Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines the LoopInfo class that is used to identify natural loops |
||
10 | // and determine the loop depth of various nodes of the CFG. A natural loop |
||
11 | // has exactly one entry-point, which is called the header. Note that natural |
||
12 | // loops may actually be several loops that share the same header node. |
||
13 | // |
||
14 | // This analysis calculates the nesting structure of loops in a function. For |
||
15 | // each natural loop identified, this analysis identifies natural loops |
||
16 | // contained entirely within the loop and the basic blocks the make up the loop. |
||
17 | // |
||
18 | // It can calculate on the fly various bits of information, for example: |
||
19 | // |
||
20 | // * whether there is a preheader for the loop |
||
21 | // * the number of back edges to the header |
||
22 | // * whether or not a particular block branches out of the loop |
||
23 | // * the successor blocks of the loop |
||
24 | // * the loop depth |
||
25 | // * etc... |
||
26 | // |
||
27 | // Note that this analysis specifically identifies *Loops* not cycles or SCCs |
||
28 | // in the CFG. There can be strongly connected components in the CFG which |
||
29 | // this analysis will not recognize and that will not be represented by a Loop |
||
30 | // instance. In particular, a Loop might be inside such a non-loop SCC, or a |
||
31 | // non-loop SCC might contain a sub-SCC which is a Loop. |
||
32 | // |
||
33 | // For an overview of terminology used in this API (and thus all of our loop |
||
34 | // analyses or transforms), see docs/LoopTerminology.rst. |
||
35 | // |
||
36 | //===----------------------------------------------------------------------===// |
||
37 | |||
38 | #ifndef LLVM_ANALYSIS_LOOPINFO_H |
||
39 | #define LLVM_ANALYSIS_LOOPINFO_H |
||
40 | |||
41 | #include "llvm/ADT/DenseMap.h" |
||
42 | #include "llvm/ADT/DenseSet.h" |
||
43 | #include "llvm/ADT/GraphTraits.h" |
||
44 | #include "llvm/ADT/SmallPtrSet.h" |
||
45 | #include "llvm/ADT/SmallVector.h" |
||
46 | #include "llvm/IR/CFG.h" |
||
47 | #include "llvm/IR/Instructions.h" |
||
48 | #include "llvm/IR/PassManager.h" |
||
49 | #include "llvm/Pass.h" |
||
50 | #include "llvm/Support/Allocator.h" |
||
51 | #include <algorithm> |
||
52 | #include <optional> |
||
53 | #include <utility> |
||
54 | |||
55 | namespace llvm { |
||
56 | |||
57 | class DominatorTree; |
||
58 | class InductionDescriptor; |
||
59 | class Instruction; |
||
60 | class LoopInfo; |
||
61 | class Loop; |
||
62 | class MDNode; |
||
63 | class MemorySSAUpdater; |
||
64 | class ScalarEvolution; |
||
65 | class raw_ostream; |
||
66 | template <class N, bool IsPostDom> class DominatorTreeBase; |
||
67 | template <class N, class M> class LoopInfoBase; |
||
68 | template <class N, class M> class LoopBase; |
||
69 | |||
70 | //===----------------------------------------------------------------------===// |
||
71 | /// Instances of this class are used to represent loops that are detected in the |
||
72 | /// flow graph. |
||
73 | /// |
||
74 | template <class BlockT, class LoopT> class LoopBase { |
||
75 | LoopT *ParentLoop; |
||
76 | // Loops contained entirely within this one. |
||
77 | std::vector<LoopT *> SubLoops; |
||
78 | |||
79 | // The list of blocks in this loop. First entry is the header node. |
||
80 | std::vector<BlockT *> Blocks; |
||
81 | |||
82 | SmallPtrSet<const BlockT *, 8> DenseBlockSet; |
||
83 | |||
84 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
85 | /// Indicator that this loop is no longer a valid loop. |
||
86 | bool IsInvalid = false; |
||
87 | #endif |
||
88 | |||
89 | LoopBase(const LoopBase<BlockT, LoopT> &) = delete; |
||
90 | const LoopBase<BlockT, LoopT> & |
||
91 | operator=(const LoopBase<BlockT, LoopT> &) = delete; |
||
92 | |||
93 | public: |
||
94 | /// Return the nesting level of this loop. An outer-most loop has depth 1, |
||
95 | /// for consistency with loop depth values used for basic blocks, where depth |
||
96 | /// 0 is used for blocks not inside any loops. |
||
97 | unsigned getLoopDepth() const { |
||
98 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
99 | unsigned D = 1; |
||
100 | for (const LoopT *CurLoop = ParentLoop; CurLoop; |
||
101 | CurLoop = CurLoop->ParentLoop) |
||
102 | ++D; |
||
103 | return D; |
||
104 | } |
||
105 | BlockT *getHeader() const { return getBlocks().front(); } |
||
106 | /// Return the parent loop if it exists or nullptr for top |
||
107 | /// level loops. |
||
108 | |||
109 | /// A loop is either top-level in a function (that is, it is not |
||
110 | /// contained in any other loop) or it is entirely enclosed in |
||
111 | /// some other loop. |
||
112 | /// If a loop is top-level, it has no parent, otherwise its |
||
113 | /// parent is the innermost loop in which it is enclosed. |
||
114 | LoopT *getParentLoop() const { return ParentLoop; } |
||
115 | |||
116 | /// Get the outermost loop in which this loop is contained. |
||
117 | /// This may be the loop itself, if it already is the outermost loop. |
||
118 | const LoopT *getOutermostLoop() const { |
||
119 | const LoopT *L = static_cast<const LoopT *>(this); |
||
120 | while (L->ParentLoop) |
||
121 | L = L->ParentLoop; |
||
122 | return L; |
||
123 | } |
||
124 | |||
125 | LoopT *getOutermostLoop() { |
||
126 | LoopT *L = static_cast<LoopT *>(this); |
||
127 | while (L->ParentLoop) |
||
128 | L = L->ParentLoop; |
||
129 | return L; |
||
130 | } |
||
131 | |||
132 | /// This is a raw interface for bypassing addChildLoop. |
||
133 | void setParentLoop(LoopT *L) { |
||
134 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
135 | ParentLoop = L; |
||
136 | } |
||
137 | |||
138 | /// Return true if the specified loop is contained within in this loop. |
||
139 | bool contains(const LoopT *L) const { |
||
140 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
141 | if (L == this) |
||
142 | return true; |
||
143 | if (!L) |
||
144 | return false; |
||
145 | return contains(L->getParentLoop()); |
||
146 | } |
||
147 | |||
148 | /// Return true if the specified basic block is in this loop. |
||
149 | bool contains(const BlockT *BB) const { |
||
150 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
151 | return DenseBlockSet.count(BB); |
||
152 | } |
||
153 | |||
154 | /// Return true if the specified instruction is in this loop. |
||
155 | template <class InstT> bool contains(const InstT *Inst) const { |
||
156 | return contains(Inst->getParent()); |
||
157 | } |
||
158 | |||
159 | /// Return the loops contained entirely within this loop. |
||
160 | const std::vector<LoopT *> &getSubLoops() const { |
||
161 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
162 | return SubLoops; |
||
163 | } |
||
164 | std::vector<LoopT *> &getSubLoopsVector() { |
||
165 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
166 | return SubLoops; |
||
167 | } |
||
168 | typedef typename std::vector<LoopT *>::const_iterator iterator; |
||
169 | typedef |
||
170 | typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; |
||
171 | iterator begin() const { return getSubLoops().begin(); } |
||
172 | iterator end() const { return getSubLoops().end(); } |
||
173 | reverse_iterator rbegin() const { return getSubLoops().rbegin(); } |
||
174 | reverse_iterator rend() const { return getSubLoops().rend(); } |
||
175 | |||
176 | // LoopInfo does not detect irreducible control flow, just natural |
||
177 | // loops. That is, it is possible that there is cyclic control |
||
178 | // flow within the "innermost loop" or around the "outermost |
||
179 | // loop". |
||
180 | |||
181 | /// Return true if the loop does not contain any (natural) loops. |
||
182 | bool isInnermost() const { return getSubLoops().empty(); } |
||
183 | /// Return true if the loop does not have a parent (natural) loop |
||
184 | // (i.e. it is outermost, which is the same as top-level). |
||
185 | bool isOutermost() const { return getParentLoop() == nullptr; } |
