Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Shared implementation of BlockFrequency for IR and Machine Instructions.
10
// See the documentation below for BlockFrequencyInfoImpl for details.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
15
#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16
 
17
#include "llvm/ADT/BitVector.h"
18
#include "llvm/ADT/DenseMap.h"
19
#include "llvm/ADT/DenseSet.h"
20
#include "llvm/ADT/GraphTraits.h"
21
#include "llvm/ADT/PostOrderIterator.h"
22
#include "llvm/ADT/SmallPtrSet.h"
23
#include "llvm/ADT/SmallVector.h"
24
#include "llvm/ADT/SparseBitVector.h"
25
#include "llvm/ADT/Twine.h"
26
#include "llvm/ADT/iterator_range.h"
27
#include "llvm/IR/BasicBlock.h"
28
#include "llvm/IR/ValueHandle.h"
29
#include "llvm/Support/BlockFrequency.h"
30
#include "llvm/Support/BranchProbability.h"
31
#include "llvm/Support/CommandLine.h"
32
#include "llvm/Support/DOTGraphTraits.h"
33
#include "llvm/Support/Debug.h"
34
#include "llvm/Support/Format.h"
35
#include "llvm/Support/ScaledNumber.h"
36
#include "llvm/Support/raw_ostream.h"
37
#include <algorithm>
38
#include <cassert>
39
#include <cstddef>
40
#include <cstdint>
41
#include <deque>
42
#include <iterator>
43
#include <limits>
44
#include <list>
45
#include <optional>
46
#include <queue>
47
#include <string>
48
#include <utility>
49
#include <vector>
50
 
51
#define DEBUG_TYPE "block-freq"
52
 
53
namespace llvm {
54
extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries;
55
 
56
extern llvm::cl::opt<bool> UseIterativeBFIInference;
57
extern llvm::cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock;
58
extern llvm::cl::opt<double> IterativeBFIPrecision;
59
 
60
class BranchProbabilityInfo;
61
class Function;
62
class Loop;
63
class LoopInfo;
64
class MachineBasicBlock;
65
class MachineBranchProbabilityInfo;
66
class MachineFunction;
67
class MachineLoop;
68
class MachineLoopInfo;
69
 
70
namespace bfi_detail {
71
 
72
struct IrreducibleGraph;
73
 
74
// This is part of a workaround for a GCC 4.7 crash on lambdas.
75
template <class BT> struct BlockEdgesAdder;
76
 
77
/// Mass of a block.
78
///
79
/// This class implements a sort of fixed-point fraction always between 0.0 and
80
/// 1.0.  getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
81
/// 1.0.
82
///
83
/// Masses can be added and subtracted.  Simple saturation arithmetic is used,
84
/// so arithmetic operations never overflow or underflow.
85
///
86
/// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
87
/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
88
/// quite, maximum precision).
89
///
90
/// Masses can be scaled by \a BranchProbability at maximum precision.
91
class BlockMass {
92
  uint64_t Mass = 0;
93
 
94
public:
95
  BlockMass() = default;
96
  explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
97
 
98
  static BlockMass getEmpty() { return BlockMass(); }
99
 
100
  static BlockMass getFull() {
101
    return BlockMass(std::numeric_limits<uint64_t>::max());
102
  }
103
 
104
  uint64_t getMass() const { return Mass; }
105
 
106
  bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
107
  bool isEmpty() const { return !Mass; }
108
 
109
  bool operator!() const { return isEmpty(); }
110
 
111
  /// Add another mass.
112
  ///
113
  /// Adds another mass, saturating at \a isFull() rather than overflowing.
114
  BlockMass &operator+=(BlockMass X) {
115
    uint64_t Sum = Mass + X.Mass;
116
    Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
117
    return *this;
118
  }
119
 
120
  /// Subtract another mass.
121
  ///
122
  /// Subtracts another mass, saturating at \a isEmpty() rather than
123
  /// undeflowing.
124
  BlockMass &operator-=(BlockMass X) {
125
    uint64_t Diff = Mass - X.Mass;
126
    Mass = Diff > Mass ? 0 : Diff;
127
    return *this;
128
  }
129
 
130
  BlockMass &operator*=(BranchProbability P) {
131
    Mass = P.scale(Mass);
132
    return *this;
133
  }
134
 
135
  bool operator==(BlockMass X) const { return Mass == X.Mass; }
136
  bool operator!=(BlockMass X) const { return Mass != X.Mass; }
137
  bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
138
  bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
139
  bool operator<(BlockMass X) const { return Mass < X.Mass; }
140
  bool operator>(BlockMass X) const { return Mass > X.Mass; }
141
 
142
  /// Convert to scaled number.
143
  ///
144
  /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
145
  /// gives slightly above 0.0.
146
  ScaledNumber<uint64_t> toScaled() const;
147
 
148
  void dump() const;
149
  raw_ostream &print(raw_ostream &OS) const;
150
};
151
 
152
inline BlockMass operator+(BlockMass L, BlockMass R) {
153
  return BlockMass(L) += R;
154
}
155
inline BlockMass operator-(BlockMass L, BlockMass R) {
156
  return BlockMass(L) -= R;
157
}
158
inline BlockMass operator*(BlockMass L, BranchProbability R) {
159
  return BlockMass(L) *= R;
160
}
161
inline BlockMass operator*(BranchProbability L, BlockMass R) {
162
  return BlockMass(R) *= L;
163
}
164
 
165
inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
166
  return X.print(OS);
167
}
168
 
169
} // end namespace bfi_detail
170
 
171
/// Base class for BlockFrequencyInfoImpl
172
///
173
/// BlockFrequencyInfoImplBase has supporting data structures and some
174
/// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
175
/// the block type (or that call such algorithms) are skipped here.
176
///
177
/// Nevertheless, the majority of the overall algorithm documentation lives with
178
/// BlockFrequencyInfoImpl.  See there for details.
179
class BlockFrequencyInfoImplBase {
180
public:
181
  using Scaled64 = ScaledNumber<uint64_t>;
182
  using BlockMass = bfi_detail::BlockMass;
183
 
184
  /// Representative of a block.
185
  ///
186
  /// This is a simple wrapper around an index into the reverse-post-order
187
  /// traversal of the blocks.
188
  ///
189
  /// Unlike a block pointer, its order has meaning (location in the
190
  /// topological sort) and it's class is the same regardless of block type.
191
  struct BlockNode {
192
    using IndexType = uint32_t;
193
 
194
    IndexType Index;
195
 
196
    BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
197
    BlockNode(IndexType Index) : Index(Index) {}
198
 
199
    bool operator==(const BlockNode &X) const { return Index == X.Index; }
200
    bool operator!=(const BlockNode &X) const { return Index != X.Index; }
201
    bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
202
    bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
203
    bool operator<(const BlockNode &X) const { return Index < X.Index; }
204
    bool operator>(const BlockNode &X) const { return Index > X.Index; }
205
 
206
    bool isValid() const { return Index <= getMaxIndex(); }
207
 
208
    static size_t getMaxIndex() {
209
       return std::numeric_limits<uint32_t>::max() - 1;
210
    }
211
  };
212
 
213
  /// Stats about a block itself.
214
  struct FrequencyData {
215
    Scaled64 Scaled;
216
    uint64_t Integer;
217
  };
218
 
219
  /// Data about a loop.
220
  ///
221
  /// Contains the data necessary to represent a loop as a pseudo-node once it's
222
  /// packaged.
223
  struct LoopData {
224
    using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
225
    using NodeList = SmallVector<BlockNode, 4>;
226
    using HeaderMassList = SmallVector<BlockMass, 1>;
227
 
228
    LoopData *Parent;            ///< The parent loop.
229
    bool IsPackaged = false;     ///< Whether this has been packaged.
230
    uint32_t NumHeaders = 1;     ///< Number of headers.
231
    ExitMap Exits;               ///< Successor edges (and weights).
232
    NodeList Nodes;              ///< Header and the members of the loop.
233
    HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
234
    BlockMass Mass;
235
    Scaled64 Scale;
236
 
237
    LoopData(LoopData *Parent, const BlockNode &Header)
238
      : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
239
 
240
    template <class It1, class It2>
241
    LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
242
             It2 LastOther)
243
        : Parent(Parent), Nodes(FirstHeader, LastHeader) {
244
      NumHeaders = Nodes.size();
245
      Nodes.insert(Nodes.end(), FirstOther, LastOther);
246
      BackedgeMass.resize(NumHeaders);
247
    }
248
 
249
    bool isHeader(const BlockNode &Node) const {
250
      if (isIrreducible())
251
        return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
252
                                  Node);
253
      return Node == Nodes[0];
254
    }
255
 
256
    BlockNode getHeader() const { return Nodes[0]; }
257
    bool isIrreducible() const { return NumHeaders > 1; }
258
 
259
    HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
260
      assert(isHeader(B) && "this is only valid on loop header blocks");
261
      if (isIrreducible())
262
        return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
263
               Nodes.begin();
264
      return 0;
265
    }
266
 
