Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the interface for the loop memory dependence framework that
10
// was originally developed for the Loop Vectorizer.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15
#define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16
 
17
#include "llvm/ADT/EquivalenceClasses.h"
18
#include "llvm/Analysis/LoopAnalysisManager.h"
19
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
20
#include "llvm/IR/DiagnosticInfo.h"
21
#include "llvm/Pass.h"
22
#include <optional>
23
 
24
namespace llvm {
25
 
26
class AAResults;
27
class DataLayout;
28
class Loop;
29
class LoopAccessInfo;
30
class raw_ostream;
31
class SCEV;
32
class SCEVUnionPredicate;
33
class Value;
34
 
35
/// Collection of parameters shared beetween the Loop Vectorizer and the
36
/// Loop Access Analysis.
37
struct VectorizerParams {
38
  /// Maximum SIMD width.
39
  static const unsigned MaxVectorWidth;
40
 
41
  /// VF as overridden by the user.
42
  static unsigned VectorizationFactor;
43
  /// Interleave factor as overridden by the user.
44
  static unsigned VectorizationInterleave;
45
  /// True if force-vector-interleave was specified by the user.
46
  static bool isInterleaveForced();
47
 
48
  /// \When performing memory disambiguation checks at runtime do not
49
  /// make more than this number of comparisons.
50
  static unsigned RuntimeMemoryCheckThreshold;
51
};
52
 
53
/// Checks memory dependences among accesses to the same underlying
54
/// object to determine whether there vectorization is legal or not (and at
55
/// which vectorization factor).
56
///
57
/// Note: This class will compute a conservative dependence for access to
58
/// different underlying pointers. Clients, such as the loop vectorizer, will
59
/// sometimes deal these potential dependencies by emitting runtime checks.
60
///
61
/// We use the ScalarEvolution framework to symbolically evalutate access
62
/// functions pairs. Since we currently don't restructure the loop we can rely
63
/// on the program order of memory accesses to determine their safety.
64
/// At the moment we will only deem accesses as safe for:
65
///  * A negative constant distance assuming program order.
66
///
67
///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
68
///            a[i] = tmp;                y = a[i];
69
///
70
///   The latter case is safe because later checks guarantuee that there can't
71
///   be a cycle through a phi node (that is, we check that "x" and "y" is not
72
///   the same variable: a header phi can only be an induction or a reduction, a
73
///   reduction can't have a memory sink, an induction can't have a memory
74
///   source). This is important and must not be violated (or we have to
75
///   resort to checking for cycles through memory).
76
///
77
///  * A positive constant distance assuming program order that is bigger
78
///    than the biggest memory access.
79
///
80
///     tmp = a[i]        OR              b[i] = x
81
///     a[i+2] = tmp                      y = b[i+2];
82
///
83
///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
84
///
85
///  * Zero distances and all accesses have the same size.
86
///
87
class MemoryDepChecker {
88
public:
89
  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
90
  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
91
  /// Set of potential dependent memory accesses.
92
  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
93
 
94
  /// Type to keep track of the status of the dependence check. The order of
95
  /// the elements is important and has to be from most permissive to least
96
  /// permissive.
97
  enum class VectorizationSafetyStatus {
98
    // Can vectorize safely without RT checks. All dependences are known to be
99
    // safe.
100
    Safe,
101
    // Can possibly vectorize with RT checks to overcome unknown dependencies.
102
    PossiblySafeWithRtChecks,
103
    // Cannot vectorize due to known unsafe dependencies.
104
    Unsafe,
105
  };
106
 
107
  /// Dependece between memory access instructions.
108
  struct Dependence {
109
    /// The type of the dependence.
110
    enum DepType {
111
      // No dependence.
112
      NoDep,
113
      // We couldn't determine the direction or the distance.
114
      Unknown,
115
      // Lexically forward.
116
      //
117
      // FIXME: If we only have loop-independent forward dependences (e.g. a
118
      // read and write of A[i]), LAA will locally deem the dependence "safe"
119
      // without querying the MemoryDepChecker.  Therefore we can miss
120
      // enumerating loop-independent forward dependences in
121
      // getDependences.  Note that as soon as there are different
122
      // indices used to access the same array, the MemoryDepChecker *is*
123
      // queried and the dependence list is complete.
124
      Forward,
125
      // Forward, but if vectorized, is likely to prevent store-to-load
126
      // forwarding.
127
      ForwardButPreventsForwarding,
128
      // Lexically backward.
129
      Backward,
130
      // Backward, but the distance allows a vectorization factor of
131
      // MaxSafeDepDistBytes.
132
      BackwardVectorizable,
133
      // Same, but may prevent store-to-load forwarding.
134
      BackwardVectorizableButPreventsForwarding
135
    };
136
 