||
186 | |||
187 | /// Get a list of the basic blocks which make up this loop. |
||
188 | ArrayRef<BlockT *> getBlocks() const { |
||
189 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
190 | return Blocks; |
||
191 | } |
||
192 | typedef typename ArrayRef<BlockT *>::const_iterator block_iterator; |
||
193 | block_iterator block_begin() const { return getBlocks().begin(); } |
||
194 | block_iterator block_end() const { return getBlocks().end(); } |
||
195 | inline iterator_range<block_iterator> blocks() const { |
||
196 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
197 | return make_range(block_begin(), block_end()); |
||
198 | } |
||
199 | |||
200 | /// Get the number of blocks in this loop in constant time. |
||
201 | /// Invalidate the loop, indicating that it is no longer a loop. |
||
202 | unsigned getNumBlocks() const { |
||
203 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
204 | return Blocks.size(); |
||
205 | } |
||
206 | |||
207 | /// Return a direct, mutable handle to the blocks vector so that we can |
||
208 | /// mutate it efficiently with techniques like `std::remove`. |
||
209 | std::vector<BlockT *> &getBlocksVector() { |
||
210 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
211 | return Blocks; |
||
212 | } |
||
213 | /// Return a direct, mutable handle to the blocks set so that we can |
||
214 | /// mutate it efficiently. |
||
215 | SmallPtrSetImpl<const BlockT *> &getBlocksSet() { |
||
216 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
217 | return DenseBlockSet; |
||
218 | } |
||
219 | |||
220 | /// Return a direct, immutable handle to the blocks set. |
||
221 | const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const { |
||
222 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
223 | return DenseBlockSet; |
||
224 | } |
||
225 | |||
226 | /// Return true if this loop is no longer valid. The only valid use of this |
||
227 | /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to |
||
228 | /// true by the destructor. In other words, if this accessor returns true, |
||
229 | /// the caller has already triggered UB by calling this accessor; and so it |
||
230 | /// can only be called in a context where a return value of true indicates a |
||
231 | /// programmer error. |
||
232 | bool isInvalid() const { |
||
233 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
234 | return IsInvalid; |
||
235 | #else |
||
236 | return false; |
||
237 | #endif |
||
238 | } |
||
239 | |||
240 | /// True if terminator in the block can branch to another block that is |
||
241 | /// outside of the current loop. \p BB must be inside the loop. |
||
242 | bool isLoopExiting(const BlockT *BB) const { |
||
243 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
244 | assert(contains(BB) && "Exiting block must be part of the loop"); |
||
245 | for (const auto *Succ : children<const BlockT *>(BB)) { |
||
246 | if (!contains(Succ)) |
||
247 | return true; |
||
248 | } |
||
249 | return false; |
||
250 | } |
||
251 | |||
252 | /// Returns true if \p BB is a loop-latch. |
||
253 | /// A latch block is a block that contains a branch back to the header. |
||
254 | /// This function is useful when there are multiple latches in a loop |
||
255 | /// because \fn getLoopLatch will return nullptr in that case. |
||
256 | bool isLoopLatch(const BlockT *BB) const { |
||
257 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
258 | assert(contains(BB) && "block does not belong to the loop"); |
||
259 | |||
260 | BlockT *Header = getHeader(); |
||
261 | auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header); |
||
262 | auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header); |
||
263 | return std::find(PredBegin, PredEnd, BB) != PredEnd; |
||
264 | } |
||
265 | |||
266 | /// Calculate the number of back edges to the loop header. |
||
267 | unsigned getNumBackEdges() const { |
||
268 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
269 | unsigned NumBackEdges = 0; |
||
270 | BlockT *H = getHeader(); |
||
271 | |||
272 | for (const auto Pred : children<Inverse<BlockT *>>(H)) |
||
273 | if (contains(Pred)) |
||
274 | ++NumBackEdges; |
||
275 | |||
276 | return NumBackEdges; |
||
277 | } |
||
278 | |||
279 | //===--------------------------------------------------------------------===// |
||
280 | // APIs for simple analysis of the loop. |
||
281 | // |
||
282 | // Note that all of these methods can fail on general loops (ie, there may not |
||
283 | // be a preheader, etc). For best success, the loop simplification and |
||
284 | // induction variable canonicalization pass should be used to normalize loops |
||
285 | // for easy analysis. These methods assume canonical loops. |
||
286 | |||
287 | /// Return all blocks inside the loop that have successors outside of the |
||
288 | /// loop. These are the blocks _inside of the current loop_ which branch out. |
||
289 | /// The returned list is always unique. |
||
290 | void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const; |
||
291 | |||
292 | /// If getExitingBlocks would return exactly one block, return that block. |
||
293 | /// Otherwise return null. |
||
294 | BlockT *getExitingBlock() const; |
||
295 | |||
296 | /// Return all of the successor blocks of this loop. These are the blocks |
||
297 | /// _outside of the current loop_ which are branched to. |
||
298 | void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; |
||
299 | |||
300 | /// If getExitBlocks would return exactly one block, return that block. |
||
301 | /// Otherwise return null. |
||
302 | BlockT *getExitBlock() const; |
||
303 | |||
304 | /// Return true if no exit block for the loop has a predecessor that is |
||
305 | /// outside the loop. |
||
306 | bool hasDedicatedExits() const; |
||
307 | |||
308 | /// Return all unique successor blocks of this loop. |
||
309 | /// These are the blocks _outside of the current loop_ which are branched to. |
||
310 | void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; |
||
311 | |||
312 | /// Return all unique successor blocks of this loop except successors from |
||
313 | /// Latch block are not considered. If the exit comes from Latch has also |
||
314 | /// non Latch predecessor in a loop it will be added to ExitBlocks. |
||
315 | /// These are the blocks _outside of the current loop_ which are branched to. |
||
316 | void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; |
||
317 | |||
318 | /// If getUniqueExitBlocks would return exactly one block, return that block. |
||
319 | /// Otherwise return null. |
||
320 | BlockT *getUniqueExitBlock() const; |
||
321 | |||
322 | /// Return true if this loop does not have any exit blocks. |
||
323 | bool hasNoExitBlocks() const; |
||
324 | |||
325 | /// Edge type. |
||
326 | typedef std::pair<BlockT *, BlockT *> Edge; |
||
327 | |||
328 | /// Return all pairs of (_inside_block_,_outside_block_). |
||
329 | void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const; |
||
330 | |||
331 | /// If there is a preheader for this loop, return it. A loop has a preheader |
||
332 | /// if there is only one edge to the header of the loop from outside of the |
||
333 | /// loop. If this is the case, the block branching to the header of the loop |
||
334 | /// is the preheader node. |
||
335 | /// |
||
336 | /// This method returns null if there is no preheader for the loop. |
||
337 | BlockT *getLoopPreheader() const; |
||
338 | |||
339 | /// If the given loop's header has exactly one unique predecessor outside the |
||
340 | /// loop, return it. Otherwise return null. |
||
341 | /// This is less strict that the loop "preheader" concept, which requires |
||
342 | /// the predecessor to have exactly one successor. |
||
343 | BlockT *getLoopPredecessor() const; |
||
344 | |||
345 | /// If there is a single latch block for this loop, return it. |
||
346 | /// A latch block is a block that contains a branch back to the header. |
||
347 | BlockT *getLoopLatch() const; |
