Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file "describes" induction and recurrence variables. |
||
| 10 | // |
||
| 11 | //===----------------------------------------------------------------------===// |
||
| 12 | |||
| 13 | #ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H |
||
| 14 | #define LLVM_ANALYSIS_IVDESCRIPTORS_H |
||
| 15 | |||
| 16 | #include "llvm/ADT/MapVector.h" |
||
| 17 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 18 | #include "llvm/ADT/SmallVector.h" |
||
| 19 | #include "llvm/IR/IntrinsicInst.h" |
||
| 20 | #include "llvm/IR/ValueHandle.h" |
||
| 21 | |||
| 22 | namespace llvm { |
||
| 23 | |||
| 24 | class AssumptionCache; |
||
| 25 | class DemandedBits; |
||
| 26 | class DominatorTree; |
||
| 27 | class Instruction; |
||
| 28 | class Loop; |
||
| 29 | class PredicatedScalarEvolution; |
||
| 30 | class ScalarEvolution; |
||
| 31 | class SCEV; |
||
| 32 | class StoreInst; |
||
| 33 | |||
| 34 | /// These are the kinds of recurrences that we support. |
||
| 35 | enum class RecurKind { |
||
| 36 | None, ///< Not a recurrence. |
||
| 37 | Add, ///< Sum of integers. |
||
| 38 | Mul, ///< Product of integers. |
||
| 39 | Or, ///< Bitwise or logical OR of integers. |
||
| 40 | And, ///< Bitwise or logical AND of integers. |
||
| 41 | Xor, ///< Bitwise or logical XOR of integers. |
||
| 42 | SMin, ///< Signed integer min implemented in terms of select(cmp()). |
||
| 43 | SMax, ///< Signed integer max implemented in terms of select(cmp()). |
||
| 44 | UMin, ///< Unisgned integer min implemented in terms of select(cmp()). |
||
| 45 | UMax, ///< Unsigned integer max implemented in terms of select(cmp()). |
||
| 46 | FAdd, ///< Sum of floats. |
||
| 47 | FMul, ///< Product of floats. |
||
| 48 | FMin, ///< FP min implemented in terms of select(cmp()). |
||
| 49 | FMax, ///< FP max implemented in terms of select(cmp()). |
||
| 50 | FMulAdd, ///< Fused multiply-add of floats (a * b + c). |
||
| 51 | SelectICmp, ///< Integer select(icmp(),x,y) where one of (x,y) is loop |
||
| 52 | ///< invariant |
||
| 53 | SelectFCmp ///< Integer select(fcmp(),x,y) where one of (x,y) is loop |
||
| 54 | ///< invariant |
||
| 55 | }; |
||
| 56 | |||
| 57 | /// The RecurrenceDescriptor is used to identify recurrences variables in a |
||
| 58 | /// loop. Reduction is a special case of recurrence that has uses of the |
||
| 59 | /// recurrence variable outside the loop. The method isReductionPHI identifies |
||
| 60 | /// reductions that are basic recurrences. |
||
| 61 | /// |
||
| 62 | /// Basic recurrences are defined as the summation, product, OR, AND, XOR, min, |
||
| 63 | /// or max of a set of terms. For example: for(i=0; i<n; i++) { total += |
||
| 64 | /// array[i]; } is a summation of array elements. Basic recurrences are a |
||
| 65 | /// special case of chains of recurrences (CR). See ScalarEvolution for CR |
||
| 66 | /// references. |
||
| 67 | |||
| 68 | /// This struct holds information about recurrence variables. |
||
| 69 | class RecurrenceDescriptor { |
||
| 70 | public: |
||
| 71 | RecurrenceDescriptor() = default; |
||
| 72 | |||
| 73 | RecurrenceDescriptor(Value *Start, Instruction *Exit, StoreInst *Store, |
||
| 74 | RecurKind K, FastMathFlags FMF, Instruction *ExactFP, |
||
| 75 | Type *RT, bool Signed, bool Ordered, |
||
| 76 | SmallPtrSetImpl<Instruction *> &CI, |
||
| 77 | unsigned MinWidthCastToRecurTy) |
||
| 78 | : IntermediateStore(Store), StartValue(Start), LoopExitInstr(Exit), |
||
| 79 | Kind(K), FMF(FMF), ExactFPMathInst(ExactFP), RecurrenceType(RT), |
