Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- BranchProbabilityInfo.h - Branch Probability Analysis ----*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass is used to evaluate branch probabilties.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
14
#define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
15
 
16
#include "llvm/ADT/DenseMap.h"
17
#include "llvm/ADT/DenseMapInfo.h"
18
#include "llvm/ADT/DenseSet.h"
19
#include "llvm/IR/BasicBlock.h"
20
#include "llvm/IR/CFG.h"
21
#include "llvm/IR/PassManager.h"
22
#include "llvm/IR/ValueHandle.h"
23
#include "llvm/Pass.h"
24
#include "llvm/Support/BranchProbability.h"
25
#include <algorithm>
26
#include <cassert>
27
#include <cstdint>
28
#include <memory>
29
#include <utility>
30
 
31
namespace llvm {
32
 
33
class Function;
34
class Loop;
35
class LoopInfo;
36
class raw_ostream;
37
class DominatorTree;
38
class PostDominatorTree;
39
class TargetLibraryInfo;
40
class Value;
41
 
42
/// Analysis providing branch probability information.
43
///
44
/// This is a function analysis which provides information on the relative
45
/// probabilities of each "edge" in the function's CFG where such an edge is
46
/// defined by a pair (PredBlock and an index in the successors). The
47
/// probability of an edge from one block is always relative to the
48
/// probabilities of other edges from the block. The probabilites of all edges
49
/// from a block sum to exactly one (100%).
50
/// We use a pair (PredBlock and an index in the successors) to uniquely
51
/// identify an edge, since we can have multiple edges from Src to Dst.
52
/// As an example, we can have a switch which jumps to Dst with value 0 and
53
/// value 10.
54
///
55
/// Process of computing branch probabilities can be logically viewed as three
56
/// step process:
57
///
58
///   First, if there is a profile information associated with the branch then
59
/// it is trivially translated to branch probabilities. There is one exception
60
/// from this rule though. Probabilities for edges leading to "unreachable"
61
/// blocks (blocks with the estimated weight not greater than
62
/// UNREACHABLE_WEIGHT) are evaluated according to static estimation and
63
/// override profile information. If no branch probabilities were calculated
64
/// on this step then take the next one.
65
///
66
///   Second, estimate absolute execution weights for each block based on
67
/// statically known information. Roots of such information are "cold",
68
/// "unreachable", "noreturn" and "unwind" blocks. Those blocks get their
69
/// weights set to BlockExecWeight::COLD, BlockExecWeight::UNREACHABLE,
70
/// BlockExecWeight::NORETURN and BlockExecWeight::UNWIND respectively. Then the
71
/// weights are propagated to the other blocks up the domination line. In
72
/// addition, if all successors have estimated weights set then maximum of these
73
/// weights assigned to the block itself (while this is not ideal heuristic in
74
/// theory it's simple and works reasonably well in most cases) and the process
75
/// repeats. Once the process of weights propagation converges branch
76
/// probabilities are set for all such branches that have at least one successor
77
/// with the weight set. Default execution weight (BlockExecWeight::DEFAULT) is
78
/// used for any successors which doesn't have its weight set. For loop back
79
/// branches we use their weights scaled by loop trip count equal to
80
/// 'LBH_TAKEN_WEIGHT/LBH_NOTTAKEN_WEIGHT'.
81
///
82
/// Here is a simple example demonstrating how the described algorithm works.
83
///
84
///          BB1
85
///         /   \
86
///        v     v
87
///      BB2     BB3
88
///     /   \
89
///    v     v
90
///  ColdBB  UnreachBB
91
///
92
/// Initially, ColdBB is associated with COLD_WEIGHT and UnreachBB with
93
/// UNREACHABLE_WEIGHT. COLD_WEIGHT is set to BB2 as maximum between its
94
/// successors. BB1 and BB3 has no explicit estimated weights and assumed to
95
/// have DEFAULT_WEIGHT. Based on assigned weights branches will have the
96
/// following probabilities:
97
/// P(BB1->BB2) = COLD_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
98
///   0xffff / (0xffff + 0xfffff) = 0.0588(5.9%)
99
/// P(BB1->BB3) = DEFAULT_WEIGHT_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
100
///          0xfffff / (0xffff + 0xfffff) = 0.941(94.1%)
101
/// P(BB2->ColdBB) = COLD_WEIGHT/(COLD_WEIGHT + UNREACHABLE_WEIGHT) = 1(100%)
102
/// P(BB2->UnreachBB) =
103
///   UNREACHABLE_WEIGHT/(COLD_WEIGHT+UNREACHABLE_WEIGHT) = 0(0%)
104
///
105
/// If no branch probabilities were calculated on this step then take the next
106
/// one.
107
///
108
///   Third, apply different kinds of local heuristics for each individual
109
/// branch until first match. For example probability of a pointer to be null is
110
/// estimated as PH_TAKEN_WEIGHT/(PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT). If
111
/// no local heuristic has been matched then branch is left with no explicit
112
/// probability set and assumed to have default probability.
113
class BranchProbabilityInfo {
114
public:
115
  BranchProbabilityInfo() = default;
116
 
