvolution; | ||
| 1467 | |||
| 1468 |     /// A list of computable exits and their not-taken counts.  Loops almost | ||
| 1469 |     /// never have more than one computable exit. | ||
| 1470 | SmallVector<ExitNotTakenInfo, 1> ExitNotTaken; | ||
| 1471 | |||
| 1472 |     /// Expression indicating the least constant maximum backedge-taken count of | ||
| 1473 |     /// the loop that is known, or a SCEVCouldNotCompute. This expression is | ||
| 1474 |     /// only valid if the redicates associated with all loop exits are true. | ||
| 1475 | const SCEV *ConstantMax = nullptr; | ||
| 1476 | |||
| 1477 |     /// Indicating if \c ExitNotTaken has an element for every exiting block in | ||
| 1478 |     /// the loop. | ||
| 1479 | bool IsComplete = false; | ||
| 1480 | |||
| 1481 |     /// Expression indicating the least maximum backedge-taken count of the loop | ||
| 1482 |     /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query. | ||
| 1483 | const SCEV *SymbolicMax = nullptr; | ||
| 1484 | |||
| 1485 |     /// True iff the backedge is taken either exactly Max or zero times. | ||
| 1486 | bool MaxOrZero = false; | ||
| 1487 | |||
| 1488 | bool isComplete() const { return IsComplete; } | ||
| 1489 | const SCEV *getConstantMax() const { return ConstantMax; } | ||
| 1490 | |||
| 1491 | public: | ||
| 1492 | BackedgeTakenInfo() = default; | ||
| 1493 | BackedgeTakenInfo(BackedgeTakenInfo &&) = default; | ||
| 1494 | BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default; | ||
| 1495 | |||
| 1496 | using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>; | ||
| 1497 | |||
| 1498 |     /// Initialize BackedgeTakenInfo from a list of exact exit counts. | ||
| 1499 | BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete, | ||
| 1500 | const SCEV *ConstantMax, bool MaxOrZero); | ||
| 1501 | |||
| 1502 |     /// Test whether this BackedgeTakenInfo contains any computed information, | ||
| 1503 |     /// or whether it's all SCEVCouldNotCompute values. | ||
| 1504 | bool hasAnyInfo() const { | ||
| 1505 | return !ExitNotTaken.empty() || | ||
| 1506 | !isa<SCEVCouldNotCompute>(getConstantMax()); | ||
| 1507 |     } | ||
| 1508 | |||
| 1509 |     /// Test whether this BackedgeTakenInfo contains complete information. | ||
| 1510 | bool hasFullInfo() const { return isComplete(); } | ||
| 1511 | |||
| 1512 |     /// Return an expression indicating the exact *backedge-taken* | ||
| 1513 |     /// count of the loop if it is known or SCEVCouldNotCompute | ||
| 1514 |     /// otherwise.  If execution makes it to the backedge on every | ||
| 1515 |     /// iteration (i.e. there are no abnormal exists like exception | ||
| 1516 |     /// throws and thread exits) then this is the number of times the | ||
| 1517 |     /// loop header will execute minus one. | ||
| 1518 |     /// | ||
| 1519 |     /// If the SCEV predicate associated with the answer can be different | ||
| 1520 |     /// from AlwaysTrue, we must add a (non null) Predicates argument. | ||
| 1521 |     /// The SCEV predicate associated with the answer will be added to | ||
| 1522 |     /// Predicates. A run-time check needs to be emitted for the SCEV | ||
| 1523 |     /// predicate in order for the answer to be valid. | ||
| 1524 |     /// | ||
| 1525 |     /// Note that we should always know if we need to pass a predicate | ||
| 1526 |     /// argument or not from the way the ExitCounts vector was computed. | ||
| 1527 |     /// If we allowed SCEV predicates to be generated when populating this | ||
| 1528 |     /// vector, this information can contain them and therefore a | ||
| 1529 |     /// SCEVPredicate argument should be added to getExact. | ||
| 1530 | const SCEV *getExact(const Loop *L, ScalarEvolution *SE, | ||
| 1531 | SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const; | ||
| 1532 | |||
| 1533 |     /// Return the number of times this loop exit may fall through to the back | ||
| 1534 |     /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via | ||
| 1535 |     /// this block before this number of iterations, but may exit via another | ||
| 1536 |     /// block. | ||
| 1537 | const SCEV *getExact(const BasicBlock *ExitingBlock, | ||
| 1538 | ScalarEvolution *SE) const; | ||
| 1539 | |||
| 1540 |     /// Get the constant max backedge taken count for the loop. | ||
| 1541 | const SCEV *getConstantMax(ScalarEvolution *SE) const; | ||
| 1542 | |||
| 1543 |     /// Get the constant max backedge taken count for the particular loop exit. | ||
| 1544 | const SCEV *getConstantMax(const BasicBlock *ExitingBlock, | ||
| 1545 | ScalarEvolution *SE) const; | ||
| 1546 | |||
| 1547 |     /// Get the symbolic max backedge taken count for the loop. | ||
| 1548 | const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE); | ||
| 1549 | |||
| 1550 |     /// Get the symbolic max backedge taken count for the particular loop exit. | ||
| 1551 | const SCEV *getSymbolicMax(const BasicBlock *ExitingBlock, | ||
| 1552 | ScalarEvolution *SE) const; | ||
| 1553 | |||
| 1554 |     /// Return true if the number of times this backedge is taken is either the | ||
| 1555 |     /// value returned by getConstantMax or zero. | ||
| 1556 | bool isConstantMaxOrZero(ScalarEvolution *SE) const; | ||
| 1557 | }; | ||
| 1558 | |||
| 1559 |   /// Cache the backedge-taken count of the loops for this function as they | ||
| 1560 |   /// are computed. | ||
| 1561 | DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts; | ||
| 1562 | |||
| 1563 |   /// Cache the predicated backedge-taken count of the loops for this | ||
| 1564 |   /// function as they are computed. | ||
| 1565 | DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts; | ||
| 1566 | |||
| 1567 |   /// Loops whose backedge taken counts directly use this non-constant SCEV. | ||
| 1568 | DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>> | ||
| 1569 |       BECountUsers; | ||
| 1570 | |||
| 1571 |   /// This map contains entries for all of the PHI instructions that we | ||
| 1572 |   /// attempt to compute constant evolutions for.  This allows us to avoid | ||
| 1573 |   /// potentially expensive recomputation of these properties.  An instruction | ||
| 1574 |   /// maps to null if we are unable to compute its exit value. | ||