267
    NodeList::const_iterator members_begin() const {
268
      return Nodes.begin() + NumHeaders;
269
    }
270
 
271
    NodeList::const_iterator members_end() const { return Nodes.end(); }
272
    iterator_range<NodeList::const_iterator> members() const {
273
      return make_range(members_begin(), members_end());
274
    }
275
  };
276
 
277
  /// Index of loop information.
278
  struct WorkingData {
279
    BlockNode Node;           ///< This node.
280
    LoopData *Loop = nullptr; ///< The loop this block is inside.
281
    BlockMass Mass;           ///< Mass distribution from the entry block.
282
 
283
    WorkingData(const BlockNode &Node) : Node(Node) {}
284
 
285
    bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
286
 
287
    bool isDoubleLoopHeader() const {
288
      return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
289
             Loop->Parent->isHeader(Node);
290
    }
291
 
292
    LoopData *getContainingLoop() const {
293
      if (!isLoopHeader())
294
        return Loop;
295
      if (!isDoubleLoopHeader())
296
        return Loop->Parent;
297
      return Loop->Parent->Parent;
298
    }
299
 
300
    /// Resolve a node to its representative.
301
    ///
302
    /// Get the node currently representing Node, which could be a containing
303
    /// loop.
304
    ///
305
    /// This function should only be called when distributing mass.  As long as
306
    /// there are no irreducible edges to Node, then it will have complexity
307
    /// O(1) in this context.
308
    ///
309
    /// In general, the complexity is O(L), where L is the number of loop
310
    /// headers Node has been packaged into.  Since this method is called in
311
    /// the context of distributing mass, L will be the number of loop headers
312
    /// an early exit edge jumps out of.
313
    BlockNode getResolvedNode() const {
314
      auto L = getPackagedLoop();
315
      return L ? L->getHeader() : Node;
316
    }
317
 
318
    LoopData *getPackagedLoop() const {
319
      if (!Loop || !Loop->IsPackaged)
320
        return nullptr;
321
      auto L = Loop;
322
      while (L->Parent && L->Parent->IsPackaged)
323
        L = L->Parent;
324
      return L;
325
    }
326
 
327
    /// Get the appropriate mass for a node.
328
    ///
329
    /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
330
    /// has been packaged), returns the mass of its pseudo-node.  If it's a
331
    /// node inside a packaged loop, it returns the loop's mass.
332
    BlockMass &getMass() {
333
      if (!isAPackage())
334
        return Mass;
335
      if (!isADoublePackage())
336
        return Loop->Mass;
337
      return Loop->Parent->Mass;
338
    }
339
 
340
    /// Has ContainingLoop been packaged up?
341
    bool isPackaged() const { return getResolvedNode() != Node; }
342
 
343
    /// Has Loop been packaged up?
344
    bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
345
 
346
    /// Has Loop been packaged up twice?
347
    bool isADoublePackage() const {
348
      return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
349
    }
350
  };
351
 
352
  /// Unscaled probability weight.
353
  ///
354
  /// Probability weight for an edge in the graph (including the
355
  /// successor/target node).
356
  ///
357
  /// All edges in the original function are 32-bit.  However, exit edges from
358
  /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
359
  /// space in general.
360
  ///
361
  /// In addition to the raw weight amount, Weight stores the type of the edge
362
  /// in the current context (i.e., the context of the loop being processed).
363
  /// Is this a local edge within the loop, an exit from the loop, or a
364
  /// backedge to the loop header?
365
  struct Weight {
366
    enum DistType { Local, Exit, Backedge };
367
    DistType Type = Local;
368
    BlockNode TargetNode;
369
    uint64_t Amount = 0;
370
 
371
    Weight() = default;
372
    Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
373
        : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
374
  };
375
 
376
  /// Distribution of unscaled probability weight.
377
  ///
378
  /// Distribution of unscaled probability weight to a set of successors.
379
  ///
380
  /// This class collates the successor edge weights for later processing.
381
  ///
382
  /// \a DidOverflow indicates whether \a Total did overflow while adding to
383
  /// the distribution.  It should never overflow twice.
384
  struct Distribution {
385
    using WeightList = SmallVector<Weight, 4>;
386
 
387
    WeightList Weights;       ///< Individual successor weights.
388
    uint64_t Total = 0;       ///< Sum of all weights.
389
    bool DidOverflow = false; ///< Whether \a Total did overflow.
390
 
391
    Distribution() = default;
392
 
393
    void addLocal(const BlockNode &Node, uint64_t Amount) {
394
      add(Node, Amount, Weight::Local);
395
    }
396
 
397
    void addExit(const BlockNode &Node, uint64_t Amount) {
398
      add(Node, Amount, Weight::Exit);
399
    }
400
 
401
    void addBackedge(const BlockNode &Node, uint64_t Amount) {
402
      add(Node, Amount, Weight::Backedge);
403
    }
404
 
405
    /// Normalize the distribution.
406
    ///
407
    /// Combines multiple edges to the same \a Weight::TargetNode and scales
408
    /// down so that \a Total fits into 32-bits.
409
    ///
410
    /// This is linear in the size of \a Weights.  For the vast majority of
411
    /// cases, adjacent edge weights are combined by sorting WeightList and
412
    /// combining adjacent weights.  However, for very large edge lists an
413
    /// auxiliary hash table is used.
414
    void normalize();
415
 
416
  private:
417
    void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
418
  };
419
 
420
  /// Data about each block.  This is used downstream.
421
  std::vector<FrequencyData> Freqs;
422
 
423
  /// Whether each block is an irreducible loop header.
424
  /// This is used downstream.
425
  SparseBitVector<> IsIrrLoopHeader;
426
 
427
  /// Loop data: see initializeLoops().
428
  std::vector<WorkingData> Working;
429
 
430
  /// Indexed information about loops.
431
  std::list<LoopData> Loops;
432
 
433
  /// Virtual destructor.
434
  ///
435
  /// Need a virtual destructor to mask the compiler warning about
436
  /// getBlockName().
437
  virtual ~BlockFrequencyInfoImplBase() = default;
438
 
439
  /// Add all edges out of a packaged loop to the distribution.
440
  ///
441
  /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
442
  /// successor edge.
443
  ///
444
  /// \return \c true unless there's an irreducible backedge.
445
  bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
446
                               Distribution &Dist);
447
 
448
  /// Add an edge to the distribution.
449
  ///
450
  /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
451
  /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
452
  /// every edge should be a local edge (since all the loops are packaged up).
453
  ///
454
  /// \return \c true unless aborted due to an irreducible backedge.
455
  bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
456
                 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
457
 
458
  /// Analyze irreducible SCCs.
459
  ///
460
  /// Separate irreducible SCCs from \c G, which is an explicit graph of \c
461
  /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
462
  /// Insert them into \a Loops before \c Insert.
463
  ///
464
  /// \return the \c LoopData nodes representing the irreducible SCCs.
465
  iterator_range<std::list<LoopData>::iterator>
466
  analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
467
                     std::list<LoopData>::iterator Insert);
468
 
469
  /// Update a loop after packaging irreducible SCCs inside of it.
470
  ///
471
  /// Update \c OuterLoop.  Before finding irreducible control flow, it was
472
  /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
473
  /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
474
  /// up need to be removed from \a OuterLoop::Nodes.
475
  void updateLoopWithIrreducible(LoopData &OuterLoop);
476
 
477
  /// Distribute mass according to a distribution.
478
  ///
479
  /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
480
  /// backedges and exits are stored in its entry in Loops.
481
  ///
482
  /// Mass is distributed in parallel from two copies of the source mass.
483
  void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
484
                      Distribution &Dist);
485
 
486
  /// Compute the loop scale for a loop.
487
  void computeLoopScale(LoopData &Loop);
488
 
489
  /// Adjust the mass of all headers in an irreducible loop.
490
  ///
491
  /// Initially, irreducible loops are assumed to distribute their mass
492
  /// equally among its headers. This can lead to wrong frequency estimates
493
  /// since some headers may be executed more frequently than others.
494
  ///
495
  /// This adjusts header mass distribution so it matches the weights of
496
  /// the backedges going into each of the loop headers.
497
  void adjustLoopHeaderMass(LoopData &Loop);
498
 
499
  void distributeIrrLoopHeaderMass(Distribution &Dist);
500
 
501
  /// Package up a loop.
502
  void packageLoop(LoopData &Loop);
503
 
504
  /// Unwrap loops.
505
  void unwrapLoops();
506
 
507
  /// Finalize frequency metrics.
508
  ///
509
  /// Calculates final frequencies and cleans up no-longer-needed data
510
  /// structures.
511
  void finalizeMetrics();
512
 
513
  /// Clear all memory.
514
  void clear();
515
 
516
  virtual std::string getBlockName(const BlockNode &Node) const;
517
  std::string getLoopName(const LoopData &Loop) const;
518
 
519
  virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
520
  void dump() const { print(dbgs()); }
521
 
