Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the LoopInfo class that is used to identify natural loops
10
// and determine the loop depth of various nodes of the CFG.  A natural loop
11
// has exactly one entry-point, which is called the header. Note that natural
12
// loops may actually be several loops that share the same header node.
13
//
14
// This analysis calculates the nesting structure of loops in a function.  For
15
// each natural loop identified, this analysis identifies natural loops
16
// contained entirely within the loop and the basic blocks the make up the loop.
17
//
18
// It can calculate on the fly various bits of information, for example:
19
//
20
//  * whether there is a preheader for the loop
21
//  * the number of back edges to the header
22
//  * whether or not a particular block branches out of the loop
23
//  * the successor blocks of the loop
24
//  * the loop depth
25
//  * etc...
26
//
27
// Note that this analysis specifically identifies *Loops* not cycles or SCCs
28
// in the CFG.  There can be strongly connected components in the CFG which
29
// this analysis will not recognize and that will not be represented by a Loop
30
// instance.  In particular, a Loop might be inside such a non-loop SCC, or a
31
// non-loop SCC might contain a sub-SCC which is a Loop.
32
//
33
// For an overview of terminology used in this API (and thus all of our loop
34
// analyses or transforms), see docs/LoopTerminology.rst.
35
//
36
//===----------------------------------------------------------------------===//
37
 
38
#ifndef LLVM_ANALYSIS_LOOPINFO_H
39
#define LLVM_ANALYSIS_LOOPINFO_H
40
 
41
#include "llvm/ADT/DenseMap.h"
42
#include "llvm/ADT/DenseSet.h"
43
#include "llvm/ADT/GraphTraits.h"
44
#include "llvm/ADT/SmallPtrSet.h"
45
#include "llvm/ADT/SmallVector.h"
46
#include "llvm/IR/CFG.h"
47
#include "llvm/IR/Instructions.h"
48
#include "llvm/IR/PassManager.h"
49
#include "llvm/Pass.h"
50
#include "llvm/Support/Allocator.h"
51
#include <algorithm>
52
#include <optional>
53
#include <utility>
54
 
55
namespace llvm {
56
 
57
class DominatorTree;
58
class InductionDescriptor;
59
class Instruction;
60
class LoopInfo;
61
class Loop;
62
class MDNode;
63
class MemorySSAUpdater;
64
class ScalarEvolution;
65
class raw_ostream;
66
template <class N, bool IsPostDom> class DominatorTreeBase;
67
template <class N, class M> class LoopInfoBase;
68
template <class N, class M> class LoopBase;
69
 
70
//===----------------------------------------------------------------------===//
71
/// Instances of this class are used to represent loops that are detected in the
72
/// flow graph.
73
///
74
template <class BlockT, class LoopT> class LoopBase {
75
  LoopT *ParentLoop;
76
  // Loops contained entirely within this one.
77
  std::vector<LoopT *> SubLoops;
78
 
79
  // The list of blocks in this loop. First entry is the header node.
80
  std::vector<BlockT *> Blocks;
81
 
82
  SmallPtrSet<const BlockT *, 8> DenseBlockSet;
83
 
84
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
85
  /// Indicator that this loop is no longer a valid loop.
86
  bool IsInvalid = false;
87
#endif
88
 
89
  LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
90
  const LoopBase<BlockT, LoopT> &
91
  operator=(const LoopBase<BlockT, LoopT> &) = delete;
92
 
93
public:
94
  /// Return the nesting level of this loop.  An outer-most loop has depth 1,
95
  /// for consistency with loop depth values used for basic blocks, where depth
96
  /// 0 is used for blocks not inside any loops.
97
  unsigned getLoopDepth() const {
98
    assert(!isInvalid() && "Loop not in a valid state!");
99
    unsigned D = 1;
100
    for (const LoopT *CurLoop = ParentLoop; CurLoop;
101
         CurLoop = CurLoop->ParentLoop)
102
      ++D;
103
    return D;
104
  }
105
  BlockT *getHeader() const { return getBlocks().front(); }
106
  /// Return the parent loop if it exists or nullptr for top
107
  /// level loops.
108
 
109
  /// A loop is either top-level in a function (that is, it is not
110
  /// contained in any other loop) or it is entirely enclosed in
111
  /// some other loop.
112
  /// If a loop is top-level, it has no parent, otherwise its
113
  /// parent is the innermost loop in which it is enclosed.
114
  LoopT *getParentLoop() const { return ParentLoop; }
115
 
116
  /// Get the outermost loop in which this loop is contained.
117
  /// This may be the loop itself, if it already is the outermost loop.
118
  const LoopT *getOutermostLoop() const {
119
    const LoopT *L = static_cast<const LoopT *>(this);
120
    while (L->ParentLoop)
121
      L = L->ParentLoop;
122
    return L;
123
  }
124
 
125
  LoopT *getOutermostLoop() {
126
    LoopT *L = static_cast<LoopT *>(this);
127
    while (L->ParentLoop)
128
      L = L->ParentLoop;
129
    return L;
130
  }
131
 
132
  /// This is a raw interface for bypassing addChildLoop.
133
  void setParentLoop(LoopT *L) {
134
    assert(!isInvalid() && "Loop not in a valid state!");
135
    ParentLoop = L;
136
  }
137
 
138
  /// Return true if the specified loop is contained within in this loop.
139
  bool contains(const LoopT *L) const {
140
    assert(!isInvalid() && "Loop not in a valid state!");
141
    if (L == this)
142
      return true;
143
    if (!L)
144
      return false;
145
    return contains(L->getParentLoop());
146
  }
147
 
148
  /// Return true if the specified basic block is in this loop.
149
  bool contains(const BlockT *BB) const {
150
    assert(!isInvalid() && "Loop not in a valid state!");
151
    return DenseBlockSet.count(BB);
152
  }
153
 
154
  /// Return true if the specified instruction is in this loop.
155
  template <class InstT> bool contains(const InstT *Inst) const {
156
    return contains(Inst->getParent());
157
  }
158
 
159
  /// Return the loops contained entirely within this loop.
160
  const std::vector<LoopT *> &getSubLoops() const {
161
    assert(!isInvalid() && "Loop not in a valid state!");
162
    return SubLoops;
163
  }
164
  std::vector<LoopT *> &getSubLoopsVector() {
165
    assert(!isInvalid() && "Loop not in a valid state!");
166
    return SubLoops;
167
  }
168
  typedef typename std::vector<LoopT *>::const_iterator iterator;
169
  typedef
170
      typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
171
  iterator begin() const { return getSubLoops().begin(); }
172
  iterator end() const { return getSubLoops().end(); }
173
  reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
174
  reverse_iterator rend() const { return getSubLoops().rend(); }
175
 
176
  // LoopInfo does not detect irreducible control flow, just natural
177
  // loops. That is, it is possible that there is cyclic control
178
  // flow within the "innermost loop" or around the "outermost
179
  // loop".
180
 