137
    /// String version of the types.
138
    static const char *DepName[];
139
 
140
    /// Index of the source of the dependence in the InstMap vector.
141
    unsigned Source;
142
    /// Index of the destination of the dependence in the InstMap vector.
143
    unsigned Destination;
144
    /// The type of the dependence.
145
    DepType Type;
146
 
147
    Dependence(unsigned Source, unsigned Destination, DepType Type)
148
        : Source(Source), Destination(Destination), Type(Type) {}
149
 
150
    /// Return the source instruction of the dependence.
151
    Instruction *getSource(const LoopAccessInfo &LAI) const;
152
    /// Return the destination instruction of the dependence.
153
    Instruction *getDestination(const LoopAccessInfo &LAI) const;
154
 
155
    /// Dependence types that don't prevent vectorization.
156
    static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
157
 
158
    /// Lexically forward dependence.
159
    bool isForward() const;
160
    /// Lexically backward dependence.
161
    bool isBackward() const;
162
 
163
    /// May be a lexically backward dependence type (includes Unknown).
164
    bool isPossiblyBackward() const;
165
 
166
    /// Print the dependence.  \p Instr is used to map the instruction
167
    /// indices to instructions.
168
    void print(raw_ostream &OS, unsigned Depth,
169
               const SmallVectorImpl<Instruction *> &Instrs) const;
170
  };
171
 
172
  MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
173
      : PSE(PSE), InnermostLoop(L) {}
174
 
175
  /// Register the location (instructions are given increasing numbers)
176
  /// of a write access.
177
  void addAccess(StoreInst *SI);
178
 
179
  /// Register the location (instructions are given increasing numbers)
180
  /// of a write access.
181
  void addAccess(LoadInst *LI);
182
 
183
  /// Check whether the dependencies between the accesses are safe.
184
  ///
185
  /// Only checks sets with elements in \p CheckDeps.
186
  bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
187
                   const ValueToValueMap &Strides);
188
 
189
  /// No memory dependence was encountered that would inhibit
190
  /// vectorization.
191
  bool isSafeForVectorization() const {
192
    return Status == VectorizationSafetyStatus::Safe;
193
  }
194
 
195
  /// Return true if the number of elements that are safe to operate on
196
  /// simultaneously is not bounded.
197
  bool isSafeForAnyVectorWidth() const {
198
    return MaxSafeVectorWidthInBits == UINT_MAX;
199
  }
200
 
201
  /// The maximum number of bytes of a vector register we can vectorize
202
  /// the accesses safely with.
203
  uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
204
 
205
  /// Return the number of elements that are safe to operate on
206
  /// simultaneously, multiplied by the size of the element in bits.
207
  uint64_t getMaxSafeVectorWidthInBits() const {
208
    return MaxSafeVectorWidthInBits;
209
  }
210
 
211
  /// In same cases when the dependency check fails we can still
212
  /// vectorize the loop with a dynamic array access check.
213
  bool shouldRetryWithRuntimeCheck() const {
214
    return FoundNonConstantDistanceDependence &&
215
           Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
216
  }
217
 
218
  /// Returns the memory dependences.  If null is returned we exceeded
219
  /// the MaxDependences threshold and this information is not
220
  /// available.
221
  const SmallVectorImpl<Dependence> *getDependences() const {
222
    return RecordDependences ? &Dependences : nullptr;
223
  }
224
 
225
  void clearDependences() { Dependences.clear(); }
226
 
227
  /// The vector of memory access instructions.  The indices are used as
228
  /// instruction identifiers in the Dependence class.
229
  const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
230
    return InstMap;
231
  }
232
 