||
348 | |||
349 | /// Return all loop latch blocks of this loop. A latch block is a block that |
||
350 | /// contains a branch back to the header. |
||
351 | void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { |
||
352 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
353 | BlockT *H = getHeader(); |
||
354 | for (const auto Pred : children<Inverse<BlockT *>>(H)) |
||
355 | if (contains(Pred)) |
||
356 | LoopLatches.push_back(Pred); |
||
357 | } |
||
358 | |||
359 | /// Return all inner loops in the loop nest rooted by the loop in preorder, |
||
360 | /// with siblings in forward program order. |
||
361 | template <class Type> |
||
362 | static void getInnerLoopsInPreorder(const LoopT &L, |
||
363 | SmallVectorImpl<Type> &PreOrderLoops) { |
||
364 | SmallVector<LoopT *, 4> PreOrderWorklist; |
||
365 | PreOrderWorklist.append(L.rbegin(), L.rend()); |
||
366 | |||
367 | while (!PreOrderWorklist.empty()) { |
||
368 | LoopT *L = PreOrderWorklist.pop_back_val(); |
||
369 | // Sub-loops are stored in forward program order, but will process the |
||
370 | // worklist backwards so append them in reverse order. |
||
371 | PreOrderWorklist.append(L->rbegin(), L->rend()); |
||
372 | PreOrderLoops.push_back(L); |
||
373 | } |
||
374 | } |
||
375 | |||
376 | /// Return all loops in the loop nest rooted by the loop in preorder, with |
||
377 | /// siblings in forward program order. |
||
378 | SmallVector<const LoopT *, 4> getLoopsInPreorder() const { |
||
379 | SmallVector<const LoopT *, 4> PreOrderLoops; |
||
380 | const LoopT *CurLoop = static_cast<const LoopT *>(this); |
||
381 | PreOrderLoops.push_back(CurLoop); |
||
382 | getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); |
||
383 | return PreOrderLoops; |
||
384 | } |
||
385 | SmallVector<LoopT *, 4> getLoopsInPreorder() { |
||
386 | SmallVector<LoopT *, 4> PreOrderLoops; |
||
387 | LoopT *CurLoop = static_cast<LoopT *>(this); |
||
388 | PreOrderLoops.push_back(CurLoop); |
||
389 | getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); |
||
390 | return PreOrderLoops; |
||
391 | } |
||
392 | |||
393 | //===--------------------------------------------------------------------===// |
||
394 | // APIs for updating loop information after changing the CFG |
||
395 | // |
||
396 | |||
397 | /// This method is used by other analyses to update loop information. |
||
398 | /// NewBB is set to be a new member of the current loop. |
||
399 | /// Because of this, it is added as a member of all parent loops, and is added |
||
400 | /// to the specified LoopInfo object as being in the current basic block. It |
||
401 | /// is not valid to replace the loop header with this method. |
||
402 | void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); |
||
403 | |||
404 | /// This is used when splitting loops up. It replaces the OldChild entry in |
||
405 | /// our children list with NewChild, and updates the parent pointer of |
||
406 | /// OldChild to be null and the NewChild to be this loop. |
||
407 | /// This updates the loop depth of the new child. |
||
408 | void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); |
||
409 | |||
410 | /// Add the specified loop to be a child of this loop. |
||
411 | /// This updates the loop depth of the new child. |
||
412 | void addChildLoop(LoopT *NewChild) { |
||
413 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
414 | assert(!NewChild->ParentLoop && "NewChild already has a parent!"); |
||
415 | NewChild->ParentLoop = static_cast<LoopT *>(this); |
||
416 | SubLoops.push_back(NewChild); |
||
417 | } |
||
418 | |||
419 | /// This removes the specified child from being a subloop of this loop. The |
||
420 | /// loop is not deleted, as it will presumably be inserted into another loop. |
||
421 | LoopT *removeChildLoop(iterator I) { |
||
422 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
423 | assert(I != SubLoops.end() && "Cannot remove end iterator!"); |
||
424 | LoopT *Child = *I; |
||
425 | assert(Child->ParentLoop == this && "Child is not a child of this loop!"); |
||
426 | SubLoops.erase(SubLoops.begin() + (I - begin())); |
||
427 | Child->ParentLoop = nullptr; |
||
428 | return Child; |
||
429 | } |
||
430 | |||
431 | /// This removes the specified child from being a subloop of this loop. The |
||
432 | /// loop is not deleted, as it will presumably be inserted into another loop. |
||
433 | LoopT *removeChildLoop(LoopT *Child) { |
||
434 | return removeChildLoop(llvm::find(*this, Child)); |
||
435 | } |
||
436 | |||
437 | /// This adds a basic block directly to the basic block list. |
||
438 | /// This should only be used by transformations that create new loops. Other |
||
439 | /// transformations should use addBasicBlockToLoop. |
||
440 | void addBlockEntry(BlockT *BB) { |
||
441 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
442 | Blocks.push_back(BB); |
||
443 | DenseBlockSet.insert(BB); |
||
444 | } |
||
445 | |||
446 | /// interface to reverse Blocks[from, end of loop] in this loop |
||
447 | void reverseBlock(unsigned from) { |
||
448 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
449 | std::reverse(Blocks.begin() + from, Blocks.end()); |
||
450 | } |
||
451 | |||
452 | /// interface to do reserve() for Blocks |
||
453 | void reserveBlocks(unsigned size) { |
||
454 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
455 | Blocks.reserve(size); |
||
456 | } |
||
457 | |||
458 | /// This method is used to move BB (which must be part of this loop) to be the |
||
459 | /// loop header of the loop (the block that dominates all others). |
||
460 | void moveToHeader(BlockT *BB) { |
||
461 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
462 | if (Blocks[0] == BB) |
||
463 | return; |
||
464 | for (unsigned i = 0;; ++i) { |
||
465 | assert(i != Blocks.size() && "Loop does not contain BB!"); |
||
466 | if (Blocks[i] == BB) { |
||
467 | Blocks[i] = Blocks[0]; |
||
468 | Blocks[0] = BB; |
||
469 | return; |
||
470 | } |
||
471 | } |
||
472 | } |
||
473 | |||
474 | /// This removes the specified basic block from the current loop, updating the |
||
475 | /// Blocks as appropriate. This does not update the mapping in the LoopInfo |
||
476 | /// class. |
||
477 | void removeBlockFromLoop(BlockT *BB) { |
||
478 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
479 | auto I = find(Blocks, BB); |
||
480 | assert(I != Blocks.end() && "N is not in this list!"); |
||
481 | Blocks.erase(I); |
||
482 | |||
483 | DenseBlockSet.erase(BB); |
||
484 | } |
||
485 | |||
486 | /// Verify loop structure |
||
487 | void verifyLoop() const; |
||
488 | |||
489 | /// Verify loop structure of this loop and all nested loops. |
||
490 | void verifyLoopNest(DenseSet<const LoopT *> *Loops) const; |
||
491 | |||
492 | /// Returns true if the loop is annotated parallel. |
||
493 | /// |
||
494 | /// Derived classes can override this method using static template |
||
495 | /// polymorphism. |
||
496 | bool isAnnotatedParallel() const { return false; } |
||
497 | |||
498 | /// Print loop with all the BBs inside it. |
||
499 | void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true, |
||
500 | unsigned Depth = 0) const; |
||
501 | |||
502 | protected: |
||
503 | friend class LoopInfoBase<BlockT, LoopT>; |
||
504 | |||
505 | /// This creates an empty loop. |
||
506 | LoopBase() : ParentLoop(nullptr) {} |
||
507 | |||
508 | explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { |
||
509 | Blocks.push_back(BB); |
||
510 | DenseBlockSet.insert(BB); |
||
511 | } |
||
512 | |||
513 | // Since loop passes like SCEV are allowed to key analysis results off of |
||
514 | // `Loop` pointers, we cannot re-use pointers within a loop pass manager. |
||
515 | // This means loop passes should not be `delete` ing `Loop` objects directly |
||
516 | // (and risk a later `Loop` allocation re-using the address of a previous one) |
||
517 | // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop` |
||
