Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Calculate a program structure tree built out of single entry single exit
10
// regions.
11
// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
12
// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
13
// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
14
// Koehler - 2009".
15
// The algorithm to calculate these data structures however is completely
16
// different, as it takes advantage of existing information already available
17
// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
18
// and in practice hopefully better performing algorithm. The runtime of the
19
// algorithms described in the papers above are both linear in graph size,
20
// O(V+E), whereas this algorithm is not, as the dominance frontier information
21
// itself is not, but in practice runtime seems to be in the order of magnitude
22
// of dominance tree calculation.
23
//
24
// WARNING: LLVM is generally very concerned about compile time such that
25
//          the use of additional analysis passes in the default
26
//          optimization sequence is avoided as much as possible.
27
//          Specifically, if you do not need the RegionInfo, but dominance
28
//          information could be sufficient please base your work only on
29
//          the dominator tree. Most passes maintain it, such that using
30
//          it has often near zero cost. In contrast RegionInfo is by
31
//          default not available, is not maintained by existing
32
//          transformations and there is no intention to do so.
33
//
34
//===----------------------------------------------------------------------===//
35
 
36
#ifndef LLVM_ANALYSIS_REGIONINFO_H
37
#define LLVM_ANALYSIS_REGIONINFO_H
38
 
39
#include "llvm/ADT/DenseMap.h"
40
#include "llvm/ADT/DepthFirstIterator.h"
41
#include "llvm/ADT/GraphTraits.h"
42
#include "llvm/ADT/PointerIntPair.h"
43
#include "llvm/ADT/iterator_range.h"
44
#include "llvm/Config/llvm-config.h"
45
#include "llvm/IR/Dominators.h"
46
#include "llvm/IR/PassManager.h"
47
#include "llvm/Pass.h"
48
#include <algorithm>
49
#include <cassert>
50
#include <map>
51
#include <memory>
52
#include <set>
53
#include <string>
54
#include <type_traits>
55
#include <vector>
56
 
57
namespace llvm {
58
 
59
class BasicBlock;
60
class DominanceFrontier;
61
class Loop;
62
class LoopInfo;
63
class PostDominatorTree;
64
class Region;
65
template <class RegionTr> class RegionBase;
66
class RegionInfo;
67
template <class RegionTr> class RegionInfoBase;
68
class RegionNode;
69
class raw_ostream;
70
 
71
// Class to be specialized for different users of RegionInfo
72
// (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
73
// pass around an unreasonable number of template parameters.
74
template <class FuncT_>
75
struct RegionTraits {
76
  // FuncT
77
  // BlockT
78
  // RegionT
79
  // RegionNodeT
80
  // RegionInfoT
81
  using BrokenT = typename FuncT_::UnknownRegionTypeError;
82
};
83
 
84
template <>
85
struct RegionTraits<Function> {
86
  using FuncT = Function;
87
  using BlockT = BasicBlock;
88
  using RegionT = Region;
89
  using RegionNodeT = RegionNode;
90
  using RegionInfoT = RegionInfo;
91
  using DomTreeT = DominatorTree;
92
  using DomTreeNodeT = DomTreeNode;
93
  using DomFrontierT = DominanceFrontier;
94
  using PostDomTreeT = PostDominatorTree;
95
  using InstT = Instruction;
96
  using LoopT = Loop;
97
  using LoopInfoT = LoopInfo;
98
 
99
  static unsigned getNumSuccessors(BasicBlock *BB) {
100
    return BB->getTerminator()->getNumSuccessors();
101
  }
102
};
103
 
104
/// Marker class to iterate over the elements of a Region in flat mode.
105
///
106
/// The class is used to either iterate in Flat mode or by not using it to not
107
/// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
108
/// and the iteration returns every BasicBlock.  If the Flat mode is not
109
/// selected for SubRegions just one RegionNode containing the subregion is
110
/// returned.
111
template <class GraphType>
112
class FlatIt {};
113
 
114
/// A RegionNode represents a subregion or a BasicBlock that is part of a
115
/// Region.
116
template <class Tr>
117
class RegionNodeBase {
118
  friend class RegionBase<Tr>;
119
 
120
public:
121
  using BlockT = typename Tr::BlockT;
122
  using RegionT = typename Tr::RegionT;
123
 
124
private:
125
  /// This is the entry basic block that starts this region node.  If this is a
126
  /// BasicBlock RegionNode, then entry is just the basic block, that this
127
  /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
128
  ///
129
  /// In the BBtoRegionNode map of the parent of this node, BB will always map
130
  /// to this node no matter which kind of node this one is.
131
  ///
132
  /// The node can hold either a Region or a BasicBlock.
133
  /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
134
  /// RegionNode.
135
  PointerIntPair<BlockT *, 1, bool> entry;
136
 
