Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // DependenceAnalysis is an LLVM pass that analyses dependences between memory |
||
10 | // accesses. Currently, it is an implementation of the approach described in |
||
11 | // |
||
12 | // Practical Dependence Testing |
||
13 | // Goff, Kennedy, Tseng |
||
14 | // PLDI 1991 |
||
15 | // |
||
16 | // There's a single entry point that analyzes the dependence between a pair |
||
17 | // of memory references in a function, returning either NULL, for no dependence, |
||
18 | // or a more-or-less detailed description of the dependence between them. |
||
19 | // |
||
20 | // This pass exists to support the DependenceGraph pass. There are two separate |
||
21 | // passes because there's a useful separation of concerns. A dependence exists |
||
22 | // if two conditions are met: |
||
23 | // |
||
24 | // 1) Two instructions reference the same memory location, and |
||
25 | // 2) There is a flow of control leading from one instruction to the other. |
||
26 | // |
||
27 | // DependenceAnalysis attacks the first condition; DependenceGraph will attack |
||
28 | // the second (it's not yet ready). |
||
29 | // |
||
30 | // Please note that this is work in progress and the interface is subject to |
||
31 | // change. |
||
32 | // |
||
33 | // Plausible changes: |
||
34 | // Return a set of more precise dependences instead of just one dependence |
||
35 | // summarizing all. |
||
36 | // |
||
37 | //===----------------------------------------------------------------------===// |
||
38 | |||
39 | #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H |
||
40 | #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H |
||
41 | |||
42 | #include "llvm/ADT/SmallBitVector.h" |
||
43 | #include "llvm/IR/Instructions.h" |
||
44 | #include "llvm/IR/PassManager.h" |
||
45 | #include "llvm/Pass.h" |
||
46 | |||
47 | namespace llvm { |
||
48 | class AAResults; |
||
49 | template <typename T> class ArrayRef; |
||
50 | class Loop; |
||
51 | class LoopInfo; |
||
52 | class ScalarEvolution; |
||
53 | class SCEV; |
||
54 | class SCEVConstant; |
||
55 | class raw_ostream; |
||
56 | |||
57 | /// Dependence - This class represents a dependence between two memory |
||
58 | /// memory references in a function. It contains minimal information and |
||
59 | /// is used in the very common situation where the compiler is unable to |
||
60 | /// determine anything beyond the existence of a dependence; that is, it |
||
61 | /// represents a confused dependence (see also FullDependence). In most |
||
62 | /// cases (for output, flow, and anti dependences), the dependence implies |
||
63 | /// an ordering, where the source must precede the destination; in contrast, |
||
64 | /// input dependences are unordered. |
||
65 | /// |
||
66 | /// When a dependence graph is built, each Dependence will be a member of |
||
67 | /// the set of predecessor edges for its destination instruction and a set |
||
68 | /// if successor edges for its source instruction. These sets are represented |
||
69 | /// as singly-linked lists, with the "next" fields stored in the dependence |
||
70 | /// itelf. |
||
71 | class Dependence { |
||
72 | protected: |
||
73 | Dependence(Dependence &&) = default; |
||
74 | Dependence &operator=(Dependence &&) = default; |
||
75 | |||
76 | public: |
||
77 | Dependence(Instruction *Source, Instruction *Destination) |
||
78 | : Src(Source), Dst(Destination) {} |
||
79 | virtual ~Dependence() = default; |
||
80 | |||
81 | /// Dependence::DVEntry - Each level in the distance/direction vector |
||
82 | /// has a direction (or perhaps a union of several directions), and |
||
83 | /// perhaps a distance. |
||
84 | struct DVEntry { |
||
85 | enum : unsigned char { |
||
86 | NONE = 0, |
||
87 | LT = 1, |
||
88 | EQ = 2, |
||
89 | LE = 3, |
||
90 | GT = 4, |
||
91 | NE = 5, |
||
92 | GE = 6, |
||
93 | ALL = 7 |
||
94 | }; |
||
95 | unsigned char Direction : 3; // Init to ALL, then refine. |
||
96 | bool Scalar : 1; // Init to true. |
||
97 | bool PeelFirst : 1; // Peeling the first iteration will break dependence. |
||
98 | bool PeelLast : 1; // Peeling the last iteration will break the dependence. |
||
99 | bool Splitable : 1; // Splitting the loop will break dependence. |
||
100 | const SCEV *Distance = nullptr; // NULL implies no distance available. |
||
101 | DVEntry() |
||
102 | : Direction(ALL), Scalar(true), PeelFirst(false), PeelLast(false), |
||
103 | Splitable(false) {} |
||
104 | }; |
||
105 | |||
106 | /// getSrc - Returns the source instruction for this dependence. |
||
107 | /// |
||
108 | Instruction *getSrc() const { return Src; } |
||
109 | |||
110 | /// getDst - Returns the destination instruction for this dependence. |
||
111 | /// |
||
112 | Instruction *getDst() const { return Dst; } |
||
113 | |||
114 | /// isInput - Returns true if this is an input dependence. |
||
115 | /// |
||
116 | bool isInput() const; |
||
117 | |||
118 | /// isOutput - Returns true if this is an output dependence. |
||
119 | /// |
||
120 | bool isOutput() const; |
||
121 | |||
122 | /// isFlow - Returns true if this is a flow (aka true) dependence. |
||
123 | /// |
||
124 | bool isFlow() const; |
||
125 | |||
126 | /// isAnti - Returns true if this is an anti dependence. |
||
127 | /// |
||
128 | bool isAnti() const; |
||
129 | |||
130 | /// isOrdered - Returns true if dependence is Output, Flow, or Anti |
||
131 | /// |
||
132 | bool isOrdered() const { return isOutput() || isFlow() || isAnti(); } |
||
133 | |||
134 | /// isUnordered - Returns true if dependence is Input |
||
135 | /// |
||
136 | bool isUnordered() const { return isInput(); } |
||
137 | |||
138 | /// isLoopIndependent - Returns true if this is a loop-independent |
||
139 | /// dependence. |
||
140 | virtual bool isLoopIndependent() const { return true; } |
||
141 | |||
142 | /// isConfused - Returns true if this dependence is confused |
||
