Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This is the generic implementation of LoopInfo used for both Loops and |
||
| 10 | // MachineLoops. |
||
| 11 | // |
||
| 12 | //===----------------------------------------------------------------------===// |
||
| 13 | |||
| 14 | #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H |
||
| 15 | #define LLVM_ANALYSIS_LOOPINFOIMPL_H |
||
| 16 | |||
| 17 | #include "llvm/ADT/PostOrderIterator.h" |
||
| 18 | #include "llvm/ADT/STLExtras.h" |
||
| 19 | #include "llvm/ADT/SetOperations.h" |
||
| 20 | #include "llvm/Analysis/LoopInfo.h" |
||
| 21 | #include "llvm/IR/Dominators.h" |
||
| 22 | |||
| 23 | namespace llvm { |
||
| 24 | |||
| 25 | //===----------------------------------------------------------------------===// |
||
| 26 | // APIs for simple analysis of the loop. See header notes. |
||
| 27 | |||
| 28 | /// getExitingBlocks - Return all blocks inside the loop that have successors |
||
| 29 | /// outside of the loop. These are the blocks _inside of the current loop_ |
||
| 30 | /// which branch out. The returned list is always unique. |
||
| 31 | /// |
||
| 32 | template <class BlockT, class LoopT> |
||
| 33 | void LoopBase<BlockT, LoopT>::getExitingBlocks( |
||
| 34 | SmallVectorImpl<BlockT *> &ExitingBlocks) const { |
||
| 35 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 36 | for (const auto BB : blocks()) |
||
| 37 | for (auto *Succ : children<BlockT *>(BB)) |
||
| 38 | if (!contains(Succ)) { |
||
| 39 | // Not in current loop? It must be an exit block. |
||
| 40 | ExitingBlocks.push_back(BB); |
||
| 41 | break; |
||
| 42 | } |
||
| 43 | } |
||
| 44 | |||
| 45 | /// getExitingBlock - If getExitingBlocks would return exactly one block, |
||
| 46 | /// return that block. Otherwise return null. |
||
| 47 | template <class BlockT, class LoopT> |
||
| 48 | BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const { |
||
| 49 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 50 | auto notInLoop = [&](BlockT *BB) { return !contains(BB); }; |
||
| 51 | auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * { |
||
| 52 | assert(!AllowRepeats && "Unexpected parameter value."); |
||
| 53 | // Child not in current loop? It must be an exit block. |
||
| 54 | return any_of(children<BlockT *>(BB), notInLoop) ? BB : nullptr; |
||
| 55 | }; |
||
| 56 | |||
| 57 | return find_singleton<BlockT>(blocks(), isExitBlock); |
||
| 58 | } |
||
| 59 | |||
| 60 | /// getExitBlocks - Return all of the successor blocks of this loop. These |
||
| 61 | /// are the blocks _outside of the current loop_ which are branched to. |
||
| 62 | /// |
||
| 63 | template <class BlockT, class LoopT> |
||
| 64 | void LoopBase<BlockT, LoopT>::getExitBlocks( |
||
| 65 | SmallVectorImpl<BlockT *> &ExitBlocks) const { |
||
| 66 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 67 | for (const auto BB : blocks()) |
||
| 68 | for (auto *Succ : children<BlockT *>(BB)) |
||
| 69 | if (!contains(Succ)) |
||
| 70 | // Not in current loop? It must be an exit block. |
||
| 71 | ExitBlocks.push_back(Succ); |
||
| 72 | } |
||
| 73 | |||
| 74 | /// getExitBlock - If getExitBlocks would return exactly one block, |
||
| 75 | /// return that block. Otherwise return null. |
||
| 76 | template <class BlockT, class LoopT> |
||
| 77 | std::pair<BlockT *, bool> getExitBlockHelper(const LoopBase<BlockT, LoopT> *L, |
||
| 78 | bool Unique) { |
||
| 79 | assert(!L->isInvalid() && "Loop not in a valid state!"); |
||
| 80 | auto notInLoop = [&](BlockT *BB, |
||
| 81 | bool AllowRepeats) -> std::pair<BlockT *, bool> { |
||
| 82 | assert(AllowRepeats == Unique && "Unexpected parameter value."); |
||
| 83 | return {!L->contains(BB) ? BB : nullptr, false}; |
||
| 84 | }; |
||
| 85 | auto singleExitBlock = [&](BlockT *BB, |
||
| 86 | bool AllowRepeats) -> std::pair<BlockT *, bool> { |
||
| 87 | assert(AllowRepeats == Unique && "Unexpected parameter value."); |
||
| 88 | return find_singleton_nested<BlockT>(children<BlockT *>(BB), notInLoop, |
||
| 89 | AllowRepeats); |
||
| 90 | }; |
||
| 91 | return find_singleton_nested<BlockT>(L->blocks(), singleExitBlock, Unique); |
||
| 92 | } |
||
| 93 | |||
| 94 | template <class BlockT, class LoopT> |
||
| 95 | bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const { |
||
| 96 | auto RC = getExitBlockHelper(this, false); |
||
| 97 | if (RC.second) |
||
