Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // Shared implementation of BlockFrequency for IR and Machine Instructions. |
||
10 | // See the documentation below for BlockFrequencyInfoImpl for details. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |
||
15 | #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |
||
16 | |||
17 | #include "llvm/ADT/BitVector.h" |
||
18 | #include "llvm/ADT/DenseMap.h" |
||
19 | #include "llvm/ADT/DenseSet.h" |
||
20 | #include "llvm/ADT/GraphTraits.h" |
||
21 | #include "llvm/ADT/PostOrderIterator.h" |
||
22 | #include "llvm/ADT/SmallPtrSet.h" |
||
23 | #include "llvm/ADT/SmallVector.h" |
||
24 | #include "llvm/ADT/SparseBitVector.h" |
||
25 | #include "llvm/ADT/Twine.h" |
||
26 | #include "llvm/ADT/iterator_range.h" |
||
27 | #include "llvm/IR/BasicBlock.h" |
||
28 | #include "llvm/IR/ValueHandle.h" |
||
29 | #include "llvm/Support/BlockFrequency.h" |
||
30 | #include "llvm/Support/BranchProbability.h" |
||
31 | #include "llvm/Support/CommandLine.h" |
||
32 | #include "llvm/Support/DOTGraphTraits.h" |
||
33 | #include "llvm/Support/Debug.h" |
||
34 | #include "llvm/Support/Format.h" |
||
35 | #include "llvm/Support/ScaledNumber.h" |
||
36 | #include "llvm/Support/raw_ostream.h" |
||
37 | #include <algorithm> |
||
38 | #include <cassert> |
||
39 | #include <cstddef> |
||
40 | #include <cstdint> |
||
41 | #include <deque> |
||
42 | #include <iterator> |
||
43 | #include <limits> |
||
44 | #include <list> |
||
45 | #include <optional> |
||
46 | #include <queue> |
||
47 | #include <string> |
||
48 | #include <utility> |
||
49 | #include <vector> |
||
50 | |||
51 | #define DEBUG_TYPE "block-freq" |
||
52 | |||
53 | namespace llvm { |
||
54 | extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries; |
||
55 | |||
56 | extern llvm::cl::opt<bool> UseIterativeBFIInference; |
||
57 | extern llvm::cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock; |
||
58 | extern llvm::cl::opt<double> IterativeBFIPrecision; |
||
59 | |||
60 | class BranchProbabilityInfo; |
||
61 | class Function; |
||
62 | class Loop; |
||
63 | class LoopInfo; |
||
64 | class MachineBasicBlock; |
||
65 | class MachineBranchProbabilityInfo; |
||
66 | class MachineFunction; |
||
67 | class MachineLoop; |
||
68 | class MachineLoopInfo; |
||
69 | |||
70 | namespace bfi_detail { |
||
71 | |||
72 | struct IrreducibleGraph; |
||
73 | |||
74 | // This is part of a workaround for a GCC 4.7 crash on lambdas. |
||
75 | template <class BT> struct BlockEdgesAdder; |
||
76 | |||
77 | /// Mass of a block. |
||
78 | /// |
||
79 | /// This class implements a sort of fixed-point fraction always between 0.0 and |
||
80 | /// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of |
||
81 | /// 1.0. |
||
82 | /// |
||
83 | /// Masses can be added and subtracted. Simple saturation arithmetic is used, |
||
84 | /// so arithmetic operations never overflow or underflow. |
||
85 | /// |
||
86 | /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses |
||
87 | /// an inexpensive floating-point algorithm that's off-by-one (almost, but not |
||
88 | /// quite, maximum precision). |
||
89 | /// |
||
90 | /// Masses can be scaled by \a BranchProbability at maximum precision. |
||
91 | class BlockMass { |
||
92 | uint64_t Mass = 0; |
||
93 | |||
94 | public: |
||
95 | BlockMass() = default; |
||
96 | explicit BlockMass(uint64_t Mass) : Mass(Mass) {} |
||
97 | |||
98 | static BlockMass getEmpty() { return BlockMass(); } |
||
99 | |||
100 | static BlockMass getFull() { |
||
101 | return BlockMass(std::numeric_limits<uint64_t>::max()); |
||
102 | } |
||
103 | |||
104 | uint64_t getMass() const { return Mass; } |
||
105 | |||
106 | bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); } |
||
107 | bool isEmpty() const { return !Mass; } |
||
108 | |||
109 | bool operator!() const { return isEmpty(); } |
||
110 | |||
111 | /// Add another mass. |
||
112 | /// |
||
113 | /// Adds another mass, saturating at \a isFull() rather than overflowing. |
||
114 | BlockMass &operator+=(BlockMass X) { |
||
115 | uint64_t Sum = Mass + X.Mass; |
||
116 | Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum; |
||
117 | return *this; |
||
118 | } |
||
119 | |||
120 | /// Subtract another mass. |
||
121 | /// |
||
122 | /// Subtracts another mass, saturating at \a isEmpty() rather than |
||
123 | /// undeflowing. |
||
124 | BlockMass &operator-=(BlockMass X) { |
||
125 | uint64_t Diff = Mass - X.Mass; |
||
126 | Mass = Diff > Mass ? 0 : Diff; |
||
127 | return *this; |
||
128 | } |
||
129 | |||
130 | BlockMass &operator*=(BranchProbability P) { |
||
131 | Mass = P.scale(Mass); |
||
132 | return *this; |
||
133 | } |
||
134 | |||
135 | bool operator==(BlockMass X) const { return Mass == X.Mass; } |
||
136 | bool operator!=(BlockMass X) const { return Mass != X.Mass; } |
||
137 | bool operator<=(BlockMass X) const { return Mass <= X.Mass; } |
||
138 | bool operator>=(BlockMass X) const { return Mass >= X.Mass; } |
||
139 | bool operator<(BlockMass X) const { return Mass < X.Mass; } |
||
140 | bool operator>(BlockMass X) const { return Mass > X.Mass; } |
||
141 | |||
142 | /// Convert to scaled number. |
||
143 | /// |
||
144 | /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty() |
||
145 | /// gives slightly above 0.0. |
||
146 | ScaledNumber<uint64_t> toScaled() const; |
||
147 | |||
148 | void dump() const; |
||
149 | raw_ostream &print(raw_ostream &OS) const; |
||
150 | }; |
||
151 | |||
152 | inline BlockMass operator+(BlockMass L, BlockMass R) { |
||
153 | return BlockMass(L) += R; |
||
154 | } |
||
155 | inline BlockMass operator-(BlockMass L, BlockMass R) { |
||
156 | return BlockMass(L) -= R; |
||
157 | } |
||
158 | inline BlockMass operator*(BlockMass L, BranchProbability R) { |
||
159 | return BlockMass(L) *= R; |
||
160 | } |
||
161 | inline BlockMass operator*(BranchProbability L, BlockMass R) { |
||
162 | return BlockMass(R) *= L; |
||
163 | } |
||
164 | |||
165 | inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) { |
||
166 | return X.print(OS); |
||
167 | } |
||
168 | |||
169 | } // end namespace bfi_detail |
||
170 | |||
171 | /// Base class for BlockFrequencyInfoImpl |
||
172 | /// |
||
173 | /// BlockFrequencyInfoImplBase has supporting data structures and some |
||
174 | /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on |
||
175 | /// the block type (or that call such algorithms) are skipped here. |
||
176 | /// |
||
177 | /// Nevertheless, the majority of the overall algorithm documentation lives with |
||
178 | /// BlockFrequencyInfoImpl. See there for details. |
||
179 | class BlockFrequencyInfoImplBase { |
||
180 | public: |
||
181 | using Scaled64 = ScaledNumber<uint64_t>; |
||
182 | using BlockMass = bfi_detail::BlockMass; |
||
183 | |||
184 | /// Representative of a block. |
||
185 | /// |
||
186 | /// This is a simple wrapper around an index into the reverse-post-order |
||
187 | /// traversal of the blocks. |
||
188 | /// |
||
189 | /// Unlike a block pointer, its order has meaning (location in the |
||
190 | /// topological sort) and it's class is the same regardless of block type. |
||
191 | struct BlockNode { |
||
192 | using IndexType = uint32_t; |
||
193 | |||
194 | IndexType Index; |
||
195 | |||
196 | BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {} |
||
197 | BlockNode(IndexType Index) : Index(Index) {} |
||
198 | |||
199 | bool operator==(const BlockNode &X) const { return Index == X.Index; } |
||
200 | bool operator!=(const BlockNode &X) const { return Index != X.Index; } |
||
201 | bool operator<=(const BlockNode &X) const { return Index <= X.Index; } |
||
202 | bool operator>=(const BlockNode &X) const { return Index >= X.Index; } |
||
203 | bool operator<(const BlockNode &X) const { return Index < X.Index; } |
||
204 | bool operator>(const BlockNode &X) const { return Index > X.Index; } |
||
205 | |||
206 | bool isValid() const { return Index <= getMaxIndex(); } |
||
207 | |||
208 | static size_t getMaxIndex() { |
||
209 | return std::numeric_limits<uint32_t>::max() - 1; |
||
210 | } |
||
211 | }; |
||
212 | |||
213 | /// Stats about a block itself. |
||
214 | struct FrequencyData { |
||
215 | Scaled64 Scaled; |
||
216 | uint64_t Integer; |
||
217 | }; |
||
218 | |||
219 | /// Data about a loop. |
||
220 | /// |
||
221 | /// Contains the data necessary to represent a loop as a pseudo-node once it's |
||
222 | /// packaged. |
||
223 | struct LoopData { |
||
224 | using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>; |
||
225 | using NodeList = SmallVector<BlockNode, 4>; |
||
226 | using HeaderMassList = SmallVector<BlockMass, 1>; |
||
227 | |||
228 | LoopData *Parent; ///< The parent loop. |
||
229 | bool IsPackaged = false; ///< Whether this has been packaged. |
||
230 | uint32_t NumHeaders = 1; ///< Number of headers. |
||
231 | ExitMap Exits; ///< Successor edges (and weights). |
||
232 | NodeList Nodes; ///< Header and the members of the loop. |
||
233 | HeaderMassList BackedgeMass; ///< Mass returned to each loop header. |
||
234 | BlockMass Mass; |
||
235 | Scaled64 Scale; |
||
236 | |||
237 | LoopData(LoopData *Parent, const BlockNode &Header) |
||
238 | : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {} |
||
239 | |||
240 | template <class It1, class It2> |
||
241 | LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, |
||
242 | It2 LastOther) |
||
243 | : Parent(Parent), Nodes(FirstHeader, LastHeader) { |
||
244 | NumHeaders = Nodes.size(); |
||
245 | Nodes.insert(Nodes.end(), FirstOther, LastOther); |
||
246 | BackedgeMass.resize(NumHeaders); |
||
247 | } |
||
248 | |||
249 | bool isHeader(const BlockNode &Node) const { |
||
250 | if (isIrreducible()) |
||
251 | return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders, |
||
252 | Node); |
||
253 | return Node == Nodes[0]; |
||
254 | } |
||
255 | |||
256 | BlockNode getHeader() const { return Nodes[0]; } |
||
257 | bool isIrreducible() const { return NumHeaders > 1; } |
||
258 | |||
259 | HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) { |
||
260 | assert(isHeader(B) && "this is only valid on loop header blocks"); |
||
261 | if (isIrreducible()) |
||
262 | return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) - |
||
263 | Nodes.begin(); |
||
264 | return 0; |
||
265 | } |
||
266 | |||
267 | NodeList::const_iterator members_begin() const { |