181
  /// Return true if the loop does not contain any (natural) loops.
182
  bool isInnermost() const { return getSubLoops().empty(); }
183
  /// Return true if the loop does not have a parent (natural) loop
184
  // (i.e. it is outermost, which is the same as top-level).
185
  bool isOutermost() const { return getParentLoop() == nullptr; }
186
 
187
  /// Get a list of the basic blocks which make up this loop.
188
  ArrayRef<BlockT *> getBlocks() const {
189
    assert(!isInvalid() && "Loop not in a valid state!");
190
    return Blocks;
191
  }
192
  typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
193
  block_iterator block_begin() const { return getBlocks().begin(); }
194
  block_iterator block_end() const { return getBlocks().end(); }
195
  inline iterator_range<block_iterator> blocks() const {
196
    assert(!isInvalid() && "Loop not in a valid state!");
197
    return make_range(block_begin(), block_end());
198
  }
199
 
200
  /// Get the number of blocks in this loop in constant time.
201
  /// Invalidate the loop, indicating that it is no longer a loop.
202
  unsigned getNumBlocks() const {
203
    assert(!isInvalid() && "Loop not in a valid state!");
204
    return Blocks.size();
205
  }
206
 
207
  /// Return a direct, mutable handle to the blocks vector so that we can
208
  /// mutate it efficiently with techniques like `std::remove`.
209
  std::vector<BlockT *> &getBlocksVector() {
210
    assert(!isInvalid() && "Loop not in a valid state!");
211
    return Blocks;
212
  }
213
  /// Return a direct, mutable handle to the blocks set so that we can
214
  /// mutate it efficiently.
215
  SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
216
    assert(!isInvalid() && "Loop not in a valid state!");
217
    return DenseBlockSet;
218
  }
219
 
220
  /// Return a direct, immutable handle to the blocks set.
221
  const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
222
    assert(!isInvalid() && "Loop not in a valid state!");
223
    return DenseBlockSet;
224
  }
225
 
226
  /// Return true if this loop is no longer valid.  The only valid use of this
227
  /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
228
  /// true by the destructor.  In other words, if this accessor returns true,
229
  /// the caller has already triggered UB by calling this accessor; and so it
230
  /// can only be called in a context where a return value of true indicates a
231
  /// programmer error.
232
  bool isInvalid() const {
233
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
234
    return IsInvalid;
235
#else
236
    return false;
237
#endif
238
  }
239
 
240
  /// True if terminator in the block can branch to another block that is
241
  /// outside of the current loop. \p BB must be inside the loop.
242
  bool isLoopExiting(const BlockT *BB) const {
243
    assert(!isInvalid() && "Loop not in a valid state!");
244
    assert(contains(BB) && "Exiting block must be part of the loop");
245
    for (const auto *Succ : children<const BlockT *>(BB)) {
246
      if (!contains(Succ))
247
        return true;
248
    }
249
    return false;
250
  }
251
 
252
  /// Returns true if \p BB is a loop-latch.
253
  /// A latch block is a block that contains a branch back to the header.
254
  /// This function is useful when there are multiple latches in a loop
255
  /// because \fn getLoopLatch will return nullptr in that case.
256
  bool isLoopLatch(const BlockT *BB) const {
257
    assert(!isInvalid() && "Loop not in a valid state!");
258
    assert(contains(BB) && "block does not belong to the loop");
259
 
260
    BlockT *Header = getHeader();
261
    auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
262
    auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
263
    return std::find(PredBegin, PredEnd, BB) != PredEnd;
264
  }
265
 
266
  /// Calculate the number of back edges to the loop header.
267
  unsigned getNumBackEdges() const {
268
    assert(!isInvalid() && "Loop not in a valid state!");
269
    unsigned NumBackEdges = 0;
270
    BlockT *H = getHeader();
271
 
272
    for (const auto Pred : children<Inverse<BlockT *>>(H))
273
      if (contains(Pred))
274
        ++NumBackEdges;
275
 
276
    return NumBackEdges;
277
  }
278
 
279
  //===--------------------------------------------------------------------===//
280
  // APIs for simple analysis of the loop.
281
  //
282
  // Note that all of these methods can fail on general loops (ie, there may not
283
  // be a preheader, etc).  For best success, the loop simplification and
284
  // induction variable canonicalization pass should be used to normalize loops
285
  // for easy analysis.  These methods assume canonical loops.
286
 
287
  /// Return all blocks inside the loop that have successors outside of the
288
  /// loop. These are the blocks _inside of the current loop_ which branch out.
289
  /// The returned list is always unique.
290
  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
291
 
292
  /// If getExitingBlocks would return exactly one block, return that block.
293
  /// Otherwise return null.
294
  BlockT *getExitingBlock() const;
295
 
296
  /// Return all of the successor blocks of this loop. These are the blocks
297
  /// _outside of the current loop_ which are branched to.
298
  void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
299
 
300
  /// If getExitBlocks would return exactly one block, return that block.
301
  /// Otherwise return null.
302
  BlockT *getExitBlock() const;
303
 
304
  /// Return true if no exit block for the loop has a predecessor that is
305
  /// outside the loop.
306
  bool hasDedicatedExits() const;
307
 
308
  /// Return all unique successor blocks of this loop.
309
  /// These are the blocks _outside of the current loop_ which are branched to.
310
  void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
311
 
312
  /// Return all unique successor blocks of this loop except successors from
313
  /// Latch block are not considered. If the exit comes from Latch has also
314
  /// non Latch predecessor in a loop it will be added to ExitBlocks.
315
  /// These are the blocks _outside of the current loop_ which are branched to.
316
  void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
317
 
318
  /// If getUniqueExitBlocks would return exactly one block, return that block.
319
  /// Otherwise return null.
320
  BlockT *getUniqueExitBlock() const;
321
 
322
  /// Return true if this loop does not have any exit blocks.
323
  bool hasNoExitBlocks() const;
324
 
325
  /// Edge type.
326
  typedef std::pair<BlockT *, BlockT *> Edge;
327
 
328
  /// Return all pairs of (_inside_block_,_outside_block_).
329
  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
330
 
331
  /// If there is a preheader for this loop, return it. A loop has a preheader
332
  /// if there is only one edge to the header of the loop from outside of the
333
  /// loop. If this is the case, the block branching to the header of the loop
334
  /// is the preheader node.
335
  ///
336
  /// This method returns null if there is no preheader for the loop.
337
  BlockT *getLoopPreheader() const;
338
 
339
  /// If the given loop's header has exactly one unique predecessor outside the
340
  /// loop, return it. Otherwise return null.
341
  ///  This is less strict that the loop "preheader" concept, which requires
342
  /// the predecessor to have exactly one successor.
343
  BlockT *getLoopPredecessor() const;
344
 
345
  /// If there is a single latch block for this loop, return it.
346
  /// A latch block is a block that contains a branch back to the header.
347
  BlockT *getLoopLatch() const;
348
 
349
  /// Return all loop latch blocks of this loop. A latch block is a block that
350
  /// contains a branch back to the header.
351
  void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
352
    assert(!isInvalid() && "Loop not in a valid state!");
353
    BlockT *H = getHeader();
354
    for (const auto Pred : children<Inverse<BlockT *>>(H))
355
      if (contains(Pred))
356
        LoopLatches.push_back(Pred);
357
  }
358
 