143 | /// (the compiler understands nothing and makes worst-case |
||
144 | /// assumptions). |
||
145 | virtual bool isConfused() const { return true; } |
||
146 | |||
147 | /// isConsistent - Returns true if this dependence is consistent |
||
148 | /// (occurs every time the source and destination are executed). |
||
149 | virtual bool isConsistent() const { return false; } |
||
150 | |||
151 | /// getLevels - Returns the number of common loops surrounding the |
||
152 | /// source and destination of the dependence. |
||
153 | virtual unsigned getLevels() const { return 0; } |
||
154 | |||
155 | /// getDirection - Returns the direction associated with a particular |
||
156 | /// level. |
||
157 | virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; } |
||
158 | |||
159 | /// getDistance - Returns the distance (or NULL) associated with a |
||
160 | /// particular level. |
||
161 | virtual const SCEV *getDistance(unsigned Level) const { return nullptr; } |
||
162 | |||
163 | /// Check if the direction vector is negative. A negative direction |
||
164 | /// vector means Src and Dst are reversed in the actual program. |
||
165 | virtual bool isDirectionNegative() const { return false; } |
||
166 | |||
167 | /// If the direction vector is negative, normalize the direction |
||
168 | /// vector to make it non-negative. Normalization is done by reversing |
||
169 | /// Src and Dst, plus reversing the dependence directions and distances |
||
170 | /// in the vector. |
||
171 | virtual bool normalize(ScalarEvolution *SE) { return false; } |
||
172 | |||
173 | /// isPeelFirst - Returns true if peeling the first iteration from |
||
174 | /// this loop will break this dependence. |
||
175 | virtual bool isPeelFirst(unsigned Level) const { return false; } |
||
176 | |||
177 | /// isPeelLast - Returns true if peeling the last iteration from |
||
178 | /// this loop will break this dependence. |
||
179 | virtual bool isPeelLast(unsigned Level) const { return false; } |
||
180 | |||
181 | /// isSplitable - Returns true if splitting this loop will break |
||
182 | /// the dependence. |
||
183 | virtual bool isSplitable(unsigned Level) const { return false; } |
||
184 | |||
185 | /// isScalar - Returns true if a particular level is scalar; that is, |
||
186 | /// if no subscript in the source or destination mention the induction |
||
187 | /// variable associated with the loop at this level. |
||
188 | virtual bool isScalar(unsigned Level) const; |
||
189 | |||
190 | /// getNextPredecessor - Returns the value of the NextPredecessor |
||
191 | /// field. |
||
192 | const Dependence *getNextPredecessor() const { return NextPredecessor; } |
||
193 | |||
194 | /// getNextSuccessor - Returns the value of the NextSuccessor |
||
195 | /// field. |
||
196 | const Dependence *getNextSuccessor() const { return NextSuccessor; } |
||
197 | |||
198 | /// setNextPredecessor - Sets the value of the NextPredecessor |
||
199 | /// field. |
||
200 | void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; } |
||
201 | |||
202 | /// setNextSuccessor - Sets the value of the NextSuccessor |
||
203 | /// field. |
||
204 | void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; } |
||
205 | |||
206 | /// dump - For debugging purposes, dumps a dependence to OS. |
||
207 | /// |
||
208 | void dump(raw_ostream &OS) const; |
||
209 | |||
210 | protected: |
||
211 | Instruction *Src, *Dst; |
||
212 | |||
213 | private: |
||
214 | const Dependence *NextPredecessor = nullptr, *NextSuccessor = nullptr; |
||
215 | friend class DependenceInfo; |
||
216 | }; |
||
217 | |||
218 | /// FullDependence - This class represents a dependence between two memory |
||
219 | /// references in a function. It contains detailed information about the |
||
220 | /// dependence (direction vectors, etc.) and is used when the compiler is |
||
221 | /// able to accurately analyze the interaction of the references; that is, |
||
222 | /// it is not a confused dependence (see Dependence). In most cases |
||
223 | /// (for output, flow, and anti dependences), the dependence implies an |
||
224 | /// ordering, where the source must precede the destination; in contrast, |
||
225 | /// input dependences are unordered. |
||
226 | class FullDependence final : public Dependence { |
||
227 | public: |
||
228 | FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent, |
||
229 | unsigned Levels); |
||
230 | |||
231 | /// isLoopIndependent - Returns true if this is a loop-independent |
||
232 | /// dependence. |
||
233 | bool isLoopIndependent() const override { return LoopIndependent; } |
||
234 | |||
235 | /// isConfused - Returns true if this dependence is confused |
||
236 | /// (the compiler understands nothing and makes worst-case |
||
237 | /// assumptions). |
||
238 | bool isConfused() const override { return false; } |
||
239 | |||
240 | /// isConsistent - Returns true if this dependence is consistent |
||
241 | /// (occurs every time the source and destination are executed). |
||
242 | bool isConsistent() const override { return Consistent; } |
||
243 | |||
244 | /// getLevels - Returns the number of common loops surrounding the |
||
245 | /// source and destination of the dependence. |
||
246 | unsigned getLevels() const override { return Levels; } |
||
247 | |||
248 | /// getDirection - Returns the direction associated with a particular |
||
249 | /// level. |
||
250 | unsigned getDirection(unsigned Level) const override; |
||
251 | |||
252 | /// getDistance - Returns the distance (or NULL) associated with a |
||
253 | /// particular level. |
||
254 | const SCEV *getDistance(unsigned Level) const override; |
||
255 | |||
256 | /// Check if the direction vector is negative. A negative direction |
||
257 | /// vector means Src and Dst are reversed in the actual program. |
||
258 | bool isDirectionNegative() const override; |
||
259 | |||
260 | /// If the direction vector is negative, normalize the direction |