117
  BranchProbabilityInfo(const Function &F, const LoopInfo &LI,
118
                        const TargetLibraryInfo *TLI = nullptr,
119
                        DominatorTree *DT = nullptr,
120
                        PostDominatorTree *PDT = nullptr) {
121
    calculate(F, LI, TLI, DT, PDT);
122
  }
123
 
124
  BranchProbabilityInfo(BranchProbabilityInfo &&Arg)
125
      : Probs(std::move(Arg.Probs)), LastF(Arg.LastF),
126
        EstimatedBlockWeight(std::move(Arg.EstimatedBlockWeight)) {}
127
 
128
  BranchProbabilityInfo(const BranchProbabilityInfo &) = delete;
129
  BranchProbabilityInfo &operator=(const BranchProbabilityInfo &) = delete;
130
 
131
  BranchProbabilityInfo &operator=(BranchProbabilityInfo &&RHS) {
132
    releaseMemory();
133
    Probs = std::move(RHS.Probs);
134
    EstimatedBlockWeight = std::move(RHS.EstimatedBlockWeight);
135
    return *this;
136
  }
137
 
138
  bool invalidate(Function &, const PreservedAnalyses &PA,
139
                  FunctionAnalysisManager::Invalidator &);
140
 
141
  void releaseMemory();
142
 
143
  void print(raw_ostream &OS) const;
144
 
145
  /// Get an edge's probability, relative to other out-edges of the Src.
146
  ///
147
  /// This routine provides access to the fractional probability between zero
148
  /// (0%) and one (100%) of this edge executing, relative to other edges
149
  /// leaving the 'Src' block. The returned probability is never zero, and can
150
  /// only be one if the source block has only one successor.
151
  BranchProbability getEdgeProbability(const BasicBlock *Src,
152
                                       unsigned IndexInSuccessors) const;
153
 
154
  /// Get the probability of going from Src to Dst.
155
  ///
156
  /// It returns the sum of all probabilities for edges from Src to Dst.
157
  BranchProbability getEdgeProbability(const BasicBlock *Src,
158
                                       const BasicBlock *Dst) const;
159
 
160
  BranchProbability getEdgeProbability(const BasicBlock *Src,
161
                                       const_succ_iterator Dst) const;
162
 
163
  /// Test if an edge is hot relative to other out-edges of the Src.
164
  ///
165
  /// Check whether this edge out of the source block is 'hot'. We define hot
166
  /// as having a relative probability >= 80%.
167
  bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const;
168
 
169
  /// Print an edge's probability.
170
  ///
171
  /// Retrieves an edge's probability similarly to \see getEdgeProbability, but
172
  /// then prints that probability to the provided stream. That stream is then
173
  /// returned.
174
  raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src,
175
                                    const BasicBlock *Dst) const;
176
 
177
public:
178
  /// Set the raw probabilities for all edges from the given block.
179
  ///
180
  /// This allows a pass to explicitly set edge probabilities for a block. It
181
  /// can be used when updating the CFG to update the branch probability
182
  /// information.
183
  void setEdgeProbability(const BasicBlock *Src,
184
                          const SmallVectorImpl<BranchProbability> &Probs);
185
 
186
  /// Copy outgoing edge probabilities from \p Src to \p Dst.
187
  ///
188
  /// This allows to keep probabilities unset for the destination if they were
189
  /// unset for source.
190
  void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst);
191
 
192
  static BranchProbability getBranchProbStackProtector(bool IsLikely) {
193
    static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20);
194
    return IsLikely ? LikelyProb : LikelyProb.getCompl();
195
  }
196
 