522
  Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
523
 
524
  BlockFrequency getBlockFreq(const BlockNode &Node) const;
525
  std::optional<uint64_t>
526
  getBlockProfileCount(const Function &F, const BlockNode &Node,
527
                       bool AllowSynthetic = false) const;
528
  std::optional<uint64_t>
529
  getProfileCountFromFreq(const Function &F, uint64_t Freq,
530
                          bool AllowSynthetic = false) const;
531
  bool isIrrLoopHeader(const BlockNode &Node);
532
 
533
  void setBlockFreq(const BlockNode &Node, uint64_t Freq);
534
 
535
  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
536
  raw_ostream &printBlockFreq(raw_ostream &OS,
537
                              const BlockFrequency &Freq) const;
538
 
539
  uint64_t getEntryFreq() const {
540
    assert(!Freqs.empty());
541
    return Freqs[0].Integer;
542
  }
543
};
544
 
545
namespace bfi_detail {
546
 
547
template <class BlockT> struct TypeMap {};
548
template <> struct TypeMap<BasicBlock> {
549
  using BlockT = BasicBlock;
550
  using BlockKeyT = AssertingVH<const BasicBlock>;
551
  using FunctionT = Function;
552
  using BranchProbabilityInfoT = BranchProbabilityInfo;
553
  using LoopT = Loop;
554
  using LoopInfoT = LoopInfo;
555
};
556
template <> struct TypeMap<MachineBasicBlock> {
557
  using BlockT = MachineBasicBlock;
558
  using BlockKeyT = const MachineBasicBlock *;
559
  using FunctionT = MachineFunction;
560
  using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
561
  using LoopT = MachineLoop;
562
  using LoopInfoT = MachineLoopInfo;
563
};
564
 
565
template <class BlockT, class BFIImplT>
566
class BFICallbackVH;
567
 
568
/// Get the name of a MachineBasicBlock.
569
///
570
/// Get the name of a MachineBasicBlock.  It's templated so that including from
571
/// CodeGen is unnecessary (that would be a layering issue).
572
///
573
/// This is used mainly for debug output.  The name is similar to
574
/// MachineBasicBlock::getFullName(), but skips the name of the function.
575
template <class BlockT> std::string getBlockName(const BlockT *BB) {
576
  assert(BB && "Unexpected nullptr");
577
  auto MachineName = "BB" + Twine(BB->getNumber());
578
  if (BB->getBasicBlock())
579
    return (MachineName + "[" + BB->getName() + "]").str();
580
  return MachineName.str();
581
}
582
/// Get the name of a BasicBlock.
583
template <> inline std::string getBlockName(const BasicBlock *BB) {
584
  assert(BB && "Unexpected nullptr");
585
  return BB->getName().str();
586
}
587
 
588
/// Graph of irreducible control flow.
589
///
590
/// This graph is used for determining the SCCs in a loop (or top-level
591
/// function) that has irreducible control flow.
592
///
593
/// During the block frequency algorithm, the local graphs are defined in a
594
/// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
595
/// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
596
/// latter only has successor information.
597
///
598
/// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
599
/// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
600
/// and it explicitly lists predecessors and successors.  The initialization
601
/// that relies on \c MachineBasicBlock is defined in the header.
602
struct IrreducibleGraph {
603
  using BFIBase = BlockFrequencyInfoImplBase;
604
 
605
  BFIBase &BFI;
606
 
607
  using BlockNode = BFIBase::BlockNode;
608
  struct IrrNode {
609
    BlockNode Node;
610
    unsigned NumIn = 0;
611
    std::deque<const IrrNode *> Edges;
612
 
613
    IrrNode(const BlockNode &Node) : Node(Node) {}
614
 
615
    using iterator = std::deque<const IrrNode *>::const_iterator;
616
 
617
    iterator pred_begin() const { return Edges.begin(); }
618
    iterator succ_begin() const { return Edges.begin() + NumIn; }
619
    iterator pred_end() const { return succ_begin(); }
620
    iterator succ_end() const { return Edges.end(); }
621
  };
622
  BlockNode Start;
623
  const IrrNode *StartIrr = nullptr;
624
  std::vector<IrrNode> Nodes;
625
  SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
626
 
627
  /// Construct an explicit graph containing irreducible control flow.
628
  ///
629
  /// Construct an explicit graph of the control flow in \c OuterLoop (or the
630
  /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
631
  /// addBlockEdges to add block successors that have not been packaged into
632
  /// loops.
633
  ///
634
  /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
635
  /// user of this.
636
  template <class BlockEdgesAdder>
637
  IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
638
                   BlockEdgesAdder addBlockEdges) : BFI(BFI) {
639
    initialize(OuterLoop, addBlockEdges);
640
  }
641
 
642
  template <class BlockEdgesAdder>
643
  void initialize(const BFIBase::LoopData *OuterLoop,
644
                  BlockEdgesAdder addBlockEdges);
645
  void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
646
  void addNodesInFunction();
647
 
648
  void addNode(const BlockNode &Node) {
649
    Nodes.emplace_back(Node);
650
    BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
651
  }
652
 
653
  void indexNodes();
654
  template <class BlockEdgesAdder>
655
  void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
656
                BlockEdgesAdder addBlockEdges);
657
  void addEdge(IrrNode &Irr, const BlockNode &Succ,
658
               const BFIBase::LoopData *OuterLoop);
659
};
660
 
661
template <class BlockEdgesAdder>
662
void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
663
                                  BlockEdgesAdder addBlockEdges) {
664
  if (OuterLoop) {
665
    addNodesInLoop(*OuterLoop);
666
    for (auto N : OuterLoop->Nodes)
667
      addEdges(N, OuterLoop, addBlockEdges);
668
  } else {
669
    addNodesInFunction();
670
    for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
671
      addEdges(Index, OuterLoop, addBlockEdges);
672
  }
673
  StartIrr = Lookup[Start.Index];
674
}
675
 
676
template <class BlockEdgesAdder>
677
void IrreducibleGraph::addEdges(const BlockNode &Node,
678
                                const BFIBase::LoopData *OuterLoop,
679
                                BlockEdgesAdder addBlockEdges) {
680
  auto L = Lookup.find(Node.Index);
681
  if (L == Lookup.end())
682
    return;
683
  IrrNode &Irr = *L->second;
684
  const auto &Working = BFI.Working[Node.Index];
685
 
686
  if (Working.isAPackage())
687
    for (const auto &I : Working.Loop->Exits)
688
      addEdge(Irr, I.first, OuterLoop);
689
  else
690
    addBlockEdges(*this, Irr, OuterLoop);
691
}
692
 