137
  /// The parent Region of this RegionNode.
138
  /// @see getParent()
139
  RegionT *parent;
140
 
141
protected:
142
  /// Create a RegionNode.
143
  ///
144
  /// @param Parent      The parent of this RegionNode.
145
  /// @param Entry       The entry BasicBlock of the RegionNode.  If this
146
  ///                    RegionNode represents a BasicBlock, this is the
147
  ///                    BasicBlock itself.  If it represents a subregion, this
148
  ///                    is the entry BasicBlock of the subregion.
149
  /// @param isSubRegion If this RegionNode represents a SubRegion.
150
  inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
151
                        bool isSubRegion = false)
152
      : entry(Entry, isSubRegion), parent(Parent) {}
153
 
154
public:
155
  RegionNodeBase(const RegionNodeBase &) = delete;
156
  RegionNodeBase &operator=(const RegionNodeBase &) = delete;
157
 
158
  /// Get the parent Region of this RegionNode.
159
  ///
160
  /// The parent Region is the Region this RegionNode belongs to. If for
161
  /// example a BasicBlock is element of two Regions, there exist two
162
  /// RegionNodes for this BasicBlock. Each with the getParent() function
163
  /// pointing to the Region this RegionNode belongs to.
164
  ///
165
  /// @return Get the parent Region of this RegionNode.
166
  inline RegionT *getParent() const { return parent; }
167
 
168
  /// Get the entry BasicBlock of this RegionNode.
169
  ///
170
  /// If this RegionNode represents a BasicBlock this is just the BasicBlock
171
  /// itself, otherwise we return the entry BasicBlock of the Subregion
172
  ///
173
  /// @return The entry BasicBlock of this RegionNode.
174
  inline BlockT *getEntry() const { return entry.getPointer(); }
175
 
176
  /// Get the content of this RegionNode.
177
  ///
178
  /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
179
  /// check the type of the content with the isSubRegion() function call.
180
  ///
181
  /// @return The content of this RegionNode.
182
  template <class T> inline T *getNodeAs() const;
183
 
184
  /// Is this RegionNode a subregion?
185
  ///
186
  /// @return True if it contains a subregion. False if it contains a
187
  ///         BasicBlock.
188
  inline bool isSubRegion() const { return entry.getInt(); }
189
};
190
 
191
//===----------------------------------------------------------------------===//
192
/// A single entry single exit Region.
193
///
194
/// A Region is a connected subgraph of a control flow graph that has exactly
195
/// two connections to the remaining graph. It can be used to analyze or
196
/// optimize parts of the control flow graph.
197
///
198
/// A <em> simple Region </em> is connected to the remaining graph by just two
199
/// edges. One edge entering the Region and another one leaving the Region.
200
///
201
/// An <em> extended Region </em> (or just Region) is a subgraph that can be
202
/// transform into a simple Region. The transformation is done by adding
203
/// BasicBlocks that merge several entry or exit edges so that after the merge
204
/// just one entry and one exit edge exists.
205
///
206
/// The \e Entry of a Region is the first BasicBlock that is passed after
207
/// entering the Region. It is an element of the Region. The entry BasicBlock
208
/// dominates all BasicBlocks in the Region.
209
///
210
/// The \e Exit of a Region is the first BasicBlock that is passed after
211
/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
212
/// postdominates all BasicBlocks in the Region.
213
///
214
/// A <em> canonical Region </em> cannot be constructed by combining smaller
215
/// Regions.
216
///
217
/// Region A is the \e parent of Region B, if B is completely contained in A.
218
///
219
/// Two canonical Regions either do not intersect at all or one is
220
/// the parent of the other.
221
///
222
/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
223
/// Regions in the control flow graph and E is the \e parent relation of these
224
/// Regions.
225
///
226
/// Example:
227
///
228
/// \verbatim
229
/// A simple control flow graph, that contains two regions.
230
///
231
///        1
232
///       / |
233
///      2   |
234
///     / \   3
235
///    4   5  |
236
///    |   |  |
237
///    6   7  8
238
///     \  | /
239
///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
240
///        9        Region B: 2 -> 9 {2,4,5,6,7}
241
/// \endverbatim
242
///
243
/// You can obtain more examples by either calling
244
///
245
/// <tt> "opt -passes='print<regions>' anyprogram.ll" </tt>
246
/// or
247
/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
248
///
249
/// on any LLVM file you are interested in.
250
///
251
/// The first call returns a textual representation of the program structure
252
/// tree, the second one creates a graphical representation using graphviz.
253
template <class Tr>
254
class RegionBase : public RegionNodeBase<Tr> {
255
  friend class RegionInfoBase<Tr>;
256
 
