Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines the interface for the loop memory dependence framework that |
||
10 | // was originally developed for the Loop Vectorizer. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H |
||
15 | #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H |
||
16 | |||
17 | #include "llvm/ADT/EquivalenceClasses.h" |
||
18 | #include "llvm/Analysis/LoopAnalysisManager.h" |
||
19 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
||
20 | #include "llvm/IR/DiagnosticInfo.h" |
||
21 | #include "llvm/Pass.h" |
||
22 | #include <optional> |
||
23 | |||
24 | namespace llvm { |
||
25 | |||
26 | class AAResults; |
||
27 | class DataLayout; |
||
28 | class Loop; |
||
29 | class LoopAccessInfo; |
||
30 | class raw_ostream; |
||
31 | class SCEV; |
||
32 | class SCEVUnionPredicate; |
||
33 | class Value; |
||
34 | |||
35 | /// Collection of parameters shared beetween the Loop Vectorizer and the |
||
36 | /// Loop Access Analysis. |
||
37 | struct VectorizerParams { |
||
38 | /// Maximum SIMD width. |
||
39 | static const unsigned MaxVectorWidth; |
||
40 | |||
41 | /// VF as overridden by the user. |
||
42 | static unsigned VectorizationFactor; |
||
43 | /// Interleave factor as overridden by the user. |
||
44 | static unsigned VectorizationInterleave; |
||
45 | /// True if force-vector-interleave was specified by the user. |
||
46 | static bool isInterleaveForced(); |
||
47 | |||
48 | /// \When performing memory disambiguation checks at runtime do not |
||
49 | /// make more than this number of comparisons. |
||
50 | static unsigned RuntimeMemoryCheckThreshold; |
||
51 | }; |
||
52 | |||
53 | /// Checks memory dependences among accesses to the same underlying |
||
54 | /// object to determine whether there vectorization is legal or not (and at |
||
55 | /// which vectorization factor). |
||
56 | /// |
||
57 | /// Note: This class will compute a conservative dependence for access to |
||
58 | /// different underlying pointers. Clients, such as the loop vectorizer, will |
||
59 | /// sometimes deal these potential dependencies by emitting runtime checks. |
||
60 | /// |
||
61 | /// We use the ScalarEvolution framework to symbolically evalutate access |
||
62 | /// functions pairs. Since we currently don't restructure the loop we can rely |
||
63 | /// on the program order of memory accesses to determine their safety. |
||
64 | /// At the moment we will only deem accesses as safe for: |
||
65 | /// * A negative constant distance assuming program order. |
||
66 | /// |
||
67 | /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; |
||
68 | /// a[i] = tmp; y = a[i]; |
||
69 | /// |
||
70 | /// The latter case is safe because later checks guarantuee that there can't |
||
71 | /// be a cycle through a phi node (that is, we check that "x" and "y" is not |
||
72 | /// the same variable: a header phi can only be an induction or a reduction, a |
||
73 | /// reduction can't have a memory sink, an induction can't have a memory |
||
74 | /// source). This is important and must not be violated (or we have to |
||
75 | /// resort to checking for cycles through memory). |
||
76 | /// |
||
77 | /// * A positive constant distance assuming program order that is bigger |
||
78 | /// than the biggest memory access. |
||
79 | /// |
||
80 | /// tmp = a[i] OR b[i] = x |
||
81 | /// a[i+2] = tmp y = b[i+2]; |
||
82 | /// |
||
83 | /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. |
||
84 | /// |
||
85 | /// * Zero distances and all accesses have the same size. |
||
86 | /// |
||
87 | class MemoryDepChecker { |
||
88 | public: |
||
89 | typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; |
||
90 | typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; |
||
91 | /// Set of potential dependent memory accesses. |
||
92 | typedef EquivalenceClasses<MemAccessInfo> DepCandidates; |
||
93 | |||
94 | /// Type to keep track of the status of the dependence check. The order of |
||
95 | /// the elements is important and has to be from most permissive to least |
||
96 | /// permissive. |
||
97 | enum class VectorizationSafetyStatus { |
||
98 | // Can vectorize safely without RT checks. All dependences are known to be |
||
99 | // safe. |
||
100 | Safe, |
||
101 | // Can possibly vectorize with RT checks to overcome unknown dependencies. |
||
102 | PossiblySafeWithRtChecks, |
||
103 | // Cannot vectorize due to known unsafe dependencies. |
||
104 | Unsafe, |
||
105 | }; |
||
106 | |||
107 | /// Dependece between memory access instructions. |
||
108 | struct Dependence { |
||
109 | /// The type of the dependence. |
||
110 | enum DepType { |
||
111 | // No dependence. |
||
112 | NoDep, |
||
113 | // We couldn't determine the direction or the distance. |
||
114 | Unknown, |
||
115 | // Lexically forward. |
||
116 | // |
||
117 | // FIXME: If we only have loop-independent forward dependences (e.g. a |
||
118 | // read and write of A[i]), LAA will locally deem the dependence "safe" |