| 98 | // found multiple exit blocks |
||
| 99 | return false; |
||
| 100 | // return true if there is no exit block |
||
| 101 | return !RC.first; |
||
| 102 | } |
||
| 103 | |||
| 104 | /// getExitBlock - If getExitBlocks would return exactly one block, |
||
| 105 | /// return that block. Otherwise return null. |
||
| 106 | template <class BlockT, class LoopT> |
||
| 107 | BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const { |
||
| 108 | return getExitBlockHelper(this, false).first; |
||
| 109 | } |
||
| 110 | |||
| 111 | template <class BlockT, class LoopT> |
||
| 112 | bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const { |
||
| 113 | // Each predecessor of each exit block of a normal loop is contained |
||
| 114 | // within the loop. |
||
| 115 | SmallVector<BlockT *, 4> UniqueExitBlocks; |
||
| 116 | getUniqueExitBlocks(UniqueExitBlocks); |
||
| 117 | for (BlockT *EB : UniqueExitBlocks) |
||
| 118 | for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB)) |
||
| 119 | if (!contains(Predecessor)) |
||
| 120 | return false; |
||
| 121 | // All the requirements are met. |
||
| 122 | return true; |
||
| 123 | } |
||
| 124 | |||
| 125 | // Helper function to get unique loop exits. Pred is a predicate pointing to |
||
| 126 | // BasicBlocks in a loop which should be considered to find loop exits. |
||
| 127 | template <class BlockT, class LoopT, typename PredicateT> |
||
| 128 | void getUniqueExitBlocksHelper(const LoopT *L, |
||
| 129 | SmallVectorImpl<BlockT *> &ExitBlocks, |
||
| 130 | PredicateT Pred) { |
||
| 131 | assert(!L->isInvalid() && "Loop not in a valid state!"); |
||
| 132 | SmallPtrSet<BlockT *, 32> Visited; |
||
| 133 | auto Filtered = make_filter_range(L->blocks(), Pred); |
||
| 134 | for (BlockT *BB : Filtered) |
||
| 135 | for (BlockT *Successor : children<BlockT *>(BB)) |
||
| 136 | if (!L->contains(Successor)) |
||
| 137 | if (Visited.insert(Successor).second) |
||
| 138 | ExitBlocks.push_back(Successor); |
||
| 139 | } |
||
| 140 | |||
| 141 | template <class BlockT, class LoopT> |
||
| 142 | void LoopBase<BlockT, LoopT>::getUniqueExitBlocks( |
||
| 143 | SmallVectorImpl<BlockT *> &ExitBlocks) const { |
||
| 144 | getUniqueExitBlocksHelper(this, ExitBlocks, |
||
| 145 | [](const BlockT *BB) { return true; }); |
||
| 146 | } |
||
| 147 | |||
| 148 | template <class BlockT, class LoopT> |
||
| 149 | void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks( |
||
| 150 | SmallVectorImpl<BlockT *> &ExitBlocks) const { |
||
| 151 | const BlockT *Latch = getLoopLatch(); |
||
| 152 | assert(Latch && "Latch block must exists"); |
||
| 153 | getUniqueExitBlocksHelper(this, ExitBlocks, |
||
| 154 | [Latch](const BlockT *BB) { return BB != Latch; }); |
||
| 155 | } |
||
| 156 | |||
| 157 | template <class BlockT, class LoopT> |
||
| 158 | BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const { |
||
| 159 | return getExitBlockHelper(this, true).first; |
||
| 160 | } |
||
| 161 | |||
| 162 | /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_). |
||
| 163 | template <class BlockT, class LoopT> |
||
| 164 | void LoopBase<BlockT, LoopT>::getExitEdges( |
||
| 165 | SmallVectorImpl<Edge> &ExitEdges) const { |
||
| 166 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 167 | for (const auto BB : blocks()) |
||
| 168 | for (auto *Succ : children<BlockT *>(BB)) |
||
| 169 | if (!contains(Succ)) |
||
| 170 | // Not in current loop? It must be an exit block. |
||
| 171 | ExitEdges.emplace_back(BB, Succ); |
||
| 172 | } |
||
| 173 | |||
| 174 | /// getLoopPreheader - If there is a preheader for this loop, return it. A |
||
| 175 | /// loop has a preheader if there is only one edge to the header of the loop |
||
| 176 | /// from outside of the loop and it is legal to hoist instructions into the |
||
| 177 | /// predecessor. If this is the case, the block branching to the header of the |
||
| 178 | /// loop is the preheader node. |
||
| 179 | /// |
||
| 180 | /// This method returns null if there is no preheader for the loop. |
||
| 181 | /// |
||
| 182 | template <class BlockT, class LoopT> |
||
| 183 | BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const { |
||
| 184 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 185 | // Keep track of nodes outside the loop branching to the header... |
||
| 186 | BlockT *Out = getLoopPredecessor(); |
||
| 187 | if (!Out) |
||
| 188 | return nullptr; |
