Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===-- Analysis/CFG.h - BasicBlock Analyses --------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This family of functions performs analyses on basic blocks, and instructions |
||
| 10 | // contained within basic blocks. |
||
| 11 | // |
||
| 12 | //===----------------------------------------------------------------------===// |
||
| 13 | |||
| 14 | #ifndef LLVM_ANALYSIS_CFG_H |
||
| 15 | #define LLVM_ANALYSIS_CFG_H |
||
| 16 | |||
| 17 | #include "llvm/ADT/GraphTraits.h" |
||
| 18 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 19 | #include <utility> |
||
| 20 | |||
| 21 | namespace llvm { |
||
| 22 | |||
| 23 | class BasicBlock; |
||
| 24 | class DominatorTree; |
||
| 25 | class Function; |
||
| 26 | class Instruction; |
||
| 27 | class LoopInfo; |
||
| 28 | template <typename T> class SmallVectorImpl; |
||
| 29 | |||
| 30 | /// Analyze the specified function to find all of the loop backedges in the |
||
| 31 | /// function and return them. This is a relatively cheap (compared to |
||
| 32 | /// computing dominators and loop info) analysis. |
||
| 33 | /// |
||
| 34 | /// The output is added to Result, as pairs of <from,to> edge info. |
||
| 35 | void FindFunctionBackedges( |
||
| 36 | const Function &F, |
||
| 37 | SmallVectorImpl<std::pair<const BasicBlock *, const BasicBlock *> > & |
||
| 38 | Result); |
||
| 39 | |||
| 40 | /// Search for the specified successor of basic block BB and return its position |
||
| 41 | /// in the terminator instruction's list of successors. It is an error to call |
||
| 42 | /// this with a block that is not a successor. |
||
| 43 | unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ); |
||
| 44 | |||
| 45 | /// Return true if the specified edge is a critical edge. Critical edges are |
||
| 46 | /// edges from a block with multiple successors to a block with multiple |
||
| 47 | /// predecessors. |
||
| 48 | /// |
||
| 49 | bool isCriticalEdge(const Instruction *TI, unsigned SuccNum, |
||
| 50 | bool AllowIdenticalEdges = false); |
||
| 51 | bool isCriticalEdge(const Instruction *TI, const BasicBlock *Succ, |
||
| 52 | bool AllowIdenticalEdges = false); |
||
| 53 | |||
| 54 | /// Determine whether instruction 'To' is reachable from 'From', without passing |
||
| 55 | /// through any blocks in ExclusionSet, returning true if uncertain. |
||
| 56 | /// |
||
| 57 | /// Determine whether there is a path from From to To within a single function. |
||
| 58 | /// Returns false only if we can prove that once 'From' has been executed then |
||
| 59 | /// 'To' can not be executed. Conservatively returns true. |
||
| 60 | /// |
||
| 61 | /// This function is linear with respect to the number of blocks in the CFG, |
||
| 62 | /// walking down successors from From to reach To, with a fixed threshold. |
||
| 63 | /// Using DT or LI allows us to answer more quickly. LI reduces the cost of |
||
| 64 | /// an entire loop of any number of blocks to be the same as the cost of a |
||
| 65 | /// single block. DT reduces the cost by allowing the search to terminate when |
||
| 66 | /// we find a block that dominates the block containing 'To'. DT is most useful |
||
| 67 | /// on branchy code but not loops, and LI is most useful on code with loops but |
||
| 68 | /// does not help on branchy code outside loops. |
||
| 69 | bool isPotentiallyReachable( |
||
| 70 | const Instruction *From, const Instruction *To, |
||
| 71 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr, |
||
| 72 | const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr); |
||
| 73 | |||
| 74 | /// Determine whether block 'To' is reachable from 'From', returning |
||
| 75 | /// true if uncertain. |
||
| 76 | /// |
||
| 77 | /// Determine whether there is a path from From to To within a single function. |
||
| 78 | /// Returns false only if we can prove that once 'From' has been reached then |
||
| 79 | /// 'To' can not be executed. Conservatively returns true. |
||
| 80 | bool isPotentiallyReachable( |
||
| 81 | const BasicBlock *From, const BasicBlock *To, |
||
| 82 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr, |
||
| 83 | const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr); |
||
| 84 | |||
| 85 | /// Determine whether there is at least one path from a block in |
||