||
119 | // without querying the MemoryDepChecker. Therefore we can miss |
||
120 | // enumerating loop-independent forward dependences in |
||
121 | // getDependences. Note that as soon as there are different |
||
122 | // indices used to access the same array, the MemoryDepChecker *is* |
||
123 | // queried and the dependence list is complete. |
||
124 | Forward, |
||
125 | // Forward, but if vectorized, is likely to prevent store-to-load |
||
126 | // forwarding. |
||
127 | ForwardButPreventsForwarding, |
||
128 | // Lexically backward. |
||
129 | Backward, |
||
130 | // Backward, but the distance allows a vectorization factor of |
||
131 | // MaxSafeDepDistBytes. |
||
132 | BackwardVectorizable, |
||
133 | // Same, but may prevent store-to-load forwarding. |
||
134 | BackwardVectorizableButPreventsForwarding |
||
135 | }; |
||
136 | |||
137 | /// String version of the types. |
||
138 | static const char *DepName[]; |
||
139 | |||
140 | /// Index of the source of the dependence in the InstMap vector. |
||
141 | unsigned Source; |
||
142 | /// Index of the destination of the dependence in the InstMap vector. |
||
143 | unsigned Destination; |
||
144 | /// The type of the dependence. |
||
145 | DepType Type; |
||
146 | |||
147 | Dependence(unsigned Source, unsigned Destination, DepType Type) |
||
148 | : Source(Source), Destination(Destination), Type(Type) {} |
||
149 | |||
150 | /// Return the source instruction of the dependence. |
||
151 | Instruction *getSource(const LoopAccessInfo &LAI) const; |
||
152 | /// Return the destination instruction of the dependence. |
||
153 | Instruction *getDestination(const LoopAccessInfo &LAI) const; |
||
154 | |||
155 | /// Dependence types that don't prevent vectorization. |
||
156 | static VectorizationSafetyStatus isSafeForVectorization(DepType Type); |
||
157 | |||
158 | /// Lexically forward dependence. |
||
159 | bool isForward() const; |
||
160 | /// Lexically backward dependence. |
||
161 | bool isBackward() const; |
||
162 | |||
163 | /// May be a lexically backward dependence type (includes Unknown). |
||
164 | bool isPossiblyBackward() const; |
||
165 | |||
166 | /// Print the dependence. \p Instr is used to map the instruction |
||
167 | /// indices to instructions. |
||
168 | void print(raw_ostream &OS, unsigned Depth, |
||
169 | const SmallVectorImpl<Instruction *> &Instrs) const; |
||
170 | }; |
||
171 | |||
172 | MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L) |
||
173 | : PSE(PSE), InnermostLoop(L) {} |
||
174 | |||
175 | /// Register the location (instructions are given increasing numbers) |
||
176 | /// of a write access. |
||
177 | void addAccess(StoreInst *SI); |
||
178 | |||
179 | /// Register the location (instructions are given increasing numbers) |
||
180 | /// of a write access. |
||
181 | void addAccess(LoadInst *LI); |
||
182 | |||
183 | /// Check whether the dependencies between the accesses are safe. |
||
184 | /// |
||
185 | /// Only checks sets with elements in \p CheckDeps. |
||
186 | bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps, |
||
187 | const ValueToValueMap &Strides); |
||
188 | |||
189 | /// No memory dependence was encountered that would inhibit |
||
190 | /// vectorization. |
||
191 | bool isSafeForVectorization() const { |
||
192 | return Status == VectorizationSafetyStatus::Safe; |
||
193 | } |
||
194 | |||
195 | /// Return true if the number of elements that are safe to operate on |
||
196 | /// simultaneously is not bounded. |
||
197 | bool isSafeForAnyVectorWidth() const { |
||
198 | return MaxSafeVectorWidthInBits == UINT_MAX; |
||
199 | } |
||
200 | |||
201 | /// The maximum number of bytes of a vector register we can vectorize |
||
202 | /// the accesses safely with. |
||
203 | uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } |
||
204 | |||
205 | /// Return the number of elements that are safe to operate on |
||
206 | /// simultaneously, multiplied by the size of the element in bits. |
||
207 | uint64_t getMaxSafeVectorWidthInBits() const { |
||
208 | return MaxSafeVectorWidthInBits; |
||
209 | } |
||
210 | |||
211 | /// In same cases when the dependency check fails we can still |
||
212 | /// vectorize the loop with a dynamic array access check. |
||
213 | bool shouldRetryWithRuntimeCheck() const { |
||
214 | return FoundNonConstantDistanceDependence && |
||
215 | Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks; |
||
216 | } |
||
217 | |||
218 | /// Returns the memory dependences. If null is returned we exceeded |
||
219 | /// the MaxDependences threshold and this information is not |
||
220 | /// available. |
||
221 | const SmallVectorImpl<Dependence> *getDependences() const { |
||
222 | return RecordDependences ? &Dependences : nullptr; |
||
223 | } |
||
224 | |||
225 | void clearDependences() { Dependences.clear(); } |
||
226 | |||
227 | /// The vector of memory access instructions. The indices are used as |