||
268 | return Nodes.begin() + NumHeaders; |
||
269 | } |
||
270 | |||
271 | NodeList::const_iterator members_end() const { return Nodes.end(); } |
||
272 | iterator_range<NodeList::const_iterator> members() const { |
||
273 | return make_range(members_begin(), members_end()); |
||
274 | } |
||
275 | }; |
||
276 | |||
277 | /// Index of loop information. |
||
278 | struct WorkingData { |
||
279 | BlockNode Node; ///< This node. |
||
280 | LoopData *Loop = nullptr; ///< The loop this block is inside. |
||
281 | BlockMass Mass; ///< Mass distribution from the entry block. |
||
282 | |||
283 | WorkingData(const BlockNode &Node) : Node(Node) {} |
||
284 | |||
285 | bool isLoopHeader() const { return Loop && Loop->isHeader(Node); } |
||
286 | |||
287 | bool isDoubleLoopHeader() const { |
||
288 | return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() && |
||
289 | Loop->Parent->isHeader(Node); |
||
290 | } |
||
291 | |||
292 | LoopData *getContainingLoop() const { |
||
293 | if (!isLoopHeader()) |
||
294 | return Loop; |
||
295 | if (!isDoubleLoopHeader()) |
||
296 | return Loop->Parent; |
||
297 | return Loop->Parent->Parent; |
||
298 | } |
||
299 | |||
300 | /// Resolve a node to its representative. |
||
301 | /// |
||
302 | /// Get the node currently representing Node, which could be a containing |
||
303 | /// loop. |
||
304 | /// |
||
305 | /// This function should only be called when distributing mass. As long as |
||
306 | /// there are no irreducible edges to Node, then it will have complexity |
||
307 | /// O(1) in this context. |
||
308 | /// |
||
309 | /// In general, the complexity is O(L), where L is the number of loop |
||
310 | /// headers Node has been packaged into. Since this method is called in |
||
311 | /// the context of distributing mass, L will be the number of loop headers |
||
312 | /// an early exit edge jumps out of. |
||
313 | BlockNode getResolvedNode() const { |
||
314 | auto L = getPackagedLoop(); |
||
315 | return L ? L->getHeader() : Node; |
||
316 | } |
||
317 | |||
318 | LoopData *getPackagedLoop() const { |
||
319 | if (!Loop || !Loop->IsPackaged) |
||
320 | return nullptr; |
||
321 | auto L = Loop; |
||
322 | while (L->Parent && L->Parent->IsPackaged) |
||
323 | L = L->Parent; |
||
324 | return L; |
||
325 | } |
||
326 | |||
327 | /// Get the appropriate mass for a node. |
||
328 | /// |
||
329 | /// Get appropriate mass for Node. If Node is a loop-header (whose loop |
||
330 | /// has been packaged), returns the mass of its pseudo-node. If it's a |
||
331 | /// node inside a packaged loop, it returns the loop's mass. |
||
332 | BlockMass &getMass() { |
||
333 | if (!isAPackage()) |
||
334 | return Mass; |
||
335 | if (!isADoublePackage()) |
||
336 | return Loop->Mass; |
||
337 | return Loop->Parent->Mass; |
||
338 | } |
||
339 | |||
340 | /// Has ContainingLoop been packaged up? |
||
341 | bool isPackaged() const { return getResolvedNode() != Node; } |
||
342 | |||
343 | /// Has Loop been packaged up? |
||
344 | bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; } |
||
345 | |||
346 | /// Has Loop been packaged up twice? |
||
347 | bool isADoublePackage() const { |
||
348 | return isDoubleLoopHeader() && Loop->Parent->IsPackaged; |
||
349 | } |
||
350 | }; |
||
351 | |||
352 | /// Unscaled probability weight. |
||
353 | /// |
||
354 | /// Probability weight for an edge in the graph (including the |
||
355 | /// successor/target node). |
||
356 | /// |
||
357 | /// All edges in the original function are 32-bit. However, exit edges from |
||
358 | /// loop packages are taken from 64-bit exit masses, so we need 64-bits of |
||
359 | /// space in general. |
||
360 | /// |
||
361 | /// In addition to the raw weight amount, Weight stores the type of the edge |
||
362 | /// in the current context (i.e., the context of the loop being processed). |
||
363 | /// Is this a local edge within the loop, an exit from the loop, or a |
||
364 | /// backedge to the loop header? |
||
365 | struct Weight { |
||
366 | enum DistType { Local, Exit, Backedge }; |
||
367 | DistType Type = Local; |
||
368 | BlockNode TargetNode; |
||
369 | uint64_t Amount = 0; |
||
370 | |||
371 | Weight() = default; |
||
372 | Weight(DistType Type, BlockNode TargetNode, uint64_t Amount) |
||
373 | : Type(Type), TargetNode(TargetNode), Amount(Amount) {} |
||
374 | }; |
||
375 | |||
376 | /// Distribution of unscaled probability weight. |
||
377 | /// |
||
378 | /// Distribution of unscaled probability weight to a set of successors. |
||
379 | /// |
||
380 | /// This class collates the successor edge weights for later processing. |
||
381 | /// |
||
382 | /// \a DidOverflow indicates whether \a Total did overflow while adding to |
||
383 | /// the distribution. It should never overflow twice. |
||
384 | struct Distribution { |
||
385 | using WeightList = SmallVector<Weight, 4>; |
||
386 | |||
387 | WeightList Weights; ///< Individual successor weights. |
||
388 | uint64_t Total = 0; ///< Sum of all weights. |
||
389 | bool DidOverflow = false; ///< Whether \a Total did overflow. |
||
390 | |||
391 | Distribution() = default; |
||
392 | |||
393 | void addLocal(const BlockNode &Node, uint64_t Amount) { |
||
394 | add(Node, Amount, Weight::Local); |
||
395 | } |
||
396 | |||
397 | void addExit(const BlockNode &Node, uint64_t Amount) { |
||
398 | add(Node, Amount, Weight::Exit); |
||
399 | } |
||
400 | |||
401 | void addBackedge(const BlockNode &Node, uint64_t Amount) { |
||
402 | add(Node, Amount, Weight::Backedge); |
||
403 | } |
||
404 | |||
405 | /// Normalize the distribution. |
||
406 | /// |
||
407 | /// Combines multiple edges to the same \a Weight::TargetNode and scales |
||
408 | /// down so that \a Total fits into 32-bits. |
||
409 | /// |
||
410 | /// This is linear in the size of \a Weights. For the vast majority of |
||
411 | /// cases, adjacent edge weights are combined by sorting WeightList and |
||
412 | /// combining adjacent weights. However, for very large edge lists an |
||
413 | /// auxiliary hash table is used. |
||
414 | void normalize(); |
||
415 | |||
416 | private: |
||
417 | void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type); |
||
418 | }; |
||
419 | |||
420 | /// Data about each block. This is used downstream. |
||
421 | std::vector<FrequencyData> Freqs; |
||
422 | |||
423 | /// Whether each block is an irreducible loop header. |
||
424 | /// This is used downstream. |
||
425 | SparseBitVector<> IsIrrLoopHeader; |
||
426 | |||
427 | /// Loop data: see initializeLoops(). |
||
428 | std::vector<WorkingData> Working; |
||
429 | |||
430 | /// Indexed information about loops. |
||
431 | std::list<LoopData> Loops; |
||
432 | |||
433 | /// Virtual destructor. |
||
434 | /// |
||
435 | /// Need a virtual destructor to mask the compiler warning about |
||
436 | /// getBlockName(). |
||
437 | virtual ~BlockFrequencyInfoImplBase() = default; |
||
438 | |||
439 | /// Add all edges out of a packaged loop to the distribution. |
||
440 | /// |
||
441 | /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each |
||
442 | /// successor edge. |
||
443 | /// |
||
444 | /// \return \c true unless there's an irreducible backedge. |
||
445 | bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop, |
||
446 | Distribution &Dist); |
||
447 | |||
448 | /// Add an edge to the distribution. |
||
449 | /// |
||
450 | /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the |
||
451 | /// edge is local/exit/backedge is in the context of LoopHead. Otherwise, |
||
452 | /// every edge should be a local edge (since all the loops are packaged up). |
||
453 | /// |
||
454 | /// \return \c true unless aborted due to an irreducible backedge. |
||
455 | bool addToDist(Distribution &Dist, const LoopData *OuterLoop, |
||
456 | const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight); |
||
457 | |||
458 | /// Analyze irreducible SCCs. |
||
459 | /// |
||
460 | /// Separate irreducible SCCs from \c G, which is an explicit graph of \c |
||
461 | /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr). |
||
462 | /// Insert them into \a Loops before \c Insert. |
||
463 | /// |
||
464 | /// \return the \c LoopData nodes representing the irreducible SCCs. |
||
465 | iterator_range<std::list<LoopData>::iterator> |
||
466 | analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop, |
||
467 | std::list<LoopData>::iterator Insert); |
||
468 | |||
469 | /// Update a loop after packaging irreducible SCCs inside of it. |
||
470 | /// |
||
471 | /// Update \c OuterLoop. Before finding irreducible control flow, it was |
||
472 | /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a |
||
473 | /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged |
||
474 | /// up need to be removed from \a OuterLoop::Nodes. |
||
475 | void updateLoopWithIrreducible(LoopData &OuterLoop); |
||
476 | |||
477 | /// Distribute mass according to a distribution. |
||
478 | /// |
||
479 | /// Distributes the mass in Source according to Dist. If LoopHead.isValid(), |
||
480 | /// backedges and exits are stored in its entry in Loops. |
||
481 | /// |
||
482 | /// Mass is distributed in parallel from two copies of the source mass. |
||
483 | void distributeMass(const BlockNode &Source, LoopData *OuterLoop, |
||
484 | Distribution &Dist); |
||
485 | |||
486 | /// Compute the loop scale for a loop. |
||
487 | void computeLoopScale(LoopData &Loop); |
||
488 | |||
489 | /// Adjust the mass of all headers in an irreducible loop. |
||
490 | /// |
||
491 | /// Initially, irreducible loops are assumed to distribute their mass |
||
492 | /// equally among its headers. This can lead to wrong frequency estimates |
||
493 | /// since some headers may be executed more frequently than others. |
||
494 | /// |
||
495 | /// This adjusts header mass distribution so it matches the weights of |
||
496 | /// the backedges going into each of the loop headers. |
||
497 | void adjustLoopHeaderMass(LoopData &Loop); |
||
498 | |||
499 | void distributeIrrLoopHeaderMass(Distribution &Dist); |
||
500 | |||
501 | /// Package up a loop. |
||
502 | void packageLoop(LoopData &Loop); |
||
503 | |||
504 | /// Unwrap loops. |
||
505 | void unwrapLoops(); |
||
506 | |||
507 | /// Finalize frequency metrics. |
||
508 | /// |
||
509 | /// Calculates final frequencies and cleans up no-longer-needed data |
||
510 | /// structures. |