257
  using FuncT = typename Tr::FuncT;
258
  using BlockT = typename Tr::BlockT;
259
  using RegionInfoT = typename Tr::RegionInfoT;
260
  using RegionT = typename Tr::RegionT;
261
  using RegionNodeT = typename Tr::RegionNodeT;
262
  using DomTreeT = typename Tr::DomTreeT;
263
  using LoopT = typename Tr::LoopT;
264
  using LoopInfoT = typename Tr::LoopInfoT;
265
  using InstT = typename Tr::InstT;
266
 
267
  using BlockTraits = GraphTraits<BlockT *>;
268
  using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
269
  using SuccIterTy = typename BlockTraits::ChildIteratorType;
270
  using PredIterTy = typename InvBlockTraits::ChildIteratorType;
271
 
272
  // Information necessary to manage this Region.
273
  RegionInfoT *RI;
274
  DomTreeT *DT;
275
 
276
  // The exit BasicBlock of this region.
277
  // (The entry BasicBlock is part of RegionNode)
278
  BlockT *exit;
279
 
280
  using RegionSet = std::vector<std::unique_ptr<RegionT>>;
281
 
282
  // The subregions of this region.
283
  RegionSet children;
284
 
285
  using BBNodeMapT = std::map<BlockT *, std::unique_ptr<RegionNodeT>>;
286
 
287
  // Save the BasicBlock RegionNodes that are element of this Region.
288
  mutable BBNodeMapT BBNodeMap;
289
 
290
  /// Check if a BB is in this Region. This check also works
291
  /// if the region is incorrectly built. (EXPENSIVE!)
292
  void verifyBBInRegion(BlockT *BB) const;
293
 
294
  /// Walk over all the BBs of the region starting from BB and
295
  /// verify that all reachable basic blocks are elements of the region.
296
  /// (EXPENSIVE!)
297
  void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
298
 
299
  /// Verify if the region and its children are valid regions (EXPENSIVE!)
300
  void verifyRegionNest() const;
301
 
302
public:
303
  /// Create a new region.
304
  ///
305
  /// @param Entry  The entry basic block of the region.
306
  /// @param Exit   The exit basic block of the region.
307
  /// @param RI     The region info object that is managing this region.
308
  /// @param DT     The dominator tree of the current function.
309
  /// @param Parent The surrounding region or NULL if this is a top level
310
  ///               region.
311
  RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
312
             RegionT *Parent = nullptr);
313
 
314
  RegionBase(const RegionBase &) = delete;
315
  RegionBase &operator=(const RegionBase &) = delete;
316
 
317
  /// Delete the Region and all its subregions.
318
  ~RegionBase();
319
 
320
  /// Get the entry BasicBlock of the Region.
321
  /// @return The entry BasicBlock of the region.
322
  BlockT *getEntry() const {
323
    return RegionNodeBase<Tr>::getEntry();
324
  }
325
 
326
  /// Replace the entry basic block of the region with the new basic
327
  ///        block.
328
  ///
329
  /// @param BB  The new entry basic block of the region.
330
  void replaceEntry(BlockT *BB);
331
 
332
  /// Replace the exit basic block of the region with the new basic
333
  ///        block.
334
  ///
335
  /// @param BB  The new exit basic block of the region.
336
  void replaceExit(BlockT *BB);
337
 
338
  /// Recursively replace the entry basic block of the region.
339
  ///
340
  /// This function replaces the entry basic block with a new basic block. It
341
  /// also updates all child regions that have the same entry basic block as
342
  /// this region.
343
  ///
344
  /// @param NewEntry The new entry basic block.
345
  void replaceEntryRecursive(BlockT *NewEntry);
346
 
347
  /// Recursively replace the exit basic block of the region.
348
  ///
349
  /// This function replaces the exit basic block with a new basic block. It
350
  /// also updates all child regions that have the same exit basic block as
351
  /// this region.
352
  ///
353
  /// @param NewExit The new exit basic block.
354
  void replaceExitRecursive(BlockT *NewExit);
355
 
356
  /// Get the exit BasicBlock of the Region.
357
  /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
358
  ///         Region.
359
  BlockT *getExit() const { return exit; }
360
 
361
  /// Get the parent of the Region.
362
  /// @return The parent of the Region or NULL if this is a top level
363
  ///         Region.
364
  RegionT *getParent() const {
365
    return RegionNodeBase<Tr>::getParent();
366
  }
367
 
368
  /// Get the RegionNode representing the current Region.
369
  /// @return The RegionNode representing the current Region.
370
  RegionNodeT *getNode() const {
371
    return const_cast<RegionNodeT *>(
372
        reinterpret_cast<const RegionNodeT *>(this));
373
  }
374
 