| 1575 | DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue; | ||
| 1576 | |||
| 1577 |   /// This map contains entries for all the expressions that we attempt to | ||
| 1578 |   /// compute getSCEVAtScope information for, which can be expensive in | ||
| 1579 |   /// extreme cases. | ||
| 1580 | DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> | ||
| 1581 |       ValuesAtScopes; | ||
| 1582 | |||
| 1583 |   /// Reverse map for invalidation purposes: Stores of which SCEV and which | ||
| 1584 |   /// loop this is the value-at-scope of. | ||
| 1585 | DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> | ||
| 1586 |       ValuesAtScopesUsers; | ||
| 1587 | |||
| 1588 |   /// Memoized computeLoopDisposition results. | ||
| 1589 | DenseMap<const SCEV *, | ||
| 1590 | SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>> | ||
| 1591 |       LoopDispositions; | ||
| 1592 | |||
| 1593 | struct LoopProperties { | ||
| 1594 |     /// Set to true if the loop contains no instruction that can abnormally exit | ||
| 1595 |     /// the loop (i.e. via throwing an exception, by terminating the thread | ||
| 1596 |     /// cleanly or by infinite looping in a called function).  Strictly | ||
| 1597 |     /// speaking, the last one is not leaving the loop, but is identical to | ||
| 1598 |     /// leaving the loop for reasoning about undefined behavior. | ||
| 1599 | bool HasNoAbnormalExits; | ||
| 1600 | |||
| 1601 |     /// Set to true if the loop contains no instruction that can have side | ||
| 1602 |     /// effects (i.e. via throwing an exception, volatile or atomic access). | ||
| 1603 | bool HasNoSideEffects; | ||
| 1604 | }; | ||
| 1605 | |||
| 1606 |   /// Cache for \c getLoopProperties. | ||
| 1607 | DenseMap<const Loop *, LoopProperties> LoopPropertiesCache; | ||
| 1608 | |||
| 1609 |   /// Return a \c LoopProperties instance for \p L, creating one if necessary. | ||
| 1610 | LoopProperties getLoopProperties(const Loop *L); | ||
| 1611 | |||
| 1612 | bool loopHasNoSideEffects(const Loop *L) { | ||
| 1613 | return getLoopProperties(L).HasNoSideEffects; | ||
| 1614 |   } | ||
| 1615 | |||
| 1616 |   /// Compute a LoopDisposition value. | ||
| 1617 | LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L); | ||
| 1618 | |||
| 1619 |   /// Memoized computeBlockDisposition results. | ||
| 1620 |   DenseMap< | ||
| 1621 | const SCEV *, | ||
| 1622 | SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>> | ||
| 1623 |       BlockDispositions; | ||
| 1624 | |||
| 1625 |   /// Compute a BlockDisposition value. | ||
| 1626 | BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB); | ||
| 1627 | |||
| 1628 |   /// Stores all SCEV that use a given SCEV as its direct operand. | ||
| 1629 | DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers; | ||
| 1630 | |||
| 1631 |   /// Memoized results from getRange | ||
| 1632 | DenseMap<const SCEV *, ConstantRange> UnsignedRanges; | ||
| 1633 | |||
| 1634 |   /// Memoized results from getRange | ||
| 1635 | DenseMap<const SCEV *, ConstantRange> SignedRanges; | ||
| 1636 | |||
| 1637 |   /// Used to parameterize getRange | ||
| 1638 | enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED }; | ||
| 1639 | |||
| 1640 |   /// Set the memoized range for the given SCEV. | ||
| 1641 | const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint, | ||
| 1642 | ConstantRange CR) { | ||
| 1643 | DenseMap<const SCEV *, ConstantRange> &Cache = | ||
| 1644 | Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges; | ||
| 1645 | |||
| 1646 | auto Pair = Cache.try_emplace(S, std::move(CR)); | ||
| 1647 | if (!Pair.second) | ||
| 1648 | Pair.first->second = std::move(CR); | ||
| 1649 | return Pair.first->second; | ||
| 1650 |   } | ||
| 1651 | |||
| 1652 |   /// Determine the range for a particular SCEV. | ||
| 1653 |   /// NOTE: This returns a reference to an entry in a cache. It must be | ||
| 1654 |   /// copied if its needed for longer. | ||
| 1655 | const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint, | ||
| 1656 | unsigned Depth = 0); | ||
| 1657 | |||
| 1658 |   /// Determine the range for a particular SCEV, but evaluates ranges for | ||
| 1659 |   /// operands iteratively first. | ||
| 1660 | const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint); | ||
| 1661 | |||
| 1662 |   /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}. | ||
| 1663 |   /// Helper for \c getRange. | ||
| 1664 | ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step, | ||
| 1665 | const SCEV *MaxBECount, unsigned BitWidth); | ||
| 1666 | |||
| 1667 |   /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p | ||
| 1668 |   /// Start,+,\p Step}<nw>. | ||
| 1669 | ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec, | ||
| 1670 | const SCEV *MaxBECount, | ||
| 1671 |                                                   unsigned BitWidth, | ||
| 1672 | RangeSignHint SignHint); | ||
| 1673 | |||
| 1674 |   /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p | ||
| 1675 |   /// Step} by "factoring out" a ternary expression from the add recurrence. | ||
| 1676 |   /// Helper called by \c getRange. | ||
| 1677 | ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step, | ||
| 1678 | const SCEV *MaxBECount, unsigned BitWidth); | ||
| 1679 | |||
| 1680 |   /// If the unknown expression U corresponds to a simple recurrence, return | ||
| 1681 |   /// a constant range which represents the entire recurrence.  Note that | ||
| 1682 |   /// *add* recurrences with loop invariant steps aren't represented by | ||
| 1683 |   /// SCEVUnknowns and thus don't use this mechanism. | ||
| 1684 | ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U); | ||
| 1685 | |||
| 1686 |   /// We know that there is no SCEV for the specified value.  Analyze the | ||
| 1687 |   /// expression recursively. | ||
| 1688 | const SCEV *createSCEV(Value *V); | ||
| 1689 | |||
| 1690 |   /// We know that there is no SCEV for the specified value. Create a new SCEV | ||
| 1691 |   /// for \p V iteratively. | ||
| 1692 | const SCEV *createSCEVIter(Value *V); | ||
| 1693 |   /// Collect operands of \p V for which SCEV expressions should be constructed | ||
| 1694 |   /// first. Returns a SCEV directly if it can be constructed trivially for \p | ||
| 1695 |   /// V. | ||