||
511 | void finalizeMetrics(); |
||
512 | |||
513 | /// Clear all memory. |
||
514 | void clear(); |
||
515 | |||
516 | virtual std::string getBlockName(const BlockNode &Node) const; |
||
517 | std::string getLoopName(const LoopData &Loop) const; |
||
518 | |||
519 | virtual raw_ostream &print(raw_ostream &OS) const { return OS; } |
||
520 | void dump() const { print(dbgs()); } |
||
521 | |||
522 | Scaled64 getFloatingBlockFreq(const BlockNode &Node) const; |
||
523 | |||
524 | BlockFrequency getBlockFreq(const BlockNode &Node) const; |
||
525 | std::optional<uint64_t> |
||
526 | getBlockProfileCount(const Function &F, const BlockNode &Node, |
||
527 | bool AllowSynthetic = false) const; |
||
528 | std::optional<uint64_t> |
||
529 | getProfileCountFromFreq(const Function &F, uint64_t Freq, |
||
530 | bool AllowSynthetic = false) const; |
||
531 | bool isIrrLoopHeader(const BlockNode &Node); |
||
532 | |||
533 | void setBlockFreq(const BlockNode &Node, uint64_t Freq); |
||
534 | |||
535 | raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const; |
||
536 | raw_ostream &printBlockFreq(raw_ostream &OS, |
||
537 | const BlockFrequency &Freq) const; |
||
538 | |||
539 | uint64_t getEntryFreq() const { |
||
540 | assert(!Freqs.empty()); |
||
541 | return Freqs[0].Integer; |
||
542 | } |
||
543 | }; |
||
544 | |||
545 | namespace bfi_detail { |
||
546 | |||
547 | template <class BlockT> struct TypeMap {}; |
||
548 | template <> struct TypeMap<BasicBlock> { |
||
549 | using BlockT = BasicBlock; |
||
550 | using BlockKeyT = AssertingVH<const BasicBlock>; |
||
551 | using FunctionT = Function; |
||
552 | using BranchProbabilityInfoT = BranchProbabilityInfo; |
||
553 | using LoopT = Loop; |
||
554 | using LoopInfoT = LoopInfo; |
||
555 | }; |
||
556 | template <> struct TypeMap<MachineBasicBlock> { |
||
557 | using BlockT = MachineBasicBlock; |
||
558 | using BlockKeyT = const MachineBasicBlock *; |
||
559 | using FunctionT = MachineFunction; |
||
560 | using BranchProbabilityInfoT = MachineBranchProbabilityInfo; |
||
561 | using LoopT = MachineLoop; |
||
562 | using LoopInfoT = MachineLoopInfo; |
||
563 | }; |
||
564 | |||
565 | template <class BlockT, class BFIImplT> |
||
566 | class BFICallbackVH; |
||
567 | |||
568 | /// Get the name of a MachineBasicBlock. |
||
569 | /// |
||
570 | /// Get the name of a MachineBasicBlock. It's templated so that including from |
||
571 | /// CodeGen is unnecessary (that would be a layering issue). |
||
572 | /// |
||
573 | /// This is used mainly for debug output. The name is similar to |
||
574 | /// MachineBasicBlock::getFullName(), but skips the name of the function. |
||
575 | template <class BlockT> std::string getBlockName(const BlockT *BB) { |
||
576 | assert(BB && "Unexpected nullptr"); |
||
577 | auto MachineName = "BB" + Twine(BB->getNumber()); |
||
578 | if (BB->getBasicBlock()) |
||
579 | return (MachineName + "[" + BB->getName() + "]").str(); |
||
580 | return MachineName.str(); |
||
581 | } |
||
582 | /// Get the name of a BasicBlock. |
||
583 | template <> inline std::string getBlockName(const BasicBlock *BB) { |
||
584 | assert(BB && "Unexpected nullptr"); |
||
585 | return BB->getName().str(); |
||
586 | } |
||
587 | |||
588 | /// Graph of irreducible control flow. |
||
589 | /// |
||
590 | /// This graph is used for determining the SCCs in a loop (or top-level |
||
591 | /// function) that has irreducible control flow. |
||
592 | /// |
||
593 | /// During the block frequency algorithm, the local graphs are defined in a |
||
594 | /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock |
||
595 | /// graphs for most edges, but getting others from \a LoopData::ExitMap. The |
||
596 | /// latter only has successor information. |
||
597 | /// |
||
598 | /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use |
||
599 | /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator), |
||
600 | /// and it explicitly lists predecessors and successors. The initialization |
||
601 | /// that relies on \c MachineBasicBlock is defined in the header. |
||
602 | struct IrreducibleGraph { |
||
603 | using BFIBase = BlockFrequencyInfoImplBase; |
||
604 | |||
605 | BFIBase &BFI; |
||
606 | |||
607 | using BlockNode = BFIBase::BlockNode; |
||
608 | struct IrrNode { |
||
609 | BlockNode Node; |
||
610 | unsigned NumIn = 0; |
||
611 | std::deque<const IrrNode *> Edges; |
||
612 | |||
613 | IrrNode(const BlockNode &Node) : Node(Node) {} |
||
614 | |||
615 | using iterator = std::deque<const IrrNode *>::const_iterator; |
||
616 | |||
617 | iterator pred_begin() const { return Edges.begin(); } |
||
618 | iterator succ_begin() const { return Edges.begin() + NumIn; } |
||
619 | iterator pred_end() const { return succ_begin(); } |
||
620 | iterator succ_end() const { return Edges.end(); } |
||
621 | }; |
||
622 | BlockNode Start; |
||
623 | const IrrNode *StartIrr = nullptr; |
||
624 | std::vector<IrrNode> Nodes; |
||
625 | SmallDenseMap<uint32_t, IrrNode *, 4> Lookup; |
||
626 | |||
627 | /// Construct an explicit graph containing irreducible control flow. |
||
628 | /// |
||
629 | /// Construct an explicit graph of the control flow in \c OuterLoop (or the |
||
630 | /// top-level function, if \c OuterLoop is \c nullptr). Uses \c |
||
631 | /// addBlockEdges to add block successors that have not been packaged into |
||
632 | /// loops. |
||
633 | /// |
||
634 | /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected |
||
635 | /// user of this. |
||
636 | template <class BlockEdgesAdder> |
||
637 | IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, |
||
638 | BlockEdgesAdder addBlockEdges) : BFI(BFI) { |
||
639 | initialize(OuterLoop, addBlockEdges); |
||
640 | } |
||
641 | |||
642 | template <class BlockEdgesAdder> |
||
643 | void initialize(const BFIBase::LoopData *OuterLoop, |
||
644 | BlockEdgesAdder addBlockEdges); |
||
645 | void addNodesInLoop(const BFIBase::LoopData &OuterLoop); |
||
646 | void addNodesInFunction(); |
||
647 | |||
648 | void addNode(const BlockNode &Node) { |
||
649 | Nodes.emplace_back(Node); |
||
650 | BFI.Working[Node.Index].getMass() = BlockMass::getEmpty(); |
||
651 | } |
||
652 | |||
653 | void indexNodes(); |
||
654 | template <class BlockEdgesAdder> |
||
655 | void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, |
||
656 | BlockEdgesAdder addBlockEdges); |
||
657 | void addEdge(IrrNode &Irr, const BlockNode &Succ, |
||
658 | const BFIBase::LoopData *OuterLoop); |
||
659 | }; |
||
660 | |||
661 | template <class BlockEdgesAdder> |
||
662 | void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop, |
||
663 | BlockEdgesAdder addBlockEdges) { |
||
664 | if (OuterLoop) { |
||
665 | addNodesInLoop(*OuterLoop); |
||
666 | for (auto N : OuterLoop->Nodes) |
||
667 | addEdges(N, OuterLoop, addBlockEdges); |
||
668 | } else { |
||
669 | addNodesInFunction(); |
||
670 | for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) |
||
671 | addEdges(Index, OuterLoop, addBlockEdges); |
||
672 | } |
||
673 | StartIrr = Lookup[Start.Index]; |
||
674 | } |
||
675 | |||
676 | template <class BlockEdgesAdder> |
||
677 | void IrreducibleGraph::addEdges(const BlockNode &Node, |
||
678 | const BFIBase::LoopData *OuterLoop, |
||
679 | BlockEdgesAdder addBlockEdges) { |
||
680 | auto L = Lookup.find(Node.Index); |
||
681 | if (L == Lookup.end()) |
||
682 | return; |
||
683 | IrrNode &Irr = *L->second; |
||
684 | const auto &Working = BFI.Working[Node.Index]; |
||
685 | |||
686 | if (Working.isAPackage()) |
||
687 | for (const auto &I : Working.Loop->Exits) |
||
688 | addEdge(Irr, I.first, OuterLoop); |
||
689 | else |
||
690 | addBlockEdges(*this, Irr, OuterLoop); |
||
691 | } |
||
692 | |||
693 | } // end namespace bfi_detail |
||
694 | |||
695 | /// Shared implementation for block frequency analysis. |
||
696 | /// |
||
697 | /// This is a shared implementation of BlockFrequencyInfo and |
||
698 | /// MachineBlockFrequencyInfo, and calculates the relative frequencies of |
||
699 | /// blocks. |
||
700 | /// |
||
701 | /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block, |
||
702 | /// which is called the header. A given loop, L, can have sub-loops, which are |
||
703 | /// loops within the subgraph of L that exclude its header. (A "trivial" SCC |
||
704 | /// consists of a single block that does not have a self-edge.) |
||
705 | /// |
||
706 | /// In addition to loops, this algorithm has limited support for irreducible |
||
707 | /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are |
||
708 | /// discovered on the fly, and modelled as loops with multiple headers. |
||
709 | /// |
||
710 | /// The headers of irreducible sub-SCCs consist of its entry blocks and all |
||
711 | /// nodes that are targets of a backedge within it (excluding backedges within |
||
712 | /// true sub-loops). Block frequency calculations act as if a block is |
||
713 | /// inserted that intercepts all the edges to the headers. All backedges and |
||
714 | /// entries point to this block. Its successors are the headers, which split |
||
715 | /// the frequency evenly. |
||
716 | /// |
||
717 | /// This algorithm leverages BlockMass and ScaledNumber to maintain precision, |
||
718 | /// separates mass distribution from loop scaling, and dithers to eliminate |
||
719 | /// probability mass loss. |
||
720 | /// |
||
721 | /// The implementation is split between BlockFrequencyInfoImpl, which knows the |
||
722 | /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and |
||
723 | /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a |
||
724 | /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in |
||
725 | /// reverse-post order. This gives two advantages: it's easy to compare the |
||
726 | /// relative ordering of two nodes, and maps keyed on BlockT can be represented |
||
727 | /// by vectors. |
||
728 | /// |
||
729 | /// This algorithm is O(V+E), unless there is irreducible control flow, in |
||
730 | /// which case it's O(V*E) in the worst case. |
||
731 | /// |
||
732 | /// These are the main stages: |
||
733 | /// |
||
734 | /// 0. Reverse post-order traversal (\a initializeRPOT()). |
||
735 | /// |
||
736 | /// Run a single post-order traversal and save it (in reverse) in RPOT. |
||
737 | /// All other stages make use of this ordering. Save a lookup from BlockT |
||
738 | /// to BlockNode (the index into RPOT) in Nodes. |