||
228 | /// instruction identifiers in the Dependence class. |
||
229 | const SmallVectorImpl<Instruction *> &getMemoryInstructions() const { |
||
230 | return InstMap; |
||
231 | } |
||
232 | |||
233 | /// Generate a mapping between the memory instructions and their |
||
234 | /// indices according to program order. |
||
235 | DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const { |
||
236 | DenseMap<Instruction *, unsigned> OrderMap; |
||
237 | |||
238 | for (unsigned I = 0; I < InstMap.size(); ++I) |
||
239 | OrderMap[InstMap[I]] = I; |
||
240 | |||
241 | return OrderMap; |
||
242 | } |
||
243 | |||
244 | /// Find the set of instructions that read or write via \p Ptr. |
||
245 | SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr, |
||
246 | bool isWrite) const; |
||
247 | |||
248 | /// Return the program order indices for the access location (Ptr, IsWrite). |
||
249 | /// Returns an empty ArrayRef if there are no accesses for the location. |
||
250 | ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const { |
||
251 | auto I = Accesses.find({Ptr, IsWrite}); |
||
252 | if (I != Accesses.end()) |
||
253 | return I->second; |
||
254 | return {}; |
||
255 | } |
||
256 | |||
257 | const Loop *getInnermostLoop() const { return InnermostLoop; } |
||
258 | |||
259 | private: |
||
260 | /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and |
||
261 | /// applies dynamic knowledge to simplify SCEV expressions and convert them |
||
262 | /// to a more usable form. We need this in case assumptions about SCEV |
||
263 | /// expressions need to be made in order to avoid unknown dependences. For |
||
264 | /// example we might assume a unit stride for a pointer in order to prove |
||
265 | /// that a memory access is strided and doesn't wrap. |
||
266 | PredicatedScalarEvolution &PSE; |
||
267 | const Loop *InnermostLoop; |
||
268 | |||
269 | /// Maps access locations (ptr, read/write) to program order. |
||
270 | DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; |
||
271 | |||
272 | /// Memory access instructions in program order. |
||
273 | SmallVector<Instruction *, 16> InstMap; |
||
274 | |||
275 | /// The program order index to be used for the next instruction. |
||
276 | unsigned AccessIdx = 0; |
||
277 | |||
278 | // We can access this many bytes in parallel safely. |
||
279 | uint64_t MaxSafeDepDistBytes = 0; |
||
280 | |||
281 | /// Number of elements (from consecutive iterations) that are safe to |
||
282 | /// operate on simultaneously, multiplied by the size of the element in bits. |
||
283 | /// The size of the element is taken from the memory access that is most |
||
284 | /// restrictive. |
||
285 | uint64_t MaxSafeVectorWidthInBits = -1U; |
||
286 | |||
287 | /// If we see a non-constant dependence distance we can still try to |
||
288 | /// vectorize this loop with runtime checks. |
||
289 | bool FoundNonConstantDistanceDependence = false; |
||
290 | |||
291 | /// Result of the dependence checks, indicating whether the checked |
||
292 | /// dependences are safe for vectorization, require RT checks or are known to |
||
293 | /// be unsafe. |
||
294 | VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe; |
||
295 | |||
296 | //// True if Dependences reflects the dependences in the |
||
297 | //// loop. If false we exceeded MaxDependences and |
||
298 | //// Dependences is invalid. |
||
299 | bool RecordDependences = true; |
||
300 | |||
301 | /// Memory dependences collected during the analysis. Only valid if |
||
302 | /// RecordDependences is true. |
||
303 | SmallVector<Dependence, 8> Dependences; |
||
304 | |||
305 | /// Check whether there is a plausible dependence between the two |
||
306 | /// accesses. |
||
307 | /// |
||
308 | /// Access \p A must happen before \p B in program order. The two indices |
||
309 | /// identify the index into the program order map. |
||
310 | /// |
||
311 | /// This function checks whether there is a plausible dependence (or the |
||
312 | /// absence of such can't be proved) between the two accesses. If there is a |
||
313 | /// plausible dependence but the dependence distance is bigger than one |
||
314 | /// element access it records this distance in \p MaxSafeDepDistBytes (if this |
||
315 | /// distance is smaller than any other distance encountered so far). |
||
316 | /// Otherwise, this function returns true signaling a possible dependence. |
||
317 | Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx, |
||
318 | const MemAccessInfo &B, unsigned BIdx, |
||
319 | const ValueToValueMap &Strides); |
||
320 | |||
321 | /// Check whether the data dependence could prevent store-load |
||
322 | /// forwarding. |
||
323 | /// |
||
324 | /// \return false if we shouldn't vectorize at all or avoid larger |
||
325 | /// vectorization factors by limiting MaxSafeDepDistBytes. |
||
326 | bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize); |
||
327 | |||