||
261 | /// vector to make it non-negative. Normalization is done by reversing |
||
262 | /// Src and Dst, plus reversing the dependence directions and distances |
||
263 | /// in the vector. |
||
264 | bool normalize(ScalarEvolution *SE) override; |
||
265 | |||
266 | /// isPeelFirst - Returns true if peeling the first iteration from |
||
267 | /// this loop will break this dependence. |
||
268 | bool isPeelFirst(unsigned Level) const override; |
||
269 | |||
270 | /// isPeelLast - Returns true if peeling the last iteration from |
||
271 | /// this loop will break this dependence. |
||
272 | bool isPeelLast(unsigned Level) const override; |
||
273 | |||
274 | /// isSplitable - Returns true if splitting the loop will break |
||
275 | /// the dependence. |
||
276 | bool isSplitable(unsigned Level) const override; |
||
277 | |||
278 | /// isScalar - Returns true if a particular level is scalar; that is, |
||
279 | /// if no subscript in the source or destination mention the induction |
||
280 | /// variable associated with the loop at this level. |
||
281 | bool isScalar(unsigned Level) const override; |
||
282 | |||
283 | private: |
||
284 | unsigned short Levels; |
||
285 | bool LoopIndependent; |
||
286 | bool Consistent; // Init to true, then refine. |
||
287 | std::unique_ptr<DVEntry[]> DV; |
||
288 | friend class DependenceInfo; |
||
289 | }; |
||
290 | |||
291 | /// DependenceInfo - This class is the main dependence-analysis driver. |
||
292 | /// |
||
293 | class DependenceInfo { |
||
294 | public: |
||
295 | DependenceInfo(Function *F, AAResults *AA, ScalarEvolution *SE, |
||
296 | LoopInfo *LI) |
||
297 | : AA(AA), SE(SE), LI(LI), F(F) {} |
||
298 | |||
299 | /// Handle transitive invalidation when the cached analysis results go away. |
||
300 | bool invalidate(Function &F, const PreservedAnalyses &PA, |
||
301 | FunctionAnalysisManager::Invalidator &Inv); |
||
302 | |||
303 | /// depends - Tests for a dependence between the Src and Dst instructions. |
||
304 | /// Returns NULL if no dependence; otherwise, returns a Dependence (or a |
||
305 | /// FullDependence) with as much information as can be gleaned. |
||
306 | /// The flag PossiblyLoopIndependent should be set by the caller |
||
307 | /// if it appears that control flow can reach from Src to Dst |
||
308 | /// without traversing a loop back edge. |
||
309 | std::unique_ptr<Dependence> depends(Instruction *Src, |
||
310 | Instruction *Dst, |
||
311 | bool PossiblyLoopIndependent); |
||
312 | |||
313 | /// getSplitIteration - Give a dependence that's splittable at some |
||
314 | /// particular level, return the iteration that should be used to split |
||
315 | /// the loop. |
||
316 | /// |
||
317 | /// Generally, the dependence analyzer will be used to build |
||
318 | /// a dependence graph for a function (basically a map from instructions |
||
319 | /// to dependences). Looking for cycles in the graph shows us loops |
||
320 | /// that cannot be trivially vectorized/parallelized. |
||
321 | /// |
||
322 | /// We can try to improve the situation by examining all the dependences |
||
323 | /// that make up the cycle, looking for ones we can break. |
||
324 | /// Sometimes, peeling the first or last iteration of a loop will break |
||
325 | /// dependences, and there are flags for those possibilities. |
||
326 | /// Sometimes, splitting a loop at some other iteration will do the trick, |
||
327 | /// and we've got a flag for that case. Rather than waste the space to |
||
328 | /// record the exact iteration (since we rarely know), we provide |
||
329 | /// a method that calculates the iteration. It's a drag that it must work |
||
330 | /// from scratch, but wonderful in that it's possible. |
||
331 | /// |
||
332 | /// Here's an example: |
||
333 | /// |
||
334 | /// for (i = 0; i < 10; i++) |
||
335 | /// A[i] = ... |
||
336 | /// ... = A[11 - i] |
||
337 | /// |
||
338 | /// There's a loop-carried flow dependence from the store to the load, |
||
339 | /// found by the weak-crossing SIV test. The dependence will have a flag, |
||
340 | /// indicating that the dependence can be broken by splitting the loop. |
||
341 | /// Calling getSplitIteration will return 5. |
||
342 | /// Splitting the loop breaks the dependence, like so: |
||
343 | /// |
||
344 | /// for (i = 0; i <= 5; i++) |
||
345 | /// A[i] = ... |
||
346 | /// ... = A[11 - i] |
||
347 | /// for (i = 6; i < 10; i++) |
||
348 | /// A[i] = ... |
||
349 | /// ... = A[11 - i] |
||
350 | /// |
||
351 | /// breaks the dependence and allows us to vectorize/parallelize |
||
352 | /// both loops. |
||
353 | const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level); |
||
354 | |||
355 | Function *getFunction() const { return F; } |
||
356 | |||
357 | private: |
||
358 | AAResults *AA; |
||
359 | ScalarEvolution *SE; |
||
360 | LoopInfo *LI; |
||
361 | Function *F; |
||
362 | |||
363 | /// Subscript - This private struct represents a pair of subscripts from |
||
364 | /// a pair of potentially multi-dimensional array references. We use a |
||
365 | /// vector of them to guide subscript partitioning. |
||
366 | struct Subscript { |
||
367 | const SCEV *Src; |
||
368 | const SCEV *Dst; |
||
369 | enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification; |
||
370 | SmallBitVector Loops; |
||
371 | SmallBitVector GroupLoops; |
||
372 | SmallBitVector Group; |
||
373 | }; |
||
374 | |||
375 | struct CoefficientInfo { |
||
376 | const SCEV *Coeff; |
||
377 | const SCEV *PosPart; |
||
378 | const SCEV *NegPart; |
||
379 | const SCEV *Iterations; |
||
380 | }; |
||
381 | |||
382 | struct BoundInfo { |
||
383 | const SCEV *Iterations; |
||
384 | const SCEV *Upper[8]; |
||
385 | const SCEV *Lower[8]; |
||
386 | unsigned char Direction; |
||
387 | unsigned char DirSet; |
||
388 | }; |
||
389 | |||
390 | /// Constraint - This private class represents a constraint, as defined |
||
391 | /// in the paper |
||