| 1696 | const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops); | ||
| 1697 | |||
| 1698 |   /// Provide the special handling we need to analyze PHI SCEVs. | ||
| 1699 | const SCEV *createNodeForPHI(PHINode *PN); | ||
| 1700 | |||
| 1701 |   /// Helper function called from createNodeForPHI. | ||
| 1702 | const SCEV *createAddRecFromPHI(PHINode *PN); | ||
| 1703 | |||
| 1704 |   /// A helper function for createAddRecFromPHI to handle simple cases. | ||
| 1705 | const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV, | ||
| 1706 | Value *StartValueV); | ||
| 1707 | |||
| 1708 |   /// Helper function called from createNodeForPHI. | ||
| 1709 | const SCEV *createNodeFromSelectLikePHI(PHINode *PN); | ||
| 1710 | |||
| 1711 |   /// Provide special handling for a select-like instruction (currently this | ||
| 1712 |   /// is either a select instruction or a phi node).  \p Ty is the type of the | ||
| 1713 |   /// instruction being processed, that is assumed equivalent to | ||
| 1714 |   /// "Cond ? TrueVal : FalseVal". | ||
| 1715 | std::optional<const SCEV *> | ||
| 1716 | createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond, | ||
| 1717 | Value *TrueVal, Value *FalseVal); | ||
| 1718 | |||
| 1719 |   /// See if we can model this select-like instruction via umin_seq expression. | ||
| 1720 | const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond, | ||
| 1721 |                                                  Value *TrueVal, | ||
| 1722 | Value *FalseVal); | ||
| 1723 | |||
| 1724 |   /// Given a value \p V, which is a select-like instruction (currently this is | ||
| 1725 |   /// either a select instruction or a phi node), which is assumed equivalent to | ||
| 1726 |   ///   Cond ? TrueVal : FalseVal | ||
| 1727 |   /// see if we can model it as a SCEV expression. | ||
| 1728 | const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal, | ||
| 1729 | Value *FalseVal); | ||
| 1730 | |||
| 1731 |   /// Provide the special handling we need to analyze GEP SCEVs. | ||
| 1732 | const SCEV *createNodeForGEP(GEPOperator *GEP); | ||
| 1733 | |||
| 1734 |   /// Implementation code for getSCEVAtScope; called at most once for each | ||
| 1735 |   /// SCEV+Loop pair. | ||
| 1736 | const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L); | ||
| 1737 | |||
| 1738 |   /// Return the BackedgeTakenInfo for the given loop, lazily computing new | ||
| 1739 |   /// values if the loop hasn't been analyzed yet. The returned result is | ||
| 1740 |   /// guaranteed not to be predicated. | ||
| 1741 | BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L); | ||
| 1742 | |||
| 1743 |   /// Similar to getBackedgeTakenInfo, but will add predicates as required | ||
| 1744 |   /// with the purpose of returning complete information. | ||
| 1745 | const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L); | ||
| 1746 | |||
| 1747 |   /// Compute the number of times the specified loop will iterate. | ||
| 1748 |   /// If AllowPredicates is set, we will create new SCEV predicates as | ||
| 1749 |   /// necessary in order to return an exact answer. | ||
| 1750 | BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L, | ||
| 1751 | bool AllowPredicates = false); | ||
| 1752 | |||
| 1753 |   /// Compute the number of times the backedge of the specified loop will | ||
| 1754 |   /// execute if it exits via the specified block. If AllowPredicates is set, | ||
| 1755 |   /// this call will try to use a minimal set of SCEV predicates in order to | ||
| 1756 |   /// return an exact answer. | ||
| 1757 | ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, | ||
| 1758 | bool AllowPredicates = false); | ||
| 1759 | |||
| 1760 |   /// Return a symbolic upper bound for the backedge taken count of the loop. | ||
| 1761 |   /// This is more general than getConstantMaxBackedgeTakenCount as it returns | ||
| 1762 |   /// an arbitrary expression as opposed to only constants. | ||
| 1763 | const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L); | ||
| 1764 | |||
| 1765 |   // Helper functions for computeExitLimitFromCond to avoid exponential time | ||
| 1766 |   // complexity. | ||
| 1767 | |||
| 1768 | class ExitLimitCache { | ||
| 1769 |     // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit, | ||
| 1770 |     // AllowPredicates) tuple, but recursive calls to | ||
| 1771 |     // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only | ||
| 1772 |     // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the | ||
| 1773 |     // initial values of the other values to assert our assumption. | ||
| 1774 | SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap; | ||
| 1775 | |||
| 1776 | const Loop *L; | ||
| 1777 | bool ExitIfTrue; | ||
| 1778 | bool AllowPredicates; | ||
| 1779 | |||
| 1780 | public: | ||
| 1781 | ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates) | ||
| 1782 | : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {} | ||
| 1783 | |||
| 1784 | std::optional<ExitLimit> find(const Loop *L, Value *ExitCond, | ||
| 1785 | bool ExitIfTrue, bool ControlsExit, | ||
| 1786 | bool AllowPredicates); | ||
| 1787 | |||
| 1788 | void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue, | ||
| 1789 | bool ControlsExit, bool AllowPredicates, const ExitLimit &EL); | ||
| 1790 | }; | ||
| 1791 | |||
| 1792 | using ExitLimitCacheTy = ExitLimitCache; | ||
| 1793 | |||
| 1794 | ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache, | ||
| 1795 | const Loop *L, Value *ExitCond, | ||
| 1796 |                                            bool ExitIfTrue, | ||
| 1797 |                                            bool ControlsExit, | ||
| 1798 | bool AllowPredicates); | ||
| 1799 | ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L, | ||
| 1800 | Value *ExitCond, bool ExitIfTrue, | ||
| 1801 |                                          bool ControlsExit, | ||
| 1802 | bool AllowPredicates); | ||
| 1803 | std::optional<ScalarEvolution::ExitLimit> | ||
| 1804 | computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L, | ||
| 1805 | Value *ExitCond, bool ExitIfTrue, | ||
| 1806 | bool ControlsExit, bool AllowPredicates); | ||
| 1807 | |||
| 1808 |   /// Compute the number of times the backedge of the specified loop will | ||
| 1809 |   /// execute if its exit condition were a conditional branch of the ICmpInst | ||