197
  void calculate(const Function &F, const LoopInfo &LI,
198
                 const TargetLibraryInfo *TLI, DominatorTree *DT,
199
                 PostDominatorTree *PDT);
200
 
201
  /// Forget analysis results for the given basic block.
202
  void eraseBlock(const BasicBlock *BB);
203
 
204
  // Data structure to track SCCs for handling irreducible loops.
205
  class SccInfo {
206
    // Enum of types to classify basic blocks in SCC. Basic block belonging to
207
    // SCC is 'Inner' until it is either 'Header' or 'Exiting'. Note that a
208
    // basic block can be 'Header' and 'Exiting' at the same time.
209
    enum SccBlockType {
210
      Inner = 0x0,
211
      Header = 0x1,
212
      Exiting = 0x2,
213
    };
214
    // Map of basic blocks to SCC IDs they belong to. If basic block doesn't
215
    // belong to any SCC it is not in the map.
216
    using SccMap = DenseMap<const BasicBlock *, int>;
217
    // Each basic block in SCC is attributed with one or several types from
218
    // SccBlockType. Map value has uint32_t type (instead of SccBlockType)
219
    // since basic block may be for example "Header" and "Exiting" at the same
220
    // time and we need to be able to keep more than one value from
221
    // SccBlockType.
222
    using SccBlockTypeMap = DenseMap<const BasicBlock *, uint32_t>;
223
    // Vector containing classification of basic blocks for all  SCCs where i'th
224
    // vector element corresponds to SCC with ID equal to i.
225
    using SccBlockTypeMaps = std::vector<SccBlockTypeMap>;
226
 
227
    SccMap SccNums;
228
    SccBlockTypeMaps SccBlocks;
229
 
230
  public:
231
    explicit SccInfo(const Function &F);
232
 
233
    /// If \p BB belongs to some SCC then ID of that SCC is returned, otherwise
234
    /// -1 is returned. If \p BB belongs to more than one SCC at the same time
235
    /// result is undefined.
236
    int getSCCNum(const BasicBlock *BB) const;
237
    /// Returns true if \p BB is a 'header' block in SCC with \p SccNum ID,
238
    /// false otherwise.
239
    bool isSCCHeader(const BasicBlock *BB, int SccNum) const {
240
      return getSccBlockType(BB, SccNum) & Header;
241
    }
242
    /// Returns true if \p BB is an 'exiting' block in SCC with \p SccNum ID,
243
    /// false otherwise.
244
    bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const {
245
      return getSccBlockType(BB, SccNum) & Exiting;
246
    }
247
    /// Fills in \p Enters vector with all such blocks that don't belong to
248
    /// SCC with \p SccNum ID but there is an edge to a block belonging to the
249
    /// SCC.
250
    void getSccEnterBlocks(int SccNum,
251
                           SmallVectorImpl<BasicBlock *> &Enters) const;
252
    /// Fills in \p Exits vector with all such blocks that don't belong to
253
    /// SCC with \p SccNum ID but there is an edge from a block belonging to the
254
    /// SCC.
255
    void getSccExitBlocks(int SccNum,
256
                          SmallVectorImpl<BasicBlock *> &Exits) const;
257
 
258
  private:
259
    /// Returns \p BB's type according to classification given by SccBlockType
260
    /// enum. Please note that \p BB must belong to SSC with \p SccNum ID.
261
    uint32_t getSccBlockType(const BasicBlock *BB, int SccNum) const;
262
    /// Calculates \p BB's type and stores it in internal data structures for
263
    /// future use. Please note that \p BB must belong to SSC with \p SccNum ID.
264
    void calculateSccBlockType(const BasicBlock *BB, int SccNum);
265
  };
266
 
267
private:
268
  // We need to store CallbackVH's in order to correctly handle basic block
269
  // removal.
270
  class BasicBlockCallbackVH final : public CallbackVH {
271
    BranchProbabilityInfo *BPI;
272
 
273
    void deleted() override {
274
      assert(BPI != nullptr);
275
      BPI->eraseBlock(cast<BasicBlock>(getValPtr()));
276
    }
277
 
278
  public:
279
    BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI = nullptr)
280
        : CallbackVH(const_cast<Value *>(V)), BPI(BPI) {}
281
  };
282
 