||
| 189 | |||
| 190 | // Make sure we are allowed to hoist instructions into the predecessor. |
||
| 191 | if (!Out->isLegalToHoistInto()) |
||
| 192 | return nullptr; |
||
| 193 | |||
| 194 | // Make sure there is only one exit out of the preheader. |
||
| 195 | typedef GraphTraits<BlockT *> BlockTraits; |
||
| 196 | typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out); |
||
| 197 | ++SI; |
||
| 198 | if (SI != BlockTraits::child_end(Out)) |
||
| 199 | return nullptr; // Multiple exits from the block, must not be a preheader. |
||
| 200 | |||
| 201 | // The predecessor has exactly one successor, so it is a preheader. |
||
| 202 | return Out; |
||
| 203 | } |
||
| 204 | |||
| 205 | /// getLoopPredecessor - If the given loop's header has exactly one unique |
||
| 206 | /// predecessor outside the loop, return it. Otherwise return null. |
||
| 207 | /// This is less strict that the loop "preheader" concept, which requires |
||
| 208 | /// the predecessor to have exactly one successor. |
||
| 209 | /// |
||
| 210 | template <class BlockT, class LoopT> |
||
| 211 | BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const { |
||
| 212 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 213 | // Keep track of nodes outside the loop branching to the header... |
||
| 214 | BlockT *Out = nullptr; |
||
| 215 | |||
| 216 | // Loop over the predecessors of the header node... |
||
| 217 | BlockT *Header = getHeader(); |
||
| 218 | for (const auto Pred : children<Inverse<BlockT *>>(Header)) { |
||
| 219 | if (!contains(Pred)) { // If the block is not in the loop... |
||
| 220 | if (Out && Out != Pred) |
||
| 221 | return nullptr; // Multiple predecessors outside the loop |
||
| 222 | Out = Pred; |
||
| 223 | } |
||
| 224 | } |
||
| 225 | |||
| 226 | return Out; |
||
| 227 | } |
||
| 228 | |||
| 229 | /// getLoopLatch - If there is a single latch block for this loop, return it. |
||
| 230 | /// A latch block is a block that contains a branch back to the header. |
||
| 231 | template <class BlockT, class LoopT> |
||
| 232 | BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const { |
||
| 233 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 234 | BlockT *Header = getHeader(); |
||
| 235 | BlockT *Latch = nullptr; |
||
| 236 | for (const auto Pred : children<Inverse<BlockT *>>(Header)) { |
||
| 237 | if (contains(Pred)) { |
||
| 238 | if (Latch) |
||
| 239 | return nullptr; |
||
| 240 | Latch = Pred; |
||
| 241 | } |
||
| 242 | } |
||
| 243 | |||
| 244 | return Latch; |
||
| 245 | } |
||
| 246 | |||
| 247 | //===----------------------------------------------------------------------===// |
||
| 248 | // APIs for updating loop information after changing the CFG |
||
| 249 | // |
||
| 250 | |||
| 251 | /// addBasicBlockToLoop - This method is used by other analyses to update loop |
||
| 252 | /// information. NewBB is set to be a new member of the current loop. |
||
| 253 | /// Because of this, it is added as a member of all parent loops, and is added |
||
| 254 | /// to the specified LoopInfo object as being in the current basic block. It |
||
| 255 | /// is not valid to replace the loop header with this method. |
||
| 256 | /// |
||
| 257 | template <class BlockT, class LoopT> |
||
| 258 | void LoopBase<BlockT, LoopT>::addBasicBlockToLoop( |
||
| 259 | BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) { |
||
| 260 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 261 | #ifndef NDEBUG |
||
| 262 | if (!Blocks.empty()) { |
||
| 263 | auto SameHeader = LIB[getHeader()]; |
||
| 264 | assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() && |
||
| 265 | "Incorrect LI specified for this loop!"); |
||
| 266 | } |
||
| 267 | #endif |
||
| 268 | assert(NewBB && "Cannot add a null basic block to the loop!"); |
||
| 269 | assert(!LIB[NewBB] && "BasicBlock already in the loop!"); |
||
| 270 | |||
| 271 | LoopT *L = static_cast<LoopT *>(this); |
||
| 272 | |||
| 273 | // Add the loop mapping to the LoopInfo object... |
||
| 274 | LIB.BBMap[NewBB] = L; |
||
| 275 | |||
| 276 | // Add the basic block to this loop and all parent loops... |
||
| 277 | while (L) { |
||
| 278 | L->addBlockEntry(NewBB); |
||
| 279 | L = L->getParentLoop(); |
||
| 280 | } |
||
| 281 | } |
||
| 282 | |||
| 283 | /// replaceChildLoopWith - This is used when splitting loops up. It replaces |
||