||
| 80 | IsSigned(Signed), IsOrdered(Ordered), |
||
| 81 | MinWidthCastToRecurrenceType(MinWidthCastToRecurTy) { |
||
| 82 | CastInsts.insert(CI.begin(), CI.end()); |
||
| 83 | } |
||
| 84 | |||
| 85 | /// This POD struct holds information about a potential recurrence operation. |
||
| 86 | class InstDesc { |
||
| 87 | public: |
||
| 88 | InstDesc(bool IsRecur, Instruction *I, Instruction *ExactFP = nullptr) |
||
| 89 | : IsRecurrence(IsRecur), PatternLastInst(I), |
||
| 90 | RecKind(RecurKind::None), ExactFPMathInst(ExactFP) {} |
||
| 91 | |||
| 92 | InstDesc(Instruction *I, RecurKind K, Instruction *ExactFP = nullptr) |
||
| 93 | : IsRecurrence(true), PatternLastInst(I), RecKind(K), |
||
| 94 | ExactFPMathInst(ExactFP) {} |
||
| 95 | |||
| 96 | bool isRecurrence() const { return IsRecurrence; } |
||
| 97 | |||
| 98 | bool needsExactFPMath() const { return ExactFPMathInst != nullptr; } |
||
| 99 | |||
| 100 | Instruction *getExactFPMathInst() const { return ExactFPMathInst; } |
||
| 101 | |||
| 102 | RecurKind getRecKind() const { return RecKind; } |
||
| 103 | |||
| 104 | Instruction *getPatternInst() const { return PatternLastInst; } |
||
| 105 | |||
| 106 | private: |
||
| 107 | // Is this instruction a recurrence candidate. |
||
| 108 | bool IsRecurrence; |
||
| 109 | // The last instruction in a min/max pattern (select of the select(icmp()) |
||
| 110 | // pattern), or the current recurrence instruction otherwise. |
||
| 111 | Instruction *PatternLastInst; |
||
| 112 | // If this is a min/max pattern. |
||
| 113 | RecurKind RecKind; |
||
| 114 | // Recurrence does not allow floating-point reassociation. |
||
| 115 | Instruction *ExactFPMathInst; |
||
| 116 | }; |
||
| 117 | |||
| 118 | /// Returns a struct describing if the instruction 'I' can be a recurrence |
||
| 119 | /// variable of type 'Kind' for a Loop \p L and reduction PHI \p Phi. |
||
| 120 | /// If the recurrence is a min/max pattern of select(icmp()) this function |
||
| 121 | /// advances the instruction pointer 'I' from the compare instruction to the |
||
| 122 | /// select instruction and stores this pointer in 'PatternLastInst' member of |
||
| 123 | /// the returned struct. |
||
| 124 | static InstDesc isRecurrenceInstr(Loop *L, PHINode *Phi, Instruction *I, |
||
| 125 | RecurKind Kind, InstDesc &Prev, |
||
| 126 | FastMathFlags FuncFMF); |
||
| 127 | |||
| 128 | /// Returns true if instruction I has multiple uses in Insts |
||
| 129 | static bool hasMultipleUsesOf(Instruction *I, |
||
| 130 | SmallPtrSetImpl<Instruction *> &Insts, |
||
| 131 | unsigned MaxNumUses); |
||
| 132 | |||
| 133 | /// Returns true if all uses of the instruction I is within the Set. |
||
| 134 | static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set); |
||
| 135 | |||
| 136 | /// Returns a struct describing if the instruction is a llvm.(s/u)(min/max), |
||
| 137 | /// llvm.minnum/maxnum or a Select(ICmp(X, Y), X, Y) pair of instructions |
||
| 138 | /// corresponding to a min(X, Y) or max(X, Y), matching the recurrence kind \p |
||
| 139 | /// Kind. \p Prev specifies the description of an already processed select |
||
| 140 | /// instruction, so its corresponding cmp can be matched to it. |
||
| 141 | static InstDesc isMinMaxPattern(Instruction *I, RecurKind Kind, |
||
| 142 | const InstDesc &Prev); |
||
| 143 | |||
| 144 | /// Returns a struct describing whether the instruction is either a |
||
| 145 | /// Select(ICmp(A, B), X, Y), or |
||
| 146 | /// Select(FCmp(A, B), X, Y) |
||