283
  /// Pair of Loop and SCC ID number. Used to unify handling of normal and
284
  /// SCC based loop representations.
285
  using LoopData = std::pair<Loop *, int>;
286
  /// Helper class to keep basic block along with its loop data information.
287
  class LoopBlock {
288
  public:
289
    explicit LoopBlock(const BasicBlock *BB, const LoopInfo &LI,
290
                       const SccInfo &SccI);
291
 
292
    const BasicBlock *getBlock() const { return BB; }
293
    BasicBlock *getBlock() { return const_cast<BasicBlock *>(BB); }
294
    LoopData getLoopData() const { return LD; }
295
    Loop *getLoop() const { return LD.first; }
296
    int getSccNum() const { return LD.second; }
297
 
298
    bool belongsToLoop() const { return getLoop() || getSccNum() != -1; }
299
    bool belongsToSameLoop(const LoopBlock &LB) const {
300
      return (LB.getLoop() && getLoop() == LB.getLoop()) ||
301
             (LB.getSccNum() != -1 && getSccNum() == LB.getSccNum());
302
    }
303
 
304
  private:
305
    const BasicBlock *const BB = nullptr;
306
    LoopData LD = {nullptr, -1};
307
  };
308
 
309
  // Pair of LoopBlocks representing an edge from first to second block.
310
  using LoopEdge = std::pair<const LoopBlock &, const LoopBlock &>;
311
 
312
  DenseSet<BasicBlockCallbackVH, DenseMapInfo<Value*>> Handles;
313
 
314
  // Since we allow duplicate edges from one basic block to another, we use
315
  // a pair (PredBlock and an index in the successors) to specify an edge.
316
  using Edge = std::pair<const BasicBlock *, unsigned>;
317
 
318
  DenseMap<Edge, BranchProbability> Probs;
319
 
320
  /// Track the last function we run over for printing.
321
  const Function *LastF = nullptr;
322
 
323
  const LoopInfo *LI = nullptr;
324
 
325
  /// Keeps information about all SCCs in a function.
326
  std::unique_ptr<const SccInfo> SccI;
327
 
328
  /// Keeps mapping of a basic block to its estimated weight.
329
  SmallDenseMap<const BasicBlock *, uint32_t> EstimatedBlockWeight;
330
 
331
  /// Keeps mapping of a loop to estimated weight to enter the loop.
332
  SmallDenseMap<LoopData, uint32_t> EstimatedLoopWeight;
333
 
334
  /// Helper to construct LoopBlock for \p BB.
335
  LoopBlock getLoopBlock(const BasicBlock *BB) const {
336
    return LoopBlock(BB, *LI, *SccI.get());
337
  }
338
 
339
  /// Returns true if destination block belongs to some loop and source block is
340
  /// either doesn't belong to any loop or belongs to a loop which is not inner
341
  /// relative to the destination block.
342
  bool isLoopEnteringEdge(const LoopEdge &Edge) const;
343
  /// Returns true if source block belongs to some loop and destination block is
344
  /// either doesn't belong to any loop or belongs to a loop which is not inner
345
  /// relative to the source block.
346
  bool isLoopExitingEdge(const LoopEdge &Edge) const;
347
  /// Returns true if \p Edge is either enters to or exits from some loop, false
348
  /// in all other cases.
349
  bool isLoopEnteringExitingEdge(const LoopEdge &Edge) const;
350
  /// Returns true if source and destination blocks belongs to the same loop and
351
  /// destination block is loop header.
352
  bool isLoopBackEdge(const LoopEdge &Edge) const;
353
  // Fills in \p Enters vector with all "enter" blocks to a loop \LB belongs to.
354
  void getLoopEnterBlocks(const LoopBlock &LB,
355
                          SmallVectorImpl<BasicBlock *> &Enters) const;
356
  // Fills in \p Exits vector with all "exit" blocks from a loop \LB belongs to.
357
  void getLoopExitBlocks(const LoopBlock &LB,
358
                         SmallVectorImpl<BasicBlock *> &Exits) const;
359
 
360
  /// Returns estimated weight for \p BB. std::nullopt if \p BB has no estimated
361
  /// weight.
362
  std::optional<uint32_t> getEstimatedBlockWeight(const BasicBlock *BB) const;
363
 
364
  /// Returns estimated weight to enter \p L. In other words it is weight of
365
  /// loop's header block not scaled by trip count. Returns std::nullopt if \p L
366
  /// has no no estimated weight.
367
  std::optional<uint32_t> getEstimatedLoopWeight(const LoopData &L) const;
368
 