||
739 | /// |
||
740 | /// 1. Loop initialization (\a initializeLoops()). |
||
741 | /// |
||
742 | /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of |
||
743 | /// the algorithm. In particular, store the immediate members of each loop |
||
744 | /// in reverse post-order. |
||
745 | /// |
||
746 | /// 2. Calculate mass and scale in loops (\a computeMassInLoops()). |
||
747 | /// |
||
748 | /// For each loop (bottom-up), distribute mass through the DAG resulting |
||
749 | /// from ignoring backedges and treating sub-loops as a single pseudo-node. |
||
750 | /// Track the backedge mass distributed to the loop header, and use it to |
||
751 | /// calculate the loop scale (number of loop iterations). Immediate |
||
752 | /// members that represent sub-loops will already have been visited and |
||
753 | /// packaged into a pseudo-node. |
||
754 | /// |
||
755 | /// Distributing mass in a loop is a reverse-post-order traversal through |
||
756 | /// the loop. Start by assigning full mass to the Loop header. For each |
||
757 | /// node in the loop: |
||
758 | /// |
||
759 | /// - Fetch and categorize the weight distribution for its successors. |
||
760 | /// If this is a packaged-subloop, the weight distribution is stored |
||
761 | /// in \a LoopData::Exits. Otherwise, fetch it from |
||
762 | /// BranchProbabilityInfo. |
||
763 | /// |
||
764 | /// - Each successor is categorized as \a Weight::Local, a local edge |
||
765 | /// within the current loop, \a Weight::Backedge, a backedge to the |
||
766 | /// loop header, or \a Weight::Exit, any successor outside the loop. |
||
767 | /// The weight, the successor, and its category are stored in \a |
||
768 | /// Distribution. There can be multiple edges to each successor. |
||
769 | /// |
||
770 | /// - If there's a backedge to a non-header, there's an irreducible SCC. |
||
771 | /// The usual flow is temporarily aborted. \a |
||
772 | /// computeIrreducibleMass() finds the irreducible SCCs within the |
||
773 | /// loop, packages them up, and restarts the flow. |
||
774 | /// |
||
775 | /// - Normalize the distribution: scale weights down so that their sum |
||
776 | /// is 32-bits, and coalesce multiple edges to the same node. |
||
777 | /// |
||
778 | /// - Distribute the mass accordingly, dithering to minimize mass loss, |
||
779 | /// as described in \a distributeMass(). |
||
780 | /// |
||
781 | /// In the case of irreducible loops, instead of a single loop header, |
||
782 | /// there will be several. The computation of backedge masses is similar |
||
783 | /// but instead of having a single backedge mass, there will be one |
||
784 | /// backedge per loop header. In these cases, each backedge will carry |
||
785 | /// a mass proportional to the edge weights along the corresponding |
||
786 | /// path. |
||
787 | /// |
||
788 | /// At the end of propagation, the full mass assigned to the loop will be |
||
789 | /// distributed among the loop headers proportionally according to the |
||
790 | /// mass flowing through their backedges. |
||
791 | /// |
||
792 | /// Finally, calculate the loop scale from the accumulated backedge mass. |
||
793 | /// |
||
794 | /// 3. Distribute mass in the function (\a computeMassInFunction()). |
||
795 | /// |
||
796 | /// Finally, distribute mass through the DAG resulting from packaging all |
||
797 | /// loops in the function. This uses the same algorithm as distributing |
||
798 | /// mass in a loop, except that there are no exit or backedge edges. |
||
799 | /// |
||
800 | /// 4. Unpackage loops (\a unwrapLoops()). |
||
801 | /// |
||
802 | /// Initialize each block's frequency to a floating point representation of |
||
803 | /// its mass. |
||
804 | /// |
||
805 | /// Visit loops top-down, scaling the frequencies of its immediate members |
||
806 | /// by the loop's pseudo-node's frequency. |
||
807 | /// |
||
808 | /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()). |
||
809 | /// |
||
810 | /// Using the min and max frequencies as a guide, translate floating point |
||
811 | /// frequencies to an appropriate range in uint64_t. |
||
812 | /// |
||
813 | /// It has some known flaws. |
||
814 | /// |
||
815 | /// - The model of irreducible control flow is a rough approximation. |
||
816 | /// |
||
817 | /// Modelling irreducible control flow exactly involves setting up and |
||
818 | /// solving a group of infinite geometric series. Such precision is |
||
819 | /// unlikely to be worthwhile, since most of our algorithms give up on |
||
820 | /// irreducible control flow anyway. |
||
821 | /// |
||
822 | /// Nevertheless, we might find that we need to get closer. Here's a sort |
||
823 | /// of TODO list for the model with diminishing returns, to be completed as |
||
824 | /// necessary. |
||
825 | /// |
||
826 | /// - The headers for the \a LoopData representing an irreducible SCC |
||
827 | /// include non-entry blocks. When these extra blocks exist, they |
||
828 | /// indicate a self-contained irreducible sub-SCC. We could treat them |
||
829 | /// as sub-loops, rather than arbitrarily shoving the problematic |
||
830 | /// blocks into the headers of the main irreducible SCC. |
||
831 | /// |
||
832 | /// - Entry frequencies are assumed to be evenly split between the |
||
833 | /// headers of a given irreducible SCC, which is the only option if we |
||
834 | /// need to compute mass in the SCC before its parent loop. Instead, |
||
835 | /// we could partially compute mass in the parent loop, and stop when |
||
836 | /// we get to the SCC. Here, we have the correct ratio of entry |
||
837 | /// masses, which we can use to adjust their relative frequencies. |
||
838 | /// Compute mass in the SCC, and then continue propagation in the |
||
839 | /// parent. |
||
840 | /// |
||
841 | /// - We can propagate mass iteratively through the SCC, for some fixed |
||
842 | /// number of iterations. Each iteration starts by assigning the entry |
||
843 | /// blocks their backedge mass from the prior iteration. The final |
||
844 | /// mass for each block (and each exit, and the total backedge mass |
||
845 | /// used for computing loop scale) is the sum of all iterations. |
||
846 | /// (Running this until fixed point would "solve" the geometric |
||
847 | /// series by simulation.) |
||
848 | template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase { |
||
849 | // This is part of a workaround for a GCC 4.7 crash on lambdas. |
||
850 | friend struct bfi_detail::BlockEdgesAdder<BT>; |
||
851 | |||
852 | using BlockT = typename bfi_detail::TypeMap<BT>::BlockT; |
||
853 | using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT; |
||
854 | using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT; |
||
855 | using BranchProbabilityInfoT = |
||
856 | typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT; |
||
857 | using LoopT = typename bfi_detail::TypeMap<BT>::LoopT; |
||
858 | using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT; |
||
859 | using Successor = GraphTraits<const BlockT *>; |
||
860 | using Predecessor = GraphTraits<Inverse<const BlockT *>>; |
||
861 | using BFICallbackVH = |
||
862 | bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>; |
||
863 | |||
864 | const BranchProbabilityInfoT *BPI = nullptr; |
||
865 | const LoopInfoT *LI = nullptr; |
||
866 | const FunctionT *F = nullptr; |
||
867 | |||
868 | // All blocks in reverse postorder. |
||
869 | std::vector<const BlockT *> RPOT; |
||
870 | DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes; |
||
871 | |||
872 | using rpot_iterator = typename std::vector<const BlockT *>::const_iterator; |
||
873 | |||
874 | rpot_iterator rpot_begin() const { return RPOT.begin(); } |
||
875 | rpot_iterator rpot_end() const { return RPOT.end(); } |
||
876 | |||
877 | size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); } |
||
878 | |||
879 | BlockNode getNode(const rpot_iterator &I) const { |
||
880 | return BlockNode(getIndex(I)); |
||
881 | } |
||
882 | |||
883 | BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; } |
||
884 | |||
885 | const BlockT *getBlock(const BlockNode &Node) const { |
||
886 | assert(Node.Index < RPOT.size()); |
||
887 | return RPOT[Node.Index]; |
||
888 | } |
||
889 | |||
890 | /// Run (and save) a post-order traversal. |
||
891 | /// |
||
892 | /// Saves a reverse post-order traversal of all the nodes in \a F. |
||
893 | void initializeRPOT(); |
||
894 | |||
895 | /// Initialize loop data. |
||
896 | /// |
||
897 | /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from |
||
898 | /// each block to the deepest loop it's in, but we need the inverse. For each |
||
899 | /// loop, we store in reverse post-order its "immediate" members, defined as |
||
900 | /// the header, the headers of immediate sub-loops, and all other blocks in |
||
901 | /// the loop that are not in sub-loops. |
||
902 | void initializeLoops(); |
||
903 | |||
904 | /// Propagate to a block's successors. |
||
905 | /// |
||
906 | /// In the context of distributing mass through \c OuterLoop, divide the mass |
||
907 | /// currently assigned to \c Node between its successors. |
||
908 | /// |
||
909 | /// \return \c true unless there's an irreducible backedge. |
||
910 | bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node); |
||
911 | |||
912 | /// Compute mass in a particular loop. |
||
913 | /// |
||
914 | /// Assign mass to \c Loop's header, and then for each block in \c Loop in |
||
915 | /// reverse post-order, distribute mass to its successors. Only visits nodes |
||
916 | /// that have not been packaged into sub-loops. |
||
917 | /// |
||
918 | /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop. |
||
919 | /// \return \c true unless there's an irreducible backedge. |
||
920 | bool computeMassInLoop(LoopData &Loop); |
||
921 | |||
922 | /// Try to compute mass in the top-level function. |
||
923 | /// |
||
924 | /// Assign mass to the entry block, and then for each block in reverse |
||
925 | /// post-order, distribute mass to its successors. Skips nodes that have |
||
926 | /// been packaged into loops. |
||
927 | /// |
||
928 | /// \pre \a computeMassInLoops() has been called. |
||
929 | /// \return \c true unless there's an irreducible backedge. |
||
930 | bool tryToComputeMassInFunction(); |
||
931 | |||
932 | /// Compute mass in (and package up) irreducible SCCs. |