| 284 | /// the OldChild entry in our children list with NewChild, and updates the |
||
| 285 | /// parent pointer of OldChild to be null and the NewChild to be this loop. |
||
| 286 | /// This updates the loop depth of the new child. |
||
| 287 | template <class BlockT, class LoopT> |
||
| 288 | void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild, |
||
| 289 | LoopT *NewChild) { |
||
| 290 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 291 | assert(OldChild->ParentLoop == this && "This loop is already broken!"); |
||
| 292 | assert(!NewChild->ParentLoop && "NewChild already has a parent!"); |
||
| 293 | typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild); |
||
| 294 | assert(I != SubLoops.end() && "OldChild not in loop!"); |
||
| 295 | *I = NewChild; |
||
| 296 | OldChild->ParentLoop = nullptr; |
||
| 297 | NewChild->ParentLoop = static_cast<LoopT *>(this); |
||
| 298 | } |
||
| 299 | |||
| 300 | /// verifyLoop - Verify loop structure |
||
| 301 | template <class BlockT, class LoopT> |
||
| 302 | void LoopBase<BlockT, LoopT>::verifyLoop() const { |
||
| 303 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 304 | #ifndef NDEBUG |
||
| 305 | assert(!Blocks.empty() && "Loop header is missing"); |
||
| 306 | |||
| 307 | // Setup for using a depth-first iterator to visit every block in the loop. |
||
| 308 | SmallVector<BlockT *, 8> ExitBBs; |
||
| 309 | getExitBlocks(ExitBBs); |
||
| 310 | df_iterator_default_set<BlockT *> VisitSet; |
||
| 311 | VisitSet.insert(ExitBBs.begin(), ExitBBs.end()); |
||
| 312 | |||
| 313 | // Keep track of the BBs visited. |
||
| 314 | SmallPtrSet<BlockT *, 8> VisitedBBs; |
||
| 315 | |||
| 316 | // Check the individual blocks. |
||
| 317 | for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) { |
||
| 318 | assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB), |
||
| 319 | GraphTraits<BlockT *>::child_end(BB), |
||
| 320 | [&](BlockT *B) { return contains(B); }) && |
||
| 321 | "Loop block has no in-loop successors!"); |
||
| 322 | |||
| 323 | assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB), |
||
| 324 | GraphTraits<Inverse<BlockT *>>::child_end(BB), |
||
| 325 | [&](BlockT *B) { return contains(B); }) && |
||
| 326 | "Loop block has no in-loop predecessors!"); |
||
| 327 | |||
| 328 | SmallVector<BlockT *, 2> OutsideLoopPreds; |
||
| 329 | for (BlockT *B : |
||
| 330 | llvm::make_range(GraphTraits<Inverse<BlockT *>>::child_begin(BB), |
||
| 331 | GraphTraits<Inverse<BlockT *>>::child_end(BB))) |
||
| 332 | if (!contains(B)) |
||
| 333 | OutsideLoopPreds.push_back(B); |
||
| 334 | |||
| 335 | if (BB == getHeader()) { |
||
| 336 | assert(!OutsideLoopPreds.empty() && "Loop is unreachable!"); |
||
| 337 | } else if (!OutsideLoopPreds.empty()) { |
||
| 338 | // A non-header loop shouldn't be reachable from outside the loop, |
||
| 339 | // though it is permitted if the predecessor is not itself actually |
||
| 340 | // reachable. |
||
| 341 | BlockT *EntryBB = &BB->getParent()->front(); |
||
| 342 | for (BlockT *CB : depth_first(EntryBB)) |
||
| 343 | for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i) |
||
| 344 | assert(CB != OutsideLoopPreds[i] && |
||
| 345 | "Loop has multiple entry points!"); |
||
| 346 | } |
||
| 347 | assert(BB != &getHeader()->getParent()->front() && |
||
| 348 | "Loop contains function entry block!"); |
||
| 349 | |||
| 350 | VisitedBBs.insert(BB); |
||
| 351 | } |
||
| 352 | |||
| 353 | if (VisitedBBs.size() != getNumBlocks()) { |
||
| 354 | dbgs() << "The following blocks are unreachable in the loop: "; |
||
| 355 | for (auto *BB : Blocks) { |
||
| 356 | if (!VisitedBBs.count(BB)) { |
||
| 357 | dbgs() << *BB << "\n"; |
||
| 358 | } |
||
| 359 | } |
||
| 360 | assert(false && "Unreachable block in loop"); |
||
| 361 | } |
||
| 362 | |||
| 363 | // Check the subloops. |
||
| 364 | for (iterator I = begin(), E = end(); I != E; ++I) |
||
| 365 | // Each block in each subloop should be contained within this loop. |
||
| 366 | for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end(); |
||
| 367 | BI != BE; ++BI) { |
||
| 368 | assert(contains(*BI) && |
||
| 369 | "Loop does not contain all the blocks of a subloop!"); |
||
| 370 | } |
||
| 371 | |||
| 372 | // Check the parent loop pointer. |
||
| 373 | if (ParentLoop) { |
||
| 374 | assert(is_contained(*ParentLoop, this) && |
||
| 375 | "Loop is not a subloop of its parent!"); |
||
| 376 | } |