359
  /// Return all inner loops in the loop nest rooted by the loop in preorder,
360
  /// with siblings in forward program order.
361
  template <class Type>
362
  static void getInnerLoopsInPreorder(const LoopT &L,
363
                                      SmallVectorImpl<Type> &PreOrderLoops) {
364
    SmallVector<LoopT *, 4> PreOrderWorklist;
365
    PreOrderWorklist.append(L.rbegin(), L.rend());
366
 
367
    while (!PreOrderWorklist.empty()) {
368
      LoopT *L = PreOrderWorklist.pop_back_val();
369
      // Sub-loops are stored in forward program order, but will process the
370
      // worklist backwards so append them in reverse order.
371
      PreOrderWorklist.append(L->rbegin(), L->rend());
372
      PreOrderLoops.push_back(L);
373
    }
374
  }
375
 
376
  /// Return all loops in the loop nest rooted by the loop in preorder, with
377
  /// siblings in forward program order.
378
  SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
379
    SmallVector<const LoopT *, 4> PreOrderLoops;
380
    const LoopT *CurLoop = static_cast<const LoopT *>(this);
381
    PreOrderLoops.push_back(CurLoop);
382
    getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
383
    return PreOrderLoops;
384
  }
385
  SmallVector<LoopT *, 4> getLoopsInPreorder() {
386
    SmallVector<LoopT *, 4> PreOrderLoops;
387
    LoopT *CurLoop = static_cast<LoopT *>(this);
388
    PreOrderLoops.push_back(CurLoop);
389
    getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
390
    return PreOrderLoops;
391
  }
392
 
393
  //===--------------------------------------------------------------------===//
394
  // APIs for updating loop information after changing the CFG
395
  //
396
 
397
  /// This method is used by other analyses to update loop information.
398
  /// NewBB is set to be a new member of the current loop.
399
  /// Because of this, it is added as a member of all parent loops, and is added
400
  /// to the specified LoopInfo object as being in the current basic block.  It
401
  /// is not valid to replace the loop header with this method.
402
  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
403
 
404
  /// This is used when splitting loops up. It replaces the OldChild entry in
405
  /// our children list with NewChild, and updates the parent pointer of
406
  /// OldChild to be null and the NewChild to be this loop.
407
  /// This updates the loop depth of the new child.
408
  void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
409
 
410
  /// Add the specified loop to be a child of this loop.
411
  /// This updates the loop depth of the new child.
412
  void addChildLoop(LoopT *NewChild) {
413
    assert(!isInvalid() && "Loop not in a valid state!");
414
    assert(!NewChild->ParentLoop && "NewChild already has a parent!");
415
    NewChild->ParentLoop = static_cast<LoopT *>(this);
416
    SubLoops.push_back(NewChild);
417
  }
418
 
419
  /// This removes the specified child from being a subloop of this loop. The
420
  /// loop is not deleted, as it will presumably be inserted into another loop.
421
  LoopT *removeChildLoop(iterator I) {
422
    assert(!isInvalid() && "Loop not in a valid state!");
423
    assert(I != SubLoops.end() && "Cannot remove end iterator!");
424
    LoopT *Child = *I;
425
    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
426
    SubLoops.erase(SubLoops.begin() + (I - begin()));
427
    Child->ParentLoop = nullptr;
428
    return Child;
429
  }
430
 
431
  /// This removes the specified child from being a subloop of this loop. The
432
  /// loop is not deleted, as it will presumably be inserted into another loop.
433
  LoopT *removeChildLoop(LoopT *Child) {
434
    return removeChildLoop(llvm::find(*this, Child));
435
  }
436
 
437
  /// This adds a basic block directly to the basic block list.
438
  /// This should only be used by transformations that create new loops.  Other
439
  /// transformations should use addBasicBlockToLoop.
440
  void addBlockEntry(BlockT *BB) {
441
    assert(!isInvalid() && "Loop not in a valid state!");
442
    Blocks.push_back(BB);
443
    DenseBlockSet.insert(BB);
444
  }
445
 
446
  /// interface to reverse Blocks[from, end of loop] in this loop
447
  void reverseBlock(unsigned from) {
448
    assert(!isInvalid() && "Loop not in a valid state!");
449
    std::reverse(Blocks.begin() + from, Blocks.end());
450
  }
451
 
452
  /// interface to do reserve() for Blocks
453
  void reserveBlocks(unsigned size) {
454
    assert(!isInvalid() && "Loop not in a valid state!");
455
    Blocks.reserve(size);
456
  }
457
 
458
  /// This method is used to move BB (which must be part of this loop) to be the
459
  /// loop header of the loop (the block that dominates all others).
460
  void moveToHeader(BlockT *BB) {
461
    assert(!isInvalid() && "Loop not in a valid state!");
462
    if (Blocks[0] == BB)
463
      return;
464
    for (unsigned i = 0;; ++i) {
465
      assert(i != Blocks.size() && "Loop does not contain BB!");
466
      if (Blocks[i] == BB) {
467
        Blocks[i] = Blocks[0];
468
        Blocks[0] = BB;
469
        return;
470
      }
471
    }
472
  }
473
 
474
  /// This removes the specified basic block from the current loop, updating the
475
  /// Blocks as appropriate. This does not update the mapping in the LoopInfo
476
  /// class.
477
  void removeBlockFromLoop(BlockT *BB) {
478
    assert(!isInvalid() && "Loop not in a valid state!");
479
    auto I = find(Blocks, BB);
480
    assert(I != Blocks.end() && "N is not in this list!");
481
    Blocks.erase(I);
482
 
483
    DenseBlockSet.erase(BB);
484
  }
485
 
486
  /// Verify loop structure
487
  void verifyLoop() const;
488
 
489
  /// Verify loop structure of this loop and all nested loops.
490
  void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
491
 
492
  /// Returns true if the loop is annotated parallel.
493
  ///
494
  /// Derived classes can override this method using static template
495
  /// polymorphism.
496
  bool isAnnotatedParallel() const { return false; }
497
 
498
  /// Print loop with all the BBs inside it.
499
  void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true,
500
             unsigned Depth = 0) const;
501
 
502
protected:
503
  friend class LoopInfoBase<BlockT, LoopT>;
504
 
505
  /// This creates an empty loop.
506
  LoopBase() : ParentLoop(nullptr) {}
507
 
508
  explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
509
    Blocks.push_back(BB);
510
    DenseBlockSet.insert(BB);
511
  }
512
 
513
  // Since loop passes like SCEV are allowed to key analysis results off of
514
  // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
515
  // This means loop passes should not be `delete` ing `Loop` objects directly
516
  // (and risk a later `Loop` allocation re-using the address of a previous one)
517
  // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
518
  // pointer till the end of the lifetime of the `LoopInfo` object.
519
  //
520
  // To make it easier to follow this rule, we mark the destructor as
521
  // non-public.
522
  ~LoopBase() {
523
    for (auto *SubLoop : SubLoops)
524
      SubLoop->~LoopT();
525
 