| 147 | /// where one of (X, Y) is a loop invariant integer and the other is a PHI |
||
| 148 | /// value. \p Prev specifies the description of an already processed select |
||
| 149 | /// instruction, so its corresponding cmp can be matched to it. |
||
| 150 | static InstDesc isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi, |
||
| 151 | Instruction *I, InstDesc &Prev); |
||
| 152 | |||
| 153 | /// Returns a struct describing if the instruction is a |
||
| 154 | /// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern. |
||
| 155 | static InstDesc isConditionalRdxPattern(RecurKind Kind, Instruction *I); |
||
| 156 | |||
| 157 | /// Returns identity corresponding to the RecurrenceKind. |
||
| 158 | Value *getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF) const; |
||
| 159 | |||
| 160 | /// Returns the opcode corresponding to the RecurrenceKind. |
||
| 161 | static unsigned getOpcode(RecurKind Kind); |
||
| 162 | |||
| 163 | /// Returns true if Phi is a reduction of type Kind and adds it to the |
||
| 164 | /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are |
||
| 165 | /// non-null, the minimal bit width needed to compute the reduction will be |
||
| 166 | /// computed. |
||
| 167 | static bool |
||
| 168 | AddReductionVar(PHINode *Phi, RecurKind Kind, Loop *TheLoop, |
||
| 169 | FastMathFlags FuncFMF, RecurrenceDescriptor &RedDes, |
||
| 170 | DemandedBits *DB = nullptr, AssumptionCache *AC = nullptr, |
||
| 171 | DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr); |
||
| 172 | |||
| 173 | /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor |
||
| 174 | /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are |
||
| 175 | /// non-null, the minimal bit width needed to compute the reduction will be |
||
| 176 | /// computed. If \p SE is non-null, store instructions to loop invariant |
||
| 177 | /// addresses are processed. |
||
| 178 | static bool |
||
| 179 | isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes, |
||
| 180 | DemandedBits *DB = nullptr, AssumptionCache *AC = nullptr, |
||
| 181 | DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr); |
||
| 182 | |||
| 183 | /// Returns true if Phi is a fixed-order recurrence. A fixed-order recurrence |
||
| 184 | /// is a non-reduction recurrence relation in which the value of the |
||
| 185 | /// recurrence in the current loop iteration equals a value defined in a |
||
| 186 | /// previous iteration (e.g. if the value is defined in the previous |
||
| 187 | /// iteration, we refer to it as first-order recurrence, if it is defined in |
||
| 188 | /// the iteration before the previous, we refer to it as second-order |
||
| 189 | /// recurrence and so on). \p SinkAfter includes pairs of instructions where |
||
| 190 | /// the first will be rescheduled to appear after the second if/when the loop |
||
| 191 | /// is vectorized. It may be augmented with additional pairs if needed in |
||
| 192 | /// order to handle Phi as a first-order recurrence. |
||
| 193 | static bool |
||
| 194 | isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, |
||
| 195 | MapVector<Instruction *, Instruction *> &SinkAfter, |
||
| 196 | DominatorTree *DT); |
||
| 197 | |||
| 198 | RecurKind getRecurrenceKind() const { return Kind; } |
||
| 199 | |||
| 200 | unsigned getOpcode() const { return getOpcode(getRecurrenceKind()); } |
||
| 201 | |||
| 202 | FastMathFlags getFastMathFlags() const { return FMF; } |
||
| 203 | |||
| 204 | TrackingVH<Value> getRecurrenceStartValue() const { return StartValue; } |