392 | /// |
||
393 | /// Practical Dependence Testing |
||
394 | /// Goff, Kennedy, Tseng |
||
395 | /// PLDI 1991 |
||
396 | /// |
||
397 | /// There are 5 kinds of constraint, in a hierarchy. |
||
398 | /// 1) Any - indicates no constraint, any dependence is possible. |
||
399 | /// 2) Line - A line ax + by = c, where a, b, and c are parameters, |
||
400 | /// representing the dependence equation. |
||
401 | /// 3) Distance - The value d of the dependence distance; |
||
402 | /// 4) Point - A point <x, y> representing the dependence from |
||
403 | /// iteration x to iteration y. |
||
404 | /// 5) Empty - No dependence is possible. |
||
405 | class Constraint { |
||
406 | private: |
||
407 | enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind; |
||
408 | ScalarEvolution *SE; |
||
409 | const SCEV *A; |
||
410 | const SCEV *B; |
||
411 | const SCEV *C; |
||
412 | const Loop *AssociatedLoop; |
||
413 | |||
414 | public: |
||
415 | /// isEmpty - Return true if the constraint is of kind Empty. |
||
416 | bool isEmpty() const { return Kind == Empty; } |
||
417 | |||
418 | /// isPoint - Return true if the constraint is of kind Point. |
||
419 | bool isPoint() const { return Kind == Point; } |
||
420 | |||
421 | /// isDistance - Return true if the constraint is of kind Distance. |
||
422 | bool isDistance() const { return Kind == Distance; } |
||
423 | |||
424 | /// isLine - Return true if the constraint is of kind Line. |
||
425 | /// Since Distance's can also be represented as Lines, we also return |
||
426 | /// true if the constraint is of kind Distance. |
||
427 | bool isLine() const { return Kind == Line || Kind == Distance; } |
||
428 | |||
429 | /// isAny - Return true if the constraint is of kind Any; |
||
430 | bool isAny() const { return Kind == Any; } |
||
431 | |||
432 | /// getX - If constraint is a point <X, Y>, returns X. |
||
433 | /// Otherwise assert. |
||
434 | const SCEV *getX() const; |
||
435 | |||
436 | /// getY - If constraint is a point <X, Y>, returns Y. |
||
437 | /// Otherwise assert. |
||
438 | const SCEV *getY() const; |
||
439 | |||
440 | /// getA - If constraint is a line AX + BY = C, returns A. |
||
441 | /// Otherwise assert. |
||
442 | const SCEV *getA() const; |
||
443 | |||
444 | /// getB - If constraint is a line AX + BY = C, returns B. |
||
445 | /// Otherwise assert. |
||
446 | const SCEV *getB() const; |
||
447 | |||
448 | /// getC - If constraint is a line AX + BY = C, returns C. |
||
449 | /// Otherwise assert. |
||
450 | const SCEV *getC() const; |
||
451 | |||
452 | /// getD - If constraint is a distance, returns D. |
||
453 | /// Otherwise assert. |
||
454 | const SCEV *getD() const; |
||
455 | |||
456 | /// getAssociatedLoop - Returns the loop associated with this constraint. |
||
457 | const Loop *getAssociatedLoop() const; |
||
458 | |||
459 | /// setPoint - Change a constraint to Point. |
||
460 | void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop); |
||
461 | |||
462 | /// setLine - Change a constraint to Line. |
||
463 | void setLine(const SCEV *A, const SCEV *B, |
||
464 | const SCEV *C, const Loop *CurrentLoop); |
||
465 | |||
466 | /// setDistance - Change a constraint to Distance. |
||
467 | void setDistance(const SCEV *D, const Loop *CurrentLoop); |
||
468 | |||
469 | /// setEmpty - Change a constraint to Empty. |
||
470 | void setEmpty(); |
||
471 | |||
472 | /// setAny - Change a constraint to Any. |
||
473 | void setAny(ScalarEvolution *SE); |
||
474 | |||
475 | /// dump - For debugging purposes. Dumps the constraint |
||
476 | /// out to OS. |
||
477 | void dump(raw_ostream &OS) const; |
||
478 | }; |
||
479 | |||
480 | /// establishNestingLevels - Examines the loop nesting of the Src and Dst |
||
481 | /// instructions and establishes their shared loops. Sets the variables |
||
482 | /// CommonLevels, SrcLevels, and MaxLevels. |
||
483 | /// The source and destination instructions needn't be contained in the same |
||
484 | /// loop. The routine establishNestingLevels finds the level of most deeply |
||
485 | /// nested loop that contains them both, CommonLevels. An instruction that's |
||
486 | /// not contained in a loop is at level = 0. MaxLevels is equal to the level |
||
487 | /// of the source plus the level of the destination, minus CommonLevels. |
||
488 | /// This lets us allocate vectors MaxLevels in length, with room for every |
||
489 | /// distinct loop referenced in both the source and destination subscripts. |
||
490 | /// The variable SrcLevels is the nesting depth of the source instruction. |
||
491 | /// It's used to help calculate distinct loops referenced by the destination. |
||
492 | /// Here's the map from loops to levels: |
||
493 | /// 0 - unused |
||
494 | /// 1 - outermost common loop |
||
495 | /// ... - other common loops |
||
496 | /// CommonLevels - innermost common loop |
||
497 | /// ... - loops containing Src but not Dst |
||
498 | /// SrcLevels - innermost loop containing Src but not Dst |
||
499 | /// ... - loops containing Dst but not Src |
||
500 | /// MaxLevels - innermost loop containing Dst but not Src |
||
501 | /// Consider the follow code fragment: |
||
502 | /// for (a = ...) { |
||
503 | /// for (b = ...) { |
||
504 | /// for (c = ...) { |
||
505 | /// for (d = ...) { |
||
506 | /// A[] = ...; |
||
507 | /// } |
||
508 | /// } |
||
509 | /// for (e = ...) { |
||
510 | /// for (f = ...) { |
||
511 | /// for (g = ...) { |
||
512 | /// ... = A[]; |
||
513 | /// } |
||
514 | /// } |
||
515 | /// } |
||
516 | /// } |
||
517 | /// } |
||
518 | /// If we're looking at the possibility of a dependence between the store |
||
519 | /// to A (the Src) and the load from A (the Dst), we'll note that they |
||
520 | /// have 2 loops in common, so CommonLevels will equal 2 and the direction |
||
521 | /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7. |
||
522 | /// A map from loop names to level indices would look like |
||