375
  /// Get the nesting level of this Region.
376
  ///
377
  /// An toplevel Region has depth 0.
378
  ///
379
  /// @return The depth of the region.
380
  unsigned getDepth() const;
381
 
382
  /// Check if a Region is the TopLevel region.
383
  ///
384
  /// The toplevel region represents the whole function.
385
  bool isTopLevelRegion() const { return exit == nullptr; }
386
 
387
  /// Return a new (non-canonical) region, that is obtained by joining
388
  ///        this region with its predecessors.
389
  ///
390
  /// @return A region also starting at getEntry(), but reaching to the next
391
  ///         basic block that forms with getEntry() a (non-canonical) region.
392
  ///         NULL if such a basic block does not exist.
393
  RegionT *getExpandedRegion() const;
394
 
395
  /// Return the first block of this region's single entry edge,
396
  ///        if existing.
397
  ///
398
  /// @return The BasicBlock starting this region's single entry edge,
399
  ///         else NULL.
400
  BlockT *getEnteringBlock() const;
401
 
402
  /// Return the first block of this region's single exit edge,
403
  ///        if existing.
404
  ///
405
  /// @return The BasicBlock starting this region's single exit edge,
406
  ///         else NULL.
407
  BlockT *getExitingBlock() const;
408
 
409
  /// Collect all blocks of this region's single exit edge, if existing.
410
  ///
411
  /// @return True if this region contains all the predecessors of the exit.
412
  bool getExitingBlocks(SmallVectorImpl<BlockT *> &Exitings) const;
413
 
414
  /// Is this a simple region?
415
  ///
416
  /// A region is simple if it has exactly one exit and one entry edge.
417
  ///
418
  /// @return True if the Region is simple.
419
  bool isSimple() const;
420
 
421
  /// Returns the name of the Region.
422
  /// @return The Name of the Region.
423
  std::string getNameStr() const;
424
 
425
  /// Return the RegionInfo object, that belongs to this Region.
426
  RegionInfoT *getRegionInfo() const { return RI; }
427
 
428
  /// PrintStyle - Print region in difference ways.
429
  enum PrintStyle { PrintNone, PrintBB, PrintRN };
430
 
431
  /// Print the region.
432
  ///
433
  /// @param OS The output stream the Region is printed to.
434
  /// @param printTree Print also the tree of subregions.
435
  /// @param level The indentation level used for printing.
436
  void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
437
             PrintStyle Style = PrintNone) const;
438
 
439
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
440
  /// Print the region to stderr.
441
  void dump() const;
442
#endif
443
 
444
  /// Check if the region contains a BasicBlock.
445
  ///
446
  /// @param BB The BasicBlock that might be contained in this Region.
447
  /// @return True if the block is contained in the region otherwise false.
448
  bool contains(const BlockT *BB) const;
449
 
450
  /// Check if the region contains another region.
451
  ///
452
  /// @param SubRegion The region that might be contained in this Region.
453
  /// @return True if SubRegion is contained in the region otherwise false.
454
  bool contains(const RegionT *SubRegion) const {
455
    // Toplevel Region.
456
    if (!getExit())
457
      return true;
458
 
459
    return contains(SubRegion->getEntry()) &&
460
           (contains(SubRegion->getExit()) ||
461
            SubRegion->getExit() == getExit());
462
  }
463
 
464
  /// Check if the region contains an Instruction.
465
  ///
466
  /// @param Inst The Instruction that might be contained in this region.
467
  /// @return True if the Instruction is contained in the region otherwise
468
  /// false.
469
  bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
470
 
471
  /// Check if the region contains a loop.
472
  ///
473
  /// @param L The loop that might be contained in this region.
474
  /// @return True if the loop is contained in the region otherwise false.
475
  ///         In case a NULL pointer is passed to this function the result
476
  ///         is false, except for the region that describes the whole function.
477
  ///         In that case true is returned.
478
  bool contains(const LoopT *L) const;
479
 
480
  /// Get the outermost loop in the region that contains a loop.
481
  ///
482
  /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
483
  /// and is itself contained in the region.
484
  ///
485
  /// @param L The loop the lookup is started.
486
  /// @return The outermost loop in the region, NULL if such a loop does not
487
  ///         exist or if the region describes the whole function.
488
  LoopT *outermostLoopInRegion(LoopT *L) const;
489
 
490
  /// Get the outermost loop in the region that contains a basic block.
491
  ///
492
  /// Find for a basic block BB the outermost loop L that contains BB and is
493
  /// itself contained in the region.
494
  ///
495
  /// @param LI A pointer to a LoopInfo analysis.
496
  /// @param BB The basic block surrounded by the loop.
497
  /// @return The outermost loop in the region, NULL if such a loop does not
498
  ///         exist or if the region describes the whole function.
499
  LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
500
 