693
} // end namespace bfi_detail
694
 
695
/// Shared implementation for block frequency analysis.
696
///
697
/// This is a shared implementation of BlockFrequencyInfo and
698
/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
699
/// blocks.
700
///
701
/// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
702
/// which is called the header.  A given loop, L, can have sub-loops, which are
703
/// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
704
/// consists of a single block that does not have a self-edge.)
705
///
706
/// In addition to loops, this algorithm has limited support for irreducible
707
/// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
708
/// discovered on the fly, and modelled as loops with multiple headers.
709
///
710
/// The headers of irreducible sub-SCCs consist of its entry blocks and all
711
/// nodes that are targets of a backedge within it (excluding backedges within
712
/// true sub-loops).  Block frequency calculations act as if a block is
713
/// inserted that intercepts all the edges to the headers.  All backedges and
714
/// entries point to this block.  Its successors are the headers, which split
715
/// the frequency evenly.
716
///
717
/// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
718
/// separates mass distribution from loop scaling, and dithers to eliminate
719
/// probability mass loss.
720
///
721
/// The implementation is split between BlockFrequencyInfoImpl, which knows the
722
/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
723
/// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
724
/// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
725
/// reverse-post order.  This gives two advantages:  it's easy to compare the
726
/// relative ordering of two nodes, and maps keyed on BlockT can be represented
727
/// by vectors.
728
///
729
/// This algorithm is O(V+E), unless there is irreducible control flow, in
730
/// which case it's O(V*E) in the worst case.
731
///
732
/// These are the main stages:
733
///
734
///  0. Reverse post-order traversal (\a initializeRPOT()).
735
///
736
///     Run a single post-order traversal and save it (in reverse) in RPOT.
737
///     All other stages make use of this ordering.  Save a lookup from BlockT
738
///     to BlockNode (the index into RPOT) in Nodes.
739
///
740
///  1. Loop initialization (\a initializeLoops()).
741
///
742
///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
743
///     the algorithm.  In particular, store the immediate members of each loop
744
///     in reverse post-order.
745
///
746
///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
747
///
748
///     For each loop (bottom-up), distribute mass through the DAG resulting
749
///     from ignoring backedges and treating sub-loops as a single pseudo-node.
750
///     Track the backedge mass distributed to the loop header, and use it to
751
///     calculate the loop scale (number of loop iterations).  Immediate
752
///     members that represent sub-loops will already have been visited and
753
///     packaged into a pseudo-node.
754
///
755
///     Distributing mass in a loop is a reverse-post-order traversal through
756
///     the loop.  Start by assigning full mass to the Loop header.  For each
757
///     node in the loop:
758
///
759
///         - Fetch and categorize the weight distribution for its successors.
760
///           If this is a packaged-subloop, the weight distribution is stored
761
///           in \a LoopData::Exits.  Otherwise, fetch it from
762
///           BranchProbabilityInfo.
763
///
764
///         - Each successor is categorized as \a Weight::Local, a local edge
765
///           within the current loop, \a Weight::Backedge, a backedge to the
766
///           loop header, or \a Weight::Exit, any successor outside the loop.
767
///           The weight, the successor, and its category are stored in \a
768
///           Distribution.  There can be multiple edges to each successor.
769
///
770
///         - If there's a backedge to a non-header, there's an irreducible SCC.
771
///           The usual flow is temporarily aborted.  \a
772
///           computeIrreducibleMass() finds the irreducible SCCs within the
773
///           loop, packages them up, and restarts the flow.
774
///
775
///         - Normalize the distribution:  scale weights down so that their sum
776
///           is 32-bits, and coalesce multiple edges to the same node.
777
///
778
///         - Distribute the mass accordingly, dithering to minimize mass loss,
779
///           as described in \a distributeMass().
780
///
781
///     In the case of irreducible loops, instead of a single loop header,
782
///     there will be several. The computation of backedge masses is similar
783
///     but instead of having a single backedge mass, there will be one
784
///     backedge per loop header. In these cases, each backedge will carry
785
///     a mass proportional to the edge weights along the corresponding
786
///     path.
787
///
788
///     At the end of propagation, the full mass assigned to the loop will be
789
///     distributed among the loop headers proportionally according to the
790
///     mass flowing through their backedges.
791
///
792
///     Finally, calculate the loop scale from the accumulated backedge mass.
793
///
794
///  3. Distribute mass in the function (\a computeMassInFunction()).
795
///
796
///     Finally, distribute mass through the DAG resulting from packaging all
797
///     loops in the function.  This uses the same algorithm as distributing
798
///     mass in a loop, except that there are no exit or backedge edges.
799
///
800
///  4. Unpackage loops (\a unwrapLoops()).
801
///
802
///     Initialize each block's frequency to a floating point representation of
803
///     its mass.
804
///
805
///     Visit loops top-down, scaling the frequencies of its immediate members
806
///     by the loop's pseudo-node's frequency.
807
///
808
///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
809
///
810
///     Using the min and max frequencies as a guide, translate floating point
811
///     frequencies to an appropriate range in uint64_t.
812
///
813
/// It has some known flaws.
814
///
815
///   - The model of irreducible control flow is a rough approximation.
816
///
817
///     Modelling irreducible control flow exactly involves setting up and
818
///     solving a group of infinite geometric series.  Such precision is
819
///     unlikely to be worthwhile, since most of our algorithms give up on
820
///     irreducible control flow anyway.
821
///
822
///     Nevertheless, we might find that we need to get closer.  Here's a sort
823
///     of TODO list for the model with diminishing returns, to be completed as
824
///     necessary.
825
///
826
///       - The headers for the \a LoopData representing an irreducible SCC
827
///         include non-entry blocks.  When these extra blocks exist, they
828
///         indicate a self-contained irreducible sub-SCC.  We could treat them
829
///         as sub-loops, rather than arbitrarily shoving the problematic
830
///         blocks into the headers of the main irreducible SCC.
831
///
832
///       - Entry frequencies are assumed to be evenly split between the
833
///         headers of a given irreducible SCC, which is the only option if we
834
///         need to compute mass in the SCC before its parent loop.  Instead,
835
///         we could partially compute mass in the parent loop, and stop when
836
///         we get to the SCC.  Here, we have the correct ratio of entry
837
///         masses, which we can use to adjust their relative frequencies.
838
///         Compute mass in the SCC, and then continue propagation in the
839
///         parent.
840
///
841
///       - We can propagate mass iteratively through the SCC, for some fixed
842
///         number of iterations.  Each iteration starts by assigning the entry
843
///         blocks their backedge mass from the prior iteration.  The final
844
///         mass for each block (and each exit, and the total backedge mass
845
///         used for computing loop scale) is the sum of all iterations.
846
///         (Running this until fixed point would "solve" the geometric
847
///         series by simulation.)
848
template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
849
  // This is part of a workaround for a GCC 4.7 crash on lambdas.
850
  friend struct bfi_detail::BlockEdgesAdder<BT>;
851
 
852
  using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
853
  using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT;
854
  using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
855
  using BranchProbabilityInfoT =
856
      typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
857
  using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
858
  using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
859
  using Successor = GraphTraits<const BlockT *>;
860
  using Predecessor = GraphTraits<Inverse<const BlockT *>>;
861
  using BFICallbackVH =
862
      bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>;
863
 
864
  const BranchProbabilityInfoT *BPI = nullptr;
865
  const LoopInfoT *LI = nullptr;
866
  const FunctionT *F = nullptr;
867
 
868
  // All blocks in reverse postorder.
869
  std::vector<const BlockT *> RPOT;
870
  DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes;
871
 
872
  using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
873
 
874
  rpot_iterator rpot_begin() const { return RPOT.begin(); }
875
  rpot_iterator rpot_end() const { return RPOT.end(); }
876
 
877
  size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
878
 
879
  BlockNode getNode(const rpot_iterator &I) const {
880
    return BlockNode(getIndex(I));
881
  }
882
 
883
  BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; }
884
 
885
  const BlockT *getBlock(const BlockNode &Node) const {
886
    assert(Node.Index < RPOT.size());
887
    return RPOT[Node.Index];
888
  }
889
 
890
  /// Run (and save) a post-order traversal.
891
  ///
892
  /// Saves a reverse post-order traversal of all the nodes in \a F.
893
  void initializeRPOT();
894
 
895
  /// Initialize loop data.
896
  ///
897
  /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
898
  /// each block to the deepest loop it's in, but we need the inverse.  For each
899
  /// loop, we store in reverse post-order its "immediate" members, defined as
900
  /// the header, the headers of immediate sub-loops, and all other blocks in
901
  /// the loop that are not in sub-loops.
902
  void initializeLoops();
903
 
904
  /// Propagate to a block's successors.
905
  ///
906
  /// In the context of distributing mass through \c OuterLoop, divide the mass
907
  /// currently assigned to \c Node between its successors.
908
  ///
909
  /// \return \c true unless there's an irreducible backedge.
910
  bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
911
 
912
  /// Compute mass in a particular loop.
913
  ///
914
  /// Assign mass to \c Loop's header, and then for each block in \c Loop in
915
  /// reverse post-order, distribute mass to its successors.  Only visits nodes
916
  /// that have not been packaged into sub-loops.
917
  ///
918
  /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
919
  /// \return \c true unless there's an irreducible backedge.
920
  bool computeMassInLoop(LoopData &Loop);
921
 
922
  /// Try to compute mass in the top-level function.
923
  ///
924
  /// Assign mass to the entry block, and then for each block in reverse
925
  /// post-order, distribute mass to its successors.  Skips nodes that have
926
  /// been packaged into loops.
927
  ///
928
  /// \pre \a computeMassInLoops() has been called.
929
  /// \return \c true unless there's an irreducible backedge.
930
  bool tryToComputeMassInFunction();
931
 
932
  /// Compute mass in (and package up) irreducible SCCs.
933
  ///
934
  /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
935
  /// of \c Insert), and call \a computeMassInLoop() on each of them.
936
  ///
937
  /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
938
  ///
939
  /// \pre \a computeMassInLoop() has been called for each subloop of \c
940
  /// OuterLoop.
941
  /// \pre \c Insert points at the last loop successfully processed by \a
942
  /// computeMassInLoop().
943
  /// \pre \c OuterLoop has irreducible SCCs.
944
  void computeIrreducibleMass(LoopData *OuterLoop,
945
                              std::list<LoopData>::iterator Insert);
946
 
947
  /// Compute mass in all loops.
948
  ///
949
  /// For each loop bottom-up, call \a computeMassInLoop().
950
  ///
951
  /// \a computeMassInLoop() aborts (and returns \c false) on loops that
952
  /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
953
  /// re-enter \a computeMassInLoop().
954
  ///
955
  /// \post \a computeMassInLoop() has returned \c true for every loop.
956
  void computeMassInLoops();
957
 
958
  /// Compute mass in the top-level function.
959
  ///
960
  /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
961
  /// compute mass in the top-level function.
962
  ///
963
  /// \post \a tryToComputeMassInFunction() has returned \c true.
964
  void computeMassInFunction();
965
 
966
  std::string getBlockName(const BlockNode &Node) const override {
967
    return bfi_detail::getBlockName(getBlock(Node));
968
  }
969
 
970
  /// The current implementation for computing relative block frequencies does
971
  /// not handle correctly control-flow graphs containing irreducible loops. To
972
  /// resolve the problem, we apply a post-processing step, which iteratively
973
  /// updates block frequencies based on the frequencies of their predesessors.
974
  /// This corresponds to finding the stationary point of the Markov chain by
975
  /// an iterative method aka "PageRank computation".
976
  /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but
977
  /// typically converges faster.
978
  ///
979
  /// Decide whether we want to apply iterative inference for a given function.
980
  bool needIterativeInference() const;
981
 
