Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// DependenceAnalysis is an LLVM pass that analyses dependences between memory
10
// accesses. Currently, it is an implementation of the approach described in
11
//
12
//            Practical Dependence Testing
13
//            Goff, Kennedy, Tseng
14
//            PLDI 1991
15
//
16
// There's a single entry point that analyzes the dependence between a pair
17
// of memory references in a function, returning either NULL, for no dependence,
18
// or a more-or-less detailed description of the dependence between them.
19
//
20
// This pass exists to support the DependenceGraph pass. There are two separate
21
// passes because there's a useful separation of concerns. A dependence exists
22
// if two conditions are met:
23
//
24
//    1) Two instructions reference the same memory location, and
25
//    2) There is a flow of control leading from one instruction to the other.
26
//
27
// DependenceAnalysis attacks the first condition; DependenceGraph will attack
28
// the second (it's not yet ready).
29
//
30
// Please note that this is work in progress and the interface is subject to
31
// change.
32
//
33
// Plausible changes:
34
//    Return a set of more precise dependences instead of just one dependence
35
//    summarizing all.
36
//
37
//===----------------------------------------------------------------------===//
38
 
39
#ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
40
#define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41
 
42
#include "llvm/ADT/SmallBitVector.h"
43
#include "llvm/IR/Instructions.h"
44
#include "llvm/IR/PassManager.h"
45
#include "llvm/Pass.h"
46
 
47
namespace llvm {
48
  class AAResults;
49
  template <typename T> class ArrayRef;
50
  class Loop;
51
  class LoopInfo;
52
  class ScalarEvolution;
53
  class SCEV;
54
  class SCEVConstant;
55
  class raw_ostream;
56
 
57
  /// Dependence - This class represents a dependence between two memory
58
  /// memory references in a function. It contains minimal information and
59
  /// is used in the very common situation where the compiler is unable to
60
  /// determine anything beyond the existence of a dependence; that is, it
61
  /// represents a confused dependence (see also FullDependence). In most
62
  /// cases (for output, flow, and anti dependences), the dependence implies
63
  /// an ordering, where the source must precede the destination; in contrast,
64
  /// input dependences are unordered.
65
  ///
66
  /// When a dependence graph is built, each Dependence will be a member of
67
  /// the set of predecessor edges for its destination instruction and a set
68
  /// if successor edges for its source instruction. These sets are represented
69
  /// as singly-linked lists, with the "next" fields stored in the dependence
70
  /// itelf.
71
  class Dependence {
72
  protected:
73
    Dependence(Dependence &&) = default;
74
    Dependence &operator=(Dependence &&) = default;
75
 
76
  public:
77
    Dependence(Instruction *Source, Instruction *Destination)
78
        : Src(Source), Dst(Destination) {}
79
    virtual ~Dependence() = default;
80
 
81
    /// Dependence::DVEntry - Each level in the distance/direction vector
82
    /// has a direction (or perhaps a union of several directions), and
83
    /// perhaps a distance.
84
    struct DVEntry {
85
      enum : unsigned char {
86
        NONE = 0,
87
        LT = 1,
88
        EQ = 2,
89
        LE = 3,
90
        GT = 4,
91
        NE = 5,
92
        GE = 6,
93
        ALL = 7
94
      };
95
      unsigned char Direction : 3; // Init to ALL, then refine.
96
      bool Scalar    : 1; // Init to true.
97
      bool PeelFirst : 1; // Peeling the first iteration will break dependence.
98
      bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
99
      bool Splitable : 1; // Splitting the loop will break dependence.
100
      const SCEV *Distance = nullptr; // NULL implies no distance available.
101
      DVEntry()
102
          : Direction(ALL), Scalar(true), PeelFirst(false), PeelLast(false),
103
            Splitable(false) {}
104
    };
105
 
106
    /// getSrc - Returns the source instruction for this dependence.
107
    ///
108
    Instruction *getSrc() const { return Src; }
109
 
110
    /// getDst - Returns the destination instruction for this dependence.
111
    ///
112
    Instruction *getDst() const { return Dst; }
113
 
114
    /// isInput - Returns true if this is an input dependence.
115
    ///
116
    bool isInput() const;
117
 
118
    /// isOutput - Returns true if this is an output dependence.
119
    ///
120
    bool isOutput() const;
121
 
122
    /// isFlow - Returns true if this is a flow (aka true) dependence.
123
    ///
124
    bool isFlow() const;
125
 
126
    /// isAnti - Returns true if this is an anti dependence.
127
    ///
128
    bool isAnti() const;
129
 
130
    /// isOrdered - Returns true if dependence is Output, Flow, or Anti
131
    ///
132
    bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
133
 
134
    /// isUnordered - Returns true if dependence is Input
135
    ///
136
    bool isUnordered() const { return isInput(); }
137
 
138
    /// isLoopIndependent - Returns true if this is a loop-independent
139
    /// dependence.
140
    virtual bool isLoopIndependent() const { return true; }
141
 
142
    /// isConfused - Returns true if this dependence is confused
143
    /// (the compiler understands nothing and makes worst-case
144
    /// assumptions).
145
    virtual bool isConfused() const { return true; }
146
 
147
    /// isConsistent - Returns true if this dependence is consistent
148
    /// (occurs every time the source and destination are executed).
149
    virtual bool isConsistent() const { return false; }
150
 