518 | // pointer till the end of the lifetime of the `LoopInfo` object. |
||
519 | // |
||
520 | // To make it easier to follow this rule, we mark the destructor as |
||
521 | // non-public. |
||
522 | ~LoopBase() { |
||
523 | for (auto *SubLoop : SubLoops) |
||
524 | SubLoop->~LoopT(); |
||
525 | |||
526 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
527 | IsInvalid = true; |
||
528 | #endif |
||
529 | SubLoops.clear(); |
||
530 | Blocks.clear(); |
||
531 | DenseBlockSet.clear(); |
||
532 | ParentLoop = nullptr; |
||
533 | } |
||
534 | }; |
||
535 | |||
536 | template <class BlockT, class LoopT> |
||
537 | raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { |
||
538 | Loop.print(OS); |
||
539 | return OS; |
||
540 | } |
||
541 | |||
542 | // Implementation in LoopInfoImpl.h |
||
543 | extern template class LoopBase<BasicBlock, Loop>; |
||
544 | |||
545 | /// Represents a single loop in the control flow graph. Note that not all SCCs |
||
546 | /// in the CFG are necessarily loops. |
||
547 | class LLVM_EXTERNAL_VISIBILITY Loop : public LoopBase<BasicBlock, Loop> { |
||
548 | public: |
||
549 | /// A range representing the start and end location of a loop. |
||
550 | class LocRange { |
||
551 | DebugLoc Start; |
||
552 | DebugLoc End; |
||
553 | |||
554 | public: |
||
555 | LocRange() = default; |
||
556 | LocRange(DebugLoc Start) : Start(Start), End(Start) {} |
||
557 | LocRange(DebugLoc Start, DebugLoc End) |
||
558 | : Start(std::move(Start)), End(std::move(End)) {} |
||
559 | |||
560 | const DebugLoc &getStart() const { return Start; } |
||
561 | const DebugLoc &getEnd() const { return End; } |
||
562 | |||
563 | /// Check for null. |
||
564 | /// |
||
565 | explicit operator bool() const { return Start && End; } |
||
566 | }; |
||
567 | |||
568 | /// Return true if the specified value is loop invariant. |
||
569 | bool isLoopInvariant(const Value *V) const; |
||
570 | |||
571 | /// Return true if all the operands of the specified instruction are loop |
||
572 | /// invariant. |
||
573 | bool hasLoopInvariantOperands(const Instruction *I) const; |
||
574 | |||
575 | /// If the given value is an instruction inside of the loop and it can be |
||
576 | /// hoisted, do so to make it trivially loop-invariant. |
||
577 | /// Return true if \c V is already loop-invariant, and false if \c V can't |
||
578 | /// be made loop-invariant. If \c V is made loop-invariant, \c Changed is |
||
579 | /// set to true. This function can be used as a slightly more aggressive |
||
580 | /// replacement for isLoopInvariant. |
||
581 | /// |
||
582 | /// If InsertPt is specified, it is the point to hoist instructions to. |
||
583 | /// If null, the terminator of the loop preheader is used. |
||
584 | /// |
||
585 | bool makeLoopInvariant(Value *V, bool &Changed, |
||
586 | Instruction *InsertPt = nullptr, |
||
587 | MemorySSAUpdater *MSSAU = nullptr, |
||
588 | ScalarEvolution *SE = nullptr) const; |
||
589 | |||
590 | /// If the given instruction is inside of the loop and it can be hoisted, do |
||
591 | /// so to make it trivially loop-invariant. |
||
592 | /// Return true if \c I is already loop-invariant, and false if \c I can't |
||
593 | /// be made loop-invariant. If \c I is made loop-invariant, \c Changed is |
||
594 | /// set to true. This function can be used as a slightly more aggressive |
||
595 | /// replacement for isLoopInvariant. |
||
596 | /// |
||
597 | /// If InsertPt is specified, it is the point to hoist instructions to. |
||
598 | /// If null, the terminator of the loop preheader is used. |
||
599 | /// |
||
600 | bool makeLoopInvariant(Instruction *I, bool &Changed, |
||
601 | Instruction *InsertPt = nullptr, |
||
602 | MemorySSAUpdater *MSSAU = nullptr, |
||
603 | ScalarEvolution *SE = nullptr) const; |
||
604 | |||
605 | /// Check to see if the loop has a canonical induction variable: an integer |
||
606 | /// recurrence that starts at 0 and increments by one each time through the |
||
607 | /// loop. If so, return the phi node that corresponds to it. |
||
608 | /// |
||
609 | /// The IndVarSimplify pass transforms loops to have a canonical induction |
||
610 | /// variable. |
||
611 | /// |
||
612 | PHINode *getCanonicalInductionVariable() const; |
||
613 | |||
614 | /// Get the latch condition instruction. |
||
615 | ICmpInst *getLatchCmpInst() const; |
||
616 | |||
617 | /// Obtain the unique incoming and back edge. Return false if they are |
||
618 | /// non-unique or the loop is dead; otherwise, return true. |
||
619 | bool getIncomingAndBackEdge(BasicBlock *&Incoming, |
||
620 | BasicBlock *&Backedge) const; |
||
621 | |||
622 | /// Below are some utilities to get the loop guard, loop bounds and induction |
||
623 | /// variable, and to check if a given phinode is an auxiliary induction |
||
624 | /// variable, if the loop is guarded, and if the loop is canonical. |
||
625 | /// |
||
626 | /// Here is an example: |
||
627 | /// \code |
||
628 | /// for (int i = lb; i < ub; i+=step) |
||
629 | /// <loop body> |
||
630 | /// --- pseudo LLVMIR --- |
||
631 | /// beforeloop: |
||
632 | /// guardcmp = (lb < ub) |
||
633 | /// if (guardcmp) goto preheader; else goto afterloop |
||
634 | /// preheader: |
||
635 | /// loop: |
||
636 | /// i_1 = phi[{lb, preheader}, {i_2, latch}] |
||
637 | /// <loop body> |
||
638 | /// i_2 = i_1 + step |
||
639 | /// latch: |
||
640 | /// cmp = (i_2 < ub) |
||
641 | /// if (cmp) goto loop |
||
642 | /// exit: |
||
643 | /// afterloop: |
||
644 | /// \endcode |
||
645 | /// |
||
646 | /// - getBounds |
||
647 | /// - getInitialIVValue --> lb |
||
648 | /// - getStepInst --> i_2 = i_1 + step |
||
649 | /// - getStepValue --> step |
||
650 | /// - getFinalIVValue --> ub |
||
651 | /// - getCanonicalPredicate --> '<' |
||
652 | /// - getDirection --> Increasing |
||
653 | /// |
||
654 | /// - getInductionVariable --> i_1 |
||
655 | /// - isAuxiliaryInductionVariable(x) --> true if x == i_1 |
||
656 | /// - getLoopGuardBranch() |
||
657 | /// --> `if (guardcmp) goto preheader; else goto afterloop` |
||
658 | /// - isGuarded() --> true |
||
659 | /// - isCanonical --> false |
||
660 | struct LoopBounds { |
||
661 | /// Return the LoopBounds object if |
||
662 | /// - the given \p IndVar is an induction variable |
||
663 | /// - the initial value of the induction variable can be found |
||
664 | /// - the step instruction of the induction variable can be found |
||
665 | /// - the final value of the induction variable can be found |
||
666 | /// |
||
667 | /// Else None. |
||
668 | static std::optional<Loop::LoopBounds> |
||
669 | getBounds(const Loop &L, PHINode &IndVar, ScalarEvolution &SE); |
||
670 | |||
671 | /// Get the initial value of the loop induction variable. |
||
672 | Value &getInitialIVValue() const { return InitialIVValue; } |
||
673 | |||
674 | /// Get the instruction that updates the loop induction variable. |
||
675 | Instruction &getStepInst() const { return StepInst; } |
||
676 | |||
677 | /// Get the step that the loop induction variable gets updated by in each |
||
678 | /// loop iteration. Return nullptr if not found. |
||
679 | Value *getStepValue() const { return StepValue; } |
||
680 | |||
681 | /// Get the final value of the loop induction variable. |
||
682 | Value &getFinalIVValue() const { return FinalIVValue; } |
||
683 | |||
684 | /// Return the canonical predicate for the latch compare instruction, if |
||
685 | /// able to be calcuated. Else BAD_ICMP_PREDICATE. |
||
686 | /// |
||
687 | /// A predicate is considered as canonical if requirements below are all |
||
688 | /// satisfied: |
||
689 | /// 1. The first successor of the latch branch is the loop header |
||
690 | /// If not, inverse the predicate. |
||
691 | /// 2. One of the operands of the latch comparison is StepInst |
||
692 | /// If not, and |
||
693 | /// - if the current calcuated predicate is not ne or eq, flip the |
||
694 | /// predicate. |
||
695 | /// - else if the loop is increasing, return slt |
||