526
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
527
    IsInvalid = true;
528
#endif
529
    SubLoops.clear();
530
    Blocks.clear();
531
    DenseBlockSet.clear();
532
    ParentLoop = nullptr;
533
  }
534
};
535
 
536
template <class BlockT, class LoopT>
537
raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
538
  Loop.print(OS);
539
  return OS;
540
}
541
 
542
// Implementation in LoopInfoImpl.h
543
extern template class LoopBase<BasicBlock, Loop>;
544
 
545
/// Represents a single loop in the control flow graph.  Note that not all SCCs
546
/// in the CFG are necessarily loops.
547
class LLVM_EXTERNAL_VISIBILITY Loop : public LoopBase<BasicBlock, Loop> {
548
public:
549
  /// A range representing the start and end location of a loop.
550
  class LocRange {
551
    DebugLoc Start;
552
    DebugLoc End;
553
 
554
  public:
555
    LocRange() = default;
556
    LocRange(DebugLoc Start) : Start(Start), End(Start) {}
557
    LocRange(DebugLoc Start, DebugLoc End)
558
        : Start(std::move(Start)), End(std::move(End)) {}
559
 
560
    const DebugLoc &getStart() const { return Start; }
561
    const DebugLoc &getEnd() const { return End; }
562
 
563
    /// Check for null.
564
    ///
565
    explicit operator bool() const { return Start && End; }
566
  };
567
 
568
  /// Return true if the specified value is loop invariant.
569
  bool isLoopInvariant(const Value *V) const;
570
 
571
  /// Return true if all the operands of the specified instruction are loop
572
  /// invariant.
573
  bool hasLoopInvariantOperands(const Instruction *I) const;
574
 
575
  /// If the given value is an instruction inside of the loop and it can be
576
  /// hoisted, do so to make it trivially loop-invariant.
577
  /// Return true if \c V is already loop-invariant, and false if \c V can't
578
  /// be made loop-invariant. If \c V is made loop-invariant, \c Changed is
579
  /// set to true. This function can be used as a slightly more aggressive
580
  /// replacement for isLoopInvariant.
581
  ///
582
  /// If InsertPt is specified, it is the point to hoist instructions to.
583
  /// If null, the terminator of the loop preheader is used.
584
  ///
585
  bool makeLoopInvariant(Value *V, bool &Changed,
586
                         Instruction *InsertPt = nullptr,
587
                         MemorySSAUpdater *MSSAU = nullptr,
588
                         ScalarEvolution *SE = nullptr) const;
589
 
590
  /// If the given instruction is inside of the loop and it can be hoisted, do
591
  /// so to make it trivially loop-invariant.
592
  /// Return true if \c I is already loop-invariant, and false if \c I can't
593
  /// be made loop-invariant. If \c I is made loop-invariant, \c Changed is
594
  /// set to true. This function can be used as a slightly more aggressive
595
  /// replacement for isLoopInvariant.
596
  ///
597
  /// If InsertPt is specified, it is the point to hoist instructions to.
598
  /// If null, the terminator of the loop preheader is used.
599
  ///
600
  bool makeLoopInvariant(Instruction *I, bool &Changed,
601
                         Instruction *InsertPt = nullptr,
602
                         MemorySSAUpdater *MSSAU = nullptr,
603
                         ScalarEvolution *SE = nullptr) const;
604
 
605
  /// Check to see if the loop has a canonical induction variable: an integer
606
  /// recurrence that starts at 0 and increments by one each time through the
607
  /// loop. If so, return the phi node that corresponds to it.
608
  ///
609
  /// The IndVarSimplify pass transforms loops to have a canonical induction
610
  /// variable.
611
  ///
612
  PHINode *getCanonicalInductionVariable() const;
613
 
614
  /// Get the latch condition instruction.
615
  ICmpInst *getLatchCmpInst() const;
616
 
617
  /// Obtain the unique incoming and back edge. Return false if they are
618
  /// non-unique or the loop is dead; otherwise, return true.
619
  bool getIncomingAndBackEdge(BasicBlock *&Incoming,
620
                              BasicBlock *&Backedge) const;
621
 
622
  /// Below are some utilities to get the loop guard, loop bounds and induction
623
  /// variable, and to check if a given phinode is an auxiliary induction
624
  /// variable, if the loop is guarded, and if the loop is canonical.
625
  ///
626
  /// Here is an example:
627
  /// \code
628
  /// for (int i = lb; i < ub; i+=step)
629
  ///   <loop body>
630
  /// --- pseudo LLVMIR ---
631
  /// beforeloop:
632
  ///   guardcmp = (lb < ub)
633
  ///   if (guardcmp) goto preheader; else goto afterloop
634
  /// preheader:
635
  /// loop:
636
  ///   i_1 = phi[{lb, preheader}, {i_2, latch}]
637
  ///   <loop body>
638
  ///   i_2 = i_1 + step
639
  /// latch:
640
  ///   cmp = (i_2 < ub)
641
  ///   if (cmp) goto loop
642
  /// exit:
643
  /// afterloop:
644
  /// \endcode
645
  ///
646
  /// - getBounds
647
  ///   - getInitialIVValue      --> lb
648
  ///   - getStepInst            --> i_2 = i_1 + step
649
  ///   - getStepValue           --> step
650
  ///   - getFinalIVValue        --> ub
651
  ///   - getCanonicalPredicate  --> '<'
652
  ///   - getDirection           --> Increasing
653
  ///
654
  /// - getInductionVariable            --> i_1
655
  /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
656
  /// - getLoopGuardBranch()
657
  ///                 --> `if (guardcmp) goto preheader; else goto afterloop`
658
  /// - isGuarded()                     --> true
659
  /// - isCanonical                     --> false
660
  struct LoopBounds {
661
    /// Return the LoopBounds object if
662
    /// - the given \p IndVar is an induction variable
663
    /// - the initial value of the induction variable can be found
664
    /// - the step instruction of the induction variable can be found
665
    /// - the final value of the induction variable can be found
666
    ///
667
    /// Else None.
668
    static std::optional<Loop::LoopBounds>
669
    getBounds(const Loop &L, PHINode &IndVar, ScalarEvolution &SE);
670
 
671
    /// Get the initial value of the loop induction variable.
672
    Value &getInitialIVValue() const { return InitialIVValue; }
673
 
674
    /// Get the instruction that updates the loop induction variable.
675
    Instruction &getStepInst() const { return StepInst; }
676
 
677
    /// Get the step that the loop induction variable gets updated by in each
678
    /// loop iteration. Return nullptr if not found.
679
    Value *getStepValue() const { return StepValue; }
680
 
681
    /// Get the final value of the loop induction variable.
682
    Value &getFinalIVValue() const { return FinalIVValue; }
683
 
