Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file defines the SparseSet class derived from the version described in
11
/// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
12
/// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec.  1993.
13
///
14
/// A sparse set holds a small number of objects identified by integer keys from
15
/// a moderately sized universe. The sparse set uses more memory than other
16
/// containers in order to provide faster operations.
17
///
18
//===----------------------------------------------------------------------===//
19
 
20
#ifndef LLVM_ADT_SPARSESET_H
21
#define LLVM_ADT_SPARSESET_H
22
 
23
#include "llvm/ADT/identity.h"
24
#include "llvm/ADT/SmallVector.h"
25
#include "llvm/Support/AllocatorBase.h"
26
#include <cassert>
27
#include <cstdint>
28
#include <cstdlib>
29
#include <limits>
30
#include <utility>
31
 
32
namespace llvm {
33
 
34
/// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
35
/// be uniquely converted to a small integer less than the set's universe. This
36
/// class allows the set to hold values that differ from the set's key type as
37
/// long as an index can still be derived from the value. SparseSet never
38
/// directly compares ValueT, only their indices, so it can map keys to
39
/// arbitrary values. SparseSetValTraits computes the index from the value
40
/// object. To compute the index from a key, SparseSet uses a separate
41
/// KeyFunctorT template argument.
42
///
43
/// A simple type declaration, SparseSet<Type>, handles these cases:
44
/// - unsigned key, identity index, identity value
45
/// - unsigned key, identity index, fat value providing getSparseSetIndex()
46
///
47
/// The type declaration SparseSet<Type, UnaryFunction> handles:
48
/// - unsigned key, remapped index, identity value (virtual registers)
49
/// - pointer key, pointer-derived index, identity value (node+ID)
50
/// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
51
///
52
/// Only other, unexpected cases require specializing SparseSetValTraits.
53
///
54
/// For best results, ValueT should not require a destructor.
55
///
56
template<typename ValueT>
57
struct SparseSetValTraits {
58
  static unsigned getValIndex(const ValueT &Val) {
59
    return Val.getSparseSetIndex();
60
  }
61
};
62
 
63
/// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
64
/// generic implementation handles ValueT classes which either provide
65
/// getSparseSetIndex() or specialize SparseSetValTraits<>.
66
///
67
template<typename KeyT, typename ValueT, typename KeyFunctorT>
68
struct SparseSetValFunctor {
69
  unsigned operator()(const ValueT &Val) const {
70
    return SparseSetValTraits<ValueT>::getValIndex(Val);
71
  }
72
};
73
 
74
/// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
75
/// identity key/value sets.
76
template<typename KeyT, typename KeyFunctorT>
77
struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
78
  unsigned operator()(const KeyT &Key) const {
79
    return KeyFunctorT()(Key);
80
  }
81
};
82
 
83
/// SparseSet - Fast set implementation for objects that can be identified by
84
/// small unsigned keys.
85
///
86
/// SparseSet allocates memory proportional to the size of the key universe, so
87
/// it is not recommended for building composite data structures.  It is useful
88
/// for algorithms that require a single set with fast operations.
89
///
90
/// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
91
/// clear() and iteration as fast as a vector.  The find(), insert(), and
92
/// erase() operations are all constant time, and typically faster than a hash
93
/// table.  The iteration order doesn't depend on numerical key values, it only
94
/// depends on the order of insert() and erase() operations.  When no elements
95
/// have been erased, the iteration order is the insertion order.
96
///
97
/// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
98
/// offers constant-time clear() and size() operations as well as fast
99
/// iteration independent on the size of the universe.
100
///
101
/// SparseSet contains a dense vector holding all the objects and a sparse
102
/// array holding indexes into the dense vector.  Most of the memory is used by
103
/// the sparse array which is the size of the key universe.  The SparseT
104
/// template parameter provides a space/speed tradeoff for sets holding many
105
/// elements.
106
///
107
/// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
108
/// array uses 4 x Universe bytes.
109
///
110
/// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
111
/// lines, but the sparse array is 4x smaller.  N is the number of elements in
112
/// the set.
113
///
114
/// For sets that may grow to thousands of elements, SparseT should be set to
115
/// uint16_t or uint32_t.
116
///
117
/// @tparam ValueT      The type of objects in the set.
118
/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
119
/// @tparam SparseT     An unsigned integer type. See above.
120
///
121
template<typename ValueT,
122
         typename KeyFunctorT = identity<unsigned>,
123
         typename SparseT = uint8_t>
124
class SparseSet {
125
  static_assert(std::is_unsigned_v<SparseT>,
126
                "SparseT must be an unsigned integer type");
127
 
128
  using KeyT = typename KeyFunctorT::argument_type;
129
  using DenseT = SmallVector<ValueT, 8>;
130
  using size_type = unsigned;
131
  DenseT Dense;
132
  SparseT *Sparse = nullptr;
133
  unsigned Universe = 0;
134
  KeyFunctorT KeyIndexOf;
135
  SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
136
 