||
| 377 | #endif |
||
| 378 | } |
||
| 379 | |||
| 380 | /// verifyLoop - Verify loop structure of this loop and all nested loops. |
||
| 381 | template <class BlockT, class LoopT> |
||
| 382 | void LoopBase<BlockT, LoopT>::verifyLoopNest( |
||
| 383 | DenseSet<const LoopT *> *Loops) const { |
||
| 384 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
| 385 | Loops->insert(static_cast<const LoopT *>(this)); |
||
| 386 | // Verify this loop. |
||
| 387 | verifyLoop(); |
||
| 388 | // Verify the subloops. |
||
| 389 | for (iterator I = begin(), E = end(); I != E; ++I) |
||
| 390 | (*I)->verifyLoopNest(Loops); |
||
| 391 | } |
||
| 392 | |||
| 393 | template <class BlockT, class LoopT> |
||
| 394 | void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, bool Verbose, |
||
| 395 | bool PrintNested, unsigned Depth) const { |
||
| 396 | OS.indent(Depth * 2); |
||
| 397 | if (static_cast<const LoopT *>(this)->isAnnotatedParallel()) |
||
| 398 | OS << "Parallel "; |
||
| 399 | OS << "Loop at depth " << getLoopDepth() << " containing: "; |
||
| 400 | |||
| 401 | BlockT *H = getHeader(); |
||
| 402 | for (unsigned i = 0; i < getBlocks().size(); ++i) { |
||
| 403 | BlockT *BB = getBlocks()[i]; |
||
| 404 | if (!Verbose) { |
||
| 405 | if (i) |
||
| 406 | OS << ","; |
||
| 407 | BB->printAsOperand(OS, false); |
||
| 408 | } else |
||
| 409 | OS << "\n"; |
||
| 410 | |||
| 411 | if (BB == H) |
||
| 412 | OS << "<header>"; |
||
| 413 | if (isLoopLatch(BB)) |
||
| 414 | OS << "<latch>"; |
||
| 415 | if (isLoopExiting(BB)) |
||
| 416 | OS << "<exiting>"; |
||
| 417 | if (Verbose) |
||
| 418 | BB->print(OS); |
||
| 419 | } |
||
| 420 | |||
| 421 | if (PrintNested) { |
||
| 422 | OS << "\n"; |
||
| 423 | |||
| 424 | for (iterator I = begin(), E = end(); I != E; ++I) |
||
| 425 | (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2); |
||
| 426 | } |
||
| 427 | } |
||
| 428 | |||
| 429 | //===----------------------------------------------------------------------===// |
||
| 430 | /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the |
||
| 431 | /// result does / not depend on use list (block predecessor) order. |
||
| 432 | /// |
||
| 433 | |||
| 434 | /// Discover a subloop with the specified backedges such that: All blocks within |
||
| 435 | /// this loop are mapped to this loop or a subloop. And all subloops within this |
||
| 436 | /// loop have their parent loop set to this loop or a subloop. |
||
| 437 | template <class BlockT, class LoopT> |
||
| 438 | static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges, |
||
| 439 | LoopInfoBase<BlockT, LoopT> *LI, |
||
| 440 | const DomTreeBase<BlockT> &DomTree) { |
||
| 441 | typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits; |
||
| 442 | |||
| 443 | unsigned NumBlocks = 0; |
||
| 444 | unsigned NumSubloops = 0; |
||
| 445 | |||
| 446 | // Perform a backward CFG traversal using a worklist. |
||
| 447 | std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end()); |
||
| 448 | while (!ReverseCFGWorklist.empty()) { |
||
| 449 | BlockT *PredBB = ReverseCFGWorklist.back(); |
||
| 450 | ReverseCFGWorklist.pop_back(); |
||
| 451 | |||
| 452 | LoopT *Subloop = LI->getLoopFor(PredBB); |
||
| 453 | if (!Subloop) { |
||
| 454 | if (!DomTree.isReachableFromEntry(PredBB)) |
||
| 455 | continue; |
||
| 456 | |||
| 457 | // This is an undiscovered block. Map it to the current loop. |
||
| 458 | LI->changeLoopFor(PredBB, L); |
||
| 459 | ++NumBlocks; |
||
| 460 | if (PredBB == L->getHeader()) |
||
| 461 | continue; |
||
| 462 | // Push all block predecessors on the worklist. |
||
| 463 | ReverseCFGWorklist.insert(ReverseCFGWorklist.end(), |
||
| 464 | InvBlockTraits::child_begin(PredBB), |
||
| 465 | InvBlockTraits::child_end(PredBB)); |
||
| 466 | } else { |
||
| 467 | // This is a discovered block. Find its outermost discovered loop. |
||
| 468 | Subloop = Subloop->getOutermostLoop(); |
||
| 469 | |||
| 470 | // If it is already discovered to be a subloop of this loop, continue. |
||
| 471 | if (Subloop == L) |
||
| 472 | continue; |
||
| 473 | |||
| 474 | // Discover a subloop of this loop. |
||
| 475 | Subloop->setParentLoop(L); |
||
| 476 | ++NumSubloops; |
||
| 477 | NumBlocks += Subloop->getBlocksVector().capacity(); |
||
| 478 | PredBB = Subloop->getHeader(); |
||
| 479 | // Continue traversal along predecessors that are not loop-back edges from |
||