696 | /// (notice that it is safe to change from ne or eq to sign compare) |
||
697 | /// - else if the loop is decreasing, return sgt |
||
698 | /// (notice that it is safe to change from ne or eq to sign compare) |
||
699 | /// |
||
700 | /// Here is an example when both (1) and (2) are not satisfied: |
||
701 | /// \code |
||
702 | /// loop.header: |
||
703 | /// %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header] |
||
704 | /// %inc = add %iv, %step |
||
705 | /// %cmp = slt %iv, %finaliv |
||
706 | /// br %cmp, %loop.exit, %loop.header |
||
707 | /// loop.exit: |
||
708 | /// \endcode |
||
709 | /// - The second successor of the latch branch is the loop header instead |
||
710 | /// of the first successor (slt -> sge) |
||
711 | /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv) |
||
712 | /// instead of the StepInst (%inc) (sge -> sgt) |
||
713 | /// |
||
714 | /// The predicate would be sgt if both (1) and (2) are satisfied. |
||
715 | /// getCanonicalPredicate() returns sgt for this example. |
||
716 | /// Note: The IR is not changed. |
||
717 | ICmpInst::Predicate getCanonicalPredicate() const; |
||
718 | |||
719 | /// An enum for the direction of the loop |
||
720 | /// - for (int i = 0; i < ub; ++i) --> Increasing |
||
721 | /// - for (int i = ub; i > 0; --i) --> Descresing |
||
722 | /// - for (int i = x; i != y; i+=z) --> Unknown |
||
723 | enum class Direction { Increasing, Decreasing, Unknown }; |
||
724 | |||
725 | /// Get the direction of the loop. |
||
726 | Direction getDirection() const; |
||
727 | |||
728 | private: |
||
729 | LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F, |
||
730 | ScalarEvolution &SE) |
||
731 | : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV), |
||
732 | FinalIVValue(F), SE(SE) {} |
||
733 | |||
734 | const Loop &L; |
||
735 | |||
736 | // The initial value of the loop induction variable |
||
737 | Value &InitialIVValue; |
||
738 | |||
739 | // The instruction that updates the loop induction variable |
||
740 | Instruction &StepInst; |
||
741 | |||
742 | // The value that the loop induction variable gets updated by in each loop |
||
743 | // iteration |
||
744 | Value *StepValue; |
||
745 | |||
746 | // The final value of the loop induction variable |
||
747 | Value &FinalIVValue; |
||
748 | |||
749 | ScalarEvolution &SE; |
||
750 | }; |
||
751 | |||
752 | /// Return the struct LoopBounds collected if all struct members are found, |
||
753 | /// else std::nullopt. |
||
754 | std::optional<LoopBounds> getBounds(ScalarEvolution &SE) const; |
||
755 | |||
756 | /// Return the loop induction variable if found, else return nullptr. |
||
757 | /// An instruction is considered as the loop induction variable if |
||
758 | /// - it is an induction variable of the loop; and |
||
759 | /// - it is used to determine the condition of the branch in the loop latch |
||
760 | /// |
||
761 | /// Note: the induction variable doesn't need to be canonical, i.e. starts at |
||
762 | /// zero and increments by one each time through the loop (but it can be). |
||
763 | PHINode *getInductionVariable(ScalarEvolution &SE) const; |
||
764 | |||
765 | /// Get the loop induction descriptor for the loop induction variable. Return |
||
766 | /// true if the loop induction variable is found. |
||
767 | bool getInductionDescriptor(ScalarEvolution &SE, |
||
768 | InductionDescriptor &IndDesc) const; |
||
769 | |||
770 | /// Return true if the given PHINode \p AuxIndVar is |
||
771 | /// - in the loop header |
||
772 | /// - not used outside of the loop |
||
773 | /// - incremented by a loop invariant step for each loop iteration |
||
774 | /// - step instruction opcode should be add or sub |
||
775 | /// Note: auxiliary induction variable is not required to be used in the |
||
776 | /// conditional branch in the loop latch. (but it can be) |
||
777 | bool isAuxiliaryInductionVariable(PHINode &AuxIndVar, |
||
778 | ScalarEvolution &SE) const; |
||
779 | |||
780 | /// Return the loop guard branch, if it exists. |
||
781 | /// |
||
782 | /// This currently only works on simplified loop, as it requires a preheader |
||
783 | /// and a latch to identify the guard. It will work on loops of the form: |
||
784 | /// \code |
||
785 | /// GuardBB: |
||
786 | /// br cond1, Preheader, ExitSucc <== GuardBranch |
||
787 | /// Preheader: |
||
788 | /// br Header |
||
789 | /// Header: |
||
790 | /// ... |
||
791 | /// br Latch |
||
792 | /// Latch: |
||
793 | /// br cond2, Header, ExitBlock |
||
794 | /// ExitBlock: |
||
795 | /// br ExitSucc |
||
796 | /// ExitSucc: |
||
797 | /// \endcode |
||
798 | BranchInst *getLoopGuardBranch() const; |
||
799 | |||
800 | /// Return true iff the loop is |
||
801 | /// - in simplify rotated form, and |
||
802 | /// - guarded by a loop guard branch. |
||
803 | bool isGuarded() const { return (getLoopGuardBranch() != nullptr); } |
||
804 | |||
805 | /// Return true if the loop is in rotated form. |
||
806 | /// |
||
807 | /// This does not check if the loop was rotated by loop rotation, instead it |
||
808 | /// only checks if the loop is in rotated form (has a valid latch that exists |
||
809 | /// the loop). |
||
810 | bool isRotatedForm() const { |
||
811 | assert(!isInvalid() && "Loop not in a valid state!"); |
||
812 | BasicBlock *Latch = getLoopLatch(); |
||
813 | return Latch && isLoopExiting(Latch); |
||
814 | } |
||
815 | |||
816 | /// Return true if the loop induction variable starts at zero and increments |
||
817 | /// by one each time through the loop. |
||
818 | bool isCanonical(ScalarEvolution &SE) const; |
||
819 | |||
820 | /// Return true if the Loop is in LCSSA form. If \p IgnoreTokens is set to |
||
821 | /// true, token values defined inside loop are allowed to violate LCSSA form. |
||
822 | bool isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens = true) const; |
||
823 | |||
824 | /// Return true if this Loop and all inner subloops are in LCSSA form. If \p |
||
825 | /// IgnoreTokens is set to true, token values defined inside loop are allowed |
||
826 | /// to violate LCSSA form. |
||
827 | bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI, |
||
828 | bool IgnoreTokens = true) const; |
||
829 | |||
830 | /// Return true if the Loop is in the form that the LoopSimplify form |
||
831 | /// transforms loops to, which is sometimes called normal form. |
||
832 | bool isLoopSimplifyForm() const; |
||
833 | |||
834 | /// Return true if the loop body is safe to clone in practice. |
||
835 | bool isSafeToClone() const; |
||
836 | |||
837 | /// Returns true if the loop is annotated parallel. |
||
838 | /// |
||
839 | /// A parallel loop can be assumed to not contain any dependencies between |
||
840 | /// iterations by the compiler. That is, any loop-carried dependency checking |
||
841 | /// can be skipped completely when parallelizing the loop on the target |
||
842 | /// machine. Thus, if the parallel loop information originates from the |
||
843 | /// programmer, e.g. via the OpenMP parallel for pragma, it is the |
||
844 | /// programmer's responsibility to ensure there are no loop-carried |
||
845 | /// dependencies. The final execution order of the instructions across |
||
846 | /// iterations is not guaranteed, thus, the end result might or might not |
||
847 | /// implement actual concurrent execution of instructions across multiple |
||
848 | /// iterations. |
||
849 | bool isAnnotatedParallel() const; |
||
850 | |||
851 | /// Return the llvm.loop loop id metadata node for this loop if it is present. |
||
852 | /// |
||
853 | /// If this loop contains the same llvm.loop metadata on each branch to the |
||
854 | /// header then the node is returned. If any latch instruction does not |
||
855 | /// contain llvm.loop or if multiple latches contain different nodes then |
||
856 | /// 0 is returned. |
||
857 | MDNode *getLoopID() const; |
||
858 | /// Set the llvm.loop loop id metadata for this loop. |
||
859 | /// |
||