151
    /// getLevels - Returns the number of common loops surrounding the
152
    /// source and destination of the dependence.
153
    virtual unsigned getLevels() const { return 0; }
154
 
155
    /// getDirection - Returns the direction associated with a particular
156
    /// level.
157
    virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
158
 
159
    /// getDistance - Returns the distance (or NULL) associated with a
160
    /// particular level.
161
    virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
162
 
163
    /// Check if the direction vector is negative. A negative direction
164
    /// vector means Src and Dst are reversed in the actual program.
165
    virtual bool isDirectionNegative() const { return false; }
166
 
167
    /// If the direction vector is negative, normalize the direction
168
    /// vector to make it non-negative. Normalization is done by reversing
169
    /// Src and Dst, plus reversing the dependence directions and distances
170
    /// in the vector.
171
    virtual bool normalize(ScalarEvolution *SE) { return false; }
172
 
173
    /// isPeelFirst - Returns true if peeling the first iteration from
174
    /// this loop will break this dependence.
175
    virtual bool isPeelFirst(unsigned Level) const { return false; }
176
 
177
    /// isPeelLast - Returns true if peeling the last iteration from
178
    /// this loop will break this dependence.
179
    virtual bool isPeelLast(unsigned Level) const { return false; }
180
 
181
    /// isSplitable - Returns true if splitting this loop will break
182
    /// the dependence.
183
    virtual bool isSplitable(unsigned Level) const { return false; }
184
 
185
    /// isScalar - Returns true if a particular level is scalar; that is,
186
    /// if no subscript in the source or destination mention the induction
187
    /// variable associated with the loop at this level.
188
    virtual bool isScalar(unsigned Level) const;
189
 
190
    /// getNextPredecessor - Returns the value of the NextPredecessor
191
    /// field.
192
    const Dependence *getNextPredecessor() const { return NextPredecessor; }
193
 
194
    /// getNextSuccessor - Returns the value of the NextSuccessor
195
    /// field.
196
    const Dependence *getNextSuccessor() const { return NextSuccessor; }
197
 
198
    /// setNextPredecessor - Sets the value of the NextPredecessor
199
    /// field.
200
    void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
201
 
202
    /// setNextSuccessor - Sets the value of the NextSuccessor
203
    /// field.
204
    void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
205
 
206
    /// dump - For debugging purposes, dumps a dependence to OS.
207
    ///
208
    void dump(raw_ostream &OS) const;
209
 
210
  protected:
211
    Instruction *Src, *Dst;
212
 
213
  private:
214
    const Dependence *NextPredecessor = nullptr, *NextSuccessor = nullptr;
215
    friend class DependenceInfo;
216
  };
217
 
218
  /// FullDependence - This class represents a dependence between two memory
219
  /// references in a function. It contains detailed information about the
220
  /// dependence (direction vectors, etc.) and is used when the compiler is
221
  /// able to accurately analyze the interaction of the references; that is,
222
  /// it is not a confused dependence (see Dependence). In most cases
223
  /// (for output, flow, and anti dependences), the dependence implies an
224
  /// ordering, where the source must precede the destination; in contrast,
225
  /// input dependences are unordered.
226
  class FullDependence final : public Dependence {
227
  public:
228
    FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
229
                   unsigned Levels);
230
 
231
    /// isLoopIndependent - Returns true if this is a loop-independent
232
    /// dependence.
233
    bool isLoopIndependent() const override { return LoopIndependent; }
234
 
235
    /// isConfused - Returns true if this dependence is confused
236
    /// (the compiler understands nothing and makes worst-case
237
    /// assumptions).
238
    bool isConfused() const override { return false; }
239
 
240
    /// isConsistent - Returns true if this dependence is consistent
241
    /// (occurs every time the source and destination are executed).
242
    bool isConsistent() const override { return Consistent; }
243
 
244
    /// getLevels - Returns the number of common loops surrounding the
245
    /// source and destination of the dependence.
246
    unsigned getLevels() const override { return Levels; }
247
 
248
    /// getDirection - Returns the direction associated with a particular
249
    /// level.
250
    unsigned getDirection(unsigned Level) const override;
251
 
252
    /// getDistance - Returns the distance (or NULL) associated with a
253
    /// particular level.
254
    const SCEV *getDistance(unsigned Level) const override;
255
 
256
    /// Check if the direction vector is negative. A negative direction
257
    /// vector means Src and Dst are reversed in the actual program.
258
    bool isDirectionNegative() const override;
259
 
260
    /// If the direction vector is negative, normalize the direction
261
    /// vector to make it non-negative. Normalization is done by reversing
262
    /// Src and Dst, plus reversing the dependence directions and distances
263
    /// in the vector.
264
    bool normalize(ScalarEvolution *SE) override;
265
 
266
    /// isPeelFirst - Returns true if peeling the first iteration from
267
    /// this loop will break this dependence.
268
    bool isPeelFirst(unsigned Level) const override;
269
 
270
    /// isPeelLast - Returns true if peeling the last iteration from
271
    /// this loop will break this dependence.
272
    bool isPeelLast(unsigned Level) const override;
273
 
274
    /// isSplitable - Returns true if splitting the loop will break
275
    /// the dependence.
276
    bool isSplitable(unsigned Level) const override;
277
 
278
    /// isScalar - Returns true if a particular level is scalar; that is,
279
    /// if no subscript in the source or destination mention the induction
280
    /// variable associated with the loop at this level.
281
    bool isScalar(unsigned Level) const override;
282
 