||
933 | /// |
||
934 | /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front |
||
935 | /// of \c Insert), and call \a computeMassInLoop() on each of them. |
||
936 | /// |
||
937 | /// If \c OuterLoop is \c nullptr, it refers to the top-level function. |
||
938 | /// |
||
939 | /// \pre \a computeMassInLoop() has been called for each subloop of \c |
||
940 | /// OuterLoop. |
||
941 | /// \pre \c Insert points at the last loop successfully processed by \a |
||
942 | /// computeMassInLoop(). |
||
943 | /// \pre \c OuterLoop has irreducible SCCs. |
||
944 | void computeIrreducibleMass(LoopData *OuterLoop, |
||
945 | std::list<LoopData>::iterator Insert); |
||
946 | |||
947 | /// Compute mass in all loops. |
||
948 | /// |
||
949 | /// For each loop bottom-up, call \a computeMassInLoop(). |
||
950 | /// |
||
951 | /// \a computeMassInLoop() aborts (and returns \c false) on loops that |
||
952 | /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then |
||
953 | /// re-enter \a computeMassInLoop(). |
||
954 | /// |
||
955 | /// \post \a computeMassInLoop() has returned \c true for every loop. |
||
956 | void computeMassInLoops(); |
||
957 | |||
958 | /// Compute mass in the top-level function. |
||
959 | /// |
||
960 | /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to |
||
961 | /// compute mass in the top-level function. |
||
962 | /// |
||
963 | /// \post \a tryToComputeMassInFunction() has returned \c true. |
||
964 | void computeMassInFunction(); |
||
965 | |||
966 | std::string getBlockName(const BlockNode &Node) const override { |
||
967 | return bfi_detail::getBlockName(getBlock(Node)); |
||
968 | } |
||
969 | |||
970 | /// The current implementation for computing relative block frequencies does |
||
971 | /// not handle correctly control-flow graphs containing irreducible loops. To |
||
972 | /// resolve the problem, we apply a post-processing step, which iteratively |
||
973 | /// updates block frequencies based on the frequencies of their predesessors. |
||
974 | /// This corresponds to finding the stationary point of the Markov chain by |
||
975 | /// an iterative method aka "PageRank computation". |
||
976 | /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but |
||
977 | /// typically converges faster. |
||
978 | /// |
||
979 | /// Decide whether we want to apply iterative inference for a given function. |
||
980 | bool needIterativeInference() const; |
||
981 | |||
982 | /// Apply an iterative post-processing to infer correct counts for irr loops. |
||
983 | void applyIterativeInference(); |
||
984 | |||
985 | using ProbMatrixType = std::vector<std::vector<std::pair<size_t, Scaled64>>>; |
||
986 | |||
987 | /// Run iterative inference for a probability matrix and initial frequencies. |
||
988 | void iterativeInference(const ProbMatrixType &ProbMatrix, |
||
989 | std::vector<Scaled64> &Freq) const; |
||
990 | |||
991 | /// Find all blocks to apply inference on, that is, reachable from the entry |
||
992 | /// and backward reachable from exists along edges with positive probability. |
||
993 | void findReachableBlocks(std::vector<const BlockT *> &Blocks) const; |
||
994 | |||
995 | /// Build a matrix of probabilities with transitions (edges) between the |
||
996 | /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P |
||
997 | void initTransitionProbabilities( |
||
998 | const std::vector<const BlockT *> &Blocks, |
||
999 | const DenseMap<const BlockT *, size_t> &BlockIndex, |
||
1000 | ProbMatrixType &ProbMatrix) const; |
||
1001 | |||
1002 | #ifndef NDEBUG |
||
1003 | /// Compute the discrepancy between current block frequencies and the |
||
1004 | /// probability matrix. |
||
1005 | Scaled64 discrepancy(const ProbMatrixType &ProbMatrix, |
||
1006 | const std::vector<Scaled64> &Freq) const; |
||
1007 | #endif |
||
1008 | |||
1009 | public: |
||
1010 | BlockFrequencyInfoImpl() = default; |
||
1011 | |||
1012 | const FunctionT *getFunction() const { return F; } |
||
1013 | |||
1014 | void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, |
||
1015 | const LoopInfoT &LI); |
||
1016 | |||
1017 | using BlockFrequencyInfoImplBase::getEntryFreq; |
||
1018 | |||
1019 | BlockFrequency getBlockFreq(const BlockT *BB) const { |
||
1020 | return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB)); |
||
1021 | } |
||
1022 | |||
1023 | std::optional<uint64_t> |
||
1024 | getBlockProfileCount(const Function &F, const BlockT *BB, |
||
1025 | bool AllowSynthetic = false) const { |
||
1026 | return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB), |
||
1027 | AllowSynthetic); |
||
1028 | } |
||
1029 | |||
1030 | std::optional<uint64_t> |
||
1031 | getProfileCountFromFreq(const Function &F, uint64_t Freq, |
||
1032 | bool AllowSynthetic = false) const { |
||
1033 | return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq, |
||
1034 | AllowSynthetic); |
||
1035 | } |
||
1036 | |||
1037 | bool isIrrLoopHeader(const BlockT *BB) { |
||
1038 | return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB)); |
||
1039 | } |
||
1040 | |||
1041 | void setBlockFreq(const BlockT *BB, uint64_t Freq); |
||
1042 | |||
1043 | void forgetBlock(const BlockT *BB) { |
||
1044 | // We don't erase corresponding items from `Freqs`, `RPOT` and other to |
||
1045 | // avoid invalidating indices. Doing so would have saved some memory, but |
||
1046 | // it's not worth it. |
||
1047 | Nodes.erase(BB); |
||
1048 | } |
||
1049 | |||
1050 | Scaled64 getFloatingBlockFreq(const BlockT *BB) const { |
||
1051 | return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB)); |
||
1052 | } |
||
1053 | |||
1054 | const BranchProbabilityInfoT &getBPI() const { return *BPI; } |
||
1055 | |||
1056 | /// Print the frequencies for the current function. |
||
1057 | /// |
||
1058 | /// Prints the frequencies for the blocks in the current function. |
||
1059 | /// |
||
1060 | /// Blocks are printed in the natural iteration order of the function, rather |
||
1061 | /// than reverse post-order. This provides two advantages: writing -analyze |
||
1062 | /// tests is easier (since blocks come out in source order), and even |
||
1063 | /// unreachable blocks are printed. |
||
1064 | /// |
||
1065 | /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so |
||
1066 | /// we need to override it here. |
||
1067 | raw_ostream &print(raw_ostream &OS) const override; |
||
1068 | |||
1069 | using BlockFrequencyInfoImplBase::dump; |
||
1070 | using BlockFrequencyInfoImplBase::printBlockFreq; |
||
1071 | |||
1072 | raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const { |
||
1073 | return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB)); |
||
1074 | } |
||
1075 | |||
1076 | void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const; |
||
1077 | }; |
||
1078 | |||
1079 | namespace bfi_detail { |
||
1080 | |||
1081 | template <class BFIImplT> |
||
1082 | class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH { |
||
1083 | BFIImplT *BFIImpl; |
||
1084 | |||
1085 | public: |
||
1086 | BFICallbackVH() = default; |
||
1087 | |||
1088 | BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl) |
||
1089 | : CallbackVH(BB), BFIImpl(BFIImpl) {} |
||
1090 | |||
1091 | virtual ~BFICallbackVH() = default; |
||
1092 | |||
1093 | void deleted() override { |
||
1094 | BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr())); |
||
1095 | } |
||
1096 | }; |
||
1097 | |||
1098 | /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles |
||
1099 | /// don't apply to them. |
||
1100 | template <class BFIImplT> |
||
1101 | class BFICallbackVH<MachineBasicBlock, BFIImplT> { |
||
1102 | public: |
||
1103 | BFICallbackVH() = default; |
||
1104 | BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {} |
||
1105 | }; |
||
1106 | |||
1107 | } // end namespace bfi_detail |
||
1108 | |||
1109 | template <class BT> |
||
1110 | void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F, |
||
1111 | const BranchProbabilityInfoT &BPI, |
||
1112 | const LoopInfoT &LI) { |
||
1113 | // Save the parameters. |
||
1114 | this->BPI = &BPI; |
||
1115 | this->LI = &LI; |
||
1116 | this->F = &F; |
||
1117 | |||
1118 | // Clean up left-over data structures. |
||
1119 | BlockFrequencyInfoImplBase::clear(); |
||
1120 | RPOT.clear(); |
||
1121 | Nodes.clear(); |
||
1122 | |||
1123 | // Initialize. |
||
1124 | LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName() |
||
1125 | << "\n=================" |
||
1126 | << std::string(F.getName().size(), '=') << "\n"); |
||
1127 | initializeRPOT(); |
||
1128 | initializeLoops(); |
||
1129 | |||
1130 | // Visit loops in post-order to find the local mass distribution, and then do |
||
1131 | // the full function. |
||
1132 | computeMassInLoops(); |
||
1133 | computeMassInFunction(); |
||
1134 | unwrapLoops(); |
||
1135 | // Apply a post-processing step improving computed frequencies for functions |
||
1136 | // with irreducible loops. |
||
1137 | if (needIterativeInference()) |
||
1138 | applyIterativeInference(); |
||
1139 | finalizeMetrics(); |
||
1140 | |||
1141 | if (CheckBFIUnknownBlockQueries) { |
||
1142 | // To detect BFI queries for unknown blocks, add entries for unreachable |
||
1143 | // blocks, if any. This is to distinguish between known/existing unreachable |
||
1144 | // blocks and unknown blocks. |
||
1145 | for (const BlockT &BB : F) |
||
1146 | if (!Nodes.count(&BB)) |
||
1147 | setBlockFreq(&BB, 0); |
||
1148 | } |
||
1149 | } |
||
1150 | |||
1151 | template <class BT> |
||
1152 | void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) { |
||
1153 | if (Nodes.count(BB)) |
||
1154 | BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq); |
||
1155 | else { |
||
1156 | // If BB is a newly added block after BFI is done, we need to create a new |
||
1157 | // BlockNode for it assigned with a new index. The index can be determined |
||
1158 | // by the size of Freqs. |
||
1159 | BlockNode NewNode(Freqs.size()); |
||
1160 | Nodes[BB] = {NewNode, BFICallbackVH(BB, this)}; |
||
1161 | Freqs.emplace_back(); |
||
1162 | BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq); |
||
1163 | } |
||
1164 | } |
||
1165 | |||
1166 | template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() { |
||
1167 | const BlockT *Entry = &F->front(); |
||
1168 | RPOT.reserve(F->size()); |
||
1169 | std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT)); |