684
    /// Return the canonical predicate for the latch compare instruction, if
685
    /// able to be calcuated. Else BAD_ICMP_PREDICATE.
686
    ///
687
    /// A predicate is considered as canonical if requirements below are all
688
    /// satisfied:
689
    /// 1. The first successor of the latch branch is the loop header
690
    ///    If not, inverse the predicate.
691
    /// 2. One of the operands of the latch comparison is StepInst
692
    ///    If not, and
693
    ///    - if the current calcuated predicate is not ne or eq, flip the
694
    ///      predicate.
695
    ///    - else if the loop is increasing, return slt
696
    ///      (notice that it is safe to change from ne or eq to sign compare)
697
    ///    - else if the loop is decreasing, return sgt
698
    ///      (notice that it is safe to change from ne or eq to sign compare)
699
    ///
700
    /// Here is an example when both (1) and (2) are not satisfied:
701
    /// \code
702
    /// loop.header:
703
    ///  %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
704
    ///  %inc = add %iv, %step
705
    ///  %cmp = slt %iv, %finaliv
706
    ///  br %cmp, %loop.exit, %loop.header
707
    /// loop.exit:
708
    /// \endcode
709
    /// - The second successor of the latch branch is the loop header instead
710
    ///   of the first successor (slt -> sge)
711
    /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
712
    ///   instead of the StepInst (%inc) (sge -> sgt)
713
    ///
714
    /// The predicate would be sgt if both (1) and (2) are satisfied.
715
    /// getCanonicalPredicate() returns sgt for this example.
716
    /// Note: The IR is not changed.
717
    ICmpInst::Predicate getCanonicalPredicate() const;
718
 
719
    /// An enum for the direction of the loop
720
    /// - for (int i = 0; i < ub; ++i)  --> Increasing
721
    /// - for (int i = ub; i > 0; --i)  --> Descresing
722
    /// - for (int i = x; i != y; i+=z) --> Unknown
723
    enum class Direction { Increasing, Decreasing, Unknown };
724
 
725
    /// Get the direction of the loop.
726
    Direction getDirection() const;
727
 
728
  private:
729
    LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
730
               ScalarEvolution &SE)
731
        : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
732
          FinalIVValue(F), SE(SE) {}
733
 
734
    const Loop &L;
735
 
736
    // The initial value of the loop induction variable
737
    Value &InitialIVValue;
738
 
739
    // The instruction that updates the loop induction variable
740
    Instruction &StepInst;
741
 
742
    // The value that the loop induction variable gets updated by in each loop
743
    // iteration
744
    Value *StepValue;
745
 
746
    // The final value of the loop induction variable
747
    Value &FinalIVValue;
748
 
749
    ScalarEvolution &SE;
750
  };
751
 
752
  /// Return the struct LoopBounds collected if all struct members are found,
753
  /// else std::nullopt.
754
  std::optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
755
 
756
  /// Return the loop induction variable if found, else return nullptr.
757
  /// An instruction is considered as the loop induction variable if
758
  /// - it is an induction variable of the loop; and
759
  /// - it is used to determine the condition of the branch in the loop latch
760
  ///
761
  /// Note: the induction variable doesn't need to be canonical, i.e. starts at
762
  /// zero and increments by one each time through the loop (but it can be).
763
  PHINode *getInductionVariable(ScalarEvolution &SE) const;
764
 
765
  /// Get the loop induction descriptor for the loop induction variable. Return
766
  /// true if the loop induction variable is found.
767
  bool getInductionDescriptor(ScalarEvolution &SE,
768
                              InductionDescriptor &IndDesc) const;
769
 
770
  /// Return true if the given PHINode \p AuxIndVar is
771
  /// - in the loop header
772
  /// - not used outside of the loop
773
  /// - incremented by a loop invariant step for each loop iteration
774
  /// - step instruction opcode should be add or sub
775
  /// Note: auxiliary induction variable is not required to be used in the
776
  ///       conditional branch in the loop latch. (but it can be)
777
  bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
778
                                    ScalarEvolution &SE) const;
779
 
780
  /// Return the loop guard branch, if it exists.
781
  ///
782
  /// This currently only works on simplified loop, as it requires a preheader
783
  /// and a latch to identify the guard. It will work on loops of the form:
784
  /// \code
785
  /// GuardBB:
786
  ///   br cond1, Preheader, ExitSucc <== GuardBranch
787
  /// Preheader:
788
  ///   br Header
789
  /// Header:
790
  ///  ...
791
  ///   br Latch
792
  /// Latch:
793
  ///   br cond2, Header, ExitBlock
794
  /// ExitBlock:
795
  ///   br ExitSucc
796
  /// ExitSucc:
797
  /// \endcode
798
  BranchInst *getLoopGuardBranch() const;
799
 
800
  /// Return true iff the loop is
801
  /// - in simplify rotated form, and
802
  /// - guarded by a loop guard branch.
803
  bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
804
 
805
  /// Return true if the loop is in rotated form.
806
  ///
807
  /// This does not check if the loop was rotated by loop rotation, instead it
808
  /// only checks if the loop is in rotated form (has a valid latch that exists
809
  /// the loop).
810
  bool isRotatedForm() const {
811
    assert(!isInvalid() && "Loop not in a valid state!");
812
    BasicBlock *Latch = getLoopLatch();
813
    return Latch && isLoopExiting(Latch);
814
  }
815
 
816
  /// Return true if the loop induction variable starts at zero and increments
817
  /// by one each time through the loop.
818
  bool isCanonical(ScalarEvolution &SE) const;
819
 
820
  /// Return true if the Loop is in LCSSA form. If \p IgnoreTokens is set to
821
  /// true, token values defined inside loop are allowed to violate LCSSA form.
822
  bool isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens = true) const;
823
 
824
  /// Return true if this Loop and all inner subloops are in LCSSA form. If \p
825
  /// IgnoreTokens is set to true, token values defined inside loop are allowed
826
  /// to violate LCSSA form.
827
  bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI,
828
                              bool IgnoreTokens = true) const;
829
 
830
  /// Return true if the Loop is in the form that the LoopSimplify form
831
  /// transforms loops to, which is sometimes called normal form.
832
  bool isLoopSimplifyForm() const;
833
 
834
  /// Return true if the loop body is safe to clone in practice.
835
  bool isSafeToClone() const;
836
 
837
  /// Returns true if the loop is annotated parallel.
838
  ///
839
  /// A parallel loop can be assumed to not contain any dependencies between
840
  /// iterations by the compiler. That is, any loop-carried dependency checking
841
  /// can be skipped completely when parallelizing the loop on the target
842
  /// machine. Thus, if the parallel loop information originates from the
843
  /// programmer, e.g. via the OpenMP parallel for pragma, it is the
844
  /// programmer's responsibility to ensure there are no loop-carried
845
  /// dependencies. The final execution order of the instructions across
846
  /// iterations is not guaranteed, thus, the end result might or might not
847
  /// implement actual concurrent execution of instructions across multiple
848
  /// iterations.
849
  bool isAnnotatedParallel() const;
850
 