328 | /// Updates the current safety status with \p S. We can go from Safe to |
||
329 | /// either PossiblySafeWithRtChecks or Unsafe and from |
||
330 | /// PossiblySafeWithRtChecks to Unsafe. |
||
331 | void mergeInStatus(VectorizationSafetyStatus S); |
||
332 | }; |
||
333 | |||
334 | class RuntimePointerChecking; |
||
335 | /// A grouping of pointers. A single memcheck is required between |
||
336 | /// two groups. |
||
337 | struct RuntimeCheckingPtrGroup { |
||
338 | /// Create a new pointer checking group containing a single |
||
339 | /// pointer, with index \p Index in RtCheck. |
||
340 | RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck); |
||
341 | |||
342 | /// Tries to add the pointer recorded in RtCheck at index |
||
343 | /// \p Index to this pointer checking group. We can only add a pointer |
||
344 | /// to a checking group if we will still be able to get |
||
345 | /// the upper and lower bounds of the check. Returns true in case |
||
346 | /// of success, false otherwise. |
||
347 | bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck); |
||
348 | bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End, |
||
349 | unsigned AS, bool NeedsFreeze, ScalarEvolution &SE); |
||
350 | |||
351 | /// The SCEV expression which represents the upper bound of all the |
||
352 | /// pointers in this group. |
||
353 | const SCEV *High; |
||
354 | /// The SCEV expression which represents the lower bound of all the |
||
355 | /// pointers in this group. |
||
356 | const SCEV *Low; |
||
357 | /// Indices of all the pointers that constitute this grouping. |
||
358 | SmallVector<unsigned, 2> Members; |
||
359 | /// Address space of the involved pointers. |
||
360 | unsigned AddressSpace; |
||
361 | /// Whether the pointer needs to be frozen after expansion, e.g. because it |
||
362 | /// may be poison outside the loop. |
||
363 | bool NeedsFreeze = false; |
||
364 | }; |
||
365 | |||
366 | /// A memcheck which made up of a pair of grouped pointers. |
||
367 | typedef std::pair<const RuntimeCheckingPtrGroup *, |
||
368 | const RuntimeCheckingPtrGroup *> |
||
369 | RuntimePointerCheck; |
||
370 | |||
371 | struct PointerDiffInfo { |
||
372 | const SCEV *SrcStart; |
||
373 | const SCEV *SinkStart; |
||
374 | unsigned AccessSize; |
||
375 | bool NeedsFreeze; |
||
376 | |||
377 | PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart, |
||
378 | unsigned AccessSize, bool NeedsFreeze) |
||
379 | : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize), |
||
380 | NeedsFreeze(NeedsFreeze) {} |
||
381 | }; |
||
382 | |||
383 | /// Holds information about the memory runtime legality checks to verify |
||
384 | /// that a group of pointers do not overlap. |
||
385 | class RuntimePointerChecking { |
||
386 | friend struct RuntimeCheckingPtrGroup; |
||
387 | |||
388 | public: |
||
389 | struct PointerInfo { |
||
390 | /// Holds the pointer value that we need to check. |
||
391 | TrackingVH<Value> PointerValue; |
||
392 | /// Holds the smallest byte address accessed by the pointer throughout all |
||
393 | /// iterations of the loop. |
||
394 | const SCEV *Start; |
||
395 | /// Holds the largest byte address accessed by the pointer throughout all |
||
396 | /// iterations of the loop, plus 1. |
||
397 | const SCEV *End; |
||
398 | /// Holds the information if this pointer is used for writing to memory. |
||
399 | bool IsWritePtr; |
||
400 | /// Holds the id of the set of pointers that could be dependent because of a |
||
401 | /// shared underlying object. |
||
402 | unsigned DependencySetId; |
||
403 | /// Holds the id of the disjoint alias set to which this pointer belongs. |
||
404 | unsigned AliasSetId; |
||
405 | /// SCEV for the access. |
||
406 | const SCEV *Expr; |
||
407 | /// True if the pointer expressions needs to be frozen after expansion. |
||
408 | bool NeedsFreeze; |
||
409 | |||
410 | PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End, |
||
411 | bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId, |
||
412 | const SCEV *Expr, bool NeedsFreeze) |
||
413 | : PointerValue(PointerValue), Start(Start), End(End), |
||
414 | IsWritePtr(IsWritePtr), DependencySetId(DependencySetId), |
||
415 | AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {} |
||
416 | }; |
||
417 | |||
418 | RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE) |
||
419 | : DC(DC), SE(SE) {} |
||
420 | |||
421 | /// Reset the state of the pointer runtime information. |
||
422 | void reset() { |
||
423 | Need = false; |
||
424 | Pointers.clear(); |
||
425 | Checks.clear(); |
||
426 | } |
||
427 | |||
428 | /// Insert a pointer and calculate the start and end SCEVs. |
||
429 | /// We need \p PSE in order to compute the SCEV expression of the pointer |
||
430 | /// according to the assumptions that we've made during the analysis. |
||
431 | /// The method might also version the pointer stride according to \p Strides, |
||
432 | /// and add new predicates to \p PSE. |