| 86 | /// 'Worklist' to 'StopBB' without passing through any blocks in |
||
| 87 | /// 'ExclusionSet', returning true if uncertain. |
||
| 88 | /// |
||
| 89 | /// Determine whether there is a path from at least one block in Worklist to |
||
| 90 | /// StopBB within a single function without passing through any of the blocks |
||
| 91 | /// in 'ExclusionSet'. Returns false only if we can prove that once any block |
||
| 92 | /// in 'Worklist' has been reached then 'StopBB' can not be executed. |
||
| 93 | /// Conservatively returns true. |
||
| 94 | bool isPotentiallyReachableFromMany( |
||
| 95 | SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB, |
||
| 96 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, |
||
| 97 | const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr); |
||
| 98 | |||
| 99 | /// Return true if the control flow in \p RPOTraversal is irreducible. |
||
| 100 | /// |
||
| 101 | /// This is a generic implementation to detect CFG irreducibility based on loop |
||
| 102 | /// info analysis. It can be used for any kind of CFG (Loop, MachineLoop, |
||
| 103 | /// Function, MachineFunction, etc.) by providing an RPO traversal (\p |
||
| 104 | /// RPOTraversal) and the loop info analysis (\p LI) of the CFG. This utility |
||
| 105 | /// function is only recommended when loop info analysis is available. If loop |
||
| 106 | /// info analysis isn't available, please, don't compute it explicitly for this |
||
| 107 | /// purpose. There are more efficient ways to detect CFG irreducibility that |
||
| 108 | /// don't require recomputing loop info analysis (e.g., T1/T2 or Tarjan's |
||
| 109 | /// algorithm). |
||
| 110 | /// |
||
| 111 | /// Requirements: |
||
| 112 | /// 1) GraphTraits must be implemented for NodeT type. It is used to access |
||
| 113 | /// NodeT successors. |
||
| 114 | // 2) \p RPOTraversal must be a valid reverse post-order traversal of the |
||
| 115 | /// target CFG with begin()/end() iterator interfaces. |
||
| 116 | /// 3) \p LI must be a valid LoopInfoBase that contains up-to-date loop |
||
| 117 | /// analysis information of the CFG. |
||
| 118 | /// |
||
| 119 | /// This algorithm uses the information about reducible loop back-edges already |
||
| 120 | /// computed in \p LI. When a back-edge is found during the RPO traversal, the |
||
| 121 | /// algorithm checks whether the back-edge is one of the reducible back-edges in |
||
| 122 | /// loop info. If it isn't, the CFG is irreducible. For example, for the CFG |
||
| 123 | /// below (canonical irreducible graph) loop info won't contain any loop, so the |
||
| 124 | /// algorithm will return that the CFG is irreducible when checking the B <- |
||
| 125 | /// -> C back-edge. |
||
| 126 | /// |
||
| 127 | /// (A->B, A->C, B->C, C->B, C->D) |
||
| 128 | /// A |
||
| 129 | /// / \ |
||
| 130 | /// B<- ->C |
||
| 131 | /// | |
||
| 132 | /// D |
||
| 133 | /// |
||
| 134 | template <class NodeT, class RPOTraversalT, class LoopInfoT, |
||
| 135 | class GT = GraphTraits<NodeT>> |
||
| 136 | bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI) { |
||
| 137 | /// Check whether the edge (\p Src, \p Dst) is a reducible loop backedge |
||
| 138 | /// according to LI. I.e., check if there exists a loop that contains Src and |
||
| 139 | /// where Dst is the loop header. |
||
| 140 | auto isProperBackedge = [&](NodeT Src, NodeT Dst) { |
||
| 141 | for (const auto *Lp = LI.getLoopFor(Src); Lp; Lp = Lp->getParentLoop()) { |
||
| 142 | if (Lp->getHeader() == Dst) |
||
| 143 | return true; |
||
| 144 | } |
||
| 145 | return false; |
||
| 146 | }; |
||
| 147 | |||
| 148 | SmallPtrSet<NodeT, 32> Visited; |
||
| 149 | for (NodeT Node : RPOTraversal) { |
||
| 150 | Visited.insert(Node); |
||
| 151 | for (NodeT Succ : make_range(GT::child_begin(Node), GT::child_end(Node))) { |
||
| 152 | // Succ hasn't been visited yet |
||
| 153 | if (!Visited.count(Succ)) |
||
| 154 | continue; |
||
| 155 | // We already visited Succ, thus Node->Succ must be a backedge. Check that |
||
| 156 | // the head matches what we have in the loop information. Otherwise, we |
||
| 157 | // have an irreducible graph. |
||
| 158 | if (!isProperBackedge(Node, Succ)) |
||
| 159 | return true; |
||
| 160 | } |
||
| 161 | } |
||
| 162 | |||
| 163 | return false; |
||
| 164 | } |
||
| 165 | } // End llvm namespace |
||
| 166 | |||
| 167 | #endif |