233
  /// Generate a mapping between the memory instructions and their
234
  /// indices according to program order.
235
  DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
236
    DenseMap<Instruction *, unsigned> OrderMap;
237
 
238
    for (unsigned I = 0; I < InstMap.size(); ++I)
239
      OrderMap[InstMap[I]] = I;
240
 
241
    return OrderMap;
242
  }
243
 
244
  /// Find the set of instructions that read or write via \p Ptr.
245
  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
246
                                                         bool isWrite) const;
247
 
248
  /// Return the program order indices for the access location (Ptr, IsWrite).
249
  /// Returns an empty ArrayRef if there are no accesses for the location.
250
  ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const {
251
    auto I = Accesses.find({Ptr, IsWrite});
252
    if (I != Accesses.end())
253
      return I->second;
254
    return {};
255
  }
256
 
257
  const Loop *getInnermostLoop() const { return InnermostLoop; }
258
 
259
private:
260
  /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
261
  /// applies dynamic knowledge to simplify SCEV expressions and convert them
262
  /// to a more usable form. We need this in case assumptions about SCEV
263
  /// expressions need to be made in order to avoid unknown dependences. For
264
  /// example we might assume a unit stride for a pointer in order to prove
265
  /// that a memory access is strided and doesn't wrap.
266
  PredicatedScalarEvolution &PSE;
267
  const Loop *InnermostLoop;
268
 
269
  /// Maps access locations (ptr, read/write) to program order.
270
  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
271
 
272
  /// Memory access instructions in program order.
273
  SmallVector<Instruction *, 16> InstMap;
274
 
275
  /// The program order index to be used for the next instruction.
276
  unsigned AccessIdx = 0;
277
 
278
  // We can access this many bytes in parallel safely.
279
  uint64_t MaxSafeDepDistBytes = 0;
280
 
281
  /// Number of elements (from consecutive iterations) that are safe to
282
  /// operate on simultaneously, multiplied by the size of the element in bits.
283
  /// The size of the element is taken from the memory access that is most
284
  /// restrictive.
285
  uint64_t MaxSafeVectorWidthInBits = -1U;
286
 
287
  /// If we see a non-constant dependence distance we can still try to
288
  /// vectorize this loop with runtime checks.
289
  bool FoundNonConstantDistanceDependence = false;
290
 
291
  /// Result of the dependence checks, indicating whether the checked
292
  /// dependences are safe for vectorization, require RT checks or are known to
293
  /// be unsafe.
294
  VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe;
295
 
296
  //// True if Dependences reflects the dependences in the
297
  //// loop.  If false we exceeded MaxDependences and
298
  //// Dependences is invalid.
299
  bool RecordDependences = true;
300
 
301
  /// Memory dependences collected during the analysis.  Only valid if
302
  /// RecordDependences is true.
303
  SmallVector<Dependence, 8> Dependences;
304
 
305
  /// Check whether there is a plausible dependence between the two
306
  /// accesses.
307
  ///
308
  /// Access \p A must happen before \p B in program order. The two indices
309
  /// identify the index into the program order map.
310
  ///
311
  /// This function checks  whether there is a plausible dependence (or the
312
  /// absence of such can't be proved) between the two accesses. If there is a
313
  /// plausible dependence but the dependence distance is bigger than one
314
  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
315
  /// distance is smaller than any other distance encountered so far).
316
  /// Otherwise, this function returns true signaling a possible dependence.
317
  Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
318
                                  const MemAccessInfo &B, unsigned BIdx,
319
                                  const ValueToValueMap &Strides);
320
 
321
  /// Check whether the data dependence could prevent store-load
322
  /// forwarding.
323
  ///
324
  /// \return false if we shouldn't vectorize at all or avoid larger
325
  /// vectorization factors by limiting MaxSafeDepDistBytes.
326
  bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
327
 
328
  /// Updates the current safety status with \p S. We can go from Safe to
329
  /// either PossiblySafeWithRtChecks or Unsafe and from
330
  /// PossiblySafeWithRtChecks to Unsafe.
331
  void mergeInStatus(VectorizationSafetyStatus S);
332
};
333
 