| 1810 |   /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try | ||
| 1811 |   /// to use a minimal set of SCEV predicates in order to return an exact | ||
| 1812 |   /// answer. | ||
| 1813 | ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond, | ||
| 1814 |                                      bool ExitIfTrue, | ||
| 1815 |                                      bool IsSubExpr, | ||
| 1816 | bool AllowPredicates = false); | ||
| 1817 | |||
| 1818 |   /// Variant of previous which takes the components representing an ICmp | ||
| 1819 |   /// as opposed to the ICmpInst itself.  Note that the prior version can | ||
| 1820 |   /// return more precise results in some cases and is preferred when caller | ||
| 1821 |   /// has a materialized ICmp. | ||
| 1822 | ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred, | ||
| 1823 | const SCEV *LHS, const SCEV *RHS, | ||
| 1824 |                                      bool IsSubExpr, | ||
| 1825 | bool AllowPredicates = false); | ||
| 1826 | |||
| 1827 |   /// Compute the number of times the backedge of the specified loop will | ||
| 1828 |   /// execute if its exit condition were a switch with a single exiting case | ||
| 1829 |   /// to ExitingBB. | ||
| 1830 | ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L, | ||
| 1831 |                                                  SwitchInst *Switch, | ||
| 1832 |                                                  BasicBlock *ExitingBB, | ||
| 1833 | bool IsSubExpr); | ||
| 1834 | |||
| 1835 |   /// Compute the exit limit of a loop that is controlled by a | ||
| 1836 |   /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip | ||
| 1837 |   /// count in these cases (since SCEV has no way of expressing them), but we | ||
| 1838 |   /// can still sometimes compute an upper bound. | ||
| 1839 |   /// | ||
| 1840 |   /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred | ||
| 1841 |   /// RHS`. | ||
| 1842 | ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L, | ||
| 1843 | ICmpInst::Predicate Pred); | ||
| 1844 | |||
| 1845 |   /// If the loop is known to execute a constant number of times (the | ||
| 1846 |   /// condition evolves only from constants), try to evaluate a few iterations | ||
| 1847 |   /// of the loop until we get the exit condition gets a value of ExitWhen | ||
| 1848 |   /// (true or false).  If we cannot evaluate the exit count of the loop, | ||
| 1849 |   /// return CouldNotCompute. | ||
| 1850 | const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond, | ||
| 1851 | bool ExitWhen); | ||
| 1852 | |||
| 1853 |   /// Return the number of times an exit condition comparing the specified | ||
| 1854 |   /// value to zero will execute.  If not computable, return CouldNotCompute. | ||
| 1855 |   /// If AllowPredicates is set, this call will try to use a minimal set of | ||
| 1856 |   /// SCEV predicates in order to return an exact answer. | ||
| 1857 | ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr, | ||
| 1858 | bool AllowPredicates = false); | ||
| 1859 | |||
| 1860 |   /// Return the number of times an exit condition checking the specified | ||
| 1861 |   /// value for nonzero will execute.  If not computable, return | ||
| 1862 |   /// CouldNotCompute. | ||
| 1863 | ExitLimit howFarToNonZero(const SCEV *V, const Loop *L); | ||
| 1864 | |||
| 1865 |   /// Return the number of times an exit condition containing the specified | ||
| 1866 |   /// less-than comparison will execute.  If not computable, return | ||
| 1867 |   /// CouldNotCompute. | ||
| 1868 |   /// | ||
| 1869 |   /// \p isSigned specifies whether the less-than is signed. | ||
| 1870 |   /// | ||
| 1871 |   /// \p ControlsExit is true when the LHS < RHS condition directly controls | ||
| 1872 |   /// the branch (loops exits only if condition is true). In this case, we can | ||
| 1873 |   /// use NoWrapFlags to skip overflow checks. | ||
| 1874 |   /// | ||
| 1875 |   /// If \p AllowPredicates is set, this call will try to use a minimal set of | ||
| 1876 |   /// SCEV predicates in order to return an exact answer. | ||
| 1877 | ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, | ||
| 1878 | bool isSigned, bool ControlsExit, | ||
| 1879 | bool AllowPredicates = false); | ||
| 1880 | |||
| 1881 | ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, | ||
| 1882 | bool isSigned, bool IsSubExpr, | ||
| 1883 | bool AllowPredicates = false); | ||
| 1884 | |||
| 1885 |   /// Return a predecessor of BB (which may not be an immediate predecessor) | ||
| 1886 |   /// which has exactly one successor from which BB is reachable, or null if | ||
| 1887 |   /// no such block is found. | ||
| 1888 | std::pair<const BasicBlock *, const BasicBlock *> | ||
| 1889 | getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const; | ||
| 1890 | |||
| 1891 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1892 |   /// whenever the given FoundCondValue value evaluates to true in given | ||
| 1893 |   /// Context. If Context is nullptr, then the found predicate is true | ||
| 1894 |   /// everywhere. LHS and FoundLHS may have different type width. | ||
| 1895 | bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, | ||
| 1896 | const Value *FoundCondValue, bool Inverse, | ||
| 1897 | const Instruction *Context = nullptr); | ||
| 1898 | |||
| 1899 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1900 |   /// whenever the given FoundCondValue value evaluates to true in given | ||
| 1901 |   /// Context. If Context is nullptr, then the found predicate is true | ||
| 1902 |   /// everywhere. LHS and FoundLHS must have same type width. | ||
| 1903 | bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 1904 | const SCEV *RHS, | ||
| 1905 | ICmpInst::Predicate FoundPred, | ||
| 1906 | const SCEV *FoundLHS, const SCEV *FoundRHS, | ||
| 1907 | const Instruction *CtxI); | ||
| 1908 | |||
| 1909 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1910 |   /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is | ||
| 1911 |   /// true in given Context. If Context is nullptr, then the found predicate is | ||
| 1912 |   /// true everywhere. | ||
| 1913 | bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, | ||
| 1914 | ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, | ||