501
  /// Get the subregion that starts at a BasicBlock
502
  ///
503
  /// @param BB The BasicBlock the subregion should start.
504
  /// @return The Subregion if available, otherwise NULL.
505
  RegionT *getSubRegionNode(BlockT *BB) const;
506
 
507
  /// Get the RegionNode for a BasicBlock
508
  ///
509
  /// @param BB The BasicBlock at which the RegionNode should start.
510
  /// @return If available, the RegionNode that represents the subregion
511
  ///         starting at BB. If no subregion starts at BB, the RegionNode
512
  ///         representing BB.
513
  RegionNodeT *getNode(BlockT *BB) const;
514
 
515
  /// Get the BasicBlock RegionNode for a BasicBlock
516
  ///
517
  /// @param BB The BasicBlock for which the RegionNode is requested.
518
  /// @return The RegionNode representing the BB.
519
  RegionNodeT *getBBNode(BlockT *BB) const;
520
 
521
  /// Add a new subregion to this Region.
522
  ///
523
  /// @param SubRegion The new subregion that will be added.
524
  /// @param moveChildren Move the children of this region, that are also
525
  ///                     contained in SubRegion into SubRegion.
526
  void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
527
 
528
  /// Remove a subregion from this Region.
529
  ///
530
  /// The subregion is not deleted, as it will probably be inserted into another
531
  /// region.
532
  /// @param SubRegion The SubRegion that will be removed.
533
  RegionT *removeSubRegion(RegionT *SubRegion);
534
 
535
  /// Move all direct child nodes of this Region to another Region.
536
  ///
537
  /// @param To The Region the child nodes will be transferred to.
538
  void transferChildrenTo(RegionT *To);
539
 
540
  /// Verify if the region is a correct region.
541
  ///
542
  /// Check if this is a correctly build Region. This is an expensive check, as
543
  /// the complete CFG of the Region will be walked.
544
  void verifyRegion() const;
545
 
546
  /// Clear the cache for BB RegionNodes.
547
  ///
548
  /// After calling this function the BasicBlock RegionNodes will be stored at
549
  /// different memory locations. RegionNodes obtained before this function is
550
  /// called are therefore not comparable to RegionNodes abtained afterwords.
551
  void clearNodeCache();
552
 
553
  /// @name Subregion Iterators
554
  ///
555
  /// These iterators iterator over all subregions of this Region.
556
  //@{
557
  using iterator = typename RegionSet::iterator;
558
  using const_iterator = typename RegionSet::const_iterator;
559
 
560
  iterator begin() { return children.begin(); }
561
  iterator end() { return children.end(); }
562
 
563
  const_iterator begin() const { return children.begin(); }
564
  const_iterator end() const { return children.end(); }
565
  //@}
566
 
567
  /// @name BasicBlock Iterators
568
  ///
569
  /// These iterators iterate over all BasicBlocks that are contained in this
570
  /// Region. The iterator also iterates over BasicBlocks that are elements of
571
  /// a subregion of this Region. It is therefore called a flat iterator.
572
  //@{
573
  template <bool IsConst>
574
  class block_iterator_wrapper
575
      : public df_iterator<
576
            std::conditional_t<IsConst, const BlockT, BlockT> *> {
577
    using super =
578
        df_iterator<std::conditional_t<IsConst, const BlockT, BlockT> *>;
579
 
580
  public:
581
    using Self = block_iterator_wrapper<IsConst>;
582
    using value_type = typename super::value_type;
583
 
584
    // Construct the begin iterator.
585
    block_iterator_wrapper(value_type Entry, value_type Exit)
586
        : super(df_begin(Entry)) {
587
      // Mark the exit of the region as visited, so that the children of the
588
      // exit and the exit itself, i.e. the block outside the region will never
589
      // be visited.
590
      super::Visited.insert(Exit);
591
    }
592
 
593
    // Construct the end iterator.
594
    block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {}
595
 
596
    /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
597
 
598
    // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
599
    //        This was introduced for backwards compatibility, but should
600
    //        be removed as soon as all users are fixed.
601
    BlockT *operator*() const {
602
      return const_cast<BlockT *>(super::operator*());
603
    }
604
  };
605
 
606
  using block_iterator = block_iterator_wrapper<false>;
607
  using const_block_iterator = block_iterator_wrapper<true>;
608
 
609
  block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
610
 
611
  block_iterator block_end() { return block_iterator(); }
612
 
613
  const_block_iterator block_begin() const {
614
    return const_block_iterator(getEntry(), getExit());
615
  }
616
  const_block_iterator block_end() const { return const_block_iterator(); }
617
 
618
  using block_range = iterator_range<block_iterator>;
619
  using const_block_range = iterator_range<const_block_iterator>;
620
 