334
class RuntimePointerChecking;
335
/// A grouping of pointers. A single memcheck is required between
336
/// two groups.
337
struct RuntimeCheckingPtrGroup {
338
  /// Create a new pointer checking group containing a single
339
  /// pointer, with index \p Index in RtCheck.
340
  RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
341
 
342
  /// Tries to add the pointer recorded in RtCheck at index
343
  /// \p Index to this pointer checking group. We can only add a pointer
344
  /// to a checking group if we will still be able to get
345
  /// the upper and lower bounds of the check. Returns true in case
346
  /// of success, false otherwise.
347
  bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck);
348
  bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End,
349
                  unsigned AS, bool NeedsFreeze, ScalarEvolution &SE);
350
 
351
  /// The SCEV expression which represents the upper bound of all the
352
  /// pointers in this group.
353
  const SCEV *High;
354
  /// The SCEV expression which represents the lower bound of all the
355
  /// pointers in this group.
356
  const SCEV *Low;
357
  /// Indices of all the pointers that constitute this grouping.
358
  SmallVector<unsigned, 2> Members;
359
  /// Address space of the involved pointers.
360
  unsigned AddressSpace;
361
  /// Whether the pointer needs to be frozen after expansion, e.g. because it
362
  /// may be poison outside the loop.
363
  bool NeedsFreeze = false;
364
};
365
 
366
/// A memcheck which made up of a pair of grouped pointers.
367
typedef std::pair<const RuntimeCheckingPtrGroup *,
368
                  const RuntimeCheckingPtrGroup *>
369
    RuntimePointerCheck;
370
 
371
struct PointerDiffInfo {
372
  const SCEV *SrcStart;
373
  const SCEV *SinkStart;
374
  unsigned AccessSize;
375
  bool NeedsFreeze;
376
 
377
  PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart,
378
                  unsigned AccessSize, bool NeedsFreeze)
379
      : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize),
380
        NeedsFreeze(NeedsFreeze) {}
381
};
382
 
383
/// Holds information about the memory runtime legality checks to verify
384
/// that a group of pointers do not overlap.
385
class RuntimePointerChecking {
386
  friend struct RuntimeCheckingPtrGroup;
387
 
388
public:
389
  struct PointerInfo {
390
    /// Holds the pointer value that we need to check.
391
    TrackingVH<Value> PointerValue;
392
    /// Holds the smallest byte address accessed by the pointer throughout all
393
    /// iterations of the loop.
394
    const SCEV *Start;
395
    /// Holds the largest byte address accessed by the pointer throughout all
396
    /// iterations of the loop, plus 1.
397
    const SCEV *End;
398
    /// Holds the information if this pointer is used for writing to memory.
399
    bool IsWritePtr;
400
    /// Holds the id of the set of pointers that could be dependent because of a
401
    /// shared underlying object.
402
    unsigned DependencySetId;
403
    /// Holds the id of the disjoint alias set to which this pointer belongs.
404
    unsigned AliasSetId;
405
    /// SCEV for the access.
406
    const SCEV *Expr;
407
    /// True if the pointer expressions needs to be frozen after expansion.
408
    bool NeedsFreeze;
409
 
410
    PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
411
                bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
412
                const SCEV *Expr, bool NeedsFreeze)
413
        : PointerValue(PointerValue), Start(Start), End(End),
414
          IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
415
          AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {}
416
  };
417
 
418
  RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE)
419
      : DC(DC), SE(SE) {}
420
 
421
  /// Reset the state of the pointer runtime information.
422
  void reset() {
423
    Need = false;
424
    Pointers.clear();
425
    Checks.clear();
426
  }
427
 
428
  /// Insert a pointer and calculate the start and end SCEVs.
429
  /// We need \p PSE in order to compute the SCEV expression of the pointer
430
  /// according to the assumptions that we've made during the analysis.
431
  /// The method might also version the pointer stride according to \p Strides,
432
  /// and add new predicates to \p PSE.
433
  void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy,
434
              bool WritePtr, unsigned DepSetId, unsigned ASId,
435
              PredicatedScalarEvolution &PSE, bool NeedsFreeze);
436
 
437
  /// No run-time memory checking is necessary.
438
  bool empty() const { return Pointers.empty(); }
439
 