| 1915 | const SCEV *FoundRHS, | ||
| 1916 | const Instruction *Context = nullptr); | ||
| 1917 | |||
| 1918 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1919 |   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is | ||
| 1920 |   /// true in given Context. If Context is nullptr, then the found predicate is | ||
| 1921 |   /// true everywhere. | ||
| 1922 | bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 1923 | const SCEV *RHS, const SCEV *FoundLHS, | ||
| 1924 | const SCEV *FoundRHS, | ||
| 1925 | const Instruction *Context = nullptr); | ||
| 1926 | |||
| 1927 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1928 |   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is | ||
| 1929 |   /// true. Here LHS is an operation that includes FoundLHS as one of its | ||
| 1930 |   /// arguments. | ||
| 1931 | bool isImpliedViaOperations(ICmpInst::Predicate Pred, | ||
| 1932 | const SCEV *LHS, const SCEV *RHS, | ||
| 1933 | const SCEV *FoundLHS, const SCEV *FoundRHS, | ||
| 1934 | unsigned Depth = 0); | ||
| 1935 | |||
| 1936 |   /// Test whether the condition described by Pred, LHS, and RHS is true. | ||
| 1937 |   /// Use only simple non-recursive types of checks, such as range analysis etc. | ||
| 1938 | bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, | ||
| 1939 | const SCEV *LHS, const SCEV *RHS); | ||
| 1940 | |||
| 1941 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1942 |   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is | ||
| 1943 |   /// true. | ||
| 1944 | bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 1945 | const SCEV *RHS, const SCEV *FoundLHS, | ||
| 1946 | const SCEV *FoundRHS); | ||
| 1947 | |||
| 1948 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1949 |   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is | ||
| 1950 |   /// true.  Utility function used by isImpliedCondOperands.  Tries to get | ||
| 1951 |   /// cases like "X `sgt` 0 => X - 1 `sgt` -1". | ||
| 1952 | bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 1953 | const SCEV *RHS, const SCEV *FoundLHS, | ||
| 1954 | const SCEV *FoundRHS); | ||
| 1955 | |||
| 1956 |   /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied | ||
| 1957 |   /// by a call to @llvm.experimental.guard in \p BB. | ||
| 1958 | bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred, | ||
| 1959 | const SCEV *LHS, const SCEV *RHS); | ||
| 1960 | |||
| 1961 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1962 |   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is | ||
| 1963 |   /// true. | ||
| 1964 |   /// | ||
| 1965 |   /// This routine tries to rule out certain kinds of integer overflow, and | ||
| 1966 |   /// then tries to reason about arithmetic properties of the predicates. | ||
| 1967 | bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred, | ||
| 1968 | const SCEV *LHS, const SCEV *RHS, | ||
| 1969 | const SCEV *FoundLHS, | ||
| 1970 | const SCEV *FoundRHS); | ||
| 1971 | |||
| 1972 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1973 |   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is | ||
| 1974 |   /// true. | ||
| 1975 |   /// | ||
| 1976 |   /// This routine tries to weaken the known condition basing on fact that | ||
| 1977 |   /// FoundLHS is an AddRec. | ||
| 1978 | bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred, | ||
| 1979 | const SCEV *LHS, const SCEV *RHS, | ||
| 1980 | const SCEV *FoundLHS, | ||
| 1981 | const SCEV *FoundRHS, | ||
| 1982 | const Instruction *CtxI); | ||
| 1983 | |||
| 1984 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1985 |   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is | ||
| 1986 |   /// true. | ||
| 1987 |   /// | ||
| 1988 |   /// This routine tries to figure out predicate for Phis which are SCEVUnknown | ||
| 1989 |   /// if it is true for every possible incoming value from their respective | ||
| 1990 |   /// basic blocks. | ||
| 1991 | bool isImpliedViaMerge(ICmpInst::Predicate Pred, | ||
| 1992 | const SCEV *LHS, const SCEV *RHS, | ||
| 1993 | const SCEV *FoundLHS, const SCEV *FoundRHS, | ||
| 1994 | unsigned Depth); | ||
| 1995 | |||
| 1996 |   /// Test whether the condition described by Pred, LHS, and RHS is true | ||
| 1997 |   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is | ||
| 1998 |   /// true. | ||
| 1999 |   /// | ||
| 2000 |   /// This routine tries to reason about shifts. | ||
| 2001 | bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 2002 | const SCEV *RHS, const SCEV *FoundLHS, | ||
| 2003 | const SCEV *FoundRHS); | ||
| 2004 | |||
| 2005 |   /// If we know that the specified Phi is in the header of its containing | ||
| 2006 |   /// loop, we know the loop executes a constant number of times, and the PHI | ||
| 2007 |   /// node is just a recurrence involving constants, fold it. | ||
| 2008 | Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs, | ||
| 2009 | const Loop *L); | ||
| 2010 | |||
| 2011 |   /// Test if the given expression is known to satisfy the condition described | ||
| 2012 |   /// by Pred and the known constant ranges of LHS and RHS. | ||
| 2013 | bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred, | ||
| 2014 | const SCEV *LHS, const SCEV *RHS); | ||
| 2015 | |||
| 2016 |   /// Try to prove the condition described by "LHS Pred RHS" by ruling out | ||
| 2017 |   /// integer overflow. | ||
| 2018 |   /// | ||
| 2019 |   /// For instance, this will return true for "A s< (A + C)<nsw>" if C is | ||
| 2020 |   /// positive. | ||
| 2021 | bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 2022 | const SCEV *RHS); | ||
| 2023 | |||
| 2024 |   /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to | ||
| 2025 |   /// prove them individually. | ||
| 2026 | bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS, | ||
| 2027 | const SCEV *RHS); | ||
| 2028 | |||
| 2029 |   /// Try to match the Expr as "(L + R)<Flags>". | ||
| 2030 | bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R, | ||
| 2031 | SCEV::NoWrapFlags &Flags); | ||
| 2032 | |||
| 2033 |   /// Forget predicated/non-predicated backedge taken counts for the given loop. | ||
| 2034 | void forgetBackedgeTakenCounts(const Loop *L, bool Predicated); | ||
| 2035 | |||
| 2036 |   /// Drop memoized information for all \p SCEVs. | ||