||
1170 | std::reverse(RPOT.begin(), RPOT.end()); |
||
1171 | |||
1172 | assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() && |
||
1173 | "More nodes in function than Block Frequency Info supports"); |
||
1174 | |||
1175 | LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n"); |
||
1176 | for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) { |
||
1177 | BlockNode Node = getNode(I); |
||
1178 | LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) |
||
1179 | << "\n"); |
||
1180 | Nodes[*I] = {Node, BFICallbackVH(*I, this)}; |
||
1181 | } |
||
1182 | |||
1183 | Working.reserve(RPOT.size()); |
||
1184 | for (size_t Index = 0; Index < RPOT.size(); ++Index) |
||
1185 | Working.emplace_back(Index); |
||
1186 | Freqs.resize(RPOT.size()); |
||
1187 | } |
||
1188 | |||
1189 | template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() { |
||
1190 | LLVM_DEBUG(dbgs() << "loop-detection\n"); |
||
1191 | if (LI->empty()) |
||
1192 | return; |
||
1193 | |||
1194 | // Visit loops top down and assign them an index. |
||
1195 | std::deque<std::pair<const LoopT *, LoopData *>> Q; |
||
1196 | for (const LoopT *L : *LI) |
||
1197 | Q.emplace_back(L, nullptr); |
||
1198 | while (!Q.empty()) { |
||
1199 | const LoopT *Loop = Q.front().first; |
||
1200 | LoopData *Parent = Q.front().second; |
||
1201 | Q.pop_front(); |
||
1202 | |||
1203 | BlockNode Header = getNode(Loop->getHeader()); |
||
1204 | assert(Header.isValid()); |
||
1205 | |||
1206 | Loops.emplace_back(Parent, Header); |
||
1207 | Working[Header.Index].Loop = &Loops.back(); |
||
1208 | LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n"); |
||
1209 | |||
1210 | for (const LoopT *L : *Loop) |
||
1211 | Q.emplace_back(L, &Loops.back()); |
||
1212 | } |
||
1213 | |||
1214 | // Visit nodes in reverse post-order and add them to their deepest containing |
||
1215 | // loop. |
||
1216 | for (size_t Index = 0; Index < RPOT.size(); ++Index) { |
||
1217 | // Loop headers have already been mostly mapped. |
||
1218 | if (Working[Index].isLoopHeader()) { |
||
1219 | LoopData *ContainingLoop = Working[Index].getContainingLoop(); |
||
1220 | if (ContainingLoop) |
||
1221 | ContainingLoop->Nodes.push_back(Index); |
||
1222 | continue; |
||
1223 | } |
||
1224 | |||
1225 | const LoopT *Loop = LI->getLoopFor(RPOT[Index]); |
||
1226 | if (!Loop) |
||
1227 | continue; |
||
1228 | |||
1229 | // Add this node to its containing loop's member list. |
||
1230 | BlockNode Header = getNode(Loop->getHeader()); |
||
1231 | assert(Header.isValid()); |
||
1232 | const auto &HeaderData = Working[Header.Index]; |
||
1233 | assert(HeaderData.isLoopHeader()); |
||
1234 | |||
1235 | Working[Index].Loop = HeaderData.Loop; |
||
1236 | HeaderData.Loop->Nodes.push_back(Index); |
||
1237 | LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) |
||
1238 | << ": member = " << getBlockName(Index) << "\n"); |
||
1239 | } |
||
1240 | } |
||
1241 | |||
1242 | template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() { |
||
1243 | // Visit loops with the deepest first, and the top-level loops last. |
||
1244 | for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { |
||
1245 | if (computeMassInLoop(*L)) |
||
1246 | continue; |
||
1247 | auto Next = std::next(L); |
||
1248 | computeIrreducibleMass(&*L, L.base()); |
||
1249 | L = std::prev(Next); |
||
1250 | if (computeMassInLoop(*L)) |
||
1251 | continue; |
||
1252 | llvm_unreachable("unhandled irreducible control flow"); |
||
1253 | } |
||
1254 | } |
||
1255 | |||
1256 | template <class BT> |
||
1257 | bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) { |
||
1258 | // Compute mass in loop. |
||
1259 | LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n"); |
||
1260 | |||
1261 | if (Loop.isIrreducible()) { |
||
1262 | LLVM_DEBUG(dbgs() << "isIrreducible = true\n"); |
||
1263 | Distribution Dist; |
||
1264 | unsigned NumHeadersWithWeight = 0; |
||
1265 | std::optional<uint64_t> MinHeaderWeight; |
||
1266 | DenseSet<uint32_t> HeadersWithoutWeight; |
||
1267 | HeadersWithoutWeight.reserve(Loop.NumHeaders); |
||
1268 | for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { |
||
1269 | auto &HeaderNode = Loop.Nodes[H]; |
||
1270 | const BlockT *Block = getBlock(HeaderNode); |
||
1271 | IsIrrLoopHeader.set(Loop.Nodes[H].Index); |
||
1272 | std::optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight(); |
||
1273 | if (!HeaderWeight) { |
||
1274 | LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on " |
||
1275 | << getBlockName(HeaderNode) << "\n"); |
||
1276 | HeadersWithoutWeight.insert(H); |
||
1277 | continue; |
||
1278 | } |
||
1279 | LLVM_DEBUG(dbgs() << getBlockName(HeaderNode) |
||
1280 | << " has irr loop header weight " << *HeaderWeight |
||
1281 | << "\n"); |
||
1282 | NumHeadersWithWeight++; |
||
1283 | uint64_t HeaderWeightValue = *HeaderWeight; |
||
1284 | if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight) |
||
1285 | MinHeaderWeight = HeaderWeightValue; |
||
1286 | if (HeaderWeightValue) { |
||
1287 | Dist.addLocal(HeaderNode, HeaderWeightValue); |
||
1288 | } |
||
1289 | } |
||
1290 | // As a heuristic, if some headers don't have a weight, give them the |
||
1291 | // minimum weight seen (not to disrupt the existing trends too much by |
||
1292 | // using a weight that's in the general range of the other headers' weights, |
||
1293 | // and the minimum seems to perform better than the average.) |
||
1294 | // FIXME: better update in the passes that drop the header weight. |
||
1295 | // If no headers have a weight, give them even weight (use weight 1). |
||
1296 | if (!MinHeaderWeight) |
||
1297 | MinHeaderWeight = 1; |
||
1298 | for (uint32_t H : HeadersWithoutWeight) { |
||
1299 | auto &HeaderNode = Loop.Nodes[H]; |
||
1300 | assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() && |
||
1301 | "Shouldn't have a weight metadata"); |
||
1302 | uint64_t MinWeight = *MinHeaderWeight; |
||
1303 | LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to " |
||
1304 | << getBlockName(HeaderNode) << "\n"); |
||
1305 | if (MinWeight) |
||
1306 | Dist.addLocal(HeaderNode, MinWeight); |
||
1307 | } |
||
1308 | distributeIrrLoopHeaderMass(Dist); |
||
1309 | for (const BlockNode &M : Loop.Nodes) |
||
1310 | if (!propagateMassToSuccessors(&Loop, M)) |
||
1311 | llvm_unreachable("unhandled irreducible control flow"); |
||
1312 | if (NumHeadersWithWeight == 0) |
||
1313 | // No headers have a metadata. Adjust header mass. |
||
1314 | adjustLoopHeaderMass(Loop); |
||
1315 | } else { |
||
1316 | Working[Loop.getHeader().Index].getMass() = BlockMass::getFull(); |
||
1317 | if (!propagateMassToSuccessors(&Loop, Loop.getHeader())) |
||
1318 | llvm_unreachable("irreducible control flow to loop header!?"); |
||
1319 | for (const BlockNode &M : Loop.members()) |
||
1320 | if (!propagateMassToSuccessors(&Loop, M)) |
||
1321 | // Irreducible backedge. |
||
1322 | return false; |
||
1323 | } |
||
1324 | |||
1325 | computeLoopScale(Loop); |
||
1326 | packageLoop(Loop); |
||
1327 | return true; |
||
1328 | } |
||
1329 | |||
1330 | template <class BT> |
||
1331 | bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() { |
||
1332 | // Compute mass in function. |
||
1333 | LLVM_DEBUG(dbgs() << "compute-mass-in-function\n"); |
||
1334 | assert(!Working.empty() && "no blocks in function"); |
||
1335 | assert(!Working[0].isLoopHeader() && "entry block is a loop header"); |
||
1336 | |||
1337 | Working[0].getMass() = BlockMass::getFull(); |
||
1338 | for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) { |
||
1339 | // Check for nodes that have been packaged. |
||
1340 | BlockNode Node = getNode(I); |
||
1341 | if (Working[Node.Index].isPackaged()) |
||
1342 | continue; |
||
1343 | |||
1344 | if (!propagateMassToSuccessors(nullptr, Node)) |
||
1345 | return false; |
||
1346 | } |
||
1347 | return true; |
||
1348 | } |
||
1349 | |||
1350 | template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() { |
||
1351 | if (tryToComputeMassInFunction()) |
||
1352 | return; |
||
1353 | computeIrreducibleMass(nullptr, Loops.begin()); |
||
1354 | if (tryToComputeMassInFunction()) |
||
1355 | return; |
||
1356 | llvm_unreachable("unhandled irreducible control flow"); |
||
1357 | } |
||
1358 | |||
1359 | template <class BT> |
||
1360 | bool BlockFrequencyInfoImpl<BT>::needIterativeInference() const { |
||
1361 | if (!UseIterativeBFIInference) |
||
1362 | return false; |
||
1363 | if (!F->getFunction().hasProfileData()) |
||
1364 | return false; |
||
1365 | // Apply iterative inference only if the function contains irreducible loops; |
||
1366 | // otherwise, computed block frequencies are reasonably correct. |
||
1367 | for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { |
||
1368 | if (L->isIrreducible()) |
||
1369 | return true; |
||
1370 | } |
||
1371 | return false; |
||
1372 | } |
||
1373 | |||
1374 | template <class BT> void BlockFrequencyInfoImpl<BT>::applyIterativeInference() { |
||
1375 | // Extract blocks for processing: a block is considered for inference iff it |
||
1376 | // can be reached from the entry by edges with a positive probability. |
||
1377 | // Non-processed blocks are assigned with the zero frequency and are ignored |
||
1378 | // in the computation |
||
1379 | std::vector<const BlockT *> ReachableBlocks; |
||
1380 | findReachableBlocks(ReachableBlocks); |
||
1381 | if (ReachableBlocks.empty()) |
||
1382 | return; |
||
1383 | |||
1384 | // The map is used to to index successors/predecessors of reachable blocks in |
||
1385 | // the ReachableBlocks vector |
||
1386 | DenseMap<const BlockT *, size_t> BlockIndex; |
||
1387 | // Extract initial frequencies for the reachable blocks |
||
1388 | auto Freq = std::vector<Scaled64>(ReachableBlocks.size()); |
||
1389 | Scaled64 SumFreq; |
||
1390 | for (size_t I = 0; I < ReachableBlocks.size(); I++) { |
||
1391 | const BlockT *BB = ReachableBlocks[I]; |
||
1392 | BlockIndex[BB] = I; |
||
1393 | Freq[I] = getFloatingBlockFreq(BB); |
||
1394 | SumFreq += Freq[I]; |
||
1395 | } |
||
1396 | assert(!SumFreq.isZero() && "empty initial block frequencies"); |
||
1397 | |||
1398 | LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName() |
||
1399 | << " with " << ReachableBlocks.size() << " blocks\n"); |
||
1400 | |||
1401 | // Normalizing frequencies so they sum up to 1.0 |
||
1402 | for (auto &Value : Freq) { |