440
  /// Generate the checks and store it.  This also performs the grouping
441
  /// of pointers to reduce the number of memchecks necessary.
442
  void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
443
                      bool UseDependencies);
444
 
445
  /// Returns the checks that generateChecks created. They can be used to ensure
446
  /// no read/write accesses overlap across all loop iterations.
447
  const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
448
    return Checks;
449
  }
450
 
451
  // Returns an optional list of (pointer-difference expressions, access size)
452
  // pairs that can be used to prove that there are no vectorization-preventing
453
  // dependencies at runtime. There are is a vectorization-preventing dependency
454
  // if any pointer-difference is <u VF * InterleaveCount * access size. Returns
455
  // std::nullopt if pointer-difference checks cannot be used.
456
  std::optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const {
457
    if (!CanUseDiffCheck)
458
      return std::nullopt;
459
    return {DiffChecks};
460
  }
461
 
462
  /// Decide if we need to add a check between two groups of pointers,
463
  /// according to needsChecking.
464
  bool needsChecking(const RuntimeCheckingPtrGroup &M,
465
                     const RuntimeCheckingPtrGroup &N) const;
466
 
467
  /// Returns the number of run-time checks required according to
468
  /// needsChecking.
469
  unsigned getNumberOfChecks() const { return Checks.size(); }
470
 
471
  /// Print the list run-time memory checks necessary.
472
  void print(raw_ostream &OS, unsigned Depth = 0) const;
473
 
474
  /// Print \p Checks.
475
  void printChecks(raw_ostream &OS,
476
                   const SmallVectorImpl<RuntimePointerCheck> &Checks,
477
                   unsigned Depth = 0) const;
478
 
479
  /// This flag indicates if we need to add the runtime check.
480
  bool Need = false;
481
 
482
  /// Information about the pointers that may require checking.
483
  SmallVector<PointerInfo, 2> Pointers;
484
 
485
  /// Holds a partitioning of pointers into "check groups".
486
  SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
487
 
488
  /// Check if pointers are in the same partition
489
  ///
490
  /// \p PtrToPartition contains the partition number for pointers (-1 if the
491
  /// pointer belongs to multiple partitions).
492
  static bool
493
  arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
494
                             unsigned PtrIdx1, unsigned PtrIdx2);
495
 
496
  /// Decide whether we need to issue a run-time check for pointer at
497
  /// index \p I and \p J to prove their independence.
498
  bool needsChecking(unsigned I, unsigned J) const;
499
 
500
  /// Return PointerInfo for pointer at index \p PtrIdx.
501
  const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
502
    return Pointers[PtrIdx];
503
  }
504
 
505
  ScalarEvolution *getSE() const { return SE; }
506
 
507
private:
508
  /// Groups pointers such that a single memcheck is required
509
  /// between two different groups. This will clear the CheckingGroups vector
510
  /// and re-compute it. We will only group dependecies if \p UseDependencies
511
  /// is true, otherwise we will create a separate group for each pointer.
512
  void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
513
                   bool UseDependencies);
514
 
515
  /// Generate the checks and return them.
516
  SmallVector<RuntimePointerCheck, 4> generateChecks();
517
 
518
  /// Try to create add a new (pointer-difference, access size) pair to
519
  /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference
520
  /// checks cannot be used for the groups, set CanUseDiffCheck to false.
521
  void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI,
522
                            const RuntimeCheckingPtrGroup &CGJ);
523
 
524
  MemoryDepChecker &DC;
525
 
526
  /// Holds a pointer to the ScalarEvolution analysis.
527
  ScalarEvolution *SE;
528
 
529
  /// Set of run-time checks required to establish independence of
530
  /// otherwise may-aliasing pointers in the loop.
531
  SmallVector<RuntimePointerCheck, 4> Checks;
532
 
533
  /// Flag indicating if pointer-difference checks can be used
534
  bool CanUseDiffCheck = true;
535
 
536
  /// A list of (pointer-difference, access size) pairs that can be used to
537
  /// prove that there are no vectorization-preventing dependencies.
538
  SmallVector<PointerDiffInfo> DiffChecks;
539
};
540
 