||
| 205 | |||
| 206 | Instruction *getLoopExitInstr() const { return LoopExitInstr; } |
||
| 207 | |||
| 208 | /// Returns true if the recurrence has floating-point math that requires |
||
| 209 | /// precise (ordered) operations. |
||
| 210 | bool hasExactFPMath() const { return ExactFPMathInst != nullptr; } |
||
| 211 | |||
| 212 | /// Returns 1st non-reassociative FP instruction in the PHI node's use-chain. |
||
| 213 | Instruction *getExactFPMathInst() const { return ExactFPMathInst; } |
||
| 214 | |||
| 215 | /// Returns true if the recurrence kind is an integer kind. |
||
| 216 | static bool isIntegerRecurrenceKind(RecurKind Kind); |
||
| 217 | |||
| 218 | /// Returns true if the recurrence kind is a floating point kind. |
||
| 219 | static bool isFloatingPointRecurrenceKind(RecurKind Kind); |
||
| 220 | |||
| 221 | /// Returns true if the recurrence kind is an integer min/max kind. |
||
| 222 | static bool isIntMinMaxRecurrenceKind(RecurKind Kind) { |
||
| 223 | return Kind == RecurKind::UMin || Kind == RecurKind::UMax || |
||
| 224 | Kind == RecurKind::SMin || Kind == RecurKind::SMax; |
||
| 225 | } |
||
| 226 | |||
| 227 | /// Returns true if the recurrence kind is a floating-point min/max kind. |
||
| 228 | static bool isFPMinMaxRecurrenceKind(RecurKind Kind) { |
||
| 229 | return Kind == RecurKind::FMin || Kind == RecurKind::FMax; |
||
| 230 | } |
||
| 231 | |||
| 232 | /// Returns true if the recurrence kind is any min/max kind. |
||
| 233 | static bool isMinMaxRecurrenceKind(RecurKind Kind) { |
||
| 234 | return isIntMinMaxRecurrenceKind(Kind) || isFPMinMaxRecurrenceKind(Kind); |
||
| 235 | } |
||
| 236 | |||
| 237 | /// Returns true if the recurrence kind is of the form |
||
| 238 | /// select(cmp(),x,y) where one of (x,y) is loop invariant. |
||
| 239 | static bool isSelectCmpRecurrenceKind(RecurKind Kind) { |
||
| 240 | return Kind == RecurKind::SelectICmp || Kind == RecurKind::SelectFCmp; |
||
| 241 | } |
||
| 242 | |||
| 243 | /// Returns the type of the recurrence. This type can be narrower than the |
||
| 244 | /// actual type of the Phi if the recurrence has been type-promoted. |
||
| 245 | Type *getRecurrenceType() const { return RecurrenceType; } |
||
| 246 | |||
| 247 | /// Returns a reference to the instructions used for type-promoting the |
||
| 248 | /// recurrence. |
||
| 249 | const SmallPtrSet<Instruction *, 8> &getCastInsts() const { return CastInsts; } |
||
| 250 | |||
| 251 | /// Returns the minimum width used by the recurrence in bits. |
||
| 252 | unsigned getMinWidthCastToRecurrenceTypeInBits() const { |
||
| 253 | return MinWidthCastToRecurrenceType; |
||
| 254 | } |
||
| 255 | |||
| 256 | /// Returns true if all source operands of the recurrence are SExtInsts. |
||
| 257 | bool isSigned() const { return IsSigned; } |
||
| 258 | |||
| 259 | /// Expose an ordered FP reduction to the instance users. |
||
| 260 | bool isOrdered() const { return IsOrdered; } |
||
| 261 | |||
| 262 | /// Attempts to find a chain of operations from Phi to LoopExitInst that can |
||
| 263 | /// be treated as a set of reductions instructions for in-loop reductions. |
||
| 264 | SmallVector<Instruction *, 4> getReductionOpChain(PHINode *Phi, |
||
| 265 | Loop *L) const; |
||
| 266 | |||
| 267 | /// Returns true if the instruction is a call to the llvm.fmuladd intrinsic. |
||
| 268 | static bool isFMulAddIntrinsic(Instruction *I) { |
||
| 269 | return isa<IntrinsicInst>(I) && |
||
| 270 | cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fmuladd; |
||