860 | /// The LoopID metadata node will be added to each terminator instruction in |
||
861 | /// the loop that branches to the loop header. |
||
862 | /// |
||
863 | /// The LoopID metadata node should have one or more operands and the first |
||
864 | /// operand should be the node itself. |
||
865 | void setLoopID(MDNode *LoopID) const; |
||
866 | |||
867 | /// Add llvm.loop.unroll.disable to this loop's loop id metadata. |
||
868 | /// |
||
869 | /// Remove existing unroll metadata and add unroll disable metadata to |
||
870 | /// indicate the loop has already been unrolled. This prevents a loop |
||
871 | /// from being unrolled more than is directed by a pragma if the loop |
||
872 | /// unrolling pass is run more than once (which it generally is). |
||
873 | void setLoopAlreadyUnrolled(); |
||
874 | |||
875 | /// Add llvm.loop.mustprogress to this loop's loop id metadata. |
||
876 | void setLoopMustProgress(); |
||
877 | |||
878 | void dump() const; |
||
879 | void dumpVerbose() const; |
||
880 | |||
881 | /// Return the debug location of the start of this loop. |
||
882 | /// This looks for a BB terminating instruction with a known debug |
||
883 | /// location by looking at the preheader and header blocks. If it |
||
884 | /// cannot find a terminating instruction with location information, |
||
885 | /// it returns an unknown location. |
||
886 | DebugLoc getStartLoc() const; |
||
887 | |||
888 | /// Return the source code span of the loop. |
||
889 | LocRange getLocRange() const; |
||
890 | |||
891 | StringRef getName() const { |
||
892 | if (BasicBlock *Header = getHeader()) |
||
893 | if (Header->hasName()) |
||
894 | return Header->getName(); |
||
895 | return "<unnamed loop>"; |
||
896 | } |
||
897 | |||
898 | private: |
||
899 | Loop() = default; |
||
900 | |||
901 | friend class LoopInfoBase<BasicBlock, Loop>; |
||
902 | friend class LoopBase<BasicBlock, Loop>; |
||
903 | explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} |
||
904 | ~Loop() = default; |
||
905 | }; |
||
906 | |||
907 | //===----------------------------------------------------------------------===// |
||
908 | /// This class builds and contains all of the top-level loop |
||
909 | /// structures in the specified function. |
||
910 | /// |
||
911 | |||
912 | template <class BlockT, class LoopT> class LoopInfoBase { |
||
913 | // BBMap - Mapping of basic blocks to the inner most loop they occur in |
||
914 | DenseMap<const BlockT *, LoopT *> BBMap; |
||
915 | std::vector<LoopT *> TopLevelLoops; |
||
916 | BumpPtrAllocator LoopAllocator; |
||
917 | |||
918 | friend class LoopBase<BlockT, LoopT>; |
||
919 | friend class LoopInfo; |
||
920 | |||
921 | void operator=(const LoopInfoBase &) = delete; |
||
922 | LoopInfoBase(const LoopInfoBase &) = delete; |
||
923 | |||
924 | public: |
||
925 | LoopInfoBase() = default; |
||
926 | ~LoopInfoBase() { releaseMemory(); } |
||
927 | |||
928 | LoopInfoBase(LoopInfoBase &&Arg) |
||
929 | : BBMap(std::move(Arg.BBMap)), |
||
930 | TopLevelLoops(std::move(Arg.TopLevelLoops)), |
||
931 | LoopAllocator(std::move(Arg.LoopAllocator)) { |
||
932 | // We have to clear the arguments top level loops as we've taken ownership. |
||
933 | Arg.TopLevelLoops.clear(); |
||
934 | } |
||
935 | LoopInfoBase &operator=(LoopInfoBase &&RHS) { |
||
936 | BBMap = std::move(RHS.BBMap); |
||
937 | |||
938 | for (auto *L : TopLevelLoops) |
||
939 | L->~LoopT(); |
||
940 | |||
941 | TopLevelLoops = std::move(RHS.TopLevelLoops); |
||
942 | LoopAllocator = std::move(RHS.LoopAllocator); |
||
943 | RHS.TopLevelLoops.clear(); |
||
944 | return *this; |
||
945 | } |
||
946 | |||
947 | void releaseMemory() { |
||
948 | BBMap.clear(); |
||
949 | |||
950 | for (auto *L : TopLevelLoops) |
||
951 | L->~LoopT(); |
||
952 | TopLevelLoops.clear(); |
||
953 | LoopAllocator.Reset(); |
||
954 | } |
||
955 | |||
956 | template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) { |
||
957 | LoopT *Storage = LoopAllocator.Allocate<LoopT>(); |
||
958 | return new (Storage) LoopT(std::forward<ArgsTy>(Args)...); |
||
959 | } |
||
960 | |||
961 | /// iterator/begin/end - The interface to the top-level loops in the current |
||
962 | /// function. |
||
963 | /// |
||
964 | typedef typename std::vector<LoopT *>::const_iterator iterator; |
||
965 | typedef |
||
966 | typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; |
||
967 | iterator begin() const { return TopLevelLoops.begin(); } |
||
968 | iterator end() const { return TopLevelLoops.end(); } |
||
969 | reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } |
||
970 | reverse_iterator rend() const { return TopLevelLoops.rend(); } |
||
971 | bool empty() const { return TopLevelLoops.empty(); } |
||
972 | |||
973 | /// Return all of the loops in the function in preorder across the loop |
||
974 | /// nests, with siblings in forward program order. |
||
975 | /// |
||
976 | /// Note that because loops form a forest of trees, preorder is equivalent to |
||
977 | /// reverse postorder. |
||
978 | SmallVector<LoopT *, 4> getLoopsInPreorder() const; |
||
979 | |||
980 | /// Return all of the loops in the function in preorder across the loop |
||
981 | /// nests, with siblings in *reverse* program order. |
||
982 | /// |
||
983 | /// Note that because loops form a forest of trees, preorder is equivalent to |
||
984 | /// reverse postorder. |
||
985 | /// |
||
986 | /// Also note that this is *not* a reverse preorder. Only the siblings are in |
||
987 | /// reverse program order. |
||
988 | SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder() const; |
||
989 | |||
990 | /// Return the inner most loop that BB lives in. If a basic block is in no |
||
991 | /// loop (for example the entry node), null is returned. |
||
992 | LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); } |
||
993 | |||
994 | /// Same as getLoopFor. |
||
995 | const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); } |
||
996 | |||
997 | /// Return the loop nesting level of the specified block. A depth of 0 means |
||
998 | /// the block is not inside any loop. |
||
999 | unsigned getLoopDepth(const BlockT *BB) const { |
||
1000 | const LoopT *L = getLoopFor(BB); |
||
1001 | return L ? L->getLoopDepth() : 0; |
||
1002 | } |
||
1003 | |||
1004 | // True if the block is a loop header node |
||
1005 | bool isLoopHeader(const BlockT *BB) const { |
||
1006 | const LoopT *L = getLoopFor(BB); |
||
1007 | return L && L->getHeader() == BB; |
||
1008 | } |
||
1009 | |||
1010 | /// Return the top-level loops. |
||
1011 | const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; } |
||
1012 | |||
1013 | /// Return the top-level loops. |
||
1014 | std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; } |
||
1015 | |||
1016 | /// This removes the specified top-level loop from this loop info object. |
||
1017 | /// The loop is not deleted, as it will presumably be inserted into |
||
1018 | /// another loop. |
||
1019 | LoopT *removeLoop(iterator I) { |
||
1020 | assert(I != end() && "Cannot remove end iterator!"); |
||
1021 | LoopT *L = *I; |
||
1022 | assert(L->isOutermost() && "Not a top-level loop!"); |
||
1023 | TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin())); |
||
1024 | return L; |
||
1025 | } |
||
1026 | |||
1027 | /// Change the top-level loop that contains BB to the specified loop. |
||
1028 | /// This should be used by transformations that restructure the loop hierarchy |
||
1029 | /// tree. |
||
1030 | void changeLoopFor(BlockT *BB, LoopT *L) { |
||
1031 | if (!L) { |
||
1032 | BBMap.erase(BB); |
||
1033 | return; |
||
1034 | } |
||
1035 | BBMap[BB] = L; |
||
1036 | } |
||
1037 | |||
1038 | /// Replace the specified loop in the top-level loops list with the indicated |
||
1039 | /// loop. |
||
1040 | void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { |
||
1041 | auto I = find(TopLevelLoops, OldLoop); |
||
1042 | assert(I != TopLevelLoops.end() && "Old loop not at top level!"); |
||
1043 | *I = NewLoop; |
||