541
/// Drive the analysis of memory accesses in the loop
542
///
543
/// This class is responsible for analyzing the memory accesses of a loop.  It
544
/// collects the accesses and then its main helper the AccessAnalysis class
545
/// finds and categorizes the dependences in buildDependenceSets.
546
///
547
/// For memory dependences that can be analyzed at compile time, it determines
548
/// whether the dependence is part of cycle inhibiting vectorization.  This work
549
/// is delegated to the MemoryDepChecker class.
550
///
551
/// For memory dependences that cannot be determined at compile time, it
552
/// generates run-time checks to prove independence.  This is done by
553
/// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
554
/// RuntimePointerCheck class.
555
///
556
/// If pointers can wrap or can't be expressed as affine AddRec expressions by
557
/// ScalarEvolution, we will generate run-time checks by emitting a
558
/// SCEVUnionPredicate.
559
///
560
/// Checks for both memory dependences and the SCEV predicates contained in the
561
/// PSE must be emitted in order for the results of this analysis to be valid.
562
class LoopAccessInfo {
563
public:
564
  LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
565
                 AAResults *AA, DominatorTree *DT, LoopInfo *LI);
566
 
567
  /// Return true we can analyze the memory accesses in the loop and there are
568
  /// no memory dependence cycles.
569
  bool canVectorizeMemory() const { return CanVecMem; }
570
 
571
  /// Return true if there is a convergent operation in the loop. There may
572
  /// still be reported runtime pointer checks that would be required, but it is
573
  /// not legal to insert them.
574
  bool hasConvergentOp() const { return HasConvergentOp; }
575
 
576
  const RuntimePointerChecking *getRuntimePointerChecking() const {
577
    return PtrRtChecking.get();
578
  }
579
 
580
  /// Number of memchecks required to prove independence of otherwise
581
  /// may-alias pointers.
582
  unsigned getNumRuntimePointerChecks() const {
583
    return PtrRtChecking->getNumberOfChecks();
584
  }
585
 
586
  /// Return true if the block BB needs to be predicated in order for the loop
587
  /// to be vectorized.
588
  static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
589
                                    DominatorTree *DT);
590
 
591
  /// Returns true if the value V is uniform within the loop.
592
  bool isUniform(Value *V) const;
593
 
594
  uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
595
  unsigned getNumStores() const { return NumStores; }
596
  unsigned getNumLoads() const { return NumLoads;}
597
 
598
  /// The diagnostics report generated for the analysis.  E.g. why we
599
  /// couldn't analyze the loop.
600
  const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
601
 
602
  /// the Memory Dependence Checker which can determine the
603
  /// loop-independent and loop-carried dependences between memory accesses.
604
  const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
605
 
606
  /// Return the list of instructions that use \p Ptr to read or write
607
  /// memory.
608
  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
609
                                                         bool isWrite) const {
610
    return DepChecker->getInstructionsForAccess(Ptr, isWrite);
611
  }
612
 
613
  /// If an access has a symbolic strides, this maps the pointer value to
614
  /// the stride symbol.
615
  const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
616
 
617
  /// Pointer has a symbolic stride.
618
  bool hasStride(Value *V) const { return StrideSet.count(V); }
619
 
620
  /// Print the information about the memory accesses in the loop.
621
  void print(raw_ostream &OS, unsigned Depth = 0) const;
622
 
623
  /// If the loop has memory dependence involving an invariant address, i.e. two
624
  /// stores or a store and a load, then return true, else return false.
625
  bool hasDependenceInvolvingLoopInvariantAddress() const {
626
    return HasDependenceInvolvingLoopInvariantAddress;
627
  }
628
 
629
  /// Return the list of stores to invariant addresses.
630
  ArrayRef<StoreInst *> getStoresToInvariantAddresses() const {
631
    return StoresToInvariantAddresses;
632
  }
633
 
634
  /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
635
  /// them to a more usable form.  All SCEV expressions during the analysis
636
  /// should be re-written (and therefore simplified) according to PSE.
637
  /// A user of LoopAccessAnalysis will need to emit the runtime checks
638
  /// associated with this predicate.
639
  const PredicatedScalarEvolution &getPSE() const { return *PSE; }
640
 
641
private:
642
  /// Analyze the loop.
643
  void analyzeLoop(AAResults *AA, LoopInfo *LI,
644
                   const TargetLibraryInfo *TLI, DominatorTree *DT);
645
 