| 480 | // within this subloop tree itself. Note that a predecessor may directly |
||
| 481 | // reach another subloop that is not yet discovered to be a subloop of |
||
| 482 | // this loop, which we must traverse. |
||
| 483 | for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) { |
||
| 484 | if (LI->getLoopFor(Pred) != Subloop) |
||
| 485 | ReverseCFGWorklist.push_back(Pred); |
||
| 486 | } |
||
| 487 | } |
||
| 488 | } |
||
| 489 | L->getSubLoopsVector().reserve(NumSubloops); |
||
| 490 | L->reserveBlocks(NumBlocks); |
||
| 491 | } |
||
| 492 | |||
| 493 | /// Populate all loop data in a stable order during a single forward DFS. |
||
| 494 | template <class BlockT, class LoopT> class PopulateLoopsDFS { |
||
| 495 | typedef GraphTraits<BlockT *> BlockTraits; |
||
| 496 | typedef typename BlockTraits::ChildIteratorType SuccIterTy; |
||
| 497 | |||
| 498 | LoopInfoBase<BlockT, LoopT> *LI; |
||
| 499 | |||
| 500 | public: |
||
| 501 | PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {} |
||
| 502 | |||
| 503 | void traverse(BlockT *EntryBlock); |
||
| 504 | |||
| 505 | protected: |
||
| 506 | void insertIntoLoop(BlockT *Block); |
||
| 507 | }; |
||
| 508 | |||
| 509 | /// Top-level driver for the forward DFS within the loop. |
||
| 510 | template <class BlockT, class LoopT> |
||
| 511 | void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) { |
||
| 512 | for (BlockT *BB : post_order(EntryBlock)) |
||
| 513 | insertIntoLoop(BB); |
||
| 514 | } |
||
| 515 | |||
| 516 | /// Add a single Block to its ancestor loops in PostOrder. If the block is a |
||
| 517 | /// subloop header, add the subloop to its parent in PostOrder, then reverse the |
||
| 518 | /// Block and Subloop vectors of the now complete subloop to achieve RPO. |
||
| 519 | template <class BlockT, class LoopT> |
||
| 520 | void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) { |
||
| 521 | LoopT *Subloop = LI->getLoopFor(Block); |
||
| 522 | if (Subloop && Block == Subloop->getHeader()) { |
||
| 523 | // We reach this point once per subloop after processing all the blocks in |
||
| 524 | // the subloop. |
||
| 525 | if (!Subloop->isOutermost()) |
||
| 526 | Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop); |
||
| 527 | else |
||
| 528 | LI->addTopLevelLoop(Subloop); |
||
| 529 | |||
| 530 | // For convenience, Blocks and Subloops are inserted in postorder. Reverse |
||
| 531 | // the lists, except for the loop header, which is always at the beginning. |
||
| 532 | Subloop->reverseBlock(1); |
||
| 533 | std::reverse(Subloop->getSubLoopsVector().begin(), |
||
| 534 | Subloop->getSubLoopsVector().end()); |
||
| 535 | |||
| 536 | Subloop = Subloop->getParentLoop(); |
||
| 537 | } |
||
| 538 | for (; Subloop; Subloop = Subloop->getParentLoop()) |
||
| 539 | Subloop->addBlockEntry(Block); |
||
| 540 | } |
||
| 541 | |||
| 542 | /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal |
||
| 543 | /// interleaved with backward CFG traversals within each subloop |
||
| 544 | /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so |
||
| 545 | /// this part of the algorithm is linear in the number of CFG edges. Subloop and |
||
| 546 | /// Block vectors are then populated during a single forward CFG traversal |
||
| 547 | /// (PopulateLoopDFS). |
||
| 548 | /// |
||
| 549 | /// During the two CFG traversals each block is seen three times: |
||
| 550 | /// 1) Discovered and mapped by a reverse CFG traversal. |
||
| 551 | /// 2) Visited during a forward DFS CFG traversal. |
||
| 552 | /// 3) Reverse-inserted in the loop in postorder following forward DFS. |
||
| 553 | /// |
||
| 554 | /// The Block vectors are inclusive, so step 3 requires loop-depth number of |
||
| 555 | /// insertions per block. |
||
| 556 | template <class BlockT, class LoopT> |
||
| 557 | void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) { |
||
| 558 | // Postorder traversal of the dominator tree. |
||
| 559 | const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode(); |
||
| 560 | for (auto DomNode : post_order(DomRoot)) { |
||
| 561 | |||
| 562 | BlockT *Header = DomNode->getBlock(); |
||
| 563 | SmallVector<BlockT *, 4> Backedges; |
||
| 564 | |||
| 565 | // Check each predecessor of the potential loop header. |
||
| 566 | for (const auto Backedge : children<Inverse<BlockT *>>(Header)) { |
||
| 567 | // If Header dominates predBB, this is a new loop. Collect the backedges. |