283
  private:
284
    unsigned short Levels;
285
    bool LoopIndependent;
286
    bool Consistent; // Init to true, then refine.
287
    std::unique_ptr<DVEntry[]> DV;
288
    friend class DependenceInfo;
289
  };
290
 
291
  /// DependenceInfo - This class is the main dependence-analysis driver.
292
  ///
293
  class DependenceInfo {
294
  public:
295
    DependenceInfo(Function *F, AAResults *AA, ScalarEvolution *SE,
296
                   LoopInfo *LI)
297
        : AA(AA), SE(SE), LI(LI), F(F) {}
298
 
299
    /// Handle transitive invalidation when the cached analysis results go away.
300
    bool invalidate(Function &F, const PreservedAnalyses &PA,
301
                    FunctionAnalysisManager::Invalidator &Inv);
302
 
303
    /// depends - Tests for a dependence between the Src and Dst instructions.
304
    /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
305
    /// FullDependence) with as much information as can be gleaned.
306
    /// The flag PossiblyLoopIndependent should be set by the caller
307
    /// if it appears that control flow can reach from Src to Dst
308
    /// without traversing a loop back edge.
309
    std::unique_ptr<Dependence> depends(Instruction *Src,
310
                                        Instruction *Dst,
311
                                        bool PossiblyLoopIndependent);
312
 
313
    /// getSplitIteration - Give a dependence that's splittable at some
314
    /// particular level, return the iteration that should be used to split
315
    /// the loop.
316
    ///
317
    /// Generally, the dependence analyzer will be used to build
318
    /// a dependence graph for a function (basically a map from instructions
319
    /// to dependences). Looking for cycles in the graph shows us loops
320
    /// that cannot be trivially vectorized/parallelized.
321
    ///
322
    /// We can try to improve the situation by examining all the dependences
323
    /// that make up the cycle, looking for ones we can break.
324
    /// Sometimes, peeling the first or last iteration of a loop will break
325
    /// dependences, and there are flags for those possibilities.
326
    /// Sometimes, splitting a loop at some other iteration will do the trick,
327
    /// and we've got a flag for that case. Rather than waste the space to
328
    /// record the exact iteration (since we rarely know), we provide
329
    /// a method that calculates the iteration. It's a drag that it must work
330
    /// from scratch, but wonderful in that it's possible.
331
    ///
332
    /// Here's an example:
333
    ///
334
    ///    for (i = 0; i < 10; i++)
335
    ///        A[i] = ...
336
    ///        ... = A[11 - i]
337
    ///
338
    /// There's a loop-carried flow dependence from the store to the load,
339
    /// found by the weak-crossing SIV test. The dependence will have a flag,
340
    /// indicating that the dependence can be broken by splitting the loop.
341
    /// Calling getSplitIteration will return 5.
342
    /// Splitting the loop breaks the dependence, like so:
343
    ///
344
    ///    for (i = 0; i <= 5; i++)
345
    ///        A[i] = ...
346
    ///        ... = A[11 - i]
347
    ///    for (i = 6; i < 10; i++)
348
    ///        A[i] = ...
349
    ///        ... = A[11 - i]
350
    ///
351
    /// breaks the dependence and allows us to vectorize/parallelize
352
    /// both loops.
353
    const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
354
 
355
    Function *getFunction() const { return F; }
356
 
357
  private:
358
    AAResults *AA;
359
    ScalarEvolution *SE;
360
    LoopInfo *LI;
361
    Function *F;
362
 
363
    /// Subscript - This private struct represents a pair of subscripts from
364
    /// a pair of potentially multi-dimensional array references. We use a
365
    /// vector of them to guide subscript partitioning.
366
    struct Subscript {
367
      const SCEV *Src;
368
      const SCEV *Dst;
369
      enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
370
      SmallBitVector Loops;
371
      SmallBitVector GroupLoops;
372
      SmallBitVector Group;
373
    };
374
 
375
    struct CoefficientInfo {
376
      const SCEV *Coeff;
377
      const SCEV *PosPart;
378
      const SCEV *NegPart;
379
      const SCEV *Iterations;
380
    };
381
 
382
    struct BoundInfo {
383
      const SCEV *Iterations;
384
      const SCEV *Upper[8];
385
      const SCEV *Lower[8];
386
      unsigned char Direction;
387
      unsigned char DirSet;
388
    };
389
 
390
    /// Constraint - This private class represents a constraint, as defined
391
    /// in the paper
392
    ///
393
    ///           Practical Dependence Testing
394
    ///           Goff, Kennedy, Tseng
395
    ///           PLDI 1991
396
    ///
397
    /// There are 5 kinds of constraint, in a hierarchy.
398
    ///   1) Any - indicates no constraint, any dependence is possible.
399
    ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
400
    ///             representing the dependence equation.
401
    ///   3) Distance - The value d of the dependence distance;
402
    ///   4) Point - A point <x, y> representing the dependence from
403
    ///              iteration x to iteration y.
404
    ///   5) Empty - No dependence is possible.
405
    class Constraint {
406
    private:
407
      enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
408
      ScalarEvolution *SE;
409
      const SCEV *A;
410
      const SCEV *B;
411
      const SCEV *C;
412
      const Loop *AssociatedLoop;
413
 
414
    public:
415
      /// isEmpty - Return true if the constraint is of kind Empty.
416
      bool isEmpty() const { return Kind == Empty; }
417
 