| 2037 | void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs); | ||
| 2038 | |||
| 2039 |   /// Helper for forgetMemoizedResults. | ||
| 2040 | void forgetMemoizedResultsImpl(const SCEV *S); | ||
| 2041 | |||
| 2042 |   /// Return an existing SCEV for V if there is one, otherwise return nullptr. | ||
| 2043 | const SCEV *getExistingSCEV(Value *V); | ||
| 2044 | |||
| 2045 |   /// Erase Value from ValueExprMap and ExprValueMap. | ||
| 2046 | void eraseValueFromMap(Value *V); | ||
| 2047 | |||
| 2048 |   /// Insert V to S mapping into ValueExprMap and ExprValueMap. | ||
| 2049 | void insertValueToMap(Value *V, const SCEV *S); | ||
| 2050 | |||
| 2051 |   /// Return false iff given SCEV contains a SCEVUnknown with NULL value- | ||
| 2052 |   /// pointer. | ||
| 2053 | bool checkValidity(const SCEV *S) const; | ||
| 2054 | |||
| 2055 |   /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be | ||
| 2056 |   /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is | ||
| 2057 |   /// equivalent to proving no signed (resp. unsigned) wrap in | ||
| 2058 |   /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr` | ||
| 2059 |   /// (resp. `SCEVZeroExtendExpr`). | ||
| 2060 | template <typename ExtendOpTy> | ||
| 2061 | bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step, | ||
| 2062 | const Loop *L); | ||
| 2063 | |||
| 2064 |   /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation. | ||
| 2065 | SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR); | ||
| 2066 | |||
| 2067 |   /// Try to prove NSW on \p AR by proving facts about conditions known  on | ||
| 2068 |   /// entry and backedge. | ||
| 2069 | SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR); | ||
| 2070 | |||
| 2071 |   /// Try to prove NUW on \p AR by proving facts about conditions known on | ||
| 2072 |   /// entry and backedge. | ||
| 2073 | SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR); | ||
| 2074 | |||
| 2075 | std::optional<MonotonicPredicateType> | ||
| 2076 | getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, | ||
| 2077 | ICmpInst::Predicate Pred); | ||
| 2078 | |||
| 2079 |   /// Return SCEV no-wrap flags that can be proven based on reasoning about | ||
| 2080 |   /// how poison produced from no-wrap flags on this value (e.g. a nuw add) | ||
| 2081 |   /// would trigger undefined behavior on overflow. | ||
| 2082 | SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V); | ||
| 2083 | |||
| 2084 |   /// Return a scope which provides an upper bound on the defining scope of | ||
| 2085 |   /// 'S'. Specifically, return the first instruction in said bounding scope. | ||
| 2086 |   /// Return nullptr if the scope is trivial (function entry). | ||
| 2087 |   /// (See scope definition rules associated with flag discussion above) | ||
| 2088 | const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S); | ||
| 2089 | |||
| 2090 |   /// Return a scope which provides an upper bound on the defining scope for | ||
| 2091 |   /// a SCEV with the operands in Ops.  The outparam Precise is set if the | ||
| 2092 |   /// bound found is a precise bound (i.e. must be the defining scope.) | ||
| 2093 | const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops, | ||
| 2094 | bool &Precise); | ||
| 2095 | |||
| 2096 |   /// Wrapper around the above for cases which don't care if the bound | ||
| 2097 |   /// is precise. | ||
| 2098 | const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops); | ||
| 2099 | |||
| 2100 |   /// Given two instructions in the same function, return true if we can | ||
| 2101 |   /// prove B must execute given A executes. | ||
| 2102 | bool isGuaranteedToTransferExecutionTo(const Instruction *A, | ||
| 2103 | const Instruction *B); | ||
| 2104 | |||
| 2105 |   /// Return true if the SCEV corresponding to \p I is never poison.  Proving | ||
| 2106 |   /// this is more complex than proving that just \p I is never poison, since | ||
| 2107 |   /// SCEV commons expressions across control flow, and you can have cases | ||
| 2108 |   /// like: | ||
| 2109 |   /// | ||
| 2110 |   ///   idx0 = a + b; | ||
| 2111 |   ///   ptr[idx0] = 100; | ||
| 2112 |   ///   if (<condition>) { | ||
| 2113 |   ///     idx1 = a +nsw b; | ||
| 2114 |   ///     ptr[idx1] = 200; | ||
| 2115 |   ///   } | ||
| 2116 |   /// | ||
| 2117 |   /// where the SCEV expression (+ a b) is guaranteed to not be poison (and | ||
| 2118 |   /// hence not sign-overflow) only if "<condition>" is true.  Since both | ||
| 2119 |   /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b), | ||
| 2120 |   /// it is not okay to annotate (+ a b) with <nsw> in the above example. | ||
| 2121 | bool isSCEVExprNeverPoison(const Instruction *I); | ||
| 2122 | |||
| 2123 |   /// This is like \c isSCEVExprNeverPoison but it specifically works for | ||
| 2124 |   /// instructions that will get mapped to SCEV add recurrences.  Return true | ||
| 2125 |   /// if \p I will never generate poison under the assumption that \p I is an | ||
| 2126 |   /// add recurrence on the loop \p L. | ||
| 2127 | bool isAddRecNeverPoison(const Instruction *I, const Loop *L); | ||
| 2128 | |||
| 2129 |   /// Similar to createAddRecFromPHI, but with the additional flexibility of | ||
| 2130 |   /// suggesting runtime overflow checks in case casts are encountered. | ||
| 2131 |   /// If successful, the analysis records that for this loop, \p SymbolicPHI, | ||
| 2132 |   /// which is the UnknownSCEV currently representing the PHI, can be rewritten | ||
| 2133 |   /// into an AddRec, assuming some predicates; The function then returns the | ||
| 2134 |   /// AddRec and the predicates as a pair, and caches this pair in | ||
| 2135 |   /// PredicatedSCEVRewrites. | ||
| 2136 |   /// If the analysis is not successful, a mapping from the \p SymbolicPHI to | ||
| 2137 |   /// itself (with no predicates) is recorded, and a nullptr with an empty | ||
| 2138 |   /// predicates vector is returned as a pair. | ||
| 2139 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | ||
| 2140 | createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI); | ||
| 2141 | |||
| 2142 |   /// Compute the maximum backedge count based on the range of values | ||
| 2143 |   /// permitted by Start, End, and Stride. This is for loops of the form | ||