1044 | assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && |
||
1045 | "Loops already embedded into a subloop!"); |
||
1046 | } |
||
1047 | |||
1048 | /// This adds the specified loop to the collection of top-level loops. |
||
1049 | void addTopLevelLoop(LoopT *New) { |
||
1050 | assert(New->isOutermost() && "Loop already in subloop!"); |
||
1051 | TopLevelLoops.push_back(New); |
||
1052 | } |
||
1053 | |||
1054 | /// This method completely removes BB from all data structures, |
||
1055 | /// including all of the Loop objects it is nested in and our mapping from |
||
1056 | /// BasicBlocks to loops. |
||
1057 | void removeBlock(BlockT *BB) { |
||
1058 | auto I = BBMap.find(BB); |
||
1059 | if (I != BBMap.end()) { |
||
1060 | for (LoopT *L = I->second; L; L = L->getParentLoop()) |
||
1061 | L->removeBlockFromLoop(BB); |
||
1062 | |||
1063 | BBMap.erase(I); |
||
1064 | } |
||
1065 | } |
||
1066 | |||
1067 | // Internals |
||
1068 | |||
1069 | static bool isNotAlreadyContainedIn(const LoopT *SubLoop, |
||
1070 | const LoopT *ParentLoop) { |
||
1071 | if (!SubLoop) |
||
1072 | return true; |
||
1073 | if (SubLoop == ParentLoop) |
||
1074 | return false; |
||
1075 | return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); |
||
1076 | } |
||
1077 | |||
1078 | /// Create the loop forest using a stable algorithm. |
||
1079 | void analyze(const DominatorTreeBase<BlockT, false> &DomTree); |
||
1080 | |||
1081 | // Debugging |
||
1082 | void print(raw_ostream &OS) const; |
||
1083 | |||
1084 | void verify(const DominatorTreeBase<BlockT, false> &DomTree) const; |
||
1085 | |||
1086 | /// Destroy a loop that has been removed from the `LoopInfo` nest. |
||
1087 | /// |
||
1088 | /// This runs the destructor of the loop object making it invalid to |
||
1089 | /// reference afterward. The memory is retained so that the *pointer* to the |
||
1090 | /// loop remains valid. |
||
1091 | /// |
||
1092 | /// The caller is responsible for removing this loop from the loop nest and |
||
1093 | /// otherwise disconnecting it from the broader `LoopInfo` data structures. |
||
1094 | /// Callers that don't naturally handle this themselves should probably call |
||
1095 | /// `erase' instead. |
||
1096 | void destroy(LoopT *L) { |
||
1097 | L->~LoopT(); |
||
1098 | |||
1099 | // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons |
||
1100 | // \c L, but the pointer remains valid for non-dereferencing uses. |
||
1101 | LoopAllocator.Deallocate(L); |
||
1102 | } |
||
1103 | }; |
||
1104 | |||
1105 | // Implementation in LoopInfoImpl.h |
||
1106 | extern template class LoopInfoBase<BasicBlock, Loop>; |
||
1107 | |||
1108 | class LoopInfo : public LoopInfoBase<BasicBlock, Loop> { |
||
1109 | typedef LoopInfoBase<BasicBlock, Loop> BaseT; |
||
1110 | |||
1111 | friend class LoopBase<BasicBlock, Loop>; |
||
1112 | |||
1113 | void operator=(const LoopInfo &) = delete; |
||
1114 | LoopInfo(const LoopInfo &) = delete; |
||
1115 | |||
1116 | public: |
||
1117 | LoopInfo() = default; |
||
1118 | explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree); |
||
1119 | |||
1120 | LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {} |
||
1121 | LoopInfo &operator=(LoopInfo &&RHS) { |
||
1122 | BaseT::operator=(std::move(static_cast<BaseT &>(RHS))); |
||
1123 | return *this; |
||
1124 | } |
||
1125 | |||
1126 | /// Handle invalidation explicitly. |
||
1127 | bool invalidate(Function &F, const PreservedAnalyses &PA, |
||
1128 | FunctionAnalysisManager::Invalidator &); |
||
1129 | |||
1130 | // Most of the public interface is provided via LoopInfoBase. |
||
1131 | |||
1132 | /// Update LoopInfo after removing the last backedge from a loop. This updates |
||
1133 | /// the loop forest and parent loops for each block so that \c L is no longer |
||
1134 | /// referenced, but does not actually delete \c L immediately. The pointer |
||
1135 | /// will remain valid until this LoopInfo's memory is released. |
||
1136 | void erase(Loop *L); |
||
1137 | |||
1138 | /// Returns true if replacing From with To everywhere is guaranteed to |
||
1139 | /// preserve LCSSA form. |
||
1140 | bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { |
||
1141 | // Preserving LCSSA form is only problematic if the replacing value is an |
||
1142 | // instruction. |
||
1143 | Instruction *I = dyn_cast<Instruction>(To); |
||
1144 | if (!I) |
||
1145 | return true; |
||
1146 | // If both instructions are defined in the same basic block then replacement |
||
1147 | // cannot break LCSSA form. |
||
1148 | if (I->getParent() == From->getParent()) |
||
1149 | return true; |
||
1150 | // If the instruction is not defined in a loop then it can safely replace |
||
1151 | // anything. |
||
1152 | Loop *ToLoop = getLoopFor(I->getParent()); |
||
1153 | if (!ToLoop) |
||
1154 | return true; |
||
1155 | // If the replacing instruction is defined in the same loop as the original |
||
1156 | // instruction, or in a loop that contains it as an inner loop, then using |
||
1157 | // it as a replacement will not break LCSSA form. |
||
1158 | return ToLoop->contains(getLoopFor(From->getParent())); |
||
1159 | } |
||
1160 | |||
1161 | /// Checks if moving a specific instruction can break LCSSA in any loop. |
||
1162 | /// |
||
1163 | /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, |
||
1164 | /// assuming that the function containing \p Inst and \p NewLoc is currently |
||
1165 | /// in LCSSA form. |
||
1166 | bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { |
||
1167 | assert(Inst->getFunction() == NewLoc->getFunction() && |
||
1168 | "Can't reason about IPO!"); |
||
1169 | |||
1170 | auto *OldBB = Inst->getParent(); |
||
1171 | auto *NewBB = NewLoc->getParent(); |
||
1172 | |||
1173 | // Movement within the same loop does not break LCSSA (the equality check is |
||
1174 | // to avoid doing a hashtable lookup in case of intra-block movement). |
||
1175 | if (OldBB == NewBB) |
||
1176 | return true; |
||
1177 | |||
1178 | auto *OldLoop = getLoopFor(OldBB); |
||
1179 | auto *NewLoop = getLoopFor(NewBB); |
||
1180 | |||
1181 | if (OldLoop == NewLoop) |
||
1182 | return true; |
||
1183 | |||
1184 | // Check if Outer contains Inner; with the null loop counting as the |
||
1185 | // "outermost" loop. |
||
1186 | auto Contains = [](const Loop *Outer, const Loop *Inner) { |
||
1187 | return !Outer || Outer->contains(Inner); |
||
1188 | }; |
||
1189 | |||
1190 | // To check that the movement of Inst to before NewLoc does not break LCSSA, |
||
1191 | // we need to check two sets of uses for possible LCSSA violations at |
||
1192 | // NewLoc: the users of NewInst, and the operands of NewInst. |
||
1193 | |||
1194 | // If we know we're hoisting Inst out of an inner loop to an outer loop, |
||
1195 | // then the uses *of* Inst don't need to be checked. |
||
1196 | |||
1197 | if (!Contains(NewLoop, OldLoop)) { |
||
1198 | for (Use &U : Inst->uses()) { |
||
1199 | auto *UI = cast<Instruction>(U.getUser()); |
||
1200 | auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U) |
||
1201 | : UI->getParent(); |
||
1202 | if (UBB != NewBB && getLoopFor(UBB) != NewLoop) |
||
1203 | return false; |
||
1204 | } |
||
1205 | } |
||
1206 | |||
1207 | // If we know we're sinking Inst from an outer loop into an inner loop, then |
||
1208 | // the *operands* of Inst don't need to be checked. |
||
1209 | |||
1210 | if (!Contains(OldLoop, NewLoop)) { |
||
1211 | // See below on why we can't handle phi nodes here. |
||
1212 | if (isa<PHINode>(Inst)) |
||
1213 | return false; |
||
1214 | |||
1215 | for (Use &U : Inst->operands()) { |
||
1216 | auto *DefI = dyn_cast<Instruction>(U.get()); |
||
1217 | if (!DefI) |
||
1218 | return false; |
||
1219 | |||
1220 | // This would need adjustment if we allow Inst to be a phi node -- the |
||
1221 | // new use block won't simply be NewBB. |
||
1222 | |||
1223 | auto *DefBlock = DefI->getParent(); |
||
1224 | if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) |
||
1225 | return false; |