418
      /// isPoint - Return true if the constraint is of kind Point.
419
      bool isPoint() const { return Kind == Point; }
420
 
421
      /// isDistance - Return true if the constraint is of kind Distance.
422
      bool isDistance() const { return Kind == Distance; }
423
 
424
      /// isLine - Return true if the constraint is of kind Line.
425
      /// Since Distance's can also be represented as Lines, we also return
426
      /// true if the constraint is of kind Distance.
427
      bool isLine() const { return Kind == Line || Kind == Distance; }
428
 
429
      /// isAny - Return true if the constraint is of kind Any;
430
      bool isAny() const { return Kind == Any; }
431
 
432
      /// getX - If constraint is a point <X, Y>, returns X.
433
      /// Otherwise assert.
434
      const SCEV *getX() const;
435
 
436
      /// getY - If constraint is a point <X, Y>, returns Y.
437
      /// Otherwise assert.
438
      const SCEV *getY() const;
439
 
440
      /// getA - If constraint is a line AX + BY = C, returns A.
441
      /// Otherwise assert.
442
      const SCEV *getA() const;
443
 
444
      /// getB - If constraint is a line AX + BY = C, returns B.
445
      /// Otherwise assert.
446
      const SCEV *getB() const;
447
 
448
      /// getC - If constraint is a line AX + BY = C, returns C.
449
      /// Otherwise assert.
450
      const SCEV *getC() const;
451
 
452
      /// getD - If constraint is a distance, returns D.
453
      /// Otherwise assert.
454
      const SCEV *getD() const;
455
 
456
      /// getAssociatedLoop - Returns the loop associated with this constraint.
457
      const Loop *getAssociatedLoop() const;
458
 
459
      /// setPoint - Change a constraint to Point.
460
      void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
461
 
462
      /// setLine - Change a constraint to Line.
463
      void setLine(const SCEV *A, const SCEV *B,
464
                   const SCEV *C, const Loop *CurrentLoop);
465
 
466
      /// setDistance - Change a constraint to Distance.
467
      void setDistance(const SCEV *D, const Loop *CurrentLoop);
468
 
469
      /// setEmpty - Change a constraint to Empty.
470
      void setEmpty();
471
 
472
      /// setAny - Change a constraint to Any.
473
      void setAny(ScalarEvolution *SE);
474
 
475
      /// dump - For debugging purposes. Dumps the constraint
476
      /// out to OS.
477
      void dump(raw_ostream &OS) const;
478
    };
479
 
480
    /// establishNestingLevels - Examines the loop nesting of the Src and Dst
481
    /// instructions and establishes their shared loops. Sets the variables
482
    /// CommonLevels, SrcLevels, and MaxLevels.
483
    /// The source and destination instructions needn't be contained in the same
484
    /// loop. The routine establishNestingLevels finds the level of most deeply
485
    /// nested loop that contains them both, CommonLevels. An instruction that's
486
    /// not contained in a loop is at level = 0. MaxLevels is equal to the level
487
    /// of the source plus the level of the destination, minus CommonLevels.
488
    /// This lets us allocate vectors MaxLevels in length, with room for every
489
    /// distinct loop referenced in both the source and destination subscripts.
490
    /// The variable SrcLevels is the nesting depth of the source instruction.
491
    /// It's used to help calculate distinct loops referenced by the destination.
492
    /// Here's the map from loops to levels:
493
    ///            0 - unused
494
    ///            1 - outermost common loop
495
    ///          ... - other common loops
496
    /// CommonLevels - innermost common loop
497
    ///          ... - loops containing Src but not Dst
498
    ///    SrcLevels - innermost loop containing Src but not Dst
499
    ///          ... - loops containing Dst but not Src
500
    ///    MaxLevels - innermost loop containing Dst but not Src
501
    /// Consider the follow code fragment:
502
    ///    for (a = ...) {
503
    ///      for (b = ...) {
504
    ///        for (c = ...) {
505
    ///          for (d = ...) {
506
    ///            A[] = ...;
507
    ///          }
508
    ///        }
509
    ///        for (e = ...) {
510
    ///          for (f = ...) {
511
    ///            for (g = ...) {
512
    ///              ... = A[];
513
    ///            }
514
    ///          }
515
    ///        }
516
    ///      }
517
    ///    }
518
    /// If we're looking at the possibility of a dependence between the store
519
    /// to A (the Src) and the load from A (the Dst), we'll note that they
520
    /// have 2 loops in common, so CommonLevels will equal 2 and the direction
521
    /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
522
    /// A map from loop names to level indices would look like
523
    ///     a - 1
524
    ///     b - 2 = CommonLevels
525
    ///     c - 3
526
    ///     d - 4 = SrcLevels
527
    ///     e - 5
528
    ///     f - 6
529
    ///     g - 7 = MaxLevels
530
    void establishNestingLevels(const Instruction *Src,
531
                                const Instruction *Dst);
532
 
533
    unsigned CommonLevels, SrcLevels, MaxLevels;
534
 
535
    /// mapSrcLoop - Given one of the loops containing the source, return
536
    /// its level index in our numbering scheme.
537
    unsigned mapSrcLoop(const Loop *SrcLoop) const;
538
 
539
    /// mapDstLoop - Given one of the loops containing the destination,
540
    /// return its level index in our numbering scheme.
541
    unsigned mapDstLoop(const Loop *DstLoop) const;
542
 