| 2144 |   /// {Start, +, Stride} LT End. | ||
| 2145 |   /// | ||
| 2146 |   /// Preconditions: | ||
| 2147 |   /// * the induction variable is known to be positive. | ||
| 2148 |   /// * the induction variable is assumed not to overflow (i.e. either it | ||
| 2149 |   ///   actually doesn't, or we'd have to immediately execute UB) | ||
| 2150 |   /// We *don't* assert these preconditions so please be careful. | ||
| 2151 | const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride, | ||
| 2152 | const SCEV *End, unsigned BitWidth, | ||
| 2153 | bool IsSigned); | ||
| 2154 | |||
| 2155 |   /// Verify if an linear IV with positive stride can overflow when in a | ||
| 2156 |   /// less-than comparison, knowing the invariant term of the comparison, | ||
| 2157 |   /// the stride. | ||
| 2158 | bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned); | ||
| 2159 | |||
| 2160 |   /// Verify if an linear IV with negative stride can overflow when in a | ||
| 2161 |   /// greater-than comparison, knowing the invariant term of the comparison, | ||
| 2162 |   /// the stride. | ||
| 2163 | bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned); | ||
| 2164 | |||
| 2165 |   /// Get add expr already created or create a new one. | ||
| 2166 | const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, | ||
| 2167 | SCEV::NoWrapFlags Flags); | ||
| 2168 | |||
| 2169 |   /// Get mul expr already created or create a new one. | ||
| 2170 | const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, | ||
| 2171 | SCEV::NoWrapFlags Flags); | ||
| 2172 | |||
| 2173 |   // Get addrec expr already created or create a new one. | ||
| 2174 | const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, | ||
| 2175 | const Loop *L, SCEV::NoWrapFlags Flags); | ||
| 2176 | |||
| 2177 |   /// Return x if \p Val is f(x) where f is a 1-1 function. | ||
| 2178 | const SCEV *stripInjectiveFunctions(const SCEV *Val) const; | ||
| 2179 | |||
| 2180 |   /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed. | ||
| 2181 |   /// A loop is considered "used" by an expression if it contains | ||
| 2182 |   /// an add rec on said loop. | ||
| 2183 | void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed); | ||
| 2184 | |||
| 2185 |   /// Try to match the pattern generated by getURemExpr(A, B). If successful, | ||
| 2186 |   /// Assign A and B to LHS and RHS, respectively. | ||
| 2187 | bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS); | ||
| 2188 | |||
| 2189 |   /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in | ||
| 2190 |   /// `UniqueSCEVs`.  Return if found, else nullptr. | ||
| 2191 | SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops); | ||
| 2192 | |||
| 2193 |   /// Get reachable blocks in this function, making limited use of SCEV | ||
| 2194 |   /// reasoning about conditions. | ||
| 2195 | void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable, | ||
| 2196 | Function &F); | ||
| 2197 | |||
| 2198 | FoldingSet<SCEV> UniqueSCEVs; | ||
| 2199 | FoldingSet<SCEVPredicate> UniquePreds; | ||
| 2200 |   BumpPtrAllocator SCEVAllocator; | ||
| 2201 | |||
| 2202 |   /// This maps loops to a list of addrecs that directly use said loop. | ||
| 2203 | DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers; | ||
| 2204 | |||
| 2205 |   /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression | ||
| 2206 |   /// they can be rewritten into under certain predicates. | ||
| 2207 | DenseMap<std::pair<const SCEVUnknown *, const Loop *>, | ||
| 2208 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | ||
| 2209 |       PredicatedSCEVRewrites; | ||
| 2210 | |||
| 2211 |   /// Set of AddRecs for which proving NUW via an induction has already been | ||
| 2212 |   /// tried. | ||
| 2213 | SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried; | ||
| 2214 | |||
| 2215 |   /// Set of AddRecs for which proving NSW via an induction has already been | ||
| 2216 |   /// tried. | ||
| 2217 | SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried; | ||
| 2218 | |||
| 2219 |   /// The head of a linked list of all SCEVUnknown values that have been | ||
| 2220 |   /// allocated. This is used by releaseMemory to locate them all and call | ||
| 2221 |   /// their destructors. | ||
| 2222 | SCEVUnknown *FirstUnknown = nullptr; | ||
| 2223 | }; | ||
| 2224 | |||
| 2225 | /// Analysis pass that exposes the \c ScalarEvolution for a function. | ||
| 2226 | class ScalarEvolutionAnalysis | ||
| 2227 | : public AnalysisInfoMixin<ScalarEvolutionAnalysis> { | ||
| 2228 | friend AnalysisInfoMixin<ScalarEvolutionAnalysis>; | ||
| 2229 | |||
| 2230 | static AnalysisKey Key; | ||
| 2231 | |||
| 2232 | public: | ||
| 2233 | using Result = ScalarEvolution; | ||
| 2234 | |||
| 2235 | ScalarEvolution run(Function &F, FunctionAnalysisManager &AM); | ||
| 2236 | }; | ||
| 2237 | |||
| 2238 | /// Verifier pass for the \c ScalarEvolutionAnalysis results. | ||
| 2239 | class ScalarEvolutionVerifierPass | ||
| 2240 | : public PassInfoMixin<ScalarEvolutionVerifierPass> { | ||
| 2241 | public: | ||
| 2242 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); | ||
| 2243 | }; | ||
| 2244 | |||
| 2245 | /// Printer pass for the \c ScalarEvolutionAnalysis results. | ||
| 2246 | class ScalarEvolutionPrinterPass | ||
| 2247 | : public PassInfoMixin<ScalarEvolutionPrinterPass> { | ||
| 2248 | raw_ostream &OS; | ||
| 2249 | |||
| 2250 | public: | ||
| 2251 | explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {} | ||
| 2252 | |||
| 2253 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); | ||
| 2254 | }; | ||
| 2255 | |||
| 2256 | class ScalarEvolutionWrapperPass : public FunctionPass { | ||
| 2257 | std::unique_ptr<ScalarEvolution> SE; | ||
| 2258 | |||
| 2259 | public: | ||
| 2260 | static char ID; | ||
| 2261 | |||
| 2262 | ScalarEvolutionWrapperPass(); | ||
| 2263 | |||
| 2264 | ScalarEvolution &getSE() { return *SE; } | ||
| 2265 | const ScalarEvolution &getSE() const { return *SE; } | ||
| 2266 | |||
| 2267 | bool runOnFunction(Function &F) override; | ||
| 2268 | void releaseMemory() override; | ||
| 2269 | void getAnalysisUsage(AnalysisUsage &AU) const override; | ||
| 2270 | void print(raw_ostream &OS, const Module * = nullptr) const override; | ||