||
| 568 | if (DomTree.dominates(Header, Backedge) && |
||
| 569 | DomTree.isReachableFromEntry(Backedge)) { |
||
| 570 | Backedges.push_back(Backedge); |
||
| 571 | } |
||
| 572 | } |
||
| 573 | // Perform a backward CFG traversal to discover and map blocks in this loop. |
||
| 574 | if (!Backedges.empty()) { |
||
| 575 | LoopT *L = AllocateLoop(Header); |
||
| 576 | discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree); |
||
| 577 | } |
||
| 578 | } |
||
| 579 | // Perform a single forward CFG traversal to populate block and subloop |
||
| 580 | // vectors for all loops. |
||
| 581 | PopulateLoopsDFS<BlockT, LoopT> DFS(this); |
||
| 582 | DFS.traverse(DomRoot->getBlock()); |
||
| 583 | } |
||
| 584 | |||
| 585 | template <class BlockT, class LoopT> |
||
| 586 | SmallVector<LoopT *, 4> |
||
| 587 | LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() const { |
||
| 588 | SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist; |
||
| 589 | // The outer-most loop actually goes into the result in the same relative |
||
| 590 | // order as we walk it. But LoopInfo stores the top level loops in reverse |
||
| 591 | // program order so for here we reverse it to get forward program order. |
||
| 592 | // FIXME: If we change the order of LoopInfo we will want to remove the |
||
| 593 | // reverse here. |
||
| 594 | for (LoopT *RootL : reverse(*this)) { |
||
| 595 | auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder(); |
||
| 596 | PreOrderLoops.append(PreOrderLoopsInRootL.begin(), |
||
| 597 | PreOrderLoopsInRootL.end()); |
||
| 598 | } |
||
| 599 | |||
| 600 | return PreOrderLoops; |
||
| 601 | } |
||
| 602 | |||
| 603 | template <class BlockT, class LoopT> |
||
| 604 | SmallVector<LoopT *, 4> |
||
| 605 | LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() const { |
||
| 606 | SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist; |
||
| 607 | // The outer-most loop actually goes into the result in the same relative |
||
| 608 | // order as we walk it. LoopInfo stores the top level loops in reverse |
||
| 609 | // program order so we walk in order here. |
||
| 610 | // FIXME: If we change the order of LoopInfo we will want to add a reverse |
||
| 611 | // here. |
||
| 612 | for (LoopT *RootL : *this) { |
||
| 613 | assert(PreOrderWorklist.empty() && |
||
| 614 | "Must start with an empty preorder walk worklist."); |
||
| 615 | PreOrderWorklist.push_back(RootL); |
||
| 616 | do { |
||
| 617 | LoopT *L = PreOrderWorklist.pop_back_val(); |
||
| 618 | // Sub-loops are stored in forward program order, but will process the |
||
| 619 | // worklist backwards so we can just append them in order. |
||
| 620 | PreOrderWorklist.append(L->begin(), L->end()); |
||
| 621 | PreOrderLoops.push_back(L); |
||
| 622 | } while (!PreOrderWorklist.empty()); |
||
| 623 | } |
||
| 624 | |||
| 625 | return PreOrderLoops; |
||
| 626 | } |
||
| 627 | |||
| 628 | // Debugging |
||
| 629 | template <class BlockT, class LoopT> |
||
| 630 | void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const { |
||
| 631 | for (unsigned i = 0; i < TopLevelLoops.size(); ++i) |
||
| 632 | TopLevelLoops[i]->print(OS); |
||
| 633 | #if 0 |
||
| 634 | for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(), |
||
| 635 | E = BBMap.end(); I != E; ++I) |
||
| 636 | OS << "BB '" << I->first->getName() << "' level = " |
||
| 637 | << I->second->getLoopDepth() << "\n"; |
||
| 638 | #endif |
||
| 639 | } |
||
| 640 | |||
| 641 | template <typename T> |
||
| 642 | bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) { |
||
| 643 | llvm::sort(BB1); |
||
| 644 | llvm::sort(BB2); |
||
| 645 | return BB1 == BB2; |
||
| 646 | } |
||
| 647 | |||
| 648 | template <class BlockT, class LoopT> |
||
| 649 | void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders, |
||
| 650 | const LoopInfoBase<BlockT, LoopT> &LI, |
||
| 651 | const LoopT &L) { |
||
| 652 | LoopHeaders[L.getHeader()] = &L; |
||
| 653 | for (LoopT *SL : L) |
||
| 654 | addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL); |
||
| 655 | } |
||
| 656 | |||
| 657 | #ifndef NDEBUG |
||
| 658 | template <class BlockT, class LoopT> |
||
| 659 | static void compareLoops(const LoopT *L, const LoopT *OtherL, |
||
| 660 | DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) { |
||
| 661 | BlockT *H = L->getHeader(); |
||
| 662 | BlockT *OtherH = OtherL->getHeader(); |