851
  /// Return the llvm.loop loop id metadata node for this loop if it is present.
852
  ///
853
  /// If this loop contains the same llvm.loop metadata on each branch to the
854
  /// header then the node is returned. If any latch instruction does not
855
  /// contain llvm.loop or if multiple latches contain different nodes then
856
  /// 0 is returned.
857
  MDNode *getLoopID() const;
858
  /// Set the llvm.loop loop id metadata for this loop.
859
  ///
860
  /// The LoopID metadata node will be added to each terminator instruction in
861
  /// the loop that branches to the loop header.
862
  ///
863
  /// The LoopID metadata node should have one or more operands and the first
864
  /// operand should be the node itself.
865
  void setLoopID(MDNode *LoopID) const;
866
 
867
  /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
868
  ///
869
  /// Remove existing unroll metadata and add unroll disable metadata to
870
  /// indicate the loop has already been unrolled.  This prevents a loop
871
  /// from being unrolled more than is directed by a pragma if the loop
872
  /// unrolling pass is run more than once (which it generally is).
873
  void setLoopAlreadyUnrolled();
874
 
875
  /// Add llvm.loop.mustprogress to this loop's loop id metadata.
876
  void setLoopMustProgress();
877
 
878
  void dump() const;
879
  void dumpVerbose() const;
880
 
881
  /// Return the debug location of the start of this loop.
882
  /// This looks for a BB terminating instruction with a known debug
883
  /// location by looking at the preheader and header blocks. If it
884
  /// cannot find a terminating instruction with location information,
885
  /// it returns an unknown location.
886
  DebugLoc getStartLoc() const;
887
 
888
  /// Return the source code span of the loop.
889
  LocRange getLocRange() const;
890
 
891
  StringRef getName() const {
892
    if (BasicBlock *Header = getHeader())
893
      if (Header->hasName())
894
        return Header->getName();
895
    return "<unnamed loop>";
896
  }
897
 
898
private:
899
  Loop() = default;
900
 
901
  friend class LoopInfoBase<BasicBlock, Loop>;
902
  friend class LoopBase<BasicBlock, Loop>;
903
  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
904
  ~Loop() = default;
905
};
906
 
907
//===----------------------------------------------------------------------===//
908
/// This class builds and contains all of the top-level loop
909
/// structures in the specified function.
910
///
911
 
912
template <class BlockT, class LoopT> class LoopInfoBase {
913
  // BBMap - Mapping of basic blocks to the inner most loop they occur in
914
  DenseMap<const BlockT *, LoopT *> BBMap;
915
  std::vector<LoopT *> TopLevelLoops;
916
  BumpPtrAllocator LoopAllocator;
917
 
918
  friend class LoopBase<BlockT, LoopT>;
919
  friend class LoopInfo;
920
 
921
  void operator=(const LoopInfoBase &) = delete;
922
  LoopInfoBase(const LoopInfoBase &) = delete;
923
 
924
public:
925
  LoopInfoBase() = default;
926
  ~LoopInfoBase() { releaseMemory(); }
927
 
928
  LoopInfoBase(LoopInfoBase &&Arg)
929
      : BBMap(std::move(Arg.BBMap)),
930
        TopLevelLoops(std::move(Arg.TopLevelLoops)),
931
        LoopAllocator(std::move(Arg.LoopAllocator)) {
932
    // We have to clear the arguments top level loops as we've taken ownership.
933
    Arg.TopLevelLoops.clear();
934
  }
935
  LoopInfoBase &operator=(LoopInfoBase &&RHS) {
936
    BBMap = std::move(RHS.BBMap);
937
 
938
    for (auto *L : TopLevelLoops)
939
      L->~LoopT();
940
 
941
    TopLevelLoops = std::move(RHS.TopLevelLoops);
942
    LoopAllocator = std::move(RHS.LoopAllocator);
943
    RHS.TopLevelLoops.clear();
944
    return *this;
945
  }
946
 
947
  void releaseMemory() {
948
    BBMap.clear();
949
 
950
    for (auto *L : TopLevelLoops)
951
      L->~LoopT();
952
    TopLevelLoops.clear();
953
    LoopAllocator.Reset();
954
  }
955
 
956
  template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
957
    LoopT *Storage = LoopAllocator.Allocate<LoopT>();
958
    return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
959
  }
960
 
961
  /// iterator/begin/end - The interface to the top-level loops in the current
962
  /// function.
963
  ///
964
  typedef typename std::vector<LoopT *>::const_iterator iterator;
965
  typedef
966
      typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
967
  iterator begin() const { return TopLevelLoops.begin(); }
968
  iterator end() const { return TopLevelLoops.end(); }
969
  reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
970
  reverse_iterator rend() const { return TopLevelLoops.rend(); }
971
  bool empty() const { return TopLevelLoops.empty(); }
972
 
973
  /// Return all of the loops in the function in preorder across the loop
974
  /// nests, with siblings in forward program order.
975
  ///
976
  /// Note that because loops form a forest of trees, preorder is equivalent to
977
  /// reverse postorder.
978
  SmallVector<LoopT *, 4> getLoopsInPreorder() const;
979
 
980
  /// Return all of the loops in the function in preorder across the loop
981
  /// nests, with siblings in *reverse* program order.
982
  ///
983
  /// Note that because loops form a forest of trees, preorder is equivalent to
984
  /// reverse postorder.
985
  ///
986
  /// Also note that this is *not* a reverse preorder. Only the siblings are in
987
  /// reverse program order.
988
  SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder() const;
989
 
990
  /// Return the inner most loop that BB lives in. If a basic block is in no
991
  /// loop (for example the entry node), null is returned.
992
  LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
993
 
994
  /// Same as getLoopFor.
995
  const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
996
 
997
  /// Return the loop nesting level of the specified block. A depth of 0 means
998
  /// the block is not inside any loop.
999
  unsigned getLoopDepth(const BlockT *BB) const {
1000
    const LoopT *L = getLoopFor(BB);
1001
    return L ? L->getLoopDepth() : 0;
1002
  }
1003
 
1004
  // True if the block is a loop header node
1005
  bool isLoopHeader(const BlockT *BB) const {
1006
    const LoopT *L = getLoopFor(BB);
1007
    return L && L->getHeader() == BB;
1008
  }
1009
 
1010
  /// Return the top-level loops.
1011
  const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
1012
 
1013
  /// Return the top-level loops.
1014
  std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
1015
 
1016
  /// This removes the specified top-level loop from this loop info object.
1017
  /// The loop is not deleted, as it will presumably be inserted into
1018
  /// another loop.
1019
  LoopT *removeLoop(iterator I) {
1020
    assert(I != end() && "Cannot remove end iterator!");
1021
    LoopT *L = *I;
1022
    assert(L->isOutermost() && "Not a top-level loop!");
1023
    TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
1024
    return L;
1025
  }
1026
 
1027
  /// Change the top-level loop that contains BB to the specified loop.
1028
  /// This should be used by transformations that restructure the loop hierarchy
1029
  /// tree.
1030
  void changeLoopFor(BlockT *BB, LoopT *L) {
1031
    if (!L) {
1032
      BBMap.erase(BB);
1033
      return;
1034
    }
1035
    BBMap[BB] = L;
1036
  }
1037
 