||
433 | void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, |
||
434 | bool WritePtr, unsigned DepSetId, unsigned ASId, |
||
435 | PredicatedScalarEvolution &PSE, bool NeedsFreeze); |
||
436 | |||
437 | /// No run-time memory checking is necessary. |
||
438 | bool empty() const { return Pointers.empty(); } |
||
439 | |||
440 | /// Generate the checks and store it. This also performs the grouping |
||
441 | /// of pointers to reduce the number of memchecks necessary. |
||
442 | void generateChecks(MemoryDepChecker::DepCandidates &DepCands, |
||
443 | bool UseDependencies); |
||
444 | |||
445 | /// Returns the checks that generateChecks created. They can be used to ensure |
||
446 | /// no read/write accesses overlap across all loop iterations. |
||
447 | const SmallVectorImpl<RuntimePointerCheck> &getChecks() const { |
||
448 | return Checks; |
||
449 | } |
||
450 | |||
451 | // Returns an optional list of (pointer-difference expressions, access size) |
||
452 | // pairs that can be used to prove that there are no vectorization-preventing |
||
453 | // dependencies at runtime. There are is a vectorization-preventing dependency |
||
454 | // if any pointer-difference is <u VF * InterleaveCount * access size. Returns |
||
455 | // std::nullopt if pointer-difference checks cannot be used. |
||
456 | std::optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const { |
||
457 | if (!CanUseDiffCheck) |
||
458 | return std::nullopt; |
||
459 | return {DiffChecks}; |
||
460 | } |
||
461 | |||
462 | /// Decide if we need to add a check between two groups of pointers, |
||
463 | /// according to needsChecking. |
||
464 | bool needsChecking(const RuntimeCheckingPtrGroup &M, |
||
465 | const RuntimeCheckingPtrGroup &N) const; |
||
466 | |||
467 | /// Returns the number of run-time checks required according to |
||
468 | /// needsChecking. |
||
469 | unsigned getNumberOfChecks() const { return Checks.size(); } |
||
470 | |||
471 | /// Print the list run-time memory checks necessary. |
||
472 | void print(raw_ostream &OS, unsigned Depth = 0) const; |
||
473 | |||
474 | /// Print \p Checks. |
||
475 | void printChecks(raw_ostream &OS, |
||
476 | const SmallVectorImpl<RuntimePointerCheck> &Checks, |
||
477 | unsigned Depth = 0) const; |
||
478 | |||
479 | /// This flag indicates if we need to add the runtime check. |
||
480 | bool Need = false; |
||
481 | |||
482 | /// Information about the pointers that may require checking. |
||
483 | SmallVector<PointerInfo, 2> Pointers; |
||
484 | |||
485 | /// Holds a partitioning of pointers into "check groups". |
||
486 | SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups; |
||
487 | |||
488 | /// Check if pointers are in the same partition |
||
489 | /// |
||
490 | /// \p PtrToPartition contains the partition number for pointers (-1 if the |
||
491 | /// pointer belongs to multiple partitions). |
||
492 | static bool |
||
493 | arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition, |
||
494 | unsigned PtrIdx1, unsigned PtrIdx2); |
||
495 | |||
496 | /// Decide whether we need to issue a run-time check for pointer at |
||
497 | /// index \p I and \p J to prove their independence. |
||
498 | bool needsChecking(unsigned I, unsigned J) const; |
||
499 | |||
500 | /// Return PointerInfo for pointer at index \p PtrIdx. |
||
501 | const PointerInfo &getPointerInfo(unsigned PtrIdx) const { |
||
502 | return Pointers[PtrIdx]; |
||
503 | } |
||
504 | |||
505 | ScalarEvolution *getSE() const { return SE; } |
||
506 | |||
507 | private: |
||
508 | /// Groups pointers such that a single memcheck is required |
||
509 | /// between two different groups. This will clear the CheckingGroups vector |
||
510 | /// and re-compute it. We will only group dependecies if \p UseDependencies |
||
511 | /// is true, otherwise we will create a separate group for each pointer. |
||
512 | void groupChecks(MemoryDepChecker::DepCandidates &DepCands, |
||
513 | bool UseDependencies); |
||
514 | |||
515 | /// Generate the checks and return them. |
||
516 | SmallVector<RuntimePointerCheck, 4> generateChecks(); |
||
517 | |||
518 | /// Try to create add a new (pointer-difference, access size) pair to |
||
519 | /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference |
||
520 | /// checks cannot be used for the groups, set CanUseDiffCheck to false. |
||
521 | void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI, |
||
522 | const RuntimeCheckingPtrGroup &CGJ); |
||
523 | |||
524 | MemoryDepChecker &DC; |
||
525 | |||
526 | /// Holds a pointer to the ScalarEvolution analysis. |
||
527 | ScalarEvolution *SE; |
||
528 | |||
529 | /// Set of run-time checks required to establish independence of |
||
530 | /// otherwise may-aliasing pointers in the loop. |
||
531 | SmallVector<RuntimePointerCheck, 4> Checks; |
||
532 | |||
533 | /// Flag indicating if pointer-difference checks can be used |
||
534 | bool CanUseDiffCheck = true; |