621
  /// Returns a range view of the basic blocks in the region.
622
  inline block_range blocks() {
623
    return block_range(block_begin(), block_end());
624
  }
625
 
626
  /// Returns a range view of the basic blocks in the region.
627
  ///
628
  /// This is the 'const' version of the range view.
629
  inline const_block_range blocks() const {
630
    return const_block_range(block_begin(), block_end());
631
  }
632
  //@}
633
 
634
  /// @name Element Iterators
635
  ///
636
  /// These iterators iterate over all BasicBlock and subregion RegionNodes that
637
  /// are direct children of this Region. It does not iterate over any
638
  /// RegionNodes that are also element of a subregion of this Region.
639
  //@{
640
  using element_iterator =
641
      df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>, false,
642
                  GraphTraits<RegionNodeT *>>;
643
 
644
  using const_element_iterator =
645
      df_iterator<const RegionNodeT *,
646
                  df_iterator_default_set<const RegionNodeT *>, false,
647
                  GraphTraits<const RegionNodeT *>>;
648
 
649
  element_iterator element_begin();
650
  element_iterator element_end();
651
  iterator_range<element_iterator> elements() {
652
    return make_range(element_begin(), element_end());
653
  }
654
 
655
  const_element_iterator element_begin() const;
656
  const_element_iterator element_end() const;
657
  iterator_range<const_element_iterator> elements() const {
658
    return make_range(element_begin(), element_end());
659
  }
660
  //@}
661
};
662
 
663
/// Print a RegionNode.
664
template <class Tr>
665
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
666
 
667
//===----------------------------------------------------------------------===//
668
/// Analysis that detects all canonical Regions.
669
///
670
/// The RegionInfo pass detects all canonical regions in a function. The Regions
671
/// are connected using the parent relation. This builds a Program Structure
672
/// Tree.
673
template <class Tr>
674
class RegionInfoBase {
675
  friend class RegionInfo;
676
  friend class MachineRegionInfo;
677
 
678
  using BlockT = typename Tr::BlockT;
679
  using FuncT = typename Tr::FuncT;
680
  using RegionT = typename Tr::RegionT;
681
  using RegionInfoT = typename Tr::RegionInfoT;
682
  using DomTreeT = typename Tr::DomTreeT;
683
  using DomTreeNodeT = typename Tr::DomTreeNodeT;
684
  using PostDomTreeT = typename Tr::PostDomTreeT;
685
  using DomFrontierT = typename Tr::DomFrontierT;
686
  using BlockTraits = GraphTraits<BlockT *>;
687
  using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
688
  using SuccIterTy = typename BlockTraits::ChildIteratorType;
689
  using PredIterTy = typename InvBlockTraits::ChildIteratorType;
690
 
691
  using BBtoBBMap = DenseMap<BlockT *, BlockT *>;
692
  using BBtoRegionMap = DenseMap<BlockT *, RegionT *>;
693
 
694
  RegionInfoBase();
695
 
696
  RegionInfoBase(RegionInfoBase &&Arg)
697
    : DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
698
      TopLevelRegion(std::move(Arg.TopLevelRegion)),
699
      BBtoRegion(std::move(Arg.BBtoRegion)) {
700
    Arg.wipe();
701
  }
702
 
703
  RegionInfoBase &operator=(RegionInfoBase &&RHS) {
704
    DT = std::move(RHS.DT);
705
    PDT = std::move(RHS.PDT);
706
    DF = std::move(RHS.DF);
707
    TopLevelRegion = std::move(RHS.TopLevelRegion);
708
    BBtoRegion = std::move(RHS.BBtoRegion);
709
    RHS.wipe();
710
    return *this;
711
  }
712
 
713
  virtual ~RegionInfoBase();
714
 
715
  DomTreeT *DT;
716
  PostDomTreeT *PDT;
717
  DomFrontierT *DF;
718
 
719
  /// The top level region.
720
  RegionT *TopLevelRegion = nullptr;
721
 
722
  /// Map every BB to the smallest region, that contains BB.
723
  BBtoRegionMap BBtoRegion;
724
 
725
protected:
726
  /// Update refences to a RegionInfoT held by the RegionT managed here
727
  ///
728
  /// This is a post-move helper. Regions hold references to the owning
729
  /// RegionInfo object. After a move these need to be fixed.
730
  template<typename TheRegionT>
731
  void updateRegionTree(RegionInfoT &RI, TheRegionT *R) {
732
    if (!R)
733
      return;
734
    R->RI = &RI;
735
    for (auto &SubR : *R)
736
      updateRegionTree(RI, SubR.get());
737
  }
738
 