543
    /// isLoopInvariant - Returns true if Expression is loop invariant
544
    /// in LoopNest.
545
    bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
546
 
547
    /// Makes sure all subscript pairs share the same integer type by
548
    /// sign-extending as necessary.
549
    /// Sign-extending a subscript is safe because getelementptr assumes the
550
    /// array subscripts are signed.
551
    void unifySubscriptType(ArrayRef<Subscript *> Pairs);
552
 
553
    /// removeMatchingExtensions - Examines a subscript pair.
554
    /// If the source and destination are identically sign (or zero)
555
    /// extended, it strips off the extension in an effort to
556
    /// simplify the actual analysis.
557
    void removeMatchingExtensions(Subscript *Pair);
558
 
559
    /// collectCommonLoops - Finds the set of loops from the LoopNest that
560
    /// have a level <= CommonLevels and are referred to by the SCEV Expression.
561
    void collectCommonLoops(const SCEV *Expression,
562
                            const Loop *LoopNest,
563
                            SmallBitVector &Loops) const;
564
 
565
    /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
566
    /// linear. Collect the set of loops mentioned by Src.
567
    bool checkSrcSubscript(const SCEV *Src,
568
                           const Loop *LoopNest,
569
                           SmallBitVector &Loops);
570
 
571
    /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
572
    /// linear. Collect the set of loops mentioned by Dst.
573
    bool checkDstSubscript(const SCEV *Dst,
574
                           const Loop *LoopNest,
575
                           SmallBitVector &Loops);
576
 
577
    /// isKnownPredicate - Compare X and Y using the predicate Pred.
578
    /// Basically a wrapper for SCEV::isKnownPredicate,
579
    /// but tries harder, especially in the presence of sign and zero
580
    /// extensions and symbolics.
581
    bool isKnownPredicate(ICmpInst::Predicate Pred,
582
                          const SCEV *X,
583
                          const SCEV *Y) const;
584
 
585
    /// isKnownLessThan - Compare to see if S is less than Size
586
    /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
587
    /// checking if S is an AddRec and we can prove lessthan using the loop
588
    /// bounds.
589
    bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
590
 
591
    /// isKnownNonNegative - Compare to see if S is known not to be negative
592
    /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
593
    /// Proving there is no wrapping going on.
594
    bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
595
 
596
    /// collectUpperBound - All subscripts are the same type (on my machine,
597
    /// an i64). The loop bound may be a smaller type. collectUpperBound
598
    /// find the bound, if available, and zero extends it to the Type T.
599
    /// (I zero extend since the bound should always be >= 0.)
600
    /// If no upper bound is available, return NULL.
601
    const SCEV *collectUpperBound(const Loop *l, Type *T) const;
602
 
603
    /// collectConstantUpperBound - Calls collectUpperBound(), then
604
    /// attempts to cast it to SCEVConstant. If the cast fails,
605
    /// returns NULL.
606
    const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
607
 
608
    /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
609
    /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
610
    /// Collects the associated loops in a set.
611
    Subscript::ClassificationKind classifyPair(const SCEV *Src,
612
                                           const Loop *SrcLoopNest,
613
                                           const SCEV *Dst,
614
                                           const Loop *DstLoopNest,
615
                                           SmallBitVector &Loops);
616
 
617
    /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
618
    /// Returns true if any possible dependence is disproved.
619
    /// If there might be a dependence, returns false.
620
    /// If the dependence isn't proven to exist,
621
    /// marks the Result as inconsistent.
622
    bool testZIV(const SCEV *Src,
623
                 const SCEV *Dst,
624
                 FullDependence &Result) const;
625
 
626
    /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
627
    /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
628
    /// i and j are induction variables, c1 and c2 are loop invariant,
629
    /// and a1 and a2 are constant.
630
    /// Returns true if any possible dependence is disproved.
631
    /// If there might be a dependence, returns false.
632
    /// Sets appropriate direction vector entry and, when possible,
633
    /// the distance vector entry.
634
    /// If the dependence isn't proven to exist,
635
    /// marks the Result as inconsistent.
636
    bool testSIV(const SCEV *Src,
637
                 const SCEV *Dst,
638
                 unsigned &Level,
639
                 FullDependence &Result,
640
                 Constraint &NewConstraint,
641
                 const SCEV *&SplitIter) const;
642
 
643
    /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
644
    /// Things of the form [c1 + a1*i] and [c2 + a2*j]
645
    /// where i and j are induction variables, c1 and c2 are loop invariant,
646
    /// and a1 and a2 are constant.
647
    /// With minor algebra, this test can also be used for things like
648
    /// [c1 + a1*i + a2*j][c2].
649
    /// Returns true if any possible dependence is disproved.
650
    /// If there might be a dependence, returns false.
651
    /// Marks the Result as inconsistent.
652
    bool testRDIV(const SCEV *Src,
653
                  const SCEV *Dst,
654
                  FullDependence &Result) const;
655
 
656
    /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
657
    /// Returns true if dependence disproved.
658
    /// Can sometimes refine direction vectors.
659
    bool testMIV(const SCEV *Src,
660
                 const SCEV *Dst,
661
                 const SmallBitVector &Loops,
662
                 FullDependence &Result) const;
663
 