| 271 | } |
||
| 272 | |||
| 273 | /// Reductions may store temporary or final result to an invariant address. |
||
| 274 | /// If there is such a store in the loop then, after successfull run of |
||
| 275 | /// AddReductionVar method, this field will be assigned the last met store. |
||
| 276 | StoreInst *IntermediateStore = nullptr; |
||
| 277 | |||
| 278 | private: |
||
| 279 | // The starting value of the recurrence. |
||
| 280 | // It does not have to be zero! |
||
| 281 | TrackingVH<Value> StartValue; |
||
| 282 | // The instruction who's value is used outside the loop. |
||
| 283 | Instruction *LoopExitInstr = nullptr; |
||
| 284 | // The kind of the recurrence. |
||
| 285 | RecurKind Kind = RecurKind::None; |
||
| 286 | // The fast-math flags on the recurrent instructions. We propagate these |
||
| 287 | // fast-math flags into the vectorized FP instructions we generate. |
||
| 288 | FastMathFlags FMF; |
||
| 289 | // First instance of non-reassociative floating-point in the PHI's use-chain. |
||
| 290 | Instruction *ExactFPMathInst = nullptr; |
||
| 291 | // The type of the recurrence. |
||
| 292 | Type *RecurrenceType = nullptr; |
||
| 293 | // True if all source operands of the recurrence are SExtInsts. |
||
| 294 | bool IsSigned = false; |
||
| 295 | // True if this recurrence can be treated as an in-order reduction. |
||
| 296 | // Currently only a non-reassociative FAdd can be considered in-order, |
||
| 297 | // if it is also the only FAdd in the PHI's use chain. |
||
| 298 | bool IsOrdered = false; |
||
| 299 | // Instructions used for type-promoting the recurrence. |
||
| 300 | SmallPtrSet<Instruction *, 8> CastInsts; |
||
| 301 | // The minimum width used by the recurrence. |
||
| 302 | unsigned MinWidthCastToRecurrenceType; |
||
| 303 | }; |
||
| 304 | |||
| 305 | /// A struct for saving information about induction variables. |
||
| 306 | class InductionDescriptor { |
||
| 307 | public: |
||
| 308 | /// This enum represents the kinds of inductions that we support. |
||
| 309 | enum InductionKind { |
||
| 310 | IK_NoInduction, ///< Not an induction variable. |
||
| 311 | IK_IntInduction, ///< Integer induction variable. Step = C. |
||
| 312 | IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem). |
||
| 313 | IK_FpInduction ///< Floating point induction variable. |
||
| 314 | }; |
||
| 315 | |||
| 316 | public: |
||
| 317 | /// Default constructor - creates an invalid induction. |
||
| 318 | InductionDescriptor() = default; |
||
| 319 | |||
| 320 | Value *getStartValue() const { return StartValue; } |
||
| 321 | InductionKind getKind() const { return IK; } |
||
| 322 | const SCEV *getStep() const { return Step; } |
||
| 323 | BinaryOperator *getInductionBinOp() const { return InductionBinOp; } |
||
| 324 | ConstantInt *getConstIntStepValue() const; |
||
| 325 | |||
| 326 | /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an |
||
| 327 | /// induction, the induction descriptor \p D will contain the data describing |
||
| 328 | /// this induction. If by some other means the caller has a better SCEV |
||
| 329 | /// expression for \p Phi than the one returned by the ScalarEvolution |
||
| 330 | /// analysis, it can be passed through \p Expr. If the def-use chain |
||
| 331 | /// associated with the phi includes casts (that we know we can ignore |
||
| 332 | /// under proper runtime checks), they are passed through \p CastsToIgnore. |
||
| 333 | static bool |
||
| 334 | isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, |
||