523 | /// a - 1 |
||
524 | /// b - 2 = CommonLevels |
||
525 | /// c - 3 |
||
526 | /// d - 4 = SrcLevels |
||
527 | /// e - 5 |
||
528 | /// f - 6 |
||
529 | /// g - 7 = MaxLevels |
||
530 | void establishNestingLevels(const Instruction *Src, |
||
531 | const Instruction *Dst); |
||
532 | |||
533 | unsigned CommonLevels, SrcLevels, MaxLevels; |
||
534 | |||
535 | /// mapSrcLoop - Given one of the loops containing the source, return |
||
536 | /// its level index in our numbering scheme. |
||
537 | unsigned mapSrcLoop(const Loop *SrcLoop) const; |
||
538 | |||
539 | /// mapDstLoop - Given one of the loops containing the destination, |
||
540 | /// return its level index in our numbering scheme. |
||
541 | unsigned mapDstLoop(const Loop *DstLoop) const; |
||
542 | |||
543 | /// isLoopInvariant - Returns true if Expression is loop invariant |
||
544 | /// in LoopNest. |
||
545 | bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const; |
||
546 | |||
547 | /// Makes sure all subscript pairs share the same integer type by |
||
548 | /// sign-extending as necessary. |
||
549 | /// Sign-extending a subscript is safe because getelementptr assumes the |
||
550 | /// array subscripts are signed. |
||
551 | void unifySubscriptType(ArrayRef<Subscript *> Pairs); |
||
552 | |||
553 | /// removeMatchingExtensions - Examines a subscript pair. |
||
554 | /// If the source and destination are identically sign (or zero) |
||
555 | /// extended, it strips off the extension in an effort to |
||
556 | /// simplify the actual analysis. |
||
557 | void removeMatchingExtensions(Subscript *Pair); |
||
558 | |||
559 | /// collectCommonLoops - Finds the set of loops from the LoopNest that |
||
560 | /// have a level <= CommonLevels and are referred to by the SCEV Expression. |
||
561 | void collectCommonLoops(const SCEV *Expression, |
||
562 | const Loop *LoopNest, |
||
563 | SmallBitVector &Loops) const; |
||
564 | |||
565 | /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's |
||
566 | /// linear. Collect the set of loops mentioned by Src. |
||
567 | bool checkSrcSubscript(const SCEV *Src, |
||
568 | const Loop *LoopNest, |
||
569 | SmallBitVector &Loops); |
||
570 | |||
571 | /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's |
||
572 | /// linear. Collect the set of loops mentioned by Dst. |
||
573 | bool checkDstSubscript(const SCEV *Dst, |
||
574 | const Loop *LoopNest, |
||
575 | SmallBitVector &Loops); |
||
576 | |||
577 | /// isKnownPredicate - Compare X and Y using the predicate Pred. |
||
578 | /// Basically a wrapper for SCEV::isKnownPredicate, |
||
579 | /// but tries harder, especially in the presence of sign and zero |
||
580 | /// extensions and symbolics. |
||
581 | bool isKnownPredicate(ICmpInst::Predicate Pred, |
||
582 | const SCEV *X, |
||
583 | const SCEV *Y) const; |
||
584 | |||
585 | /// isKnownLessThan - Compare to see if S is less than Size |
||
586 | /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra |
||
587 | /// checking if S is an AddRec and we can prove lessthan using the loop |
||
588 | /// bounds. |
||
589 | bool isKnownLessThan(const SCEV *S, const SCEV *Size) const; |
||
590 | |||
591 | /// isKnownNonNegative - Compare to see if S is known not to be negative |
||
592 | /// Uses the fact that S comes from Ptr, which may be an inbound GEP, |
||
593 | /// Proving there is no wrapping going on. |
||
594 | bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const; |
||
595 | |||
596 | /// collectUpperBound - All subscripts are the same type (on my machine, |
||
597 | /// an i64). The loop bound may be a smaller type. collectUpperBound |
||
598 | /// find the bound, if available, and zero extends it to the Type T. |
||
599 | /// (I zero extend since the bound should always be >= 0.) |
||
600 | /// If no upper bound is available, return NULL. |
||
601 | const SCEV *collectUpperBound(const Loop *l, Type *T) const; |
||
602 | |||
603 | /// collectConstantUpperBound - Calls collectUpperBound(), then |
||
604 | /// attempts to cast it to SCEVConstant. If the cast fails, |
||
605 | /// returns NULL. |
||
606 | const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const; |
||
607 | |||
608 | /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs) |
||
609 | /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear. |
||
610 | /// Collects the associated loops in a set. |
||
611 | Subscript::ClassificationKind classifyPair(const SCEV *Src, |
||
612 | const Loop *SrcLoopNest, |
||
613 | const SCEV *Dst, |
||
614 | const Loop *DstLoopNest, |
||
615 | SmallBitVector &Loops); |
||
616 | |||
617 | /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence. |
||
618 | /// Returns true if any possible dependence is disproved. |
||
619 | /// If there might be a dependence, returns false. |
||
620 | /// If the dependence isn't proven to exist, |
||
621 | /// marks the Result as inconsistent. |
||
622 | bool testZIV(const SCEV *Src, |
||
623 | const SCEV *Dst, |
||
624 | FullDependence &Result) const; |
||
625 | |||
626 | /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence. |
||
627 | /// Things of the form [c1 + a1*i] and [c2 + a2*j], where |
||
628 | /// i and j are induction variables, c1 and c2 are loop invariant, |
||
629 | /// and a1 and a2 are constant. |
||
630 | /// Returns true if any possible dependence is disproved. |
||
631 | /// If there might be a dependence, returns false. |
||
632 | /// Sets appropriate direction vector entry and, when possible, |
||
633 | /// the distance vector entry. |
||
634 | /// If the dependence isn't proven to exist, |
||
635 | /// marks the Result as inconsistent. |
||
636 | bool testSIV(const SCEV *Src, |
||
637 | const SCEV *Dst, |
||
638 | unsigned &Level, |
||
639 | FullDependence &Result, |
||
640 | Constraint &NewConstraint, |
||
641 | const SCEV *&SplitIter) const; |
||
642 | |||
643 | /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence. |
||