739
private:
740
  /// Wipe this region tree's state without releasing any resources.
741
  ///
742
  /// This is essentially a post-move helper only. It leaves the object in an
743
  /// assignable and destroyable state, but otherwise invalid.
744
  void wipe() {
745
    DT = nullptr;
746
    PDT = nullptr;
747
    DF = nullptr;
748
    TopLevelRegion = nullptr;
749
    BBtoRegion.clear();
750
  }
751
 
752
  // Check whether the entries of BBtoRegion for the BBs of region
753
  // SR are correct. Triggers an assertion if not. Calls itself recursively for
754
  // subregions.
755
  void verifyBBMap(const RegionT *SR) const;
756
 
757
  // Returns true if BB is in the dominance frontier of
758
  // entry, because it was inherited from exit. In the other case there is an
759
  // edge going from entry to BB without passing exit.
760
  bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
761
 
762
  // Check if entry and exit surround a valid region, based on
763
  // dominance tree and dominance frontier.
764
  bool isRegion(BlockT *entry, BlockT *exit) const;
765
 
766
  // Saves a shortcut pointing from entry to exit.
767
  // This function may extend this shortcut if possible.
768
  void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
769
 
770
  // Returns the next BB that postdominates N, while skipping
771
  // all post dominators that cannot finish a canonical region.
772
  DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
773
 
774
  // A region is trivial, if it contains only one BB.
775
  bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
776
 
777
  // Creates a single entry single exit region.
778
  RegionT *createRegion(BlockT *entry, BlockT *exit);
779
 
780
  // Detect all regions starting with bb 'entry'.
781
  void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
782
 
783
  // Detects regions in F.
784
  void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
785
 
786
  // Get the top most parent with the same entry block.
787
  RegionT *getTopMostParent(RegionT *region);
788
 
789
  // Build the region hierarchy after all region detected.
790
  void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
791
 
792
  // Update statistic about created regions.
793
  virtual void updateStatistics(RegionT *R) = 0;
794
 
795
  // Detect all regions in function and build the region tree.
796
  void calculate(FuncT &F);
797
 
798
public:
799
  RegionInfoBase(const RegionInfoBase &) = delete;
800
  RegionInfoBase &operator=(const RegionInfoBase &) = delete;
801
 
802
  static bool VerifyRegionInfo;
803
  static typename RegionT::PrintStyle printStyle;
804
 
805
  void print(raw_ostream &OS) const;
806
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
807
  void dump() const;
808
#endif
809
 
810
  void releaseMemory();
811
 
812
  /// Get the smallest region that contains a BasicBlock.
813
  ///
814
  /// @param BB The basic block.
815
  /// @return The smallest region, that contains BB or NULL, if there is no
816
  /// region containing BB.
817
  RegionT *getRegionFor(BlockT *BB) const;
818
 
819
  ///  Set the smallest region that surrounds a basic block.
820
  ///
821
  /// @param BB The basic block surrounded by a region.
822
  /// @param R The smallest region that surrounds BB.
823
  void setRegionFor(BlockT *BB, RegionT *R);
824
 
825
  /// A shortcut for getRegionFor().
826
  ///
827
  /// @param BB The basic block.
828
  /// @return The smallest region, that contains BB or NULL, if there is no
829
  /// region containing BB.
830
  RegionT *operator[](BlockT *BB) const;
831
 
832
  /// Return the exit of the maximal refined region, that starts at a
833
  /// BasicBlock.
834
  ///
835
  /// @param BB The BasicBlock the refined region starts.
836
  BlockT *getMaxRegionExit(BlockT *BB) const;
837
 
838
  /// Find the smallest region that contains two regions.
839
  ///
840
  /// @param A The first region.
841
  /// @param B The second region.
842
  /// @return The smallest region containing A and B.
843
  RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
844
 
845
  /// Find the smallest region that contains two basic blocks.
846
  ///
847
  /// @param A The first basic block.
848
  /// @param B The second basic block.
849
  /// @return The smallest region that contains A and B.
850
  RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
851
    return getCommonRegion(getRegionFor(A), getRegionFor(B));
852
  }
853
 
854
  /// Find the smallest region that contains a set of regions.
855
  ///
856
  /// @param Regions A vector of regions.
857
  /// @return The smallest region that contains all regions in Regions.
858
  RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
859
 
860
  /// Find the smallest region that contains a set of basic blocks.
861
  ///
862
  /// @param BBs A vector of basic blocks.
863
  /// @return The smallest region that contains all basic blocks in BBS.
864
  RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
865
 
866
  RegionT *getTopLevelRegion() const { return TopLevelRegion; }
867
 
868
  /// Clear the Node Cache for all Regions.
869
  ///
870
  /// @see Region::clearNodeCache()
871
  void clearNodeCache() {
872
    if (TopLevelRegion)
873
      TopLevelRegion->clearNodeCache();
874
  }
875
 