| 2271 | void verifyAnalysis() const override; | ||
| 2272 | }; | ||
| 2273 | |||
| 2274 | /// An interface layer with SCEV used to manage how we see SCEV expressions | ||
| 2275 | /// for values in the context of existing predicates. We can add new | ||
| 2276 | /// predicates, but we cannot remove them. | ||
| 2277 | /// | ||
| 2278 | /// This layer has multiple purposes: | ||
| 2279 | ///   - provides a simple interface for SCEV versioning. | ||
| 2280 | ///   - guarantees that the order of transformations applied on a SCEV | ||
| 2281 | ///     expression for a single Value is consistent across two different | ||
| 2282 | ///     getSCEV calls. This means that, for example, once we've obtained | ||
| 2283 | ///     an AddRec expression for a certain value through expression | ||
| 2284 | ///     rewriting, we will continue to get an AddRec expression for that | ||
| 2285 | ///     Value. | ||
| 2286 | ///   - lowers the number of expression rewrites. | ||
| 2287 | class PredicatedScalarEvolution { | ||
| 2288 | public: | ||
| 2289 | PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L); | ||
| 2290 | |||
| 2291 | const SCEVPredicate &getPredicate() const; | ||
| 2292 | |||
| 2293 |   /// Returns the SCEV expression of V, in the context of the current SCEV | ||
| 2294 |   /// predicate.  The order of transformations applied on the expression of V | ||
| 2295 |   /// returned by ScalarEvolution is guaranteed to be preserved, even when | ||
| 2296 |   /// adding new predicates. | ||
| 2297 | const SCEV *getSCEV(Value *V); | ||
| 2298 | |||
| 2299 |   /// Get the (predicated) backedge count for the analyzed loop. | ||
| 2300 | const SCEV *getBackedgeTakenCount(); | ||
| 2301 | |||
| 2302 |   /// Adds a new predicate. | ||
| 2303 | void addPredicate(const SCEVPredicate &Pred); | ||
| 2304 | |||
| 2305 |   /// Attempts to produce an AddRecExpr for V by adding additional SCEV | ||
| 2306 |   /// predicates. If we can't transform the expression into an AddRecExpr we | ||
| 2307 |   /// return nullptr and not add additional SCEV predicates to the current | ||
| 2308 |   /// context. | ||
| 2309 | const SCEVAddRecExpr *getAsAddRec(Value *V); | ||
| 2310 | |||
| 2311 |   /// Proves that V doesn't overflow by adding SCEV predicate. | ||
| 2312 | void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags); | ||
| 2313 | |||
| 2314 |   /// Returns true if we've proved that V doesn't wrap by means of a SCEV | ||
| 2315 |   /// predicate. | ||
| 2316 | bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags); | ||
| 2317 | |||
| 2318 |   /// Returns the ScalarEvolution analysis used. | ||
| 2319 | ScalarEvolution *getSE() const { return &SE; } | ||
| 2320 | |||
| 2321 |   /// We need to explicitly define the copy constructor because of FlagsMap. | ||
| 2322 | PredicatedScalarEvolution(const PredicatedScalarEvolution &); | ||
| 2323 | |||
| 2324 |   /// Print the SCEV mappings done by the Predicated Scalar Evolution. | ||
| 2325 |   /// The printed text is indented by \p Depth. | ||
| 2326 | void print(raw_ostream &OS, unsigned Depth) const; | ||
| 2327 | |||
| 2328 |   /// Check if \p AR1 and \p AR2 are equal, while taking into account | ||
| 2329 |   /// Equal predicates in Preds. | ||
| 2330 | bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, | ||
| 2331 | const SCEVAddRecExpr *AR2) const; | ||
| 2332 | |||
| 2333 | private: | ||
| 2334 |   /// Increments the version number of the predicate.  This needs to be called | ||
| 2335 |   /// every time the SCEV predicate changes. | ||
| 2336 | void updateGeneration(); | ||
| 2337 | |||
| 2338 |   /// Holds a SCEV and the version number of the SCEV predicate used to | ||
| 2339 |   /// perform the rewrite of the expression. | ||
| 2340 | using RewriteEntry = std::pair<unsigned, const SCEV *>; | ||
| 2341 | |||
| 2342 |   /// Maps a SCEV to the rewrite result of that SCEV at a certain version | ||
| 2343 |   /// number. If this number doesn't match the current Generation, we will | ||
| 2344 |   /// need to do a rewrite. To preserve the transformation order of previous | ||
| 2345 |   /// rewrites, we will rewrite the previous result instead of the original | ||
| 2346 |   /// SCEV. | ||
| 2347 | DenseMap<const SCEV *, RewriteEntry> RewriteMap; | ||
| 2348 | |||
| 2349 |   /// Records what NoWrap flags we've added to a Value *. | ||
| 2350 | ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap; | ||
| 2351 | |||
| 2352 |   /// The ScalarEvolution analysis. | ||
| 2353 | ScalarEvolution &SE; | ||
| 2354 | |||
| 2355 |   /// The analyzed Loop. | ||
| 2356 | const Loop &L; | ||
| 2357 | |||
| 2358 |   /// The SCEVPredicate that forms our context. We will rewrite all | ||
| 2359 |   /// expressions assuming that this predicate true. | ||
| 2360 | std::unique_ptr<SCEVUnionPredicate> Preds; | ||
| 2361 | |||
| 2362 |   /// Marks the version of the SCEV predicate used. When rewriting a SCEV | ||
| 2363 |   /// expression we mark it with the version of the predicate. We use this to | ||
| 2364 |   /// figure out if the predicate has changed from the last rewrite of the | ||
| 2365 |   /// SCEV. If so, we need to perform a new rewrite. | ||
| 2366 | unsigned Generation = 0; | ||
| 2367 | |||
| 2368 |   /// The backedge taken count. | ||
| 2369 | const SCEV *BackedgeCount = nullptr; | ||
| 2370 | }; | ||
| 2371 | |||
| 2372 | template <> struct DenseMapInfo<ScalarEvolution::FoldID> { | ||
| 2373 | static inline ScalarEvolution::FoldID getEmptyKey() { | ||
| 2374 | ScalarEvolution::FoldID ID; | ||
| 2375 | ID.addInteger(~0ULL); | ||
| 2376 | return ID; | ||
| 2377 |   } | ||
| 2378 | static inline ScalarEvolution::FoldID getTombstoneKey() { | ||
| 2379 | ScalarEvolution::FoldID ID; | ||
| 2380 | ID.addInteger(~0ULL - 1ULL); | ||
| 2381 | return ID; | ||
| 2382 |   } | ||
| 2383 | |||
| 2384 | static unsigned getHashValue(const ScalarEvolution::FoldID &Val) { | ||
| 2385 | return Val.computeHash(); | ||
| 2386 |   } | ||
| 2387 | |||
| 2388 | static bool isEqual(const ScalarEvolution::FoldID &LHS, | ||
| 2389 | const ScalarEvolution::FoldID &RHS) { | ||
| 2390 | return LHS == RHS; | ||
| 2391 |   } | ||
| 2392 | }; | ||
| 2393 | |||
| 2394 | } // end namespace llvm | ||
| 2395 | |||
| 2396 | #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H |