| 335 | InductionDescriptor &D, const SCEV *Expr = nullptr, |
||
| 336 | SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr); |
||
| 337 | |||
| 338 | /// Returns true if \p Phi is a floating point induction in the loop \p L. |
||
| 339 | /// If \p Phi is an induction, the induction descriptor \p D will contain |
||
| 340 | /// the data describing this induction. |
||
| 341 | static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, |
||
| 342 | InductionDescriptor &D); |
||
| 343 | |||
| 344 | /// Returns true if \p Phi is a loop \p L induction, in the context associated |
||
| 345 | /// with the run-time predicate of PSE. If \p Assume is true, this can add |
||
| 346 | /// further SCEV predicates to \p PSE in order to prove that \p Phi is an |
||
| 347 | /// induction. |
||
| 348 | /// If \p Phi is an induction, \p D will contain the data describing this |
||
| 349 | /// induction. |
||
| 350 | static bool isInductionPHI(PHINode *Phi, const Loop *L, |
||
| 351 | PredicatedScalarEvolution &PSE, |
||
| 352 | InductionDescriptor &D, bool Assume = false); |
||
| 353 | |||
| 354 | /// Returns floating-point induction operator that does not allow |
||
| 355 | /// reassociation (transforming the induction requires an override of normal |
||
| 356 | /// floating-point rules). |
||
| 357 | Instruction *getExactFPMathInst() { |
||
| 358 | if (IK == IK_FpInduction && InductionBinOp && |
||
| 359 | !InductionBinOp->hasAllowReassoc()) |
||
| 360 | return InductionBinOp; |
||
| 361 | return nullptr; |
||
| 362 | } |
||
| 363 | |||
| 364 | /// Returns binary opcode of the induction operator. |
||
| 365 | Instruction::BinaryOps getInductionOpcode() const { |
||
| 366 | return InductionBinOp ? InductionBinOp->getOpcode() |
||
| 367 | : Instruction::BinaryOpsEnd; |
||
| 368 | } |
||
| 369 | |||
| 370 | Type *getElementType() const { |
||
| 371 | assert(IK == IK_PtrInduction && "Only pointer induction has element type"); |
||
| 372 | return ElementType; |
||
| 373 | } |
||
| 374 | |||
| 375 | /// Returns a reference to the type cast instructions in the induction |
||
| 376 | /// update chain, that are redundant when guarded with a runtime |
||
| 377 | /// SCEV overflow check. |
||
| 378 | const SmallVectorImpl<Instruction *> &getCastInsts() const { |
||
| 379 | return RedundantCasts; |
||
| 380 | } |
||
| 381 | |||
| 382 | private: |
||
| 383 | /// Private constructor - used by \c isInductionPHI. |
||
| 384 | InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step, |
||
| 385 | BinaryOperator *InductionBinOp = nullptr, |
||
| 386 | Type *ElementType = nullptr, |
||
| 387 | SmallVectorImpl<Instruction *> *Casts = nullptr); |
||
| 388 | |||
| 389 | /// Start value. |
||
| 390 | TrackingVH<Value> StartValue; |
||
| 391 | /// Induction kind. |
||
| 392 | InductionKind IK = IK_NoInduction; |
||
| 393 | /// Step value. |
||
| 394 | const SCEV *Step = nullptr; |
||
| 395 | // Instruction that advances induction variable. |
||
| 396 | BinaryOperator *InductionBinOp = nullptr; |
||
| 397 | // Element type for pointer induction variables. |
||
| 398 | // TODO: This can be dropped once support for typed pointers is removed. |
||
| 399 | Type *ElementType = nullptr; |
||
| 400 | // Instructions used for type-casts of the induction variable, |
||
| 401 | // that are redundant when guarded with a runtime SCEV overflow check. |
||
| 402 | SmallVector<Instruction *, 2> RedundantCasts; |
||
| 403 | }; |
||
| 404 | |||
| 405 | } // end namespace llvm |
||
| 406 | |||
| 407 | #endif // LLVM_ANALYSIS_IVDESCRIPTORS_H |