876
  void verifyAnalysis() const;
877
};
878
 
879
class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
880
public:
881
  inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
882
      : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
883
 
884
  bool operator==(const Region &RN) const {
885
    return this == reinterpret_cast<const RegionNode *>(&RN);
886
  }
887
};
888
 
889
class Region : public RegionBase<RegionTraits<Function>> {
890
public:
891
  Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
892
         Region *Parent = nullptr);
893
  ~Region();
894
 
895
  bool operator==(const RegionNode &RN) const {
896
    return &RN == reinterpret_cast<const RegionNode *>(this);
897
  }
898
};
899
 
900
class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
901
public:
902
  using Base = RegionInfoBase<RegionTraits<Function>>;
903
 
904
  explicit RegionInfo();
905
 
906
  RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) {
907
    updateRegionTree(*this, TopLevelRegion);
908
  }
909
 
910
  RegionInfo &operator=(RegionInfo &&RHS) {
911
    Base::operator=(std::move(static_cast<Base &>(RHS)));
912
    updateRegionTree(*this, TopLevelRegion);
913
    return *this;
914
  }
915
 
916
  ~RegionInfo() override;
917
 
918
  /// Handle invalidation explicitly.
919
  bool invalidate(Function &F, const PreservedAnalyses &PA,
920
                  FunctionAnalysisManager::Invalidator &);
921
 
922
  // updateStatistics - Update statistic about created regions.
923
  void updateStatistics(Region *R) final;
924
 
925
  void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
926
                   DominanceFrontier *DF);
927
 
928
#ifndef NDEBUG
929
  /// Opens a viewer to show the GraphViz visualization of the regions.
930
  ///
931
  /// Useful during debugging as an alternative to dump().
932
  void view();
933
 
934
  /// Opens a viewer to show the GraphViz visualization of this region
935
  /// without instructions in the BasicBlocks.
936
  ///
937
  /// Useful during debugging as an alternative to dump().
938
  void viewOnly();
939
#endif
940
};
941
 
942
class RegionInfoPass : public FunctionPass {
943
  RegionInfo RI;
944
 
945
public:
946
  static char ID;
947
 
948
  explicit RegionInfoPass();
949
  ~RegionInfoPass() override;
950
 
951
  RegionInfo &getRegionInfo() { return RI; }
952
 
953
  const RegionInfo &getRegionInfo() const { return RI; }
954
 
955
  /// @name FunctionPass interface
956
  //@{
957
  bool runOnFunction(Function &F) override;
958
  void releaseMemory() override;
959
  void verifyAnalysis() const override;
960
  void getAnalysisUsage(AnalysisUsage &AU) const override;
961
  void print(raw_ostream &OS, const Module *) const override;
962
  void dump() const;
963
  //@}
964
};
965
 
966
/// Analysis pass that exposes the \c RegionInfo for a function.
967
class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
968
  friend AnalysisInfoMixin<RegionInfoAnalysis>;
969
 
970
  static AnalysisKey Key;
971
 
972
public:
973
  using Result = RegionInfo;
974
 
975
  RegionInfo run(Function &F, FunctionAnalysisManager &AM);
976
};
977
 
978
/// Printer pass for the \c RegionInfo.
979
class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
980
  raw_ostream &OS;
981
 
982
public:
983
  explicit RegionInfoPrinterPass(raw_ostream &OS);
984
 
985
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
986
};
987
 
988
/// Verifier pass for the \c RegionInfo.
989
struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
990
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
991
};
992
 
993
template <>
994
template <>
995
inline BasicBlock *
996
RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
997
  assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
998
  return getEntry();
999
}
1000
 
1001
template <>
1002
template <>
1003
inline Region *
1004
RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
1005
  assert(isSubRegion() && "This is not a subregion RegionNode!");
1006
  auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
1007
  return reinterpret_cast<Region *>(Unconst);
1008
}
1009
 
1010
template <class Tr>
1011
inline raw_ostream &operator<<(raw_ostream &OS,
1012
                               const RegionNodeBase<Tr> &Node) {
1013
  using BlockT = typename Tr::BlockT;
1014
  using RegionT = typename Tr::RegionT;
1015
 
1016
  if (Node.isSubRegion())
1017
    return OS << Node.template getNodeAs<RegionT>()->getNameStr();
1018
  else
1019
    return OS << Node.template getNodeAs<BlockT>()->getName();
1020
}
1021
 
1022
extern template class RegionBase<RegionTraits<Function>>;
1023
extern template class RegionNodeBase<RegionTraits<Function>>;
1024
extern template class RegionInfoBase<RegionTraits<Function>>;
1025
 
1026
} // end namespace llvm
1027
 
1028
#endif // LLVM_ANALYSIS_REGIONINFO_H