646
  /// Check if the structure of the loop allows it to be analyzed by this
647
  /// pass.
648
  bool canAnalyzeLoop();
649
 
650
  /// Save the analysis remark.
651
  ///
652
  /// LAA does not directly emits the remarks.  Instead it stores it which the
653
  /// client can retrieve and presents as its own analysis
654
  /// (e.g. -Rpass-analysis=loop-vectorize).
655
  OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
656
                                             Instruction *Instr = nullptr);
657
 
658
  /// Collect memory access with loop invariant strides.
659
  ///
660
  /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
661
  /// invariant.
662
  void collectStridedAccess(Value *LoadOrStoreInst);
663
 
664
  // Emits the first unsafe memory dependence in a loop.
665
  // Emits nothing if there are no unsafe dependences
666
  // or if the dependences were not recorded.
667
  void emitUnsafeDependenceRemark();
668
 
669
  std::unique_ptr<PredicatedScalarEvolution> PSE;
670
 
671
  /// We need to check that all of the pointers in this list are disjoint
672
  /// at runtime. Using std::unique_ptr to make using move ctor simpler.
673
  std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
674
 
675
  /// the Memory Dependence Checker which can determine the
676
  /// loop-independent and loop-carried dependences between memory accesses.
677
  std::unique_ptr<MemoryDepChecker> DepChecker;
678
 
679
  Loop *TheLoop;
680
 
681
  unsigned NumLoads = 0;
682
  unsigned NumStores = 0;
683
 
684
  uint64_t MaxSafeDepDistBytes = -1;
685
 
686
  /// Cache the result of analyzeLoop.
687
  bool CanVecMem = false;
688
  bool HasConvergentOp = false;
689
 
690
  /// Indicator that there are non vectorizable stores to a uniform address.
691
  bool HasDependenceInvolvingLoopInvariantAddress = false;
692
 
693
  /// List of stores to invariant addresses.
694
  SmallVector<StoreInst *> StoresToInvariantAddresses;
695
 
696
  /// The diagnostics report generated for the analysis.  E.g. why we
697
  /// couldn't analyze the loop.
698
  std::unique_ptr<OptimizationRemarkAnalysis> Report;
699
 
700
  /// If an access has a symbolic strides, this maps the pointer value to
701
  /// the stride symbol.
702
  ValueToValueMap SymbolicStrides;
703
 
704
  /// Set of symbolic strides values.
705
  SmallPtrSet<Value *, 8> StrideSet;
706
};
707
 
708
Value *stripIntegerCast(Value *V);
709
 
710
/// Return the SCEV corresponding to a pointer with the symbolic stride
711
/// replaced with constant one, assuming the SCEV predicate associated with
712
/// \p PSE is true.
713
///
714
/// If necessary this method will version the stride of the pointer according
715
/// to \p PtrToStride and therefore add further predicates to \p PSE.
716
///
717
/// \p PtrToStride provides the mapping between the pointer value and its
718
/// stride as collected by LoopVectorizationLegality::collectStridedAccess.
719
const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
720
                                      const ValueToValueMap &PtrToStride,
721
                                      Value *Ptr);
722
 
723
/// If the pointer has a constant stride return it in units of the access type
724
/// size.  Otherwise return std::nullopt.
725
///
726
/// Ensure that it does not wrap in the address space, assuming the predicate
727
/// associated with \p PSE is true.
728
///
729
/// If necessary this method will version the stride of the pointer according
730
/// to \p PtrToStride and therefore add further predicates to \p PSE.
731
/// The \p Assume parameter indicates if we are allowed to make additional
732
/// run-time assumptions.
733
std::optional<int64_t>
734
getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
735
             const Loop *Lp,
736
             const ValueToValueMap &StridesMap = ValueToValueMap(),
737
             bool Assume = false, bool ShouldCheckWrap = true);
738
 
739
/// Returns the distance between the pointers \p PtrA and \p PtrB iff they are
740
/// compatible and it is possible to calculate the distance between them. This
741
/// is a simple API that does not depend on the analysis pass.
742
/// \param StrictCheck Ensure that the calculated distance matches the
743
/// type-based one after all the bitcasts removal in the provided pointers.
744
std::optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
745
                                   Value *PtrB, const DataLayout &DL,
746
                                   ScalarEvolution &SE,
747
                                   bool StrictCheck = false,
748
                                   bool CheckType = true);
749
 
