Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/Analysis/LoopUnrollAnalyzer.h - Loop Unroll Analyzer-*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements UnrolledInstAnalyzer class. It's used for predicting
10
// potential effects that loop unrolling might have, such as enabling constant
11
// propagation and other optimizations.
12
//
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_ANALYSIS_LOOPUNROLLANALYZER_H
16
#define LLVM_ANALYSIS_LOOPUNROLLANALYZER_H
17
 
18
#include "llvm/ADT/APInt.h"
19
#include "llvm/ADT/DenseMap.h"
20
#include "llvm/Analysis/ScalarEvolution.h"
21
#include "llvm/IR/InstVisitor.h"
22
 
23
// This class is used to get an estimate of the optimization effects that we
24
// could get from complete loop unrolling. It comes from the fact that some
25
// loads might be replaced with concrete constant values and that could trigger
26
// a chain of instruction simplifications.
27
//
28
// E.g. we might have:
29
//   int a[] = {0, 1, 0};
30
//   v = 0;
31
//   for (i = 0; i < 3; i ++)
32
//     v += b[i]*a[i];
33
// If we completely unroll the loop, we would get:
34
//   v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
35
// Which then will be simplified to:
36
//   v = b[0]* 0 + b[1]* 1 + b[2]* 0
37
// And finally:
38
//   v = b[1]
39
namespace llvm {
40
class Instruction;
41
 
42
class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
43
  typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
44
  friend class InstVisitor<UnrolledInstAnalyzer, bool>;
45
  struct SimplifiedAddress {
46
    Value *Base = nullptr;
47
    ConstantInt *Offset = nullptr;
48
  };
49
 
50
public:
51
  UnrolledInstAnalyzer(unsigned Iteration,
52
                       DenseMap<Value *, Value *> &SimplifiedValues,
53
                       ScalarEvolution &SE, const Loop *L)
54
      : SimplifiedValues(SimplifiedValues), SE(SE), L(L) {
55
      IterationNumber = SE.getConstant(APInt(64, Iteration));
56
  }
57
 
58
  // Allow access to the initial visit method.
59
  using Base::visit;
60
 
61
private:
62
  /// A cache of pointer bases and constant-folded offsets corresponding
63
  /// to GEP (or derived from GEP) instructions.
64
  ///
65
  /// In order to find the base pointer one needs to perform non-trivial
66
  /// traversal of the corresponding SCEV expression, so it's good to have the
67
  /// results saved.
68
  DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
69
 
70
  /// SCEV expression corresponding to number of currently simulated
71
  /// iteration.
72
  const SCEV *IterationNumber;
73
 
74
  /// While we walk the loop instructions, we build up and maintain a mapping
75
  /// of simplified values specific to this iteration.  The idea is to propagate
76
  /// any special information we have about loads that can be replaced with
77
  /// constants after complete unrolling, and account for likely simplifications
78
  /// post-unrolling.
79
  DenseMap<Value *, Value *> &SimplifiedValues;
80
 
81
  ScalarEvolution &SE;
82
  const Loop *L;
83
 
84
  bool simplifyInstWithSCEV(Instruction *I);
85
 
86
  bool visitInstruction(Instruction &I);
87
  bool visitBinaryOperator(BinaryOperator &I);
88
  bool visitLoad(LoadInst &I);
89
  bool visitCastInst(CastInst &I);
90
  bool visitCmpInst(CmpInst &I);
91
  bool visitPHINode(PHINode &PN);
92
};
93
}
94
#endif