||
1403 | Value /= SumFreq; |
||
1404 | } |
||
1405 | |||
1406 | // Setting up edge probabilities using sparse matrix representation: |
||
1407 | // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P |
||
1408 | ProbMatrixType ProbMatrix; |
||
1409 | initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix); |
||
1410 | |||
1411 | // Run the propagation |
||
1412 | iterativeInference(ProbMatrix, Freq); |
||
1413 | |||
1414 | // Assign computed frequency values |
||
1415 | for (const BlockT &BB : *F) { |
||
1416 | auto Node = getNode(&BB); |
||
1417 | if (!Node.isValid()) |
||
1418 | continue; |
||
1419 | if (BlockIndex.count(&BB)) { |
||
1420 | Freqs[Node.Index].Scaled = Freq[BlockIndex[&BB]]; |
||
1421 | } else { |
||
1422 | Freqs[Node.Index].Scaled = Scaled64::getZero(); |
||
1423 | } |
||
1424 | } |
||
1425 | } |
||
1426 | |||
1427 | template <class BT> |
||
1428 | void BlockFrequencyInfoImpl<BT>::iterativeInference( |
||
1429 | const ProbMatrixType &ProbMatrix, std::vector<Scaled64> &Freq) const { |
||
1430 | assert(0.0 < IterativeBFIPrecision && IterativeBFIPrecision < 1.0 && |
||
1431 | "incorrectly specified precision"); |
||
1432 | // Convert double precision to Scaled64 |
||
1433 | const auto Precision = |
||
1434 | Scaled64::getInverse(static_cast<uint64_t>(1.0 / IterativeBFIPrecision)); |
||
1435 | const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size(); |
||
1436 | |||
1437 | #ifndef NDEBUG |
||
1438 | LLVM_DEBUG(dbgs() << " Initial discrepancy = " |
||
1439 | << discrepancy(ProbMatrix, Freq).toString() << "\n"); |
||
1440 | #endif |
||
1441 | |||
1442 | // Successors[I] holds unique sucessors of the I-th block |
||
1443 | auto Successors = std::vector<std::vector<size_t>>(Freq.size()); |
||
1444 | for (size_t I = 0; I < Freq.size(); I++) { |
||
1445 | for (const auto &Jump : ProbMatrix[I]) { |
||
1446 | Successors[Jump.first].push_back(I); |
||
1447 | } |
||
1448 | } |
||
1449 | |||
1450 | // To speedup computation, we maintain a set of "active" blocks whose |
||
1451 | // frequencies need to be updated based on the incoming edges. |
||
1452 | // The set is dynamic and changes after every update. Initially all blocks |
||
1453 | // with a positive frequency are active |
||
1454 | auto IsActive = BitVector(Freq.size(), false); |
||
1455 | std::queue<size_t> ActiveSet; |
||
1456 | for (size_t I = 0; I < Freq.size(); I++) { |
||
1457 | if (Freq[I] > 0) { |
||
1458 | ActiveSet.push(I); |
||
1459 | IsActive[I] = true; |
||
1460 | } |
||
1461 | } |
||
1462 | |||
1463 | // Iterate over the blocks propagating frequencies |
||
1464 | size_t It = 0; |
||
1465 | while (It++ < MaxIterations && !ActiveSet.empty()) { |
||
1466 | size_t I = ActiveSet.front(); |
||
1467 | ActiveSet.pop(); |
||
1468 | IsActive[I] = false; |
||
1469 | |||
1470 | // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix. |
||
1471 | // A special care is taken for self-edges that needs to be scaled by |
||
1472 | // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges |
||
1473 | Scaled64 NewFreq; |
||
1474 | Scaled64 OneMinusSelfProb = Scaled64::getOne(); |
||
1475 | for (const auto &Jump : ProbMatrix[I]) { |
||
1476 | if (Jump.first == I) { |
||
1477 | OneMinusSelfProb -= Jump.second; |
||
1478 | } else { |
||
1479 | NewFreq += Freq[Jump.first] * Jump.second; |
||
1480 | } |
||
1481 | } |
||
1482 | if (OneMinusSelfProb != Scaled64::getOne()) |
||
1483 | NewFreq /= OneMinusSelfProb; |
||
1484 | |||
1485 | // If the block's frequency has changed enough, then |
||
1486 | // make sure the block and its successors are in the active set |
||
1487 | auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I]; |
||
1488 | if (Change > Precision) { |
||
1489 | ActiveSet.push(I); |
||
1490 | IsActive[I] = true; |
||
1491 | for (size_t Succ : Successors[I]) { |
||
1492 | if (!IsActive[Succ]) { |
||
1493 | ActiveSet.push(Succ); |
||
1494 | IsActive[Succ] = true; |
||
1495 | } |
||
1496 | } |
||
1497 | } |
||
1498 | |||
1499 | // Update the frequency for the block |
||
1500 | Freq[I] = NewFreq; |
||
1501 | } |
||
1502 | |||
1503 | LLVM_DEBUG(dbgs() << " Completed " << It << " inference iterations" |
||
1504 | << format(" (%0.0f per block)", double(It) / Freq.size()) |
||
1505 | << "\n"); |
||
1506 | #ifndef NDEBUG |
||
1507 | LLVM_DEBUG(dbgs() << " Final discrepancy = " |
||
1508 | << discrepancy(ProbMatrix, Freq).toString() << "\n"); |
||
1509 | #endif |
||
1510 | } |
||
1511 | |||
1512 | template <class BT> |
||
1513 | void BlockFrequencyInfoImpl<BT>::findReachableBlocks( |
||
1514 | std::vector<const BlockT *> &Blocks) const { |
||
1515 | // Find all blocks to apply inference on, that is, reachable from the entry |
||
1516 | // along edges with non-zero probablities |
||
1517 | std::queue<const BlockT *> Queue; |
||
1518 | SmallPtrSet<const BlockT *, 8> Reachable; |
||
1519 | const BlockT *Entry = &F->front(); |
||
1520 | Queue.push(Entry); |
||
1521 | Reachable.insert(Entry); |
||
1522 | while (!Queue.empty()) { |
||
1523 | const BlockT *SrcBB = Queue.front(); |
||
1524 | Queue.pop(); |
||
1525 | for (const BlockT *DstBB : children<const BlockT *>(SrcBB)) { |
||
1526 | auto EP = BPI->getEdgeProbability(SrcBB, DstBB); |
||
1527 | if (EP.isZero()) |
||
1528 | continue; |
||
1529 | if (Reachable.insert(DstBB).second) |
||
1530 | Queue.push(DstBB); |
||
1531 | } |
||
1532 | } |
||
1533 | |||
1534 | // Find all blocks to apply inference on, that is, backward reachable from |
||
1535 | // the entry along (backward) edges with non-zero probablities |
||
1536 | SmallPtrSet<const BlockT *, 8> InverseReachable; |
||
1537 | for (const BlockT &BB : *F) { |
||
1538 | // An exit block is a block without any successors |
||
1539 | bool HasSucc = GraphTraits<const BlockT *>::child_begin(&BB) != |
||
1540 | GraphTraits<const BlockT *>::child_end(&BB); |
||
1541 | if (!HasSucc && Reachable.count(&BB)) { |
||
1542 | Queue.push(&BB); |
||
1543 | InverseReachable.insert(&BB); |
||
1544 | } |
||
1545 | } |
||
1546 | while (!Queue.empty()) { |
||
1547 | const BlockT *SrcBB = Queue.front(); |
||
1548 | Queue.pop(); |
||
1549 | for (const BlockT *DstBB : children<Inverse<const BlockT *>>(SrcBB)) { |
||
1550 | auto EP = BPI->getEdgeProbability(DstBB, SrcBB); |
||
1551 | if (EP.isZero()) |
||
1552 | continue; |
||
1553 | if (InverseReachable.insert(DstBB).second) |
||
1554 | Queue.push(DstBB); |
||
1555 | } |
||
1556 | } |
||
1557 | |||
1558 | // Collect the result |
||
1559 | Blocks.reserve(F->size()); |
||
1560 | for (const BlockT &BB : *F) { |
||
1561 | if (Reachable.count(&BB) && InverseReachable.count(&BB)) { |
||
1562 | Blocks.push_back(&BB); |
||
1563 | } |
||
1564 | } |
||
1565 | } |
||
1566 | |||
1567 | template <class BT> |
||
1568 | void BlockFrequencyInfoImpl<BT>::initTransitionProbabilities( |
||
1569 | const std::vector<const BlockT *> &Blocks, |
||
1570 | const DenseMap<const BlockT *, size_t> &BlockIndex, |
||
1571 | ProbMatrixType &ProbMatrix) const { |
||
1572 | const size_t NumBlocks = Blocks.size(); |
||
1573 | auto Succs = std::vector<std::vector<std::pair<size_t, Scaled64>>>(NumBlocks); |
||
1574 | auto SumProb = std::vector<Scaled64>(NumBlocks); |
||
1575 | |||
1576 | // Find unique successors and corresponding probabilities for every block |
||
1577 | for (size_t Src = 0; Src < NumBlocks; Src++) { |
||
1578 | const BlockT *BB = Blocks[Src]; |
||
1579 | SmallPtrSet<const BlockT *, 2> UniqueSuccs; |
||
1580 | for (const auto SI : children<const BlockT *>(BB)) { |
||
1581 | // Ignore cold blocks |
||
1582 | if (BlockIndex.find(SI) == BlockIndex.end()) |
||
1583 | continue; |
||
1584 | // Ignore parallel edges between BB and SI blocks |
||
1585 | if (!UniqueSuccs.insert(SI).second) |
||
1586 | continue; |
||
1587 | // Ignore jumps with zero probability |
||
1588 | auto EP = BPI->getEdgeProbability(BB, SI); |
||
1589 | if (EP.isZero()) |
||
1590 | continue; |
||
1591 | |||
1592 | auto EdgeProb = |
||
1593 | Scaled64::getFraction(EP.getNumerator(), EP.getDenominator()); |
||
1594 | size_t Dst = BlockIndex.find(SI)->second; |
||
1595 | Succs[Src].push_back(std::make_pair(Dst, EdgeProb)); |
||
1596 | SumProb[Src] += EdgeProb; |
||
1597 | } |
||
1598 | } |
||
1599 | |||
1600 | // Add transitions for every jump with positive branch probability |
||
1601 | ProbMatrix = ProbMatrixType(NumBlocks); |
||
1602 | for (size_t Src = 0; Src < NumBlocks; Src++) { |
||
1603 | // Ignore blocks w/o successors |
||
1604 | if (Succs[Src].empty()) |
||
1605 | continue; |
||
1606 | |||
1607 | assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block"); |
||
1608 | for (auto &Jump : Succs[Src]) { |
||
1609 | size_t Dst = Jump.first; |
||
1610 | Scaled64 Prob = Jump.second; |
||
1611 | ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src])); |
||
1612 | } |
||
1613 | } |
||
1614 | |||
1615 | // Add transitions from sinks to the source |
||
1616 | size_t EntryIdx = BlockIndex.find(&F->front())->second; |
||
1617 | for (size_t Src = 0; Src < NumBlocks; Src++) { |
||
1618 | if (Succs[Src].empty()) { |
||
1619 | ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne())); |
||
1620 | } |
||
1621 | } |
||
1622 | } |
||
1623 | |||
1624 | #ifndef NDEBUG |
||
1625 | template <class BT> |
||
1626 | BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl<BT>::discrepancy( |
||
1627 | const ProbMatrixType &ProbMatrix, const std::vector<Scaled64> &Freq) const { |
||
1628 | assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block"); |
||
1629 | Scaled64 Discrepancy; |
||
1630 | for (size_t I = 0; I < ProbMatrix.size(); I++) { |
||
1631 | Scaled64 Sum; |
||
1632 | for (const auto &Jump : ProbMatrix[I]) { |
||
1633 | Sum += Freq[Jump.first] * Jump.second; |
||
1634 | } |
||
1635 | Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I]; |
||
1636 | } |
||
1637 | // Normalizing by the frequency of the entry block |
||
1638 | return Discrepancy / Freq[0]; |
||
1639 | } |
||
1640 | #endif |
||
1641 | |||
1642 | /// \note This should be a lambda, but that crashes GCC 4.7. |
||
1643 | namespace bfi_detail { |
||
1644 | |||
1645 | template <class BT> struct BlockEdgesAdder { |
||
1646 | using BlockT = BT; |
||
1647 | using LoopData = BlockFrequencyInfoImplBase::LoopData; |
||
1648 | using Successor = GraphTraits<const BlockT *>; |
||
1649 | |||
1650 | const BlockFrequencyInfoImpl<BT> &BFI; |
||
1651 | |||