1038
  /// Replace the specified loop in the top-level loops list with the indicated
1039
  /// loop.
1040
  void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
1041
    auto I = find(TopLevelLoops, OldLoop);
1042
    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
1043
    *I = NewLoop;
1044
    assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
1045
           "Loops already embedded into a subloop!");
1046
  }
1047
 
1048
  /// This adds the specified loop to the collection of top-level loops.
1049
  void addTopLevelLoop(LoopT *New) {
1050
    assert(New->isOutermost() && "Loop already in subloop!");
1051
    TopLevelLoops.push_back(New);
1052
  }
1053
 
1054
  /// This method completely removes BB from all data structures,
1055
  /// including all of the Loop objects it is nested in and our mapping from
1056
  /// BasicBlocks to loops.
1057
  void removeBlock(BlockT *BB) {
1058
    auto I = BBMap.find(BB);
1059
    if (I != BBMap.end()) {
1060
      for (LoopT *L = I->second; L; L = L->getParentLoop())
1061
        L->removeBlockFromLoop(BB);
1062
 
1063
      BBMap.erase(I);
1064
    }
1065
  }
1066
 
1067
  // Internals
1068
 
1069
  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
1070
                                      const LoopT *ParentLoop) {
1071
    if (!SubLoop)
1072
      return true;
1073
    if (SubLoop == ParentLoop)
1074
      return false;
1075
    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
1076
  }
1077
 
1078
  /// Create the loop forest using a stable algorithm.
1079
  void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
1080
 
1081
  // Debugging
1082
  void print(raw_ostream &OS) const;
1083
 
1084
  void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
1085
 
1086
  /// Destroy a loop that has been removed from the `LoopInfo` nest.
1087
  ///
1088
  /// This runs the destructor of the loop object making it invalid to
1089
  /// reference afterward. The memory is retained so that the *pointer* to the
1090
  /// loop remains valid.
1091
  ///
1092
  /// The caller is responsible for removing this loop from the loop nest and
1093
  /// otherwise disconnecting it from the broader `LoopInfo` data structures.
1094
  /// Callers that don't naturally handle this themselves should probably call
1095
  /// `erase' instead.
1096
  void destroy(LoopT *L) {
1097
    L->~LoopT();
1098
 
1099
    // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
1100
    // \c L, but the pointer remains valid for non-dereferencing uses.
1101
    LoopAllocator.Deallocate(L);
1102
  }
1103
};
1104
 
1105
// Implementation in LoopInfoImpl.h
1106
extern template class LoopInfoBase<BasicBlock, Loop>;
1107
 
1108
class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
1109
  typedef LoopInfoBase<BasicBlock, Loop> BaseT;
1110
 
1111
  friend class LoopBase<BasicBlock, Loop>;
1112
 
1113
  void operator=(const LoopInfo &) = delete;
1114
  LoopInfo(const LoopInfo &) = delete;
1115
 
1116
public:
1117
  LoopInfo() = default;
1118
  explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
1119
 
1120
  LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
1121
  LoopInfo &operator=(LoopInfo &&RHS) {
1122
    BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
1123
    return *this;
1124
  }
1125
 
1126
  /// Handle invalidation explicitly.
1127
  bool invalidate(Function &F, const PreservedAnalyses &PA,
1128
                  FunctionAnalysisManager::Invalidator &);
1129
 
1130
  // Most of the public interface is provided via LoopInfoBase.
1131
 
1132
  /// Update LoopInfo after removing the last backedge from a loop. This updates
1133
  /// the loop forest and parent loops for each block so that \c L is no longer
1134
  /// referenced, but does not actually delete \c L immediately. The pointer
1135
  /// will remain valid until this LoopInfo's memory is released.
1136
  void erase(Loop *L);
1137
 
1138
  /// Returns true if replacing From with To everywhere is guaranteed to
1139
  /// preserve LCSSA form.
1140
  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1141
    // Preserving LCSSA form is only problematic if the replacing value is an
1142
    // instruction.
1143
    Instruction *I = dyn_cast<Instruction>(To);
1144
    if (!I)
1145
      return true;
1146
    // If both instructions are defined in the same basic block then replacement
1147
    // cannot break LCSSA form.
1148
    if (I->getParent() == From->getParent())
1149
      return true;
1150
    // If the instruction is not defined in a loop then it can safely replace
1151
    // anything.
1152
    Loop *ToLoop = getLoopFor(I->getParent());
1153
    if (!ToLoop)
1154
      return true;
1155
    // If the replacing instruction is defined in the same loop as the original
1156
    // instruction, or in a loop that contains it as an inner loop, then using
1157
    // it as a replacement will not break LCSSA form.
1158
    return ToLoop->contains(getLoopFor(From->getParent()));
1159
  }
1160
 
1161
  /// Checks if moving a specific instruction can break LCSSA in any loop.
1162
  ///
1163
  /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
1164
  /// assuming that the function containing \p Inst and \p NewLoc is currently
1165
  /// in LCSSA form.
1166
  bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
1167
    assert(Inst->getFunction() == NewLoc->getFunction() &&
1168
           "Can't reason about IPO!");
1169
 
1170
    auto *OldBB = Inst->getParent();
1171
    auto *NewBB = NewLoc->getParent();
1172
 
1173
    // Movement within the same loop does not break LCSSA (the equality check is
1174
    // to avoid doing a hashtable lookup in case of intra-block movement).
1175
    if (OldBB == NewBB)
1176
      return true;
1177
 
1178
    auto *OldLoop = getLoopFor(OldBB);
1179
    auto *NewLoop = getLoopFor(NewBB);
1180
 
1181
    if (OldLoop == NewLoop)
1182
      return true;
1183
 
1184
    // Check if Outer contains Inner; with the null loop counting as the
1185
    // "outermost" loop.
1186
    auto Contains = [](const Loop *Outer, const Loop *Inner) {
1187
      return !Outer || Outer->contains(Inner);
1188
    };
1189
 
1190
    // To check that the movement of Inst to before NewLoc does not break LCSSA,
1191
    // we need to check two sets of uses for possible LCSSA violations at
1192
    // NewLoc: the users of NewInst, and the operands of NewInst.
1193
 
1194
    // If we know we're hoisting Inst out of an inner loop to an outer loop,
1195
    // then the uses *of* Inst don't need to be checked.
1196
 
1197
    if (!Contains(NewLoop, OldLoop)) {
1198
      for (Use &U : Inst->uses()) {
1199
        auto *UI = cast<Instruction>(U.getUser());
1200
        auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
1201
                                     : UI->getParent();
1202
        if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
1203
          return false;
1204
      }
1205
    }
1206
 
1207
    // If we know we're sinking Inst from an outer loop into an inner loop, then
1208
    // the *operands* of Inst don't need to be checked.
1209
 
1210
    if (!Contains(OldLoop, NewLoop)) {
1211
      // See below on why we can't handle phi nodes here.
1212
      if (isa<PHINode>(Inst))
1213
        return false;
1214
 