644 | /// Things of the form [c1 + a1*i] and [c2 + a2*j] |
||
645 | /// where i and j are induction variables, c1 and c2 are loop invariant, |
||
646 | /// and a1 and a2 are constant. |
||
647 | /// With minor algebra, this test can also be used for things like |
||
648 | /// [c1 + a1*i + a2*j][c2]. |
||
649 | /// Returns true if any possible dependence is disproved. |
||
650 | /// If there might be a dependence, returns false. |
||
651 | /// Marks the Result as inconsistent. |
||
652 | bool testRDIV(const SCEV *Src, |
||
653 | const SCEV *Dst, |
||
654 | FullDependence &Result) const; |
||
655 | |||
656 | /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence. |
||
657 | /// Returns true if dependence disproved. |
||
658 | /// Can sometimes refine direction vectors. |
||
659 | bool testMIV(const SCEV *Src, |
||
660 | const SCEV *Dst, |
||
661 | const SmallBitVector &Loops, |
||
662 | FullDependence &Result) const; |
||
663 | |||
664 | /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst) |
||
665 | /// for dependence. |
||
666 | /// Things of the form [c1 + a*i] and [c2 + a*i], |
||
667 | /// where i is an induction variable, c1 and c2 are loop invariant, |
||
668 | /// and a is a constant |
||
669 | /// Returns true if any possible dependence is disproved. |
||
670 | /// If there might be a dependence, returns false. |
||
671 | /// Sets appropriate direction and distance. |
||
672 | bool strongSIVtest(const SCEV *Coeff, |
||
673 | const SCEV *SrcConst, |
||
674 | const SCEV *DstConst, |
||
675 | const Loop *CurrentLoop, |
||
676 | unsigned Level, |
||
677 | FullDependence &Result, |
||
678 | Constraint &NewConstraint) const; |
||
679 | |||
680 | /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair |
||
681 | /// (Src and Dst) for dependence. |
||
682 | /// Things of the form [c1 + a*i] and [c2 - a*i], |
||
683 | /// where i is an induction variable, c1 and c2 are loop invariant, |
||
684 | /// and a is a constant. |
||
685 | /// Returns true if any possible dependence is disproved. |
||
686 | /// If there might be a dependence, returns false. |
||
687 | /// Sets appropriate direction entry. |
||
688 | /// Set consistent to false. |
||
689 | /// Marks the dependence as splitable. |
||
690 | bool weakCrossingSIVtest(const SCEV *SrcCoeff, |
||
691 | const SCEV *SrcConst, |
||
692 | const SCEV *DstConst, |
||
693 | const Loop *CurrentLoop, |
||
694 | unsigned Level, |
||
695 | FullDependence &Result, |
||
696 | Constraint &NewConstraint, |
||
697 | const SCEV *&SplitIter) const; |
||
698 | |||
699 | /// ExactSIVtest - Tests the SIV subscript pair |
||
700 | /// (Src and Dst) for dependence. |
||
701 | /// Things of the form [c1 + a1*i] and [c2 + a2*i], |
||
702 | /// where i is an induction variable, c1 and c2 are loop invariant, |
||
703 | /// and a1 and a2 are constant. |
||
704 | /// Returns true if any possible dependence is disproved. |
||
705 | /// If there might be a dependence, returns false. |
||
706 | /// Sets appropriate direction entry. |
||
707 | /// Set consistent to false. |
||
708 | bool exactSIVtest(const SCEV *SrcCoeff, |
||
709 | const SCEV *DstCoeff, |
||
710 | const SCEV *SrcConst, |
||
711 | const SCEV *DstConst, |
||
712 | const Loop *CurrentLoop, |
||
713 | unsigned Level, |
||
714 | FullDependence &Result, |
||
715 | Constraint &NewConstraint) const; |
||
716 | |||
717 | /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair |
||
718 | /// (Src and Dst) for dependence. |
||
719 | /// Things of the form [c1] and [c2 + a*i], |
||
720 | /// where i is an induction variable, c1 and c2 are loop invariant, |
||
721 | /// and a is a constant. See also weakZeroDstSIVtest. |
||
722 | /// Returns true if any possible dependence is disproved. |
||
723 | /// If there might be a dependence, returns false. |
||
724 | /// Sets appropriate direction entry. |
||
725 | /// Set consistent to false. |
||
726 | /// If loop peeling will break the dependence, mark appropriately. |
||
727 | bool weakZeroSrcSIVtest(const SCEV *DstCoeff, |
||
728 | const SCEV *SrcConst, |
||
729 | const SCEV *DstConst, |
||
730 | const Loop *CurrentLoop, |
||
731 | unsigned Level, |
||
732 | FullDependence &Result, |
||
733 | Constraint &NewConstraint) const; |
||
734 | |||
735 | /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair |
||
736 | /// (Src and Dst) for dependence. |
||
737 | /// Things of the form [c1 + a*i] and [c2], |
||
738 | /// where i is an induction variable, c1 and c2 are loop invariant, |
||
739 | /// and a is a constant. See also weakZeroSrcSIVtest. |
||
740 | /// Returns true if any possible dependence is disproved. |
||
741 | /// If there might be a dependence, returns false. |
||
742 | /// Sets appropriate direction entry. |
||
743 | /// Set consistent to false. |
||
744 | /// If loop peeling will break the dependence, mark appropriately. |
||
745 | bool weakZeroDstSIVtest(const SCEV *SrcCoeff, |
||
746 | const SCEV *SrcConst, |
||
747 | const SCEV *DstConst, |
||
748 | const Loop *CurrentLoop, |
||
749 | unsigned Level, |
||
750 | FullDependence &Result, |
||
751 | Constraint &NewConstraint) const; |
||
752 | |||
753 | /// exactRDIVtest - Tests the RDIV subscript pair for dependence. |
||
754 | /// Things of the form [c1 + a*i] and [c2 + b*j], |
||
755 | /// where i and j are induction variable, c1 and c2 are loop invariant, |
||
756 | /// and a and b are constants. |
||
757 | /// Returns true if any possible dependence is disproved. |
||
758 | /// Marks the result as inconsistent. |
||
759 | /// Works in some cases that symbolicRDIVtest doesn't, |
||
760 | /// and vice versa. |
||
761 | bool exactRDIVtest(const SCEV *SrcCoeff, |
||
762 | const SCEV *DstCoeff, |
||
763 | const SCEV *SrcConst, |
||
764 | const SCEV *DstConst, |
||
765 | const Loop *SrcLoop, |
||
766 | const Loop *DstLoop, |
||
767 | FullDependence &Result) const; |
||
768 | |||
769 | /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence. |
||