||
1226 | } |
||
1227 | } |
||
1228 | |||
1229 | return true; |
||
1230 | } |
||
1231 | |||
1232 | // Return true if a new use of V added in ExitBB would require an LCSSA PHI |
||
1233 | // to be inserted at the begining of the block. Note that V is assumed to |
||
1234 | // dominate ExitBB, and ExitBB must be the exit block of some loop. The |
||
1235 | // IR is assumed to be in LCSSA form before the planned insertion. |
||
1236 | bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, |
||
1237 | const BasicBlock *ExitBB) const; |
||
1238 | |||
1239 | }; |
||
1240 | |||
1241 | /// Enable verification of loop info. |
||
1242 | /// |
||
1243 | /// The flag enables checks which are expensive and are disabled by default |
||
1244 | /// unless the `EXPENSIVE_CHECKS` macro is defined. The `-verify-loop-info` |
||
1245 | /// flag allows the checks to be enabled selectively without re-compilation. |
||
1246 | extern bool VerifyLoopInfo; |
||
1247 | |||
1248 | // Allow clients to walk the list of nested loops... |
||
1249 | template <> struct GraphTraits<const Loop *> { |
||
1250 | typedef const Loop *NodeRef; |
||
1251 | typedef LoopInfo::iterator ChildIteratorType; |
||
1252 | |||
1253 | static NodeRef getEntryNode(const Loop *L) { return L; } |
||
1254 | static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } |
||
1255 | static ChildIteratorType child_end(NodeRef N) { return N->end(); } |
||
1256 | }; |
||
1257 | |||
1258 | template <> struct GraphTraits<Loop *> { |
||
1259 | typedef Loop *NodeRef; |
||
1260 | typedef LoopInfo::iterator ChildIteratorType; |
||
1261 | |||
1262 | static NodeRef getEntryNode(Loop *L) { return L; } |
||
1263 | static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } |
||
1264 | static ChildIteratorType child_end(NodeRef N) { return N->end(); } |
||
1265 | }; |
||
1266 | |||
1267 | /// Analysis pass that exposes the \c LoopInfo for a function. |
||
1268 | class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> { |
||
1269 | friend AnalysisInfoMixin<LoopAnalysis>; |
||
1270 | static AnalysisKey Key; |
||
1271 | |||
1272 | public: |
||
1273 | typedef LoopInfo Result; |
||
1274 | |||
1275 | LoopInfo run(Function &F, FunctionAnalysisManager &AM); |
||
1276 | }; |
||
1277 | |||
1278 | /// Printer pass for the \c LoopAnalysis results. |
||
1279 | class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> { |
||
1280 | raw_ostream &OS; |
||
1281 | |||
1282 | public: |
||
1283 | explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} |
||
1284 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
||
1285 | }; |
||
1286 | |||
1287 | /// Verifier pass for the \c LoopAnalysis results. |
||
1288 | struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> { |
||
1289 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
||
1290 | }; |
||
1291 | |||
1292 | /// The legacy pass manager's analysis pass to compute loop information. |
||
1293 | class LoopInfoWrapperPass : public FunctionPass { |
||
1294 | LoopInfo LI; |
||
1295 | |||
1296 | public: |
||
1297 | static char ID; // Pass identification, replacement for typeid |
||
1298 | |||
1299 | LoopInfoWrapperPass(); |
||
1300 | |||
1301 | LoopInfo &getLoopInfo() { return LI; } |
||
1302 | const LoopInfo &getLoopInfo() const { return LI; } |
||
1303 | |||
1304 | /// Calculate the natural loop information for a given function. |
||
1305 | bool runOnFunction(Function &F) override; |
||
1306 | |||
1307 | void verifyAnalysis() const override; |
||
1308 | |||
1309 | void releaseMemory() override { LI.releaseMemory(); } |
||
1310 | |||
1311 | void print(raw_ostream &O, const Module *M = nullptr) const override; |
||
1312 | |||
1313 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
1314 | }; |
||
1315 | |||
1316 | /// Function to print a loop's contents as LLVM's text IR assembly. |
||
1317 | void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = ""); |
||
1318 | |||
1319 | /// Find and return the loop attribute node for the attribute @p Name in |
||
1320 | /// @p LoopID. Return nullptr if there is no such attribute. |
||
1321 | MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name); |
||
1322 | |||
1323 | /// Find string metadata for a loop. |
||
1324 | /// |
||
1325 | /// Returns the MDNode where the first operand is the metadata's name. The |
||
1326 | /// following operands are the metadata's values. If no metadata with @p Name is |
||
1327 | /// found, return nullptr. |
||
1328 | MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name); |
||
1329 | |||
1330 | std::optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, |
||
1331 | StringRef Name); |
||
1332 | |||
1333 | /// Returns true if Name is applied to TheLoop and enabled. |
||
1334 | bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name); |
||
1335 | |||
1336 | /// Find named metadata for a loop with an integer value. |
||
1337 | std::optional<int> getOptionalIntLoopAttribute(const Loop *TheLoop, |
||
1338 | StringRef Name); |
||
1339 | |||
1340 | /// Find named metadata for a loop with an integer value. Return \p Default if |
||
1341 | /// not set. |
||
1342 | int getIntLoopAttribute(const Loop *TheLoop, StringRef Name, int Default = 0); |
||
1343 | |||
1344 | /// Find string metadata for loop |
||
1345 | /// |
||
1346 | /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an |
||
1347 | /// operand or null otherwise. If the string metadata is not found return |
||
1348 | /// Optional's not-a-value. |
||
1349 | std::optional<const MDOperand *> findStringMetadataForLoop(const Loop *TheLoop, |
||
1350 | StringRef Name); |
||
1351 | |||
1352 | /// Look for the loop attribute that requires progress within the loop. |
||
1353 | /// Note: Most consumers probably want "isMustProgress" which checks |
||
1354 | /// the containing function attribute too. |
||
1355 | bool hasMustProgress(const Loop *L); |
||
1356 | |||
1357 | /// Return true if this loop can be assumed to make progress. (i.e. can't |
||
1358 | /// be infinite without side effects without also being undefined) |
||
1359 | bool isMustProgress(const Loop *L); |
||
1360 | |||
1361 | /// Return true if this loop can be assumed to run for a finite number of |
||
1362 | /// iterations. |
||
1363 | bool isFinite(const Loop *L); |
||
1364 | |||
1365 | /// Return whether an MDNode might represent an access group. |
||
1366 | /// |
||
1367 | /// Access group metadata nodes have to be distinct and empty. Being |
||
1368 | /// always-empty ensures that it never needs to be changed (which -- because |
||
1369 | /// MDNodes are designed immutable -- would require creating a new MDNode). Note |
||
1370 | /// that this is not a sufficient condition: not every distinct and empty NDNode |
||
1371 | /// is representing an access group. |
||
1372 | bool isValidAsAccessGroup(MDNode *AccGroup); |
||
1373 | |||
1374 | /// Create a new LoopID after the loop has been transformed. |
||
1375 | /// |
||
1376 | /// This can be used when no follow-up loop attributes are defined |
||
1377 | /// (llvm::makeFollowupLoopID returning None) to stop transformations to be |
||
1378 | /// applied again. |
||
1379 | /// |
||
1380 | /// @param Context The LLVMContext in which to create the new LoopID. |
||
1381 | /// @param OrigLoopID The original LoopID; can be nullptr if the original |
||
1382 | /// loop has no LoopID. |
||
1383 | /// @param RemovePrefixes Remove all loop attributes that have these prefixes. |
||
1384 | /// Use to remove metadata of the transformation that has |
||
1385 | /// been applied. |
||
1386 | /// @param AddAttrs Add these loop attributes to the new LoopID. |
||
1387 | /// |
||
1388 | /// @return A new LoopID that can be applied using Loop::setLoopID(). |
||
1389 | llvm::MDNode * |
||
1390 | makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, |
||
1391 | llvm::ArrayRef<llvm::StringRef> RemovePrefixes, |
||
1392 | llvm::ArrayRef<llvm::MDNode *> AddAttrs); |
||
1393 | |||
1394 | } // End llvm namespace |
||
1395 | |||
1396 | #endif |