982
  /// Apply an iterative post-processing to infer correct counts for irr loops.
983
  void applyIterativeInference();
984
 
985
  using ProbMatrixType = std::vector<std::vector<std::pair<size_t, Scaled64>>>;
986
 
987
  /// Run iterative inference for a probability matrix and initial frequencies.
988
  void iterativeInference(const ProbMatrixType &ProbMatrix,
989
                          std::vector<Scaled64> &Freq) const;
990
 
991
  /// Find all blocks to apply inference on, that is, reachable from the entry
992
  /// and backward reachable from exists along edges with positive probability.
993
  void findReachableBlocks(std::vector<const BlockT *> &Blocks) const;
994
 
995
  /// Build a matrix of probabilities with transitions (edges) between the
996
  /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P
997
  void initTransitionProbabilities(
998
      const std::vector<const BlockT *> &Blocks,
999
      const DenseMap<const BlockT *, size_t> &BlockIndex,
1000
      ProbMatrixType &ProbMatrix) const;
1001
 
1002
#ifndef NDEBUG
1003
  /// Compute the discrepancy between current block frequencies and the
1004
  /// probability matrix.
1005
  Scaled64 discrepancy(const ProbMatrixType &ProbMatrix,
1006
                       const std::vector<Scaled64> &Freq) const;
1007
#endif
1008
 
1009
public:
1010
  BlockFrequencyInfoImpl() = default;
1011
 
1012
  const FunctionT *getFunction() const { return F; }
1013
 
1014
  void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
1015
                 const LoopInfoT &LI);
1016
 
1017
  using BlockFrequencyInfoImplBase::getEntryFreq;
1018
 
1019
  BlockFrequency getBlockFreq(const BlockT *BB) const {
1020
    return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
1021
  }
1022
 
1023
  std::optional<uint64_t>
1024
  getBlockProfileCount(const Function &F, const BlockT *BB,
1025
                       bool AllowSynthetic = false) const {
1026
    return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB),
1027
                                                            AllowSynthetic);
1028
  }
1029
 
1030
  std::optional<uint64_t>
1031
  getProfileCountFromFreq(const Function &F, uint64_t Freq,
1032
                          bool AllowSynthetic = false) const {
1033
    return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq,
1034
                                                               AllowSynthetic);
1035
  }
1036
 
1037
  bool isIrrLoopHeader(const BlockT *BB) {
1038
    return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
1039
  }
1040
 
1041
  void setBlockFreq(const BlockT *BB, uint64_t Freq);
1042
 
1043
  void forgetBlock(const BlockT *BB) {
1044
    // We don't erase corresponding items from `Freqs`, `RPOT` and other to
1045
    // avoid invalidating indices. Doing so would have saved some memory, but
1046
    // it's not worth it.
1047
    Nodes.erase(BB);
1048
  }
1049
 
1050
  Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
1051
    return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
1052
  }
1053
 
1054
  const BranchProbabilityInfoT &getBPI() const { return *BPI; }
1055
 
1056
  /// Print the frequencies for the current function.
1057
  ///
1058
  /// Prints the frequencies for the blocks in the current function.
1059
  ///
1060
  /// Blocks are printed in the natural iteration order of the function, rather
1061
  /// than reverse post-order.  This provides two advantages:  writing -analyze
1062
  /// tests is easier (since blocks come out in source order), and even
1063
  /// unreachable blocks are printed.
1064
  ///
1065
  /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1066
  /// we need to override it here.
1067
  raw_ostream &print(raw_ostream &OS) const override;
1068
 
1069
  using BlockFrequencyInfoImplBase::dump;
1070
  using BlockFrequencyInfoImplBase::printBlockFreq;
1071
 
1072
  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
1073
    return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
1074
  }
1075
 
1076
  void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const;
1077
};
1078
 
1079
namespace bfi_detail {
1080
 
1081
template <class BFIImplT>
1082
class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH {
1083
  BFIImplT *BFIImpl;
1084
 
1085
public:
1086
  BFICallbackVH() = default;
1087
 
1088
  BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl)
1089
      : CallbackVH(BB), BFIImpl(BFIImpl) {}
1090
 
1091
  virtual ~BFICallbackVH() = default;
1092
 
1093
  void deleted() override {
1094
    BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr()));
1095
  }
1096
};
1097
 
1098
/// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles
1099
/// don't apply to them.
1100
template <class BFIImplT>
1101
class BFICallbackVH<MachineBasicBlock, BFIImplT> {
1102
public:
1103
  BFICallbackVH() = default;
1104
  BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {}
1105
};
1106
 
1107
} // end namespace bfi_detail
1108
 
1109
template <class BT>
1110
void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
1111
                                           const BranchProbabilityInfoT &BPI,
1112
                                           const LoopInfoT &LI) {
1113
  // Save the parameters.
1114
  this->BPI = &BPI;
1115
  this->LI = &LI;
1116
  this->F = &F;
1117
 
1118
  // Clean up left-over data structures.
1119
  BlockFrequencyInfoImplBase::clear();
1120
  RPOT.clear();
1121
  Nodes.clear();
1122
 
1123
  // Initialize.
1124
  LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1125
                    << "\n================="
1126
                    << std::string(F.getName().size(), '=') << "\n");
1127
  initializeRPOT();
1128
  initializeLoops();
1129
 
1130
  // Visit loops in post-order to find the local mass distribution, and then do
1131
  // the full function.
1132
  computeMassInLoops();
1133
  computeMassInFunction();
1134
  unwrapLoops();
1135
  // Apply a post-processing step improving computed frequencies for functions
1136
  // with irreducible loops.
1137
  if (needIterativeInference())
1138
    applyIterativeInference();
1139
  finalizeMetrics();
1140
 
1141
  if (CheckBFIUnknownBlockQueries) {
1142
    // To detect BFI queries for unknown blocks, add entries for unreachable
1143
    // blocks, if any. This is to distinguish between known/existing unreachable
1144
    // blocks and unknown blocks.
1145
    for (const BlockT &BB : F)
1146
      if (!Nodes.count(&BB))
1147
        setBlockFreq(&BB, 0);
1148
  }
1149
}
1150
 
1151
template <class BT>
1152
void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
1153
  if (Nodes.count(BB))
1154
    BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
1155
  else {
1156
    // If BB is a newly added block after BFI is done, we need to create a new
1157
    // BlockNode for it assigned with a new index. The index can be determined
1158
    // by the size of Freqs.
1159
    BlockNode NewNode(Freqs.size());
1160
    Nodes[BB] = {NewNode, BFICallbackVH(BB, this)};
1161
    Freqs.emplace_back();
1162
    BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
1163
  }
1164
}
1165
 
1166
template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1167
  const BlockT *Entry = &F->front();
1168
  RPOT.reserve(F->size());
1169
  std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1170
  std::reverse(RPOT.begin(), RPOT.end());
1171
 
1172
  assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1173
         "More nodes in function than Block Frequency Info supports");
1174
 
1175
  LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1176
  for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1177
    BlockNode Node = getNode(I);
1178
    LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1179
                      << "\n");
1180
    Nodes[*I] = {Node, BFICallbackVH(*I, this)};
1181
  }
1182
 
1183
  Working.reserve(RPOT.size());
1184
  for (size_t Index = 0; Index < RPOT.size(); ++Index)
1185
    Working.emplace_back(Index);
1186
  Freqs.resize(RPOT.size());
1187
}
1188
 
1189
template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1190
  LLVM_DEBUG(dbgs() << "loop-detection\n");
1191
  if (LI->empty())
1192
    return;
1193
 
1194
  // Visit loops top down and assign them an index.
1195
  std::deque<std::pair<const LoopT *, LoopData *>> Q;
1196
  for (const LoopT *L : *LI)
1197
    Q.emplace_back(L, nullptr);
1198
  while (!Q.empty()) {
1199
    const LoopT *Loop = Q.front().first;
1200
    LoopData *Parent = Q.front().second;
1201
    Q.pop_front();
1202
 
1203
    BlockNode Header = getNode(Loop->getHeader());
1204
    assert(Header.isValid());
1205
 
1206
    Loops.emplace_back(Parent, Header);
1207
    Working[Header.Index].Loop = &Loops.back();
1208
    LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1209
 
1210
    for (const LoopT *L : *Loop)
1211
      Q.emplace_back(L, &Loops.back());
1212
  }
1213
 
1214
  // Visit nodes in reverse post-order and add them to their deepest containing
1215
  // loop.
1216
  for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1217
    // Loop headers have already been mostly mapped.
1218
    if (Working[Index].isLoopHeader()) {
1219
      LoopData *ContainingLoop = Working[Index].getContainingLoop();
1220
      if (ContainingLoop)
1221
        ContainingLoop->Nodes.push_back(Index);
1222
      continue;
1223
    }
1224
 
1225
    const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1226
    if (!Loop)
1227
      continue;
1228
 