750
/// Attempt to sort the pointers in \p VL and return the sorted indices
751
/// in \p SortedIndices, if reordering is required.
752
///
753
/// Returns 'true' if sorting is legal, otherwise returns 'false'.
754
///
755
/// For example, for a given \p VL of memory accesses in program order, a[i+4],
756
/// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
757
/// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
758
/// saves the mask for actual memory accesses in program order in
759
/// \p SortedIndices as <1,2,0,3>
760
bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL,
761
                     ScalarEvolution &SE,
762
                     SmallVectorImpl<unsigned> &SortedIndices);
763
 
764
/// Returns true if the memory operations \p A and \p B are consecutive.
765
/// This is a simple API that does not depend on the analysis pass.
766
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
767
                         ScalarEvolution &SE, bool CheckType = true);
768
 
769
class LoopAccessInfoManager {
770
  /// The cache.
771
  DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
772
 
773
  // The used analysis passes.
774
  ScalarEvolution &SE;
775
  AAResults &AA;
776
  DominatorTree &DT;
777
  LoopInfo &LI;
778
  const TargetLibraryInfo *TLI = nullptr;
779
 
780
public:
781
  LoopAccessInfoManager(ScalarEvolution &SE, AAResults &AA, DominatorTree &DT,
782
                        LoopInfo &LI, const TargetLibraryInfo *TLI)
783
      : SE(SE), AA(AA), DT(DT), LI(LI), TLI(TLI) {}
784
 
785
  const LoopAccessInfo &getInfo(Loop &L);
786
 
787
  void clear() { LoopAccessInfoMap.clear(); }
788
};
789
 
790
/// This analysis provides dependence information for the memory accesses
791
/// of a loop.
792
///
793
/// It runs the analysis for a loop on demand.  This can be initiated by
794
/// querying the loop access info via LAA::getInfo.  getInfo return a
795
/// LoopAccessInfo object.  See this class for the specifics of what information
796
/// is provided.
797
class LoopAccessLegacyAnalysis : public FunctionPass {
798
public:
799
  static char ID;
800
 
801
  LoopAccessLegacyAnalysis();
802
 
803
  bool runOnFunction(Function &F) override;
804
 
805
  void getAnalysisUsage(AnalysisUsage &AU) const override;
806
 
807
  /// Return the proxy object for retrieving LoopAccessInfo for individual
808
  /// loops.
809
  ///
810
  /// If there is no cached result available run the analysis.
811
  LoopAccessInfoManager &getLAIs() { return *LAIs; }
812
 
813
  void releaseMemory() override {
814
    // Invalidate the cache when the pass is freed.
815
    LAIs->clear();
816
  }
817
 
818
private:
819
  std::unique_ptr<LoopAccessInfoManager> LAIs;
820
};
821
 
822
/// This analysis provides dependence information for the memory
823
/// accesses of a loop.
824
///
825
/// It runs the analysis for a loop on demand.  This can be initiated by
826
/// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
827
/// getResult return a LoopAccessInfo object.  See this class for the
828
/// specifics of what information is provided.
829
class LoopAccessAnalysis
830
    : public AnalysisInfoMixin<LoopAccessAnalysis> {
831
  friend AnalysisInfoMixin<LoopAccessAnalysis>;
832
  static AnalysisKey Key;
833
 
834
public:
835
  typedef LoopAccessInfoManager Result;
836
 
837
  Result run(Function &F, FunctionAnalysisManager &AM);
838
};
839
 
840
inline Instruction *MemoryDepChecker::Dependence::getSource(
841
    const LoopAccessInfo &LAI) const {
842
  return LAI.getDepChecker().getMemoryInstructions()[Source];
843
}
844
 
845
inline Instruction *MemoryDepChecker::Dependence::getDestination(
846
    const LoopAccessInfo &LAI) const {
847
  return LAI.getDepChecker().getMemoryInstructions()[Destination];
848
}
849
 
850
} // End llvm namespace
851
 
852
#endif