664
    /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
665
    /// for dependence.
666
    /// Things of the form [c1 + a*i] and [c2 + a*i],
667
    /// where i is an induction variable, c1 and c2 are loop invariant,
668
    /// and a is a constant
669
    /// Returns true if any possible dependence is disproved.
670
    /// If there might be a dependence, returns false.
671
    /// Sets appropriate direction and distance.
672
    bool strongSIVtest(const SCEV *Coeff,
673
                       const SCEV *SrcConst,
674
                       const SCEV *DstConst,
675
                       const Loop *CurrentLoop,
676
                       unsigned Level,
677
                       FullDependence &Result,
678
                       Constraint &NewConstraint) const;
679
 
680
    /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
681
    /// (Src and Dst) for dependence.
682
    /// Things of the form [c1 + a*i] and [c2 - a*i],
683
    /// where i is an induction variable, c1 and c2 are loop invariant,
684
    /// and a is a constant.
685
    /// Returns true if any possible dependence is disproved.
686
    /// If there might be a dependence, returns false.
687
    /// Sets appropriate direction entry.
688
    /// Set consistent to false.
689
    /// Marks the dependence as splitable.
690
    bool weakCrossingSIVtest(const SCEV *SrcCoeff,
691
                             const SCEV *SrcConst,
692
                             const SCEV *DstConst,
693
                             const Loop *CurrentLoop,
694
                             unsigned Level,
695
                             FullDependence &Result,
696
                             Constraint &NewConstraint,
697
                             const SCEV *&SplitIter) const;
698
 
699
    /// ExactSIVtest - Tests the SIV subscript pair
700
    /// (Src and Dst) for dependence.
701
    /// Things of the form [c1 + a1*i] and [c2 + a2*i],
702
    /// where i is an induction variable, c1 and c2 are loop invariant,
703
    /// and a1 and a2 are constant.
704
    /// Returns true if any possible dependence is disproved.
705
    /// If there might be a dependence, returns false.
706
    /// Sets appropriate direction entry.
707
    /// Set consistent to false.
708
    bool exactSIVtest(const SCEV *SrcCoeff,
709
                      const SCEV *DstCoeff,
710
                      const SCEV *SrcConst,
711
                      const SCEV *DstConst,
712
                      const Loop *CurrentLoop,
713
                      unsigned Level,
714
                      FullDependence &Result,
715
                      Constraint &NewConstraint) const;
716
 
717
    /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
718
    /// (Src and Dst) for dependence.
719
    /// Things of the form [c1] and [c2 + a*i],
720
    /// where i is an induction variable, c1 and c2 are loop invariant,
721
    /// and a is a constant. See also weakZeroDstSIVtest.
722
    /// Returns true if any possible dependence is disproved.
723
    /// If there might be a dependence, returns false.
724
    /// Sets appropriate direction entry.
725
    /// Set consistent to false.
726
    /// If loop peeling will break the dependence, mark appropriately.
727
    bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
728
                            const SCEV *SrcConst,
729
                            const SCEV *DstConst,
730
                            const Loop *CurrentLoop,
731
                            unsigned Level,
732
                            FullDependence &Result,
733
                            Constraint &NewConstraint) const;
734
 
735
    /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
736
    /// (Src and Dst) for dependence.
737
    /// Things of the form [c1 + a*i] and [c2],
738
    /// where i is an induction variable, c1 and c2 are loop invariant,
739
    /// and a is a constant. See also weakZeroSrcSIVtest.
740
    /// Returns true if any possible dependence is disproved.
741
    /// If there might be a dependence, returns false.
742
    /// Sets appropriate direction entry.
743
    /// Set consistent to false.
744
    /// If loop peeling will break the dependence, mark appropriately.
745
    bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
746
                            const SCEV *SrcConst,
747
                            const SCEV *DstConst,
748
                            const Loop *CurrentLoop,
749
                            unsigned Level,
750
                            FullDependence &Result,
751
                            Constraint &NewConstraint) const;
752
 
753
    /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
754
    /// Things of the form [c1 + a*i] and [c2 + b*j],
755
    /// where i and j are induction variable, c1 and c2 are loop invariant,
756
    /// and a and b are constants.
757
    /// Returns true if any possible dependence is disproved.
758
    /// Marks the result as inconsistent.
759
    /// Works in some cases that symbolicRDIVtest doesn't,
760
    /// and vice versa.
761
    bool exactRDIVtest(const SCEV *SrcCoeff,
762
                       const SCEV *DstCoeff,
763
                       const SCEV *SrcConst,
764
                       const SCEV *DstConst,
765
                       const Loop *SrcLoop,
766
                       const Loop *DstLoop,
767
                       FullDependence &Result) const;
768
 
769
    /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
770
    /// Things of the form [c1 + a*i] and [c2 + b*j],
771
    /// where i and j are induction variable, c1 and c2 are loop invariant,
772
    /// and a and b are constants.
773
    /// Returns true if any possible dependence is disproved.
774
    /// Marks the result as inconsistent.
775
    /// Works in some cases that exactRDIVtest doesn't,
776
    /// and vice versa. Can also be used as a backup for
777
    /// ordinary SIV tests.
778
    bool symbolicRDIVtest(const SCEV *SrcCoeff,
779
                          const SCEV *DstCoeff,
780
                          const SCEV *SrcConst,
781
                          const SCEV *DstConst,
782
                          const Loop *SrcLoop,
783
                          const Loop *DstLoop) const;
784
 