1229
    // Add this node to its containing loop's member list.
1230
    BlockNode Header = getNode(Loop->getHeader());
1231
    assert(Header.isValid());
1232
    const auto &HeaderData = Working[Header.Index];
1233
    assert(HeaderData.isLoopHeader());
1234
 
1235
    Working[Index].Loop = HeaderData.Loop;
1236
    HeaderData.Loop->Nodes.push_back(Index);
1237
    LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1238
                      << ": member = " << getBlockName(Index) << "\n");
1239
  }
1240
}
1241
 
1242
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1243
  // Visit loops with the deepest first, and the top-level loops last.
1244
  for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1245
    if (computeMassInLoop(*L))
1246
      continue;
1247
    auto Next = std::next(L);
1248
    computeIrreducibleMass(&*L, L.base());
1249
    L = std::prev(Next);
1250
    if (computeMassInLoop(*L))
1251
      continue;
1252
    llvm_unreachable("unhandled irreducible control flow");
1253
  }
1254
}
1255
 
1256
template <class BT>
1257
bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1258
  // Compute mass in loop.
1259
  LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1260
 
1261
  if (Loop.isIrreducible()) {
1262
    LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1263
    Distribution Dist;
1264
    unsigned NumHeadersWithWeight = 0;
1265
    std::optional<uint64_t> MinHeaderWeight;
1266
    DenseSet<uint32_t> HeadersWithoutWeight;
1267
    HeadersWithoutWeight.reserve(Loop.NumHeaders);
1268
    for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1269
      auto &HeaderNode = Loop.Nodes[H];
1270
      const BlockT *Block = getBlock(HeaderNode);
1271
      IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1272
      std::optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1273
      if (!HeaderWeight) {
1274
        LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1275
                          << getBlockName(HeaderNode) << "\n");
1276
        HeadersWithoutWeight.insert(H);
1277
        continue;
1278
      }
1279
      LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1280
                        << " has irr loop header weight " << *HeaderWeight
1281
                        << "\n");
1282
      NumHeadersWithWeight++;
1283
      uint64_t HeaderWeightValue = *HeaderWeight;
1284
      if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1285
        MinHeaderWeight = HeaderWeightValue;
1286
      if (HeaderWeightValue) {
1287
        Dist.addLocal(HeaderNode, HeaderWeightValue);
1288
      }
1289
    }
1290
    // As a heuristic, if some headers don't have a weight, give them the
1291
    // minimum weight seen (not to disrupt the existing trends too much by
1292
    // using a weight that's in the general range of the other headers' weights,
1293
    // and the minimum seems to perform better than the average.)
1294
    // FIXME: better update in the passes that drop the header weight.
1295
    // If no headers have a weight, give them even weight (use weight 1).
1296
    if (!MinHeaderWeight)
1297
      MinHeaderWeight = 1;
1298
    for (uint32_t H : HeadersWithoutWeight) {
1299
      auto &HeaderNode = Loop.Nodes[H];
1300
      assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1301
             "Shouldn't have a weight metadata");
1302
      uint64_t MinWeight = *MinHeaderWeight;
1303
      LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1304
                        << getBlockName(HeaderNode) << "\n");
1305
      if (MinWeight)
1306
        Dist.addLocal(HeaderNode, MinWeight);
1307
    }
1308
    distributeIrrLoopHeaderMass(Dist);
1309
    for (const BlockNode &M : Loop.Nodes)
1310
      if (!propagateMassToSuccessors(&Loop, M))
1311
        llvm_unreachable("unhandled irreducible control flow");
1312
    if (NumHeadersWithWeight == 0)
1313
      // No headers have a metadata. Adjust header mass.
1314
      adjustLoopHeaderMass(Loop);
1315
  } else {
1316
    Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1317
    if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1318
      llvm_unreachable("irreducible control flow to loop header!?");
1319
    for (const BlockNode &M : Loop.members())
1320
      if (!propagateMassToSuccessors(&Loop, M))
1321
        // Irreducible backedge.
1322
        return false;
1323
  }
1324
 
1325
  computeLoopScale(Loop);
1326
  packageLoop(Loop);
1327
  return true;
1328
}
1329
 
1330
template <class BT>
1331
bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1332
  // Compute mass in function.
1333
  LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1334
  assert(!Working.empty() && "no blocks in function");
1335
  assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1336
 
1337
  Working[0].getMass() = BlockMass::getFull();
1338
  for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1339
    // Check for nodes that have been packaged.
1340
    BlockNode Node = getNode(I);
1341
    if (Working[Node.Index].isPackaged())
1342
      continue;
1343
 
1344
    if (!propagateMassToSuccessors(nullptr, Node))
1345
      return false;
1346
  }
1347
  return true;
1348
}
1349
 
1350
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1351
  if (tryToComputeMassInFunction())
1352
    return;
1353
  computeIrreducibleMass(nullptr, Loops.begin());
1354
  if (tryToComputeMassInFunction())
1355
    return;
1356
  llvm_unreachable("unhandled irreducible control flow");
1357
}
1358
 
1359
template <class BT>
1360
bool BlockFrequencyInfoImpl<BT>::needIterativeInference() const {
1361
  if (!UseIterativeBFIInference)
1362
    return false;
1363
  if (!F->getFunction().hasProfileData())
1364
    return false;
1365
  // Apply iterative inference only if the function contains irreducible loops;
1366
  // otherwise, computed block frequencies are reasonably correct.
1367
  for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1368
    if (L->isIrreducible())
1369
      return true;
1370
  }
1371
  return false;
1372
}
1373
 
1374
template <class BT> void BlockFrequencyInfoImpl<BT>::applyIterativeInference() {
1375
  // Extract blocks for processing: a block is considered for inference iff it
1376
  // can be reached from the entry by edges with a positive probability.
1377
  // Non-processed blocks are assigned with the zero frequency and are ignored
1378
  // in the computation
1379
  std::vector<const BlockT *> ReachableBlocks;
1380
  findReachableBlocks(ReachableBlocks);
1381
  if (ReachableBlocks.empty())
1382
    return;
1383
 
1384
  // The map is used to to index successors/predecessors of reachable blocks in
1385
  // the ReachableBlocks vector
1386
  DenseMap<const BlockT *, size_t> BlockIndex;
1387
  // Extract initial frequencies for the reachable blocks
1388
  auto Freq = std::vector<Scaled64>(ReachableBlocks.size());
1389
  Scaled64 SumFreq;
1390
  for (size_t I = 0; I < ReachableBlocks.size(); I++) {
1391
    const BlockT *BB = ReachableBlocks[I];
1392
    BlockIndex[BB] = I;
1393
    Freq[I] = getFloatingBlockFreq(BB);
1394
    SumFreq += Freq[I];
1395
  }
1396
  assert(!SumFreq.isZero() && "empty initial block frequencies");
1397
 
1398
  LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName()
1399
                    << " with " << ReachableBlocks.size() << " blocks\n");
1400
 
1401
  // Normalizing frequencies so they sum up to 1.0
1402
  for (auto &Value : Freq) {
1403
    Value /= SumFreq;
1404
  }
1405
 
1406
  // Setting up edge probabilities using sparse matrix representation:
1407
  // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P
1408
  ProbMatrixType ProbMatrix;
1409
  initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix);
1410
 
1411
  // Run the propagation
1412
  iterativeInference(ProbMatrix, Freq);
1413
 
1414
  // Assign computed frequency values
1415
  for (const BlockT &BB : *F) {
1416
    auto Node = getNode(&BB);
1417
    if (!Node.isValid())
1418
      continue;
1419
    if (BlockIndex.count(&BB)) {
1420
      Freqs[Node.Index].Scaled = Freq[BlockIndex[&BB]];
1421
    } else {
1422
      Freqs[Node.Index].Scaled = Scaled64::getZero();
1423
    }
1424
  }
1425
}
1426
 
1427
template <class BT>
1428
void BlockFrequencyInfoImpl<BT>::iterativeInference(
1429
    const ProbMatrixType &ProbMatrix, std::vector<Scaled64> &Freq) const {
1430
  assert(0.0 < IterativeBFIPrecision && IterativeBFIPrecision < 1.0 &&
1431
         "incorrectly specified precision");
1432
  // Convert double precision to Scaled64
1433
  const auto Precision =
1434
      Scaled64::getInverse(static_cast<uint64_t>(1.0 / IterativeBFIPrecision));
1435
  const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size();
1436
 
1437
#ifndef NDEBUG
1438
  LLVM_DEBUG(dbgs() << "  Initial discrepancy = "
1439
                    << discrepancy(ProbMatrix, Freq).toString() << "\n");
1440
#endif
1441
 
1442
  // Successors[I] holds unique sucessors of the I-th block
1443
  auto Successors = std::vector<std::vector<size_t>>(Freq.size());
1444
  for (size_t I = 0; I < Freq.size(); I++) {
1445
    for (const auto &Jump : ProbMatrix[I]) {
1446
      Successors[Jump.first].push_back(I);
1447
    }
1448
  }
1449
 