||
535 | |||
536 | /// A list of (pointer-difference, access size) pairs that can be used to |
||
537 | /// prove that there are no vectorization-preventing dependencies. |
||
538 | SmallVector<PointerDiffInfo> DiffChecks; |
||
539 | }; |
||
540 | |||
541 | /// Drive the analysis of memory accesses in the loop |
||
542 | /// |
||
543 | /// This class is responsible for analyzing the memory accesses of a loop. It |
||
544 | /// collects the accesses and then its main helper the AccessAnalysis class |
||
545 | /// finds and categorizes the dependences in buildDependenceSets. |
||
546 | /// |
||
547 | /// For memory dependences that can be analyzed at compile time, it determines |
||
548 | /// whether the dependence is part of cycle inhibiting vectorization. This work |
||
549 | /// is delegated to the MemoryDepChecker class. |
||
550 | /// |
||
551 | /// For memory dependences that cannot be determined at compile time, it |
||
552 | /// generates run-time checks to prove independence. This is done by |
||
553 | /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the |
||
554 | /// RuntimePointerCheck class. |
||
555 | /// |
||
556 | /// If pointers can wrap or can't be expressed as affine AddRec expressions by |
||
557 | /// ScalarEvolution, we will generate run-time checks by emitting a |
||
558 | /// SCEVUnionPredicate. |
||
559 | /// |
||
560 | /// Checks for both memory dependences and the SCEV predicates contained in the |
||
561 | /// PSE must be emitted in order for the results of this analysis to be valid. |
||
562 | class LoopAccessInfo { |
||
563 | public: |
||
564 | LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI, |
||
565 | AAResults *AA, DominatorTree *DT, LoopInfo *LI); |
||
566 | |||
567 | /// Return true we can analyze the memory accesses in the loop and there are |
||
568 | /// no memory dependence cycles. |
||
569 | bool canVectorizeMemory() const { return CanVecMem; } |
||
570 | |||
571 | /// Return true if there is a convergent operation in the loop. There may |
||
572 | /// still be reported runtime pointer checks that would be required, but it is |
||
573 | /// not legal to insert them. |
||
574 | bool hasConvergentOp() const { return HasConvergentOp; } |
||
575 | |||
576 | const RuntimePointerChecking *getRuntimePointerChecking() const { |
||
577 | return PtrRtChecking.get(); |
||
578 | } |
||
579 | |||
580 | /// Number of memchecks required to prove independence of otherwise |
||
581 | /// may-alias pointers. |
||
582 | unsigned getNumRuntimePointerChecks() const { |
||
583 | return PtrRtChecking->getNumberOfChecks(); |
||
584 | } |
||
585 | |||
586 | /// Return true if the block BB needs to be predicated in order for the loop |
||
587 | /// to be vectorized. |
||
588 | static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, |
||
589 | DominatorTree *DT); |
||
590 | |||
591 | /// Returns true if the value V is uniform within the loop. |
||
592 | bool isUniform(Value *V) const; |
||
593 | |||
594 | uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; } |
||
595 | unsigned getNumStores() const { return NumStores; } |
||
596 | unsigned getNumLoads() const { return NumLoads;} |
||
597 | |||
598 | /// The diagnostics report generated for the analysis. E.g. why we |
||
599 | /// couldn't analyze the loop. |
||
600 | const OptimizationRemarkAnalysis *getReport() const { return Report.get(); } |
||
601 | |||
602 | /// the Memory Dependence Checker which can determine the |
||
603 | /// loop-independent and loop-carried dependences between memory accesses. |
||
604 | const MemoryDepChecker &getDepChecker() const { return *DepChecker; } |
||
605 | |||
606 | /// Return the list of instructions that use \p Ptr to read or write |
||
607 | /// memory. |
||
608 | SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr, |
||
609 | bool isWrite) const { |
||
610 | return DepChecker->getInstructionsForAccess(Ptr, isWrite); |
||
611 | } |
||
612 | |||
613 | /// If an access has a symbolic strides, this maps the pointer value to |
||
614 | /// the stride symbol. |
||
615 | const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; } |
||
616 | |||
617 | /// Pointer has a symbolic stride. |
||
618 | bool hasStride(Value *V) const { return StrideSet.count(V); } |
||
619 | |||
620 | /// Print the information about the memory accesses in the loop. |
||
621 | void print(raw_ostream &OS, unsigned Depth = 0) const; |
||
622 | |||
623 | /// If the loop has memory dependence involving an invariant address, i.e. two |
||
624 | /// stores or a store and a load, then return true, else return false. |
||
625 | bool hasDependenceInvolvingLoopInvariantAddress() const { |
||
626 | return HasDependenceInvolvingLoopInvariantAddress; |
||
627 | } |
||
628 | |||
629 | /// Return the list of stores to invariant addresses. |
||
630 | ArrayRef<StoreInst *> getStoresToInvariantAddresses() const { |
||
631 | return StoresToInvariantAddresses; |
||
632 | } |