785
    /// gcdMIVtest - Tests an MIV subscript pair for dependence.
786
    /// Returns true if any possible dependence is disproved.
787
    /// Marks the result as inconsistent.
788
    /// Can sometimes disprove the equal direction for 1 or more loops.
789
    //  Can handle some symbolics that even the SIV tests don't get,
790
    /// so we use it as a backup for everything.
791
    bool gcdMIVtest(const SCEV *Src,
792
                    const SCEV *Dst,
793
                    FullDependence &Result) const;
794
 
795
    /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
796
    /// Returns true if any possible dependence is disproved.
797
    /// Marks the result as inconsistent.
798
    /// Computes directions.
799
    bool banerjeeMIVtest(const SCEV *Src,
800
                         const SCEV *Dst,
801
                         const SmallBitVector &Loops,
802
                         FullDependence &Result) const;
803
 
804
    /// collectCoefficientInfo - Walks through the subscript,
805
    /// collecting each coefficient, the associated loop bounds,
806
    /// and recording its positive and negative parts for later use.
807
    CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
808
                                      bool SrcFlag,
809
                                      const SCEV *&Constant) const;
810
 
811
    /// getPositivePart - X^+ = max(X, 0).
812
    ///
813
    const SCEV *getPositivePart(const SCEV *X) const;
814
 
815
    /// getNegativePart - X^- = min(X, 0).
816
    ///
817
    const SCEV *getNegativePart(const SCEV *X) const;
818
 
819
    /// getLowerBound - Looks through all the bounds info and
820
    /// computes the lower bound given the current direction settings
821
    /// at each level.
822
    const SCEV *getLowerBound(BoundInfo *Bound) const;
823
 
824
    /// getUpperBound - Looks through all the bounds info and
825
    /// computes the upper bound given the current direction settings
826
    /// at each level.
827
    const SCEV *getUpperBound(BoundInfo *Bound) const;
828
 
829
    /// exploreDirections - Hierarchically expands the direction vector
830
    /// search space, combining the directions of discovered dependences
831
    /// in the DirSet field of Bound. Returns the number of distinct
832
    /// dependences discovered. If the dependence is disproved,
833
    /// it will return 0.
834
    unsigned exploreDirections(unsigned Level,
835
                               CoefficientInfo *A,
836
                               CoefficientInfo *B,
837
                               BoundInfo *Bound,
838
                               const SmallBitVector &Loops,
839
                               unsigned &DepthExpanded,
840
                               const SCEV *Delta) const;
841
 
842
    /// testBounds - Returns true iff the current bounds are plausible.
843
    bool testBounds(unsigned char DirKind,
844
                    unsigned Level,
845
                    BoundInfo *Bound,
846
                    const SCEV *Delta) const;
847
 
848
    /// findBoundsALL - Computes the upper and lower bounds for level K
849
    /// using the * direction. Records them in Bound.
850
    void findBoundsALL(CoefficientInfo *A,
851
                       CoefficientInfo *B,
852
                       BoundInfo *Bound,
853
                       unsigned K) const;
854
 
855
    /// findBoundsLT - Computes the upper and lower bounds for level K
856
    /// using the < direction. Records them in Bound.
857
    void findBoundsLT(CoefficientInfo *A,
858
                      CoefficientInfo *B,
859
                      BoundInfo *Bound,
860
                      unsigned K) const;
861
 
862
    /// findBoundsGT - Computes the upper and lower bounds for level K
863
    /// using the > direction. Records them in Bound.
864
    void findBoundsGT(CoefficientInfo *A,
865
                      CoefficientInfo *B,
866
                      BoundInfo *Bound,
867
                      unsigned K) const;
868
 
869
    /// findBoundsEQ - Computes the upper and lower bounds for level K
870
    /// using the = direction. Records them in Bound.
871
    void findBoundsEQ(CoefficientInfo *A,
872
                      CoefficientInfo *B,
873
                      BoundInfo *Bound,
874
                      unsigned K) const;
875
 
876
    /// intersectConstraints - Updates X with the intersection
877
    /// of the Constraints X and Y. Returns true if X has changed.
878
    bool intersectConstraints(Constraint *X,
879
                              const Constraint *Y);
880
 
881
    /// propagate - Review the constraints, looking for opportunities
882
    /// to simplify a subscript pair (Src and Dst).
883
    /// Return true if some simplification occurs.
884
    /// If the simplification isn't exact (that is, if it is conservative
885
    /// in terms of dependence), set consistent to false.
886
    bool propagate(const SCEV *&Src,
887
                   const SCEV *&Dst,
888
                   SmallBitVector &Loops,
889
                   SmallVectorImpl<Constraint> &Constraints,
890
                   bool &Consistent);
891
 
892
    /// propagateDistance - Attempt to propagate a distance
893
    /// constraint into a subscript pair (Src and Dst).
894
    /// Return true if some simplification occurs.
895
    /// If the simplification isn't exact (that is, if it is conservative
896
    /// in terms of dependence), set consistent to false.
897
    bool propagateDistance(const SCEV *&Src,
898
                           const SCEV *&Dst,
899
                           Constraint &CurConstraint,
900
                           bool &Consistent);
901
 
902
    /// propagatePoint - Attempt to propagate a point
903
    /// constraint into a subscript pair (Src and Dst).
904
    /// Return true if some simplification occurs.
905
    bool propagatePoint(const SCEV *&Src,
906
                        const SCEV *&Dst,
907
                        Constraint &CurConstraint);
908
 