1450
  // To speedup computation, we maintain a set of "active" blocks whose
1451
  // frequencies need to be updated based on the incoming edges.
1452
  // The set is dynamic and changes after every update. Initially all blocks
1453
  // with a positive frequency are active
1454
  auto IsActive = BitVector(Freq.size(), false);
1455
  std::queue<size_t> ActiveSet;
1456
  for (size_t I = 0; I < Freq.size(); I++) {
1457
    if (Freq[I] > 0) {
1458
      ActiveSet.push(I);
1459
      IsActive[I] = true;
1460
    }
1461
  }
1462
 
1463
  // Iterate over the blocks propagating frequencies
1464
  size_t It = 0;
1465
  while (It++ < MaxIterations && !ActiveSet.empty()) {
1466
    size_t I = ActiveSet.front();
1467
    ActiveSet.pop();
1468
    IsActive[I] = false;
1469
 
1470
    // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix.
1471
    // A special care is taken for self-edges that needs to be scaled by
1472
    // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges
1473
    Scaled64 NewFreq;
1474
    Scaled64 OneMinusSelfProb = Scaled64::getOne();
1475
    for (const auto &Jump : ProbMatrix[I]) {
1476
      if (Jump.first == I) {
1477
        OneMinusSelfProb -= Jump.second;
1478
      } else {
1479
        NewFreq += Freq[Jump.first] * Jump.second;
1480
      }
1481
    }
1482
    if (OneMinusSelfProb != Scaled64::getOne())
1483
      NewFreq /= OneMinusSelfProb;
1484
 
1485
    // If the block's frequency has changed enough, then
1486
    // make sure the block and its successors are in the active set
1487
    auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I];
1488
    if (Change > Precision) {
1489
      ActiveSet.push(I);
1490
      IsActive[I] = true;
1491
      for (size_t Succ : Successors[I]) {
1492
        if (!IsActive[Succ]) {
1493
          ActiveSet.push(Succ);
1494
          IsActive[Succ] = true;
1495
        }
1496
      }
1497
    }
1498
 
1499
    // Update the frequency for the block
1500
    Freq[I] = NewFreq;
1501
  }
1502
 
1503
  LLVM_DEBUG(dbgs() << "  Completed " << It << " inference iterations"
1504
                    << format(" (%0.0f per block)", double(It) / Freq.size())
1505
                    << "\n");
1506
#ifndef NDEBUG
1507
  LLVM_DEBUG(dbgs() << "  Final   discrepancy = "
1508
                    << discrepancy(ProbMatrix, Freq).toString() << "\n");
1509
#endif
1510
}
1511
 
1512
template <class BT>
1513
void BlockFrequencyInfoImpl<BT>::findReachableBlocks(
1514
    std::vector<const BlockT *> &Blocks) const {
1515
  // Find all blocks to apply inference on, that is, reachable from the entry
1516
  // along edges with non-zero probablities
1517
  std::queue<const BlockT *> Queue;
1518
  SmallPtrSet<const BlockT *, 8> Reachable;
1519
  const BlockT *Entry = &F->front();
1520
  Queue.push(Entry);
1521
  Reachable.insert(Entry);
1522
  while (!Queue.empty()) {
1523
    const BlockT *SrcBB = Queue.front();
1524
    Queue.pop();
1525
    for (const BlockT *DstBB : children<const BlockT *>(SrcBB)) {
1526
      auto EP = BPI->getEdgeProbability(SrcBB, DstBB);
1527
      if (EP.isZero())
1528
        continue;
1529
      if (Reachable.insert(DstBB).second)
1530
        Queue.push(DstBB);
1531
    }
1532
  }
1533
 
1534
  // Find all blocks to apply inference on, that is, backward reachable from
1535
  // the entry along (backward) edges with non-zero probablities
1536
  SmallPtrSet<const BlockT *, 8> InverseReachable;
1537
  for (const BlockT &BB : *F) {
1538
    // An exit block is a block without any successors
1539
    bool HasSucc = GraphTraits<const BlockT *>::child_begin(&BB) !=
1540
                   GraphTraits<const BlockT *>::child_end(&BB);
1541
    if (!HasSucc && Reachable.count(&BB)) {
1542
      Queue.push(&BB);
1543
      InverseReachable.insert(&BB);
1544
    }
1545
  }
1546
  while (!Queue.empty()) {
1547
    const BlockT *SrcBB = Queue.front();
1548
    Queue.pop();
1549
    for (const BlockT *DstBB : children<Inverse<const BlockT *>>(SrcBB)) {
1550
      auto EP = BPI->getEdgeProbability(DstBB, SrcBB);
1551
      if (EP.isZero())
1552
        continue;
1553
      if (InverseReachable.insert(DstBB).second)
1554
        Queue.push(DstBB);
1555
    }
1556
  }
1557
 
1558
  // Collect the result
1559
  Blocks.reserve(F->size());
1560
  for (const BlockT &BB : *F) {
1561
    if (Reachable.count(&BB) && InverseReachable.count(&BB)) {
1562
      Blocks.push_back(&BB);
1563
    }
1564
  }
1565
}
1566
 
1567
template <class BT>
1568
void BlockFrequencyInfoImpl<BT>::initTransitionProbabilities(
1569
    const std::vector<const BlockT *> &Blocks,
1570
    const DenseMap<const BlockT *, size_t> &BlockIndex,
1571
    ProbMatrixType &ProbMatrix) const {
1572
  const size_t NumBlocks = Blocks.size();
1573
  auto Succs = std::vector<std::vector<std::pair<size_t, Scaled64>>>(NumBlocks);
1574
  auto SumProb = std::vector<Scaled64>(NumBlocks);
1575
 
1576
  // Find unique successors and corresponding probabilities for every block
1577
  for (size_t Src = 0; Src < NumBlocks; Src++) {
1578
    const BlockT *BB = Blocks[Src];
1579
    SmallPtrSet<const BlockT *, 2> UniqueSuccs;
1580
    for (const auto SI : children<const BlockT *>(BB)) {
1581
      // Ignore cold blocks
1582
      if (BlockIndex.find(SI) == BlockIndex.end())
1583
        continue;
1584
      // Ignore parallel edges between BB and SI blocks
1585
      if (!UniqueSuccs.insert(SI).second)
1586
        continue;
1587
      // Ignore jumps with zero probability
1588
      auto EP = BPI->getEdgeProbability(BB, SI);
1589
      if (EP.isZero())
1590
        continue;
1591
 
1592
      auto EdgeProb =
1593
          Scaled64::getFraction(EP.getNumerator(), EP.getDenominator());
1594
      size_t Dst = BlockIndex.find(SI)->second;
1595
      Succs[Src].push_back(std::make_pair(Dst, EdgeProb));
1596
      SumProb[Src] += EdgeProb;
1597
    }
1598
  }
1599
 
1600
  // Add transitions for every jump with positive branch probability
1601
  ProbMatrix = ProbMatrixType(NumBlocks);
1602
  for (size_t Src = 0; Src < NumBlocks; Src++) {
1603
    // Ignore blocks w/o successors
1604
    if (Succs[Src].empty())
1605
      continue;
1606
 
1607
    assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block");
1608
    for (auto &Jump : Succs[Src]) {
1609
      size_t Dst = Jump.first;
1610
      Scaled64 Prob = Jump.second;
1611
      ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src]));
1612
    }
1613
  }
1614
 
1615
  // Add transitions from sinks to the source
1616
  size_t EntryIdx = BlockIndex.find(&F->front())->second;
1617
  for (size_t Src = 0; Src < NumBlocks; Src++) {
1618
    if (Succs[Src].empty()) {
1619
      ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne()));
1620
    }
1621
  }
1622
}
1623
 
1624
#ifndef NDEBUG
1625
template <class BT>
1626
BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl<BT>::discrepancy(
1627
    const ProbMatrixType &ProbMatrix, const std::vector<Scaled64> &Freq) const {
1628
  assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block");
1629
  Scaled64 Discrepancy;
1630
  for (size_t I = 0; I < ProbMatrix.size(); I++) {
1631
    Scaled64 Sum;
1632
    for (const auto &Jump : ProbMatrix[I]) {
1633
      Sum += Freq[Jump.first] * Jump.second;
1634
    }
1635
    Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I];
1636
  }
1637
  // Normalizing by the frequency of the entry block
1638
  return Discrepancy / Freq[0];
1639
}
1640
#endif
1641
 
1642
/// \note This should be a lambda, but that crashes GCC 4.7.
1643
namespace bfi_detail {
1644
 
1645
template <class BT> struct BlockEdgesAdder {
1646
  using BlockT = BT;
1647
  using LoopData = BlockFrequencyInfoImplBase::LoopData;
1648
  using Successor = GraphTraits<const BlockT *>;
1649
 
1650
  const BlockFrequencyInfoImpl<BT> &BFI;
1651
 
1652
  explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1653
      : BFI(BFI) {}
1654
 
1655
  void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1656
                  const LoopData *OuterLoop) {
1657
    const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1658
    for (const auto Succ : children<const BlockT *>(BB))
1659
      G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
1660
  }
1661
};
1662
 