770 | /// Things of the form [c1 + a*i] and [c2 + b*j], |
||
771 | /// where i and j are induction variable, c1 and c2 are loop invariant, |
||
772 | /// and a and b are constants. |
||
773 | /// Returns true if any possible dependence is disproved. |
||
774 | /// Marks the result as inconsistent. |
||
775 | /// Works in some cases that exactRDIVtest doesn't, |
||
776 | /// and vice versa. Can also be used as a backup for |
||
777 | /// ordinary SIV tests. |
||
778 | bool symbolicRDIVtest(const SCEV *SrcCoeff, |
||
779 | const SCEV *DstCoeff, |
||
780 | const SCEV *SrcConst, |
||
781 | const SCEV *DstConst, |
||
782 | const Loop *SrcLoop, |
||
783 | const Loop *DstLoop) const; |
||
784 | |||
785 | /// gcdMIVtest - Tests an MIV subscript pair for dependence. |
||
786 | /// Returns true if any possible dependence is disproved. |
||
787 | /// Marks the result as inconsistent. |
||
788 | /// Can sometimes disprove the equal direction for 1 or more loops. |
||
789 | // Can handle some symbolics that even the SIV tests don't get, |
||
790 | /// so we use it as a backup for everything. |
||
791 | bool gcdMIVtest(const SCEV *Src, |
||
792 | const SCEV *Dst, |
||
793 | FullDependence &Result) const; |
||
794 | |||
795 | /// banerjeeMIVtest - Tests an MIV subscript pair for dependence. |
||
796 | /// Returns true if any possible dependence is disproved. |
||
797 | /// Marks the result as inconsistent. |
||
798 | /// Computes directions. |
||
799 | bool banerjeeMIVtest(const SCEV *Src, |
||
800 | const SCEV *Dst, |
||
801 | const SmallBitVector &Loops, |
||
802 | FullDependence &Result) const; |
||
803 | |||
804 | /// collectCoefficientInfo - Walks through the subscript, |
||
805 | /// collecting each coefficient, the associated loop bounds, |
||
806 | /// and recording its positive and negative parts for later use. |
||
807 | CoefficientInfo *collectCoeffInfo(const SCEV *Subscript, |
||
808 | bool SrcFlag, |
||
809 | const SCEV *&Constant) const; |
||
810 | |||
811 | /// getPositivePart - X^+ = max(X, 0). |
||
812 | /// |
||
813 | const SCEV *getPositivePart(const SCEV *X) const; |
||
814 | |||
815 | /// getNegativePart - X^- = min(X, 0). |
||
816 | /// |
||
817 | const SCEV *getNegativePart(const SCEV *X) const; |
||
818 | |||
819 | /// getLowerBound - Looks through all the bounds info and |
||
820 | /// computes the lower bound given the current direction settings |
||
821 | /// at each level. |
||
822 | const SCEV *getLowerBound(BoundInfo *Bound) const; |
||
823 | |||
824 | /// getUpperBound - Looks through all the bounds info and |
||
825 | /// computes the upper bound given the current direction settings |
||
826 | /// at each level. |
||
827 | const SCEV *getUpperBound(BoundInfo *Bound) const; |
||
828 | |||
829 | /// exploreDirections - Hierarchically expands the direction vector |
||
830 | /// search space, combining the directions of discovered dependences |
||
831 | /// in the DirSet field of Bound. Returns the number of distinct |
||
832 | /// dependences discovered. If the dependence is disproved, |
||
833 | /// it will return 0. |
||
834 | unsigned exploreDirections(unsigned Level, |
||
835 | CoefficientInfo *A, |
||
836 | CoefficientInfo *B, |
||
837 | BoundInfo *Bound, |
||
838 | const SmallBitVector &Loops, |
||
839 | unsigned &DepthExpanded, |
||
840 | const SCEV *Delta) const; |
||
841 | |||
842 | /// testBounds - Returns true iff the current bounds are plausible. |
||
843 | bool testBounds(unsigned char DirKind, |
||
844 | unsigned Level, |
||
845 | BoundInfo *Bound, |
||
846 | const SCEV *Delta) const; |
||
847 | |||
848 | /// findBoundsALL - Computes the upper and lower bounds for level K |
||
849 | /// using the * direction. Records them in Bound. |
||
850 | void findBoundsALL(CoefficientInfo *A, |
||
851 | CoefficientInfo *B, |
||
852 | BoundInfo *Bound, |
||
853 | unsigned K) const; |
||
854 | |||
855 | /// findBoundsLT - Computes the upper and lower bounds for level K |
||
856 | /// using the < direction. Records them in Bound. |
||
857 | void findBoundsLT(CoefficientInfo *A, |
||
858 | CoefficientInfo *B, |
||
859 | BoundInfo *Bound, |
||
860 | unsigned K) const; |
||
861 | |||
862 | /// findBoundsGT - Computes the upper and lower bounds for level K |
||
863 | /// using the > direction. Records them in Bound. |
||
864 | void findBoundsGT(CoefficientInfo *A, |
||
865 | CoefficientInfo *B, |
||
866 | BoundInfo *Bound, |
||
867 | unsigned K) const; |
||
868 | |||
869 | /// findBoundsEQ - Computes the upper and lower bounds for level K |
||
870 | /// using the = direction. Records them in Bound. |
||
871 | void findBoundsEQ(CoefficientInfo *A, |
||
872 | CoefficientInfo *B, |
||
873 | BoundInfo *Bound, |
||
874 | unsigned K) const; |
||
875 | |||
876 | /// intersectConstraints - Updates X with the intersection |
||
877 | /// of the Constraints X and Y. Returns true if X has changed. |
||
878 | bool intersectConstraints(Constraint *X, |
||
879 | const Constraint *Y); |
||
880 | |||
881 | /// propagate - Review the constraints, looking for opportunities |
||
882 | /// to simplify a subscript pair (Src and Dst). |
||
883 | /// Return true if some simplification occurs. |
||
884 | /// If the simplification isn't exact (that is, if it is conservative |
||
885 | /// in terms of dependence), set consistent to false. |
||
886 | bool propagate(const SCEV *&Src, |
||
887 | const SCEV *&Dst, |
||
888 | SmallBitVector &Loops, |
||
889 | SmallVectorImpl<Constraint> &Constraints, |
||
890 | bool &Consistent); |
||
891 | |||
892 | /// propagateDistance - Attempt to propagate a distance |
||
893 | /// constraint into a subscript pair (Src and Dst). |
||
894 | /// Return true if some simplification occurs. |
||
895 | /// If the simplification isn't exact (that is, if it is conservative |
||
896 | /// in terms of dependence), set consistent to false. |
||
897 | bool propagateDistance(const SCEV *&Src, |
||
898 | const SCEV *&Dst, |
||