1215
      for (Use &U : Inst->operands()) {
1216
        auto *DefI = dyn_cast<Instruction>(U.get());
1217
        if (!DefI)
1218
          return false;
1219
 
1220
        // This would need adjustment if we allow Inst to be a phi node -- the
1221
        // new use block won't simply be NewBB.
1222
 
1223
        auto *DefBlock = DefI->getParent();
1224
        if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
1225
          return false;
1226
      }
1227
    }
1228
 
1229
    return true;
1230
  }
1231
 
1232
  // Return true if a new use of V added in ExitBB would require an LCSSA PHI
1233
  // to be inserted at the begining of the block.  Note that V is assumed to
1234
  // dominate ExitBB, and ExitBB must be the exit block of some loop.  The
1235
  // IR is assumed to be in LCSSA form before the planned insertion.
1236
  bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V,
1237
                                         const BasicBlock *ExitBB) const;
1238
 
1239
};
1240
 
1241
/// Enable verification of loop info.
1242
///
1243
/// The flag enables checks which are expensive and are disabled by default
1244
/// unless the `EXPENSIVE_CHECKS` macro is defined.  The `-verify-loop-info`
1245
/// flag allows the checks to be enabled selectively without re-compilation.
1246
extern bool VerifyLoopInfo;
1247
 
1248
// Allow clients to walk the list of nested loops...
1249
template <> struct GraphTraits<const Loop *> {
1250
  typedef const Loop *NodeRef;
1251
  typedef LoopInfo::iterator ChildIteratorType;
1252
 
1253
  static NodeRef getEntryNode(const Loop *L) { return L; }
1254
  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1255
  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1256
};
1257
 
1258
template <> struct GraphTraits<Loop *> {
1259
  typedef Loop *NodeRef;
1260
  typedef LoopInfo::iterator ChildIteratorType;
1261
 
1262
  static NodeRef getEntryNode(Loop *L) { return L; }
1263
  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1264
  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1265
};
1266
 
1267
/// Analysis pass that exposes the \c LoopInfo for a function.
1268
class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
1269
  friend AnalysisInfoMixin<LoopAnalysis>;
1270
  static AnalysisKey Key;
1271
 
1272
public:
1273
  typedef LoopInfo Result;
1274
 
1275
  LoopInfo run(Function &F, FunctionAnalysisManager &AM);
1276
};
1277
 
1278
/// Printer pass for the \c LoopAnalysis results.
1279
class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
1280
  raw_ostream &OS;
1281
 
1282
public:
1283
  explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
1284
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1285
};
1286
 
1287
/// Verifier pass for the \c LoopAnalysis results.
1288
struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
1289
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1290
};
1291
 
1292
/// The legacy pass manager's analysis pass to compute loop information.
1293
class LoopInfoWrapperPass : public FunctionPass {
1294
  LoopInfo LI;
1295
 
1296
public:
1297
  static char ID; // Pass identification, replacement for typeid
1298
 
1299
  LoopInfoWrapperPass();
1300
 
1301
  LoopInfo &getLoopInfo() { return LI; }
1302
  const LoopInfo &getLoopInfo() const { return LI; }
1303
 
1304
  /// Calculate the natural loop information for a given function.
1305
  bool runOnFunction(Function &F) override;
1306
 
1307
  void verifyAnalysis() const override;
1308
 
1309
  void releaseMemory() override { LI.releaseMemory(); }
1310
 
1311
  void print(raw_ostream &O, const Module *M = nullptr) const override;
1312
 
1313
  void getAnalysisUsage(AnalysisUsage &AU) const override;
1314
};
1315
 
1316
/// Function to print a loop's contents as LLVM's text IR assembly.
1317
void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
1318
 
1319
/// Find and return the loop attribute node for the attribute @p Name in
1320
/// @p LoopID. Return nullptr if there is no such attribute.
1321
MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
1322
 
1323
/// Find string metadata for a loop.
1324
///
1325
/// Returns the MDNode where the first operand is the metadata's name. The
1326
/// following operands are the metadata's values. If no metadata with @p Name is
1327
/// found, return nullptr.
1328
MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
1329
 
1330
std::optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
1331
                                                 StringRef Name);
1332
 
1333
/// Returns true if Name is applied to TheLoop and enabled.
1334
bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name);
1335
 
1336
/// Find named metadata for a loop with an integer value.
1337
std::optional<int> getOptionalIntLoopAttribute(const Loop *TheLoop,
1338
                                               StringRef Name);
1339
 
1340
/// Find named metadata for a loop with an integer value. Return \p Default if
1341
/// not set.
1342
int getIntLoopAttribute(const Loop *TheLoop, StringRef Name, int Default = 0);
1343
 
1344
/// Find string metadata for loop
1345
///
1346
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1347
/// operand or null otherwise.  If the string metadata is not found return
1348
/// Optional's not-a-value.
1349
std::optional<const MDOperand *> findStringMetadataForLoop(const Loop *TheLoop,
1350
                                                           StringRef Name);
1351
 
1352
/// Look for the loop attribute that requires progress within the loop.
1353
/// Note: Most consumers probably want "isMustProgress" which checks
1354
/// the containing function attribute too.
1355
bool hasMustProgress(const Loop *L);
1356
 
1357
/// Return true if this loop can be assumed to make progress.  (i.e. can't
1358
/// be infinite without side effects without also being undefined)
1359
bool isMustProgress(const Loop *L);
1360
 
1361
/// Return true if this loop can be assumed to run for a finite number of
1362
/// iterations.
1363
bool isFinite(const Loop *L);
1364
 
1365
/// Return whether an MDNode might represent an access group.
1366
///
1367
/// Access group metadata nodes have to be distinct and empty. Being
1368
/// always-empty ensures that it never needs to be changed (which -- because
1369
/// MDNodes are designed immutable -- would require creating a new MDNode). Note
1370
/// that this is not a sufficient condition: not every distinct and empty NDNode
1371
/// is representing an access group.
1372
bool isValidAsAccessGroup(MDNode *AccGroup);
1373
 
1374
/// Create a new LoopID after the loop has been transformed.
1375
///
1376
/// This can be used when no follow-up loop attributes are defined
1377
/// (llvm::makeFollowupLoopID returning None) to stop transformations to be
1378
/// applied again.
1379
///
1380
/// @param Context        The LLVMContext in which to create the new LoopID.
1381
/// @param OrigLoopID     The original LoopID; can be nullptr if the original
1382
///                       loop has no LoopID.
1383
/// @param RemovePrefixes Remove all loop attributes that have these prefixes.
1384
///                       Use to remove metadata of the transformation that has
1385
///                       been applied.
1386
/// @param AddAttrs       Add these loop attributes to the new LoopID.
1387
///
1388
/// @return A new LoopID that can be applied using Loop::setLoopID().
1389
llvm::MDNode *
1390
makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
1391
                               llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
1392
                               llvm::ArrayRef<llvm::MDNode *> AddAttrs);
1393
 
1394
} // End llvm namespace
1395
 
1396
#endif