1663
} // end namespace bfi_detail
1664
 
1665
template <class BT>
1666
void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1667
    LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1668
  LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1669
             if (OuterLoop) dbgs()
1670
             << "loop: " << getLoopName(*OuterLoop) << "\n";
1671
             else dbgs() << "function\n");
1672
 
1673
  using namespace bfi_detail;
1674
 
1675
  // Ideally, addBlockEdges() would be declared here as a lambda, but that
1676
  // crashes GCC 4.7.
1677
  BlockEdgesAdder<BT> addBlockEdges(*this);
1678
  IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1679
 
1680
  for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1681
    computeMassInLoop(L);
1682
 
1683
  if (!OuterLoop)
1684
    return;
1685
  updateLoopWithIrreducible(*OuterLoop);
1686
}
1687
 
1688
// A helper function that converts a branch probability into weight.
1689
inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1690
  return Prob.getNumerator();
1691
}
1692
 
1693
template <class BT>
1694
bool
1695
BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1696
                                                      const BlockNode &Node) {
1697
  LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1698
  // Calculate probability for successors.
1699
  Distribution Dist;
1700
  if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1701
    assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1702
    if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1703
      // Irreducible backedge.
1704
      return false;
1705
  } else {
1706
    const BlockT *BB = getBlock(Node);
1707
    for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
1708
              SE = GraphTraits<const BlockT *>::child_end(BB);
1709
         SI != SE; ++SI)
1710
      if (!addToDist(
1711
              Dist, OuterLoop, Node, getNode(*SI),
1712
              getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1713
        // Irreducible backedge.
1714
        return false;
1715
  }
1716
 
1717
  // Distribute mass to successors, saving exit and backedge data in the
1718
  // loop header.
1719
  distributeMass(Node, OuterLoop, Dist);
1720
  return true;
1721
}
1722
 
1723
template <class BT>
1724
raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1725
  if (!F)
1726
    return OS;
1727
  OS << "block-frequency-info: " << F->getName() << "\n";
1728
  for (const BlockT &BB : *F) {
1729
    OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1730
    getFloatingBlockFreq(&BB).print(OS, 5)
1731
        << ", int = " << getBlockFreq(&BB).getFrequency();
1732
    if (std::optional<uint64_t> ProfileCount =
1733
        BlockFrequencyInfoImplBase::getBlockProfileCount(
1734
            F->getFunction(), getNode(&BB)))
1735
      OS << ", count = " << *ProfileCount;
1736
    if (std::optional<uint64_t> IrrLoopHeaderWeight =
1737
            BB.getIrrLoopHeaderWeight())
1738
      OS << ", irr_loop_header_weight = " << *IrrLoopHeaderWeight;
1739
    OS << "\n";
1740
  }
1741
 
1742
  // Add an extra newline for readability.
1743
  OS << "\n";
1744
  return OS;
1745
}
1746
 
1747
template <class BT>
1748
void BlockFrequencyInfoImpl<BT>::verifyMatch(
1749
    BlockFrequencyInfoImpl<BT> &Other) const {
1750
  bool Match = true;
1751
  DenseMap<const BlockT *, BlockNode> ValidNodes;
1752
  DenseMap<const BlockT *, BlockNode> OtherValidNodes;
1753
  for (auto &Entry : Nodes) {
1754
    const BlockT *BB = Entry.first;
1755
    if (BB) {
1756
      ValidNodes[BB] = Entry.second.first;
1757
    }
1758
  }
1759
  for (auto &Entry : Other.Nodes) {
1760
    const BlockT *BB = Entry.first;
1761
    if (BB) {
1762
      OtherValidNodes[BB] = Entry.second.first;
1763
    }
1764
  }
1765
  unsigned NumValidNodes = ValidNodes.size();
1766
  unsigned NumOtherValidNodes = OtherValidNodes.size();
1767
  if (NumValidNodes != NumOtherValidNodes) {
1768
    Match = false;
1769
    dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs "
1770
           << NumOtherValidNodes << "\n";
1771
  } else {
1772
    for (auto &Entry : ValidNodes) {
1773
      const BlockT *BB = Entry.first;
1774
      BlockNode Node = Entry.second;
1775
      if (OtherValidNodes.count(BB)) {
1776
        BlockNode OtherNode = OtherValidNodes[BB];
1777
        const auto &Freq = Freqs[Node.Index];
1778
        const auto &OtherFreq = Other.Freqs[OtherNode.Index];
1779
        if (Freq.Integer != OtherFreq.Integer) {
1780
          Match = false;
1781
          dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " "
1782
                 << Freq.Integer << " vs " << OtherFreq.Integer << "\n";
1783
        }
1784
      } else {
1785
        Match = false;
1786
        dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index "
1787
               << Node.Index << " does not exist in Other.\n";
1788
      }
1789
    }
1790
    // If there's a valid node in OtherValidNodes that's not in ValidNodes,
1791
    // either the above num check or the check on OtherValidNodes will fail.
1792
  }
1793
  if (!Match) {
1794
    dbgs() << "This\n";
1795
    print(dbgs());
1796
    dbgs() << "Other\n";
1797
    Other.print(dbgs());
1798
  }
1799
  assert(Match && "BFI mismatch");
1800
}
1801
 
1802
// Graph trait base class for block frequency information graph
1803
// viewer.
1804
 
1805
enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
1806
 
1807
template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1808
struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
1809
  using GTraits = GraphTraits<BlockFrequencyInfoT *>;
1810
  using NodeRef = typename GTraits::NodeRef;
1811
  using EdgeIter = typename GTraits::ChildIteratorType;
1812
  using NodeIter = typename GTraits::nodes_iterator;
1813
 
1814
  uint64_t MaxFrequency = 0;
1815
 
1816
  explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1817
      : DefaultDOTGraphTraits(isSimple) {}
1818
 
1819
  static StringRef getGraphName(const BlockFrequencyInfoT *G) {
1820
    return G->getFunction()->getName();
1821
  }
1822
 
1823
  std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1824
                                unsigned HotPercentThreshold = 0) {
1825
    std::string Result;
1826
    if (!HotPercentThreshold)
1827
      return Result;
1828
 
1829
    // Compute MaxFrequency on the fly:
1830
    if (!MaxFrequency) {
1831
      for (NodeIter I = GTraits::nodes_begin(Graph),
1832
                    E = GTraits::nodes_end(Graph);
1833
           I != E; ++I) {
1834
        NodeRef N = *I;
1835
        MaxFrequency =
1836
            std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1837
      }
1838
    }
1839
    BlockFrequency Freq = Graph->getBlockFreq(Node);
1840
    BlockFrequency HotFreq =
1841
        (BlockFrequency(MaxFrequency) *
1842
         BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1843
 
1844
    if (Freq < HotFreq)
1845
      return Result;
1846
 
1847
    raw_string_ostream OS(Result);
1848
    OS << "color=\"red\"";
1849
    OS.flush();
1850
    return Result;
1851
  }
1852
 
1853
  std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1854
                           GVDAGType GType, int layout_order = -1) {
1855
    std::string Result;
1856
    raw_string_ostream OS(Result);
1857
 
1858
    if (layout_order != -1)
1859
      OS << Node->getName() << "[" << layout_order << "] : ";
1860
    else
1861
      OS << Node->getName() << " : ";
1862
    switch (GType) {
1863
    case GVDT_Fraction:
1864
      Graph->printBlockFreq(OS, Node);
1865
      break;
1866
    case GVDT_Integer:
1867
      OS << Graph->getBlockFreq(Node).getFrequency();
1868
      break;
1869
    case GVDT_Count: {
1870
      auto Count = Graph->getBlockProfileCount(Node);
1871
      if (Count)
1872
        OS << *Count;
1873
      else
1874
        OS << "Unknown";
1875
      break;
1876
    }
1877
    case GVDT_None:
1878
      llvm_unreachable("If we are not supposed to render a graph we should "
1879
                       "never reach this point.");
1880
    }
1881
    return Result;
1882
  }
1883
 
1884
  std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
1885
                                const BlockFrequencyInfoT *BFI,
1886
                                const BranchProbabilityInfoT *BPI,
1887
                                unsigned HotPercentThreshold = 0) {
1888
    std::string Str;
1889
    if (!BPI)
1890
      return Str;
1891
 
1892
    BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1893
    uint32_t N = BP.getNumerator();
1894
    uint32_t D = BP.getDenominator();
1895
    double Percent = 100.0 * N / D;
1896
    raw_string_ostream OS(Str);
1897
    OS << format("label=\"%.1f%%\"", Percent);
1898
 
1899
    if (HotPercentThreshold) {
1900
      BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1901
      BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1902
                               BranchProbability(HotPercentThreshold, 100);
1903
 
1904
      if (EFreq >= HotFreq) {
1905
        OS << ",color=\"red\"";
1906
      }
1907
    }
1908
 
1909
    OS.flush();
1910
    return Str;
1911
  }
1912
};
1913
 
1914
} // end namespace llvm
1915
 
1916
#undef DEBUG_TYPE
1917
 
1918
#endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H