||
| 663 | assert(H == OtherH && |
||
| 664 | "Mismatched headers even though found in the same map entry!"); |
||
| 665 | |||
| 666 | assert(L->getLoopDepth() == OtherL->getLoopDepth() && |
||
| 667 | "Mismatched loop depth!"); |
||
| 668 | const LoopT *ParentL = L, *OtherParentL = OtherL; |
||
| 669 | do { |
||
| 670 | assert(ParentL->getHeader() == OtherParentL->getHeader() && |
||
| 671 | "Mismatched parent loop headers!"); |
||
| 672 | ParentL = ParentL->getParentLoop(); |
||
| 673 | OtherParentL = OtherParentL->getParentLoop(); |
||
| 674 | } while (ParentL); |
||
| 675 | |||
| 676 | for (const LoopT *SubL : *L) { |
||
| 677 | BlockT *SubH = SubL->getHeader(); |
||
| 678 | const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH); |
||
| 679 | assert(OtherSubL && "Inner loop is missing in computed loop info!"); |
||
| 680 | OtherLoopHeaders.erase(SubH); |
||
| 681 | compareLoops(SubL, OtherSubL, OtherLoopHeaders); |
||
| 682 | } |
||
| 683 | |||
| 684 | std::vector<BlockT *> BBs = L->getBlocks(); |
||
| 685 | std::vector<BlockT *> OtherBBs = OtherL->getBlocks(); |
||
| 686 | assert(compareVectors(BBs, OtherBBs) && |
||
| 687 | "Mismatched basic blocks in the loops!"); |
||
| 688 | |||
| 689 | const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet(); |
||
| 690 | const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = |
||
| 691 | OtherL->getBlocksSet(); |
||
| 692 | assert(BlocksSet.size() == OtherBlocksSet.size() && |
||
| 693 | llvm::set_is_subset(BlocksSet, OtherBlocksSet) && |
||
| 694 | "Mismatched basic blocks in BlocksSets!"); |
||
| 695 | } |
||
| 696 | #endif |
||
| 697 | |||
| 698 | template <class BlockT, class LoopT> |
||
| 699 | void LoopInfoBase<BlockT, LoopT>::verify( |
||
| 700 | const DomTreeBase<BlockT> &DomTree) const { |
||
| 701 | DenseSet<const LoopT *> Loops; |
||
| 702 | for (iterator I = begin(), E = end(); I != E; ++I) { |
||
| 703 | assert((*I)->isOutermost() && "Top-level loop has a parent!"); |
||
| 704 | (*I)->verifyLoopNest(&Loops); |
||
| 705 | } |
||
| 706 | |||
| 707 | // Verify that blocks are mapped to valid loops. |
||
| 708 | #ifndef NDEBUG |
||
| 709 | for (auto &Entry : BBMap) { |
||
| 710 | const BlockT *BB = Entry.first; |
||
| 711 | LoopT *L = Entry.second; |
||
| 712 | assert(Loops.count(L) && "orphaned loop"); |
||
| 713 | assert(L->contains(BB) && "orphaned block"); |
||
| 714 | for (LoopT *ChildLoop : *L) |
||
| 715 | assert(!ChildLoop->contains(BB) && |
||
| 716 | "BBMap should point to the innermost loop containing BB"); |
||
| 717 | } |
||
| 718 | |||
| 719 | // Recompute LoopInfo to verify loops structure. |
||
| 720 | LoopInfoBase<BlockT, LoopT> OtherLI; |
||
| 721 | OtherLI.analyze(DomTree); |
||
| 722 | |||
| 723 | // Build a map we can use to move from our LI to the computed one. This |
||
| 724 | // allows us to ignore the particular order in any layer of the loop forest |
||
| 725 | // while still comparing the structure. |
||
| 726 | DenseMap<BlockT *, const LoopT *> OtherLoopHeaders; |
||
| 727 | for (LoopT *L : OtherLI) |
||
| 728 | addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L); |
||
| 729 | |||
| 730 | // Walk the top level loops and ensure there is a corresponding top-level |
||
| 731 | // loop in the computed version and then recursively compare those loop |
||
| 732 | // nests. |
||
| 733 | for (LoopT *L : *this) { |
||
| 734 | BlockT *Header = L->getHeader(); |
||
| 735 | const LoopT *OtherL = OtherLoopHeaders.lookup(Header); |
||
| 736 | assert(OtherL && "Top level loop is missing in computed loop info!"); |
||
| 737 | // Now that we've matched this loop, erase its header from the map. |
||
| 738 | OtherLoopHeaders.erase(Header); |
||
| 739 | // And recursively compare these loops. |
||
| 740 | compareLoops(L, OtherL, OtherLoopHeaders); |
||
| 741 | } |
||
| 742 | |||
| 743 | // Any remaining entries in the map are loops which were found when computing |
||
| 744 | // a fresh LoopInfo but not present in the current one. |
||
| 745 | if (!OtherLoopHeaders.empty()) { |
||
| 746 | for (const auto &HeaderAndLoop : OtherLoopHeaders) |
||
| 747 | dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n"; |
||
| 748 | llvm_unreachable("Found new loops when recomputing LoopInfo!"); |
||
| 749 | } |
||
| 750 | #endif |
||
| 751 | } |
||
| 752 | |||
| 753 | } // End llvm namespace |
||
| 754 | |||
| 755 | #endif |