||
633 | |||
634 | /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts |
||
635 | /// them to a more usable form. All SCEV expressions during the analysis |
||
636 | /// should be re-written (and therefore simplified) according to PSE. |
||
637 | /// A user of LoopAccessAnalysis will need to emit the runtime checks |
||
638 | /// associated with this predicate. |
||
639 | const PredicatedScalarEvolution &getPSE() const { return *PSE; } |
||
640 | |||
641 | private: |
||
642 | /// Analyze the loop. |
||
643 | void analyzeLoop(AAResults *AA, LoopInfo *LI, |
||
644 | const TargetLibraryInfo *TLI, DominatorTree *DT); |
||
645 | |||
646 | /// Check if the structure of the loop allows it to be analyzed by this |
||
647 | /// pass. |
||
648 | bool canAnalyzeLoop(); |
||
649 | |||
650 | /// Save the analysis remark. |
||
651 | /// |
||
652 | /// LAA does not directly emits the remarks. Instead it stores it which the |
||
653 | /// client can retrieve and presents as its own analysis |
||
654 | /// (e.g. -Rpass-analysis=loop-vectorize). |
||
655 | OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName, |
||
656 | Instruction *Instr = nullptr); |
||
657 | |||
658 | /// Collect memory access with loop invariant strides. |
||
659 | /// |
||
660 | /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop |
||
661 | /// invariant. |
||
662 | void collectStridedAccess(Value *LoadOrStoreInst); |
||
663 | |||
664 | // Emits the first unsafe memory dependence in a loop. |
||
665 | // Emits nothing if there are no unsafe dependences |
||
666 | // or if the dependences were not recorded. |
||
667 | void emitUnsafeDependenceRemark(); |
||
668 | |||
669 | std::unique_ptr<PredicatedScalarEvolution> PSE; |
||
670 | |||
671 | /// We need to check that all of the pointers in this list are disjoint |
||
672 | /// at runtime. Using std::unique_ptr to make using move ctor simpler. |
||
673 | std::unique_ptr<RuntimePointerChecking> PtrRtChecking; |
||
674 | |||
675 | /// the Memory Dependence Checker which can determine the |
||
676 | /// loop-independent and loop-carried dependences between memory accesses. |
||
677 | std::unique_ptr<MemoryDepChecker> DepChecker; |
||
678 | |||
679 | Loop *TheLoop; |
||
680 | |||
681 | unsigned NumLoads = 0; |
||
682 | unsigned NumStores = 0; |
||
683 | |||
684 | uint64_t MaxSafeDepDistBytes = -1; |
||
685 | |||
686 | /// Cache the result of analyzeLoop. |
||
687 | bool CanVecMem = false; |
||
688 | bool HasConvergentOp = false; |
||
689 | |||
690 | /// Indicator that there are non vectorizable stores to a uniform address. |
||
691 | bool HasDependenceInvolvingLoopInvariantAddress = false; |
||
692 | |||
693 | /// List of stores to invariant addresses. |
||
694 | SmallVector<StoreInst *> StoresToInvariantAddresses; |
||
695 | |||
696 | /// The diagnostics report generated for the analysis. E.g. why we |
||
697 | /// couldn't analyze the loop. |
||
698 | std::unique_ptr<OptimizationRemarkAnalysis> Report; |
||
699 | |||
700 | /// If an access has a symbolic strides, this maps the pointer value to |
||
701 | /// the stride symbol. |
||
702 | ValueToValueMap SymbolicStrides; |
||
703 | |||
704 | /// Set of symbolic strides values. |
||
705 | SmallPtrSet<Value *, 8> StrideSet; |
||
706 | }; |
||
707 | |||
708 | Value *stripIntegerCast(Value *V); |
||
709 | |||
710 | /// Return the SCEV corresponding to a pointer with the symbolic stride |
||
711 | /// replaced with constant one, assuming the SCEV predicate associated with |
||
712 | /// \p PSE is true. |
||
713 | /// |
||
714 | /// If necessary this method will version the stride of the pointer according |
||
715 | /// to \p PtrToStride and therefore add further predicates to \p PSE. |
||
716 | /// |
||
717 | /// \p PtrToStride provides the mapping between the pointer value and its |
||
718 | /// stride as collected by LoopVectorizationLegality::collectStridedAccess. |
||
719 | const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, |
||
720 | const ValueToValueMap &PtrToStride, |
||
721 | Value *Ptr); |
||
722 | |||
723 | /// If the pointer has a constant stride return it in units of the access type |
||
724 | /// size. Otherwise return std::nullopt. |
||
725 | /// |
||
726 | /// Ensure that it does not wrap in the address space, assuming the predicate |
||
727 | /// associated with \p PSE is true. |
||
728 | /// |
||
729 | /// If necessary this method will version the stride of the pointer according |
||
730 | /// to \p PtrToStride and therefore add further predicates to \p PSE. |
||
731 | /// The \p Assume parameter indicates if we are allowed to make additional |
||
732 | /// run-time assumptions. |
||
733 | std::optional<int64_t> |
||
734 | getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, |
||
735 | const Loop *Lp, |
||
736 | const ValueToValueMap &StridesMap = ValueToValueMap(), |
||
737 | bool Assume = false, bool ShouldCheckWrap = true); |
||
738 | |||