899 | Constraint &CurConstraint, |
||
900 | bool &Consistent); |
||
901 | |||
902 | /// propagatePoint - Attempt to propagate a point |
||
903 | /// constraint into a subscript pair (Src and Dst). |
||
904 | /// Return true if some simplification occurs. |
||
905 | bool propagatePoint(const SCEV *&Src, |
||
906 | const SCEV *&Dst, |
||
907 | Constraint &CurConstraint); |
||
908 | |||
909 | /// propagateLine - Attempt to propagate a line |
||
910 | /// constraint into a subscript pair (Src and Dst). |
||
911 | /// Return true if some simplification occurs. |
||
912 | /// If the simplification isn't exact (that is, if it is conservative |
||
913 | /// in terms of dependence), set consistent to false. |
||
914 | bool propagateLine(const SCEV *&Src, |
||
915 | const SCEV *&Dst, |
||
916 | Constraint &CurConstraint, |
||
917 | bool &Consistent); |
||
918 | |||
919 | /// findCoefficient - Given a linear SCEV, |
||
920 | /// return the coefficient corresponding to specified loop. |
||
921 | /// If there isn't one, return the SCEV constant 0. |
||
922 | /// For example, given a*i + b*j + c*k, returning the coefficient |
||
923 | /// corresponding to the j loop would yield b. |
||
924 | const SCEV *findCoefficient(const SCEV *Expr, |
||
925 | const Loop *TargetLoop) const; |
||
926 | |||
927 | /// zeroCoefficient - Given a linear SCEV, |
||
928 | /// return the SCEV given by zeroing out the coefficient |
||
929 | /// corresponding to the specified loop. |
||
930 | /// For example, given a*i + b*j + c*k, zeroing the coefficient |
||
931 | /// corresponding to the j loop would yield a*i + c*k. |
||
932 | const SCEV *zeroCoefficient(const SCEV *Expr, |
||
933 | const Loop *TargetLoop) const; |
||
934 | |||
935 | /// addToCoefficient - Given a linear SCEV Expr, |
||
936 | /// return the SCEV given by adding some Value to the |
||
937 | /// coefficient corresponding to the specified TargetLoop. |
||
938 | /// For example, given a*i + b*j + c*k, adding 1 to the coefficient |
||
939 | /// corresponding to the j loop would yield a*i + (b+1)*j + c*k. |
||
940 | const SCEV *addToCoefficient(const SCEV *Expr, |
||
941 | const Loop *TargetLoop, |
||
942 | const SCEV *Value) const; |
||
943 | |||
944 | /// updateDirection - Update direction vector entry |
||
945 | /// based on the current constraint. |
||
946 | void updateDirection(Dependence::DVEntry &Level, |
||
947 | const Constraint &CurConstraint) const; |
||
948 | |||
949 | /// Given a linear access function, tries to recover subscripts |
||
950 | /// for each dimension of the array element access. |
||
951 | bool tryDelinearize(Instruction *Src, Instruction *Dst, |
||
952 | SmallVectorImpl<Subscript> &Pair); |
||
953 | |||
954 | /// Tries to delinearize \p Src and \p Dst access functions for a fixed size |
||
955 | /// multi-dimensional array. Calls tryDelinearizeFixedSizeImpl() to |
||
956 | /// delinearize \p Src and \p Dst separately, |
||
957 | bool tryDelinearizeFixedSize(Instruction *Src, Instruction *Dst, |
||
958 | const SCEV *SrcAccessFn, |
||
959 | const SCEV *DstAccessFn, |
||
960 | SmallVectorImpl<const SCEV *> &SrcSubscripts, |
||
961 | SmallVectorImpl<const SCEV *> &DstSubscripts); |
||
962 | |||
963 | /// Tries to delinearize access function for a multi-dimensional array with |
||
964 | /// symbolic runtime sizes. |
||
965 | /// Returns true upon success and false otherwise. |
||
966 | bool tryDelinearizeParametricSize( |
||
967 | Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn, |
||
968 | const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts, |
||
969 | SmallVectorImpl<const SCEV *> &DstSubscripts); |
||
970 | |||
971 | /// checkSubscript - Helper function for checkSrcSubscript and |
||
972 | /// checkDstSubscript to avoid duplicate code |
||
973 | bool checkSubscript(const SCEV *Expr, const Loop *LoopNest, |
||
974 | SmallBitVector &Loops, bool IsSrc); |
||
975 | }; // class DependenceInfo |
||
976 | |||
977 | /// AnalysisPass to compute dependence information in a function |
||
978 | class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> { |
||
979 | public: |
||
980 | typedef DependenceInfo Result; |
||
981 | Result run(Function &F, FunctionAnalysisManager &FAM); |
||
982 | |||
983 | private: |
||
984 | static AnalysisKey Key; |
||
985 | friend struct AnalysisInfoMixin<DependenceAnalysis>; |
||
986 | }; // class DependenceAnalysis |
||
987 | |||
988 | /// Printer pass to dump DA results. |
||
989 | struct DependenceAnalysisPrinterPass |
||
990 | : public PassInfoMixin<DependenceAnalysisPrinterPass> { |
||
991 | DependenceAnalysisPrinterPass(raw_ostream &OS, |
||
992 | bool NormalizeResults = false) |
||
993 | : OS(OS), NormalizeResults(NormalizeResults) {} |
||
994 | |||
995 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM); |
||
996 | |||
997 | private: |
||
998 | raw_ostream &OS; |
||
999 | bool NormalizeResults; |
||
1000 | }; // class DependenceAnalysisPrinterPass |
||
1001 | |||
1002 | /// Legacy pass manager pass to access dependence information |
||
1003 | class DependenceAnalysisWrapperPass : public FunctionPass { |
||
1004 | public: |
||
1005 | static char ID; // Class identification, replacement for typeinfo |
||
1006 | DependenceAnalysisWrapperPass(); |
||
1007 | |||
1008 | bool runOnFunction(Function &F) override; |
||
1009 | void releaseMemory() override; |
||
1010 | void getAnalysisUsage(AnalysisUsage &) const override; |
||
1011 | void print(raw_ostream &, const Module * = nullptr) const override; |
||
1012 | DependenceInfo &getDI() const; |
||
1013 | |||
1014 | private: |
||
1015 | std::unique_ptr<DependenceInfo> info; |
||
1016 | }; // class DependenceAnalysisWrapperPass |
||
1017 | |||
1018 | /// createDependenceAnalysisPass - This creates an instance of the |
||
1019 | /// DependenceAnalysis wrapper pass. |
||
1020 | FunctionPass *createDependenceAnalysisWrapperPass(); |
||
1021 | |||
1022 | } // namespace llvm |
||
1023 | |||
1024 | #endif |