369
  /// Return estimated weight for \p Edge. Returns std::nullopt if estimated
370
  /// weight is unknown.
371
  std::optional<uint32_t> getEstimatedEdgeWeight(const LoopEdge &Edge) const;
372
 
373
  /// Iterates over all edges leading from \p SrcBB to \p Successors and
374
  /// returns maximum of all estimated weights. If at least one edge has unknown
375
  /// estimated weight std::nullopt is returned.
376
  template <class IterT>
377
  std::optional<uint32_t>
378
  getMaxEstimatedEdgeWeight(const LoopBlock &SrcBB,
379
                            iterator_range<IterT> Successors) const;
380
 
381
  /// If \p LoopBB has no estimated weight then set it to \p BBWeight and
382
  /// return true. Otherwise \p BB's weight remains unchanged and false is
383
  /// returned. In addition all blocks/loops that might need their weight to be
384
  /// re-estimated are put into BlockWorkList/LoopWorkList.
385
  bool updateEstimatedBlockWeight(LoopBlock &LoopBB, uint32_t BBWeight,
386
                                  SmallVectorImpl<BasicBlock *> &BlockWorkList,
387
                                  SmallVectorImpl<LoopBlock> &LoopWorkList);
388
 
389
  /// Starting from \p LoopBB (including \p LoopBB itself) propagate \p BBWeight
390
  /// up the domination tree.
391
  void propagateEstimatedBlockWeight(const LoopBlock &LoopBB, DominatorTree *DT,
392
                                     PostDominatorTree *PDT, uint32_t BBWeight,
393
                                     SmallVectorImpl<BasicBlock *> &WorkList,
394
                                     SmallVectorImpl<LoopBlock> &LoopWorkList);
395
 
396
  /// Returns block's weight encoded in the IR.
397
  std::optional<uint32_t> getInitialEstimatedBlockWeight(const BasicBlock *BB);
398
 
399
  // Computes estimated weights for all blocks in \p F.
400
  void computeEestimateBlockWeight(const Function &F, DominatorTree *DT,
401
                                   PostDominatorTree *PDT);
402
 
403
  /// Based on computed weights by \p computeEstimatedBlockWeight set
404
  /// probabilities on branches.
405
  bool calcEstimatedHeuristics(const BasicBlock *BB);
406
  bool calcMetadataWeights(const BasicBlock *BB);
407
  bool calcPointerHeuristics(const BasicBlock *BB);
408
  bool calcZeroHeuristics(const BasicBlock *BB, const TargetLibraryInfo *TLI);
409
  bool calcFloatingPointHeuristics(const BasicBlock *BB);
410
};
411
 
412
/// Analysis pass which computes \c BranchProbabilityInfo.
413
class BranchProbabilityAnalysis
414
    : public AnalysisInfoMixin<BranchProbabilityAnalysis> {
415
  friend AnalysisInfoMixin<BranchProbabilityAnalysis>;
416
 
417
  static AnalysisKey Key;
418
 
419
public:
420
  /// Provide the result type for this analysis pass.
421
  using Result = BranchProbabilityInfo;
422
 
423
  /// Run the analysis pass over a function and produce BPI.
424
  BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM);
425
};
426
 
427
/// Printer pass for the \c BranchProbabilityAnalysis results.
428
class BranchProbabilityPrinterPass
429
    : public PassInfoMixin<BranchProbabilityPrinterPass> {
430
  raw_ostream &OS;
431
 
432
public:
433
  explicit BranchProbabilityPrinterPass(raw_ostream &OS) : OS(OS) {}
434
 
435
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
436
};
437
 
438
/// Legacy analysis pass which computes \c BranchProbabilityInfo.
439
class BranchProbabilityInfoWrapperPass : public FunctionPass {
440
  BranchProbabilityInfo BPI;
441
 
442
public:
443
  static char ID;
444
 
445
  BranchProbabilityInfoWrapperPass();
446
 
447
  BranchProbabilityInfo &getBPI() { return BPI; }
448
  const BranchProbabilityInfo &getBPI() const { return BPI; }
449
 
450
  void getAnalysisUsage(AnalysisUsage &AU) const override;
451
  bool runOnFunction(Function &F) override;
452
  void releaseMemory() override;
453
  void print(raw_ostream &OS, const Module *M = nullptr) const override;
454
};
455
 
456
} // end namespace llvm
457
 
458
#endif // LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H