909
    /// propagateLine - Attempt to propagate a line
910
    /// constraint into a subscript pair (Src and Dst).
911
    /// Return true if some simplification occurs.
912
    /// If the simplification isn't exact (that is, if it is conservative
913
    /// in terms of dependence), set consistent to false.
914
    bool propagateLine(const SCEV *&Src,
915
                       const SCEV *&Dst,
916
                       Constraint &CurConstraint,
917
                       bool &Consistent);
918
 
919
    /// findCoefficient - Given a linear SCEV,
920
    /// return the coefficient corresponding to specified loop.
921
    /// If there isn't one, return the SCEV constant 0.
922
    /// For example, given a*i + b*j + c*k, returning the coefficient
923
    /// corresponding to the j loop would yield b.
924
    const SCEV *findCoefficient(const SCEV *Expr,
925
                                const Loop *TargetLoop) const;
926
 
927
    /// zeroCoefficient - Given a linear SCEV,
928
    /// return the SCEV given by zeroing out the coefficient
929
    /// corresponding to the specified loop.
930
    /// For example, given a*i + b*j + c*k, zeroing the coefficient
931
    /// corresponding to the j loop would yield a*i + c*k.
932
    const SCEV *zeroCoefficient(const SCEV *Expr,
933
                                const Loop *TargetLoop) const;
934
 
935
    /// addToCoefficient - Given a linear SCEV Expr,
936
    /// return the SCEV given by adding some Value to the
937
    /// coefficient corresponding to the specified TargetLoop.
938
    /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
939
    /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
940
    const SCEV *addToCoefficient(const SCEV *Expr,
941
                                 const Loop *TargetLoop,
942
                                 const SCEV *Value)  const;
943
 
944
    /// updateDirection - Update direction vector entry
945
    /// based on the current constraint.
946
    void updateDirection(Dependence::DVEntry &Level,
947
                         const Constraint &CurConstraint) const;
948
 
949
    /// Given a linear access function, tries to recover subscripts
950
    /// for each dimension of the array element access.
951
    bool tryDelinearize(Instruction *Src, Instruction *Dst,
952
                        SmallVectorImpl<Subscript> &Pair);
953
 
954
    /// Tries to delinearize \p Src and \p Dst access functions for a fixed size
955
    /// multi-dimensional array. Calls tryDelinearizeFixedSizeImpl() to
956
    /// delinearize \p Src and \p Dst separately,
957
    bool tryDelinearizeFixedSize(Instruction *Src, Instruction *Dst,
958
                                 const SCEV *SrcAccessFn,
959
                                 const SCEV *DstAccessFn,
960
                                 SmallVectorImpl<const SCEV *> &SrcSubscripts,
961
                                 SmallVectorImpl<const SCEV *> &DstSubscripts);
962
 
963
    /// Tries to delinearize access function for a multi-dimensional array with
964
    /// symbolic runtime sizes.
965
    /// Returns true upon success and false otherwise.
966
    bool tryDelinearizeParametricSize(
967
        Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
968
        const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
969
        SmallVectorImpl<const SCEV *> &DstSubscripts);
970
 
971
    /// checkSubscript - Helper function for checkSrcSubscript and
972
    /// checkDstSubscript to avoid duplicate code
973
    bool checkSubscript(const SCEV *Expr, const Loop *LoopNest,
974
                        SmallBitVector &Loops, bool IsSrc);
975
  }; // class DependenceInfo
976
 
977
  /// AnalysisPass to compute dependence information in a function
978
  class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
979
  public:
980
    typedef DependenceInfo Result;
981
    Result run(Function &F, FunctionAnalysisManager &FAM);
982
 
983
  private:
984
    static AnalysisKey Key;
985
    friend struct AnalysisInfoMixin<DependenceAnalysis>;
986
  }; // class DependenceAnalysis
987
 
988
  /// Printer pass to dump DA results.
989
  struct DependenceAnalysisPrinterPass
990
      : public PassInfoMixin<DependenceAnalysisPrinterPass> {
991
    DependenceAnalysisPrinterPass(raw_ostream &OS,
992
                                  bool NormalizeResults = false)
993
        : OS(OS), NormalizeResults(NormalizeResults) {}
994
 
995
    PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
996
 
997
  private:
998
    raw_ostream &OS;
999
    bool NormalizeResults;
1000
  }; // class DependenceAnalysisPrinterPass
1001
 
1002
  /// Legacy pass manager pass to access dependence information
1003
  class DependenceAnalysisWrapperPass : public FunctionPass {
1004
  public:
1005
    static char ID; // Class identification, replacement for typeinfo
1006
    DependenceAnalysisWrapperPass();
1007
 
1008
    bool runOnFunction(Function &F) override;
1009
    void releaseMemory() override;
1010
    void getAnalysisUsage(AnalysisUsage &) const override;
1011
    void print(raw_ostream &, const Module * = nullptr) const override;
1012
    DependenceInfo &getDI() const;
1013
 
1014
  private:
1015
    std::unique_ptr<DependenceInfo> info;
1016
  }; // class DependenceAnalysisWrapperPass
1017
 
1018
  /// createDependenceAnalysisPass - This creates an instance of the
1019
  /// DependenceAnalysis wrapper pass.
1020
  FunctionPass *createDependenceAnalysisWrapperPass();
1021
 
1022
} // namespace llvm
1023
 
1024
#endif