739 | /// Returns the distance between the pointers \p PtrA and \p PtrB iff they are |
||
740 | /// compatible and it is possible to calculate the distance between them. This |
||
741 | /// is a simple API that does not depend on the analysis pass. |
||
742 | /// \param StrictCheck Ensure that the calculated distance matches the |
||
743 | /// type-based one after all the bitcasts removal in the provided pointers. |
||
744 | std::optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, |
||
745 | Value *PtrB, const DataLayout &DL, |
||
746 | ScalarEvolution &SE, |
||
747 | bool StrictCheck = false, |
||
748 | bool CheckType = true); |
||
749 | |||
750 | /// Attempt to sort the pointers in \p VL and return the sorted indices |
||
751 | /// in \p SortedIndices, if reordering is required. |
||
752 | /// |
||
753 | /// Returns 'true' if sorting is legal, otherwise returns 'false'. |
||
754 | /// |
||
755 | /// For example, for a given \p VL of memory accesses in program order, a[i+4], |
||
756 | /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the |
||
757 | /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and |
||
758 | /// saves the mask for actual memory accesses in program order in |
||
759 | /// \p SortedIndices as <1,2,0,3> |
||
760 | bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL, |
||
761 | ScalarEvolution &SE, |
||
762 | SmallVectorImpl<unsigned> &SortedIndices); |
||
763 | |||
764 | /// Returns true if the memory operations \p A and \p B are consecutive. |
||
765 | /// This is a simple API that does not depend on the analysis pass. |
||
766 | bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, |
||
767 | ScalarEvolution &SE, bool CheckType = true); |
||
768 | |||
769 | class LoopAccessInfoManager { |
||
770 | /// The cache. |
||
771 | DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap; |
||
772 | |||
773 | // The used analysis passes. |
||
774 | ScalarEvolution &SE; |
||
775 | AAResults &AA; |
||
776 | DominatorTree &DT; |
||
777 | LoopInfo &LI; |
||
778 | const TargetLibraryInfo *TLI = nullptr; |
||
779 | |||
780 | public: |
||
781 | LoopAccessInfoManager(ScalarEvolution &SE, AAResults &AA, DominatorTree &DT, |
||
782 | LoopInfo &LI, const TargetLibraryInfo *TLI) |
||
783 | : SE(SE), AA(AA), DT(DT), LI(LI), TLI(TLI) {} |
||
784 | |||
785 | const LoopAccessInfo &getInfo(Loop &L); |
||
786 | |||
787 | void clear() { LoopAccessInfoMap.clear(); } |
||
788 | }; |
||
789 | |||
790 | /// This analysis provides dependence information for the memory accesses |
||
791 | /// of a loop. |
||
792 | /// |
||
793 | /// It runs the analysis for a loop on demand. This can be initiated by |
||
794 | /// querying the loop access info via LAA::getInfo. getInfo return a |
||
795 | /// LoopAccessInfo object. See this class for the specifics of what information |
||
796 | /// is provided. |
||
797 | class LoopAccessLegacyAnalysis : public FunctionPass { |
||
798 | public: |
||
799 | static char ID; |
||
800 | |||
801 | LoopAccessLegacyAnalysis(); |
||
802 | |||
803 | bool runOnFunction(Function &F) override; |
||
804 | |||
805 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
806 | |||
807 | /// Return the proxy object for retrieving LoopAccessInfo for individual |
||
808 | /// loops. |
||
809 | /// |
||
810 | /// If there is no cached result available run the analysis. |
||
811 | LoopAccessInfoManager &getLAIs() { return *LAIs; } |
||
812 | |||
813 | void releaseMemory() override { |
||
814 | // Invalidate the cache when the pass is freed. |
||
815 | LAIs->clear(); |
||
816 | } |
||
817 | |||
818 | private: |
||
819 | std::unique_ptr<LoopAccessInfoManager> LAIs; |
||
820 | }; |
||
821 | |||
822 | /// This analysis provides dependence information for the memory |
||
823 | /// accesses of a loop. |
||
824 | /// |
||
825 | /// It runs the analysis for a loop on demand. This can be initiated by |
||
826 | /// querying the loop access info via AM.getResult<LoopAccessAnalysis>. |
||
827 | /// getResult return a LoopAccessInfo object. See this class for the |
||
828 | /// specifics of what information is provided. |
||
829 | class LoopAccessAnalysis |
||
830 | : public AnalysisInfoMixin<LoopAccessAnalysis> { |
||
831 | friend AnalysisInfoMixin<LoopAccessAnalysis>; |
||
832 | static AnalysisKey Key; |
||
833 | |||
834 | public: |
||
835 | typedef LoopAccessInfoManager Result; |
||
836 | |||
837 | Result run(Function &F, FunctionAnalysisManager &AM); |
||
838 | }; |
||
839 | |||
840 | inline Instruction *MemoryDepChecker::Dependence::getSource( |
||
841 | const LoopAccessInfo &LAI) const { |
||
842 | return LAI.getDepChecker().getMemoryInstructions()[Source]; |
||
843 | } |
||
844 | |||
845 | inline Instruction *MemoryDepChecker::Dependence::getDestination( |
||
846 | const LoopAccessInfo &LAI) const { |
||
847 | return LAI.getDepChecker().getMemoryInstructions()[Destination]; |
||
848 | } |
||
849 | |||
850 | } // End llvm namespace |
||
851 | |||
852 | #endif |