1652 | explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI) |
||
1653 | : BFI(BFI) {} |
||
1654 | |||
1655 | void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr, |
||
1656 | const LoopData *OuterLoop) { |
||
1657 | const BlockT *BB = BFI.RPOT[Irr.Node.Index]; |
||
1658 | for (const auto Succ : children<const BlockT *>(BB)) |
||
1659 | G.addEdge(Irr, BFI.getNode(Succ), OuterLoop); |
||
1660 | } |
||
1661 | }; |
||
1662 | |||
1663 | } // end namespace bfi_detail |
||
1664 | |||
1665 | template <class BT> |
||
1666 | void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass( |
||
1667 | LoopData *OuterLoop, std::list<LoopData>::iterator Insert) { |
||
1668 | LLVM_DEBUG(dbgs() << "analyze-irreducible-in-"; |
||
1669 | if (OuterLoop) dbgs() |
||
1670 | << "loop: " << getLoopName(*OuterLoop) << "\n"; |
||
1671 | else dbgs() << "function\n"); |
||
1672 | |||
1673 | using namespace bfi_detail; |
||
1674 | |||
1675 | // Ideally, addBlockEdges() would be declared here as a lambda, but that |
||
1676 | // crashes GCC 4.7. |
||
1677 | BlockEdgesAdder<BT> addBlockEdges(*this); |
||
1678 | IrreducibleGraph G(*this, OuterLoop, addBlockEdges); |
||
1679 | |||
1680 | for (auto &L : analyzeIrreducible(G, OuterLoop, Insert)) |
||
1681 | computeMassInLoop(L); |
||
1682 | |||
1683 | if (!OuterLoop) |
||
1684 | return; |
||
1685 | updateLoopWithIrreducible(*OuterLoop); |
||
1686 | } |
||
1687 | |||
1688 | // A helper function that converts a branch probability into weight. |
||
1689 | inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) { |
||
1690 | return Prob.getNumerator(); |
||
1691 | } |
||
1692 | |||
1693 | template <class BT> |
||
1694 | bool |
||
1695 | BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop, |
||
1696 | const BlockNode &Node) { |
||
1697 | LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n"); |
||
1698 | // Calculate probability for successors. |
||
1699 | Distribution Dist; |
||
1700 | if (auto *Loop = Working[Node.Index].getPackagedLoop()) { |
||
1701 | assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop"); |
||
1702 | if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist)) |
||
1703 | // Irreducible backedge. |
||
1704 | return false; |
||
1705 | } else { |
||
1706 | const BlockT *BB = getBlock(Node); |
||
1707 | for (auto SI = GraphTraits<const BlockT *>::child_begin(BB), |
||
1708 | SE = GraphTraits<const BlockT *>::child_end(BB); |
||
1709 | SI != SE; ++SI) |
||
1710 | if (!addToDist( |
||
1711 | Dist, OuterLoop, Node, getNode(*SI), |
||
1712 | getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI)))) |
||
1713 | // Irreducible backedge. |
||
1714 | return false; |
||
1715 | } |
||
1716 | |||
1717 | // Distribute mass to successors, saving exit and backedge data in the |
||
1718 | // loop header. |
||
1719 | distributeMass(Node, OuterLoop, Dist); |
||
1720 | return true; |
||
1721 | } |
||
1722 | |||
1723 | template <class BT> |
||
1724 | raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const { |
||
1725 | if (!F) |
||
1726 | return OS; |
||
1727 | OS << "block-frequency-info: " << F->getName() << "\n"; |
||
1728 | for (const BlockT &BB : *F) { |
||
1729 | OS << " - " << bfi_detail::getBlockName(&BB) << ": float = "; |
||
1730 | getFloatingBlockFreq(&BB).print(OS, 5) |
||
1731 | << ", int = " << getBlockFreq(&BB).getFrequency(); |
||
1732 | if (std::optional<uint64_t> ProfileCount = |
||
1733 | BlockFrequencyInfoImplBase::getBlockProfileCount( |
||
1734 | F->getFunction(), getNode(&BB))) |
||
1735 | OS << ", count = " << *ProfileCount; |
||
1736 | if (std::optional<uint64_t> IrrLoopHeaderWeight = |
||
1737 | BB.getIrrLoopHeaderWeight()) |
||
1738 | OS << ", irr_loop_header_weight = " << *IrrLoopHeaderWeight; |
||
1739 | OS << "\n"; |
||
1740 | } |
||
1741 | |||
1742 | // Add an extra newline for readability. |
||
1743 | OS << "\n"; |
||
1744 | return OS; |
||
1745 | } |
||
1746 | |||
1747 | template <class BT> |
||
1748 | void BlockFrequencyInfoImpl<BT>::verifyMatch( |
||
1749 | BlockFrequencyInfoImpl<BT> &Other) const { |
||
1750 | bool Match = true; |
||
1751 | DenseMap<const BlockT *, BlockNode> ValidNodes; |
||
1752 | DenseMap<const BlockT *, BlockNode> OtherValidNodes; |
||
1753 | for (auto &Entry : Nodes) { |
||
1754 | const BlockT *BB = Entry.first; |
||
1755 | if (BB) { |
||
1756 | ValidNodes[BB] = Entry.second.first; |
||
1757 | } |
||
1758 | } |
||
1759 | for (auto &Entry : Other.Nodes) { |
||
1760 | const BlockT *BB = Entry.first; |
||
1761 | if (BB) { |
||
1762 | OtherValidNodes[BB] = Entry.second.first; |
||
1763 | } |
||
1764 | } |
||
1765 | unsigned NumValidNodes = ValidNodes.size(); |
||
1766 | unsigned NumOtherValidNodes = OtherValidNodes.size(); |
||
1767 | if (NumValidNodes != NumOtherValidNodes) { |
||
1768 | Match = false; |
||
1769 | dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs " |
||
1770 | << NumOtherValidNodes << "\n"; |
||
1771 | } else { |
||
1772 | for (auto &Entry : ValidNodes) { |
||
1773 | const BlockT *BB = Entry.first; |
||
1774 | BlockNode Node = Entry.second; |
||
1775 | if (OtherValidNodes.count(BB)) { |
||
1776 | BlockNode OtherNode = OtherValidNodes[BB]; |
||
1777 | const auto &Freq = Freqs[Node.Index]; |
||
1778 | const auto &OtherFreq = Other.Freqs[OtherNode.Index]; |
||
1779 | if (Freq.Integer != OtherFreq.Integer) { |
||
1780 | Match = false; |
||
1781 | dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " " |
||
1782 | << Freq.Integer << " vs " << OtherFreq.Integer << "\n"; |
||
1783 | } |
||
1784 | } else { |
||
1785 | Match = false; |
||
1786 | dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index " |
||
1787 | << Node.Index << " does not exist in Other.\n"; |
||
1788 | } |
||
1789 | } |
||
1790 | // If there's a valid node in OtherValidNodes that's not in ValidNodes, |
||
1791 | // either the above num check or the check on OtherValidNodes will fail. |
||
1792 | } |
||
1793 | if (!Match) { |
||
1794 | dbgs() << "This\n"; |
||
1795 | print(dbgs()); |
||
1796 | dbgs() << "Other\n"; |
||
1797 | Other.print(dbgs()); |
||
1798 | } |
||
1799 | assert(Match && "BFI mismatch"); |
||
1800 | } |
||
1801 | |||
1802 | // Graph trait base class for block frequency information graph |
||
1803 | // viewer. |
||
1804 | |||
1805 | enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count }; |
||
1806 | |||
1807 | template <class BlockFrequencyInfoT, class BranchProbabilityInfoT> |
||
1808 | struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits { |
||
1809 | using GTraits = GraphTraits<BlockFrequencyInfoT *>; |
||
1810 | using NodeRef = typename GTraits::NodeRef; |
||
1811 | using EdgeIter = typename GTraits::ChildIteratorType; |
||
1812 | using NodeIter = typename GTraits::nodes_iterator; |
||
1813 | |||
1814 | uint64_t MaxFrequency = 0; |
||
1815 | |||
1816 | explicit BFIDOTGraphTraitsBase(bool isSimple = false) |
||
1817 | : DefaultDOTGraphTraits(isSimple) {} |
||
1818 | |||
1819 | static StringRef getGraphName(const BlockFrequencyInfoT *G) { |
||
1820 | return G->getFunction()->getName(); |
||
1821 | } |
||
1822 | |||
1823 | std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph, |
||
1824 | unsigned HotPercentThreshold = 0) { |
||
1825 | std::string Result; |
||
1826 | if (!HotPercentThreshold) |
||
1827 | return Result; |
||
1828 | |||
1829 | // Compute MaxFrequency on the fly: |
||
1830 | if (!MaxFrequency) { |
||
1831 | for (NodeIter I = GTraits::nodes_begin(Graph), |
||
1832 | E = GTraits::nodes_end(Graph); |
||
1833 | I != E; ++I) { |
||
1834 | NodeRef N = *I; |
||
1835 | MaxFrequency = |
||
1836 | std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency()); |
||
1837 | } |
||
1838 | } |
||
1839 | BlockFrequency Freq = Graph->getBlockFreq(Node); |
||
1840 | BlockFrequency HotFreq = |
||
1841 | (BlockFrequency(MaxFrequency) * |
||
1842 | BranchProbability::getBranchProbability(HotPercentThreshold, 100)); |
||
1843 | |||
1844 | if (Freq < HotFreq) |
||
1845 | return Result; |
||
1846 | |||
1847 | raw_string_ostream OS(Result); |
||
1848 | OS << "color=\"red\""; |
||
1849 | OS.flush(); |
||
1850 | return Result; |
||
1851 | } |
||
1852 | |||
1853 | std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph, |
||
1854 | GVDAGType GType, int layout_order = -1) { |
||
1855 | std::string Result; |
||
1856 | raw_string_ostream OS(Result); |
||
1857 | |||
1858 | if (layout_order != -1) |
||
1859 | OS << Node->getName() << "[" << layout_order << "] : "; |
||
1860 | else |
||
1861 | OS << Node->getName() << " : "; |
||
1862 | switch (GType) { |
||
1863 | case GVDT_Fraction: |
||
1864 | Graph->printBlockFreq(OS, Node); |
||
1865 | break; |
||
1866 | case GVDT_Integer: |
||
1867 | OS << Graph->getBlockFreq(Node).getFrequency(); |
||
1868 | break; |
||
1869 | case GVDT_Count: { |
||
1870 | auto Count = Graph->getBlockProfileCount(Node); |
||
1871 | if (Count) |
||
1872 | OS << *Count; |
||
1873 | else |
||
1874 | OS << "Unknown"; |
||
1875 | break; |
||
1876 | } |
||
1877 | case GVDT_None: |
||
1878 | llvm_unreachable("If we are not supposed to render a graph we should " |
||
1879 | "never reach this point."); |
||
1880 | } |
||
1881 | return Result; |
||
1882 | } |
||
1883 | |||
1884 | std::string getEdgeAttributes(NodeRef Node, EdgeIter EI, |
||
1885 | const BlockFrequencyInfoT *BFI, |
||
1886 | const BranchProbabilityInfoT *BPI, |
||
1887 | unsigned HotPercentThreshold = 0) { |
||
1888 | std::string Str; |
||
1889 | if (!BPI) |
||
1890 | return Str; |
||
1891 | |||
1892 | BranchProbability BP = BPI->getEdgeProbability(Node, EI); |
||
1893 | uint32_t N = BP.getNumerator(); |
||
1894 | uint32_t D = BP.getDenominator(); |
||
1895 | double Percent = 100.0 * N / D; |
||
1896 | raw_string_ostream OS(Str); |
||
1897 | OS << format("label=\"%.1f%%\"", Percent); |
||
1898 | |||
1899 | if (HotPercentThreshold) { |
||
1900 | BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP; |
||
1901 | BlockFrequency HotFreq = BlockFrequency(MaxFrequency) * |
||
1902 | BranchProbability(HotPercentThreshold, 100); |
||
1903 | |||
1904 | if (EFreq >= HotFreq) { |
||
1905 | OS << ",color=\"red\""; |
||
1906 | } |
||
1907 | } |
||
1908 | |||
1909 | OS.flush(); |
||
1910 | return Str; |
||
1911 | } |
||
1912 | }; |
||
1913 | |||
1914 | } // end namespace llvm |
||
1915 | |||
1916 | #undef DEBUG_TYPE |
||
1917 | |||
1918 | #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H |