137
public:
138
  using value_type = ValueT;
139
  using reference = ValueT &;
140
  using const_reference = const ValueT &;
141
  using pointer = ValueT *;
142
  using const_pointer = const ValueT *;
143
 
144
  SparseSet() = default;
145
  SparseSet(const SparseSet &) = delete;
146
  SparseSet &operator=(const SparseSet &) = delete;
147
  ~SparseSet() { free(Sparse); }
148
 
149
  /// setUniverse - Set the universe size which determines the largest key the
150
  /// set can hold.  The universe must be sized before any elements can be
151
  /// added.
152
  ///
153
  /// @param U Universe size. All object keys must be less than U.
154
  ///
155
  void setUniverse(unsigned U) {
156
    // It's not hard to resize the universe on a non-empty set, but it doesn't
157
    // seem like a likely use case, so we can add that code when we need it.
158
    assert(empty() && "Can only resize universe on an empty map");
159
    // Hysteresis prevents needless reallocations.
160
    if (U >= Universe/4 && U <= Universe)
161
      return;
162
    free(Sparse);
163
    // The Sparse array doesn't actually need to be initialized, so malloc
164
    // would be enough here, but that will cause tools like valgrind to
165
    // complain about branching on uninitialized data.
166
    Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
167
    Universe = U;
168
  }
169
 
170
  // Import trivial vector stuff from DenseT.
171
  using iterator = typename DenseT::iterator;
172
  using const_iterator = typename DenseT::const_iterator;
173
 
174
  const_iterator begin() const { return Dense.begin(); }
175
  const_iterator end() const { return Dense.end(); }
176
  iterator begin() { return Dense.begin(); }
177
  iterator end() { return Dense.end(); }
178
 
179
  /// empty - Returns true if the set is empty.
180
  ///
181
  /// This is not the same as BitVector::empty().
182
  ///
183
  bool empty() const { return Dense.empty(); }
184
 
185
  /// size - Returns the number of elements in the set.
186
  ///
187
  /// This is not the same as BitVector::size() which returns the size of the
188
  /// universe.
189
  ///
190
  size_type size() const { return Dense.size(); }
191
 
192
  /// clear - Clears the set.  This is a very fast constant time operation.
193
  ///
194
  void clear() {
195
    // Sparse does not need to be cleared, see find().
196
    Dense.clear();
197
  }
198
 
199
  /// findIndex - Find an element by its index.
200
  ///
201
  /// @param   Idx A valid index to find.
202
  /// @returns An iterator to the element identified by key, or end().
203
  ///
204
  iterator findIndex(unsigned Idx) {
205
    assert(Idx < Universe && "Key out of range");
206
    const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
207
    for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
208
      const unsigned FoundIdx = ValIndexOf(Dense[i]);
209
      assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
210
      if (Idx == FoundIdx)
211
        return begin() + i;
212
      // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
213
      if (!Stride)
214
        break;
215
    }
216
    return end();
217
  }
218
 
219
  /// find - Find an element by its key.
220
  ///
221
  /// @param   Key A valid key to find.
222
  /// @returns An iterator to the element identified by key, or end().
223
  ///
224
  iterator find(const KeyT &Key) {
225
    return findIndex(KeyIndexOf(Key));
226
  }
227
 
228
  const_iterator find(const KeyT &Key) const {
229
    return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
230
  }
231
 
232
  /// Check if the set contains the given \c Key.
233
  ///
234
  /// @param Key A valid key to find.
235
  bool contains(const KeyT &Key) const { return find(Key) == end() ? 0 : 1; }
236
 
237
  /// count - Returns 1 if this set contains an element identified by Key,
238
  /// 0 otherwise.
239
  ///
240
  size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; }
241
 
242
  /// insert - Attempts to insert a new element.
243
  ///
244
  /// If Val is successfully inserted, return (I, true), where I is an iterator
245
  /// pointing to the newly inserted element.
246
  ///
247
  /// If the set already contains an element with the same key as Val, return
248
  /// (I, false), where I is an iterator pointing to the existing element.
249
  ///
250
  /// Insertion invalidates all iterators.
251
  ///
252
  std::pair<iterator, bool> insert(const ValueT &Val) {
253
    unsigned Idx = ValIndexOf(Val);
254
    iterator I = findIndex(Idx);
255
    if (I != end())
256
      return std::make_pair(I, false);
257
    Sparse[Idx] = size();
258
    Dense.push_back(Val);
259
    return std::make_pair(end() - 1, true);
260
  }
261
 
262
  /// array subscript - If an element already exists with this key, return it.
263
  /// Otherwise, automatically construct a new value from Key, insert it,
264
  /// and return the newly inserted element.
265
  ValueT &operator[](const KeyT &Key) {
266
    return *insert(ValueT(Key)).first;
267
  }
268
 
269
  ValueT pop_back_val() {
270
    // Sparse does not need to be cleared, see find().
271
    return Dense.pop_back_val();
272
  }
273
 
274
  /// erase - Erases an existing element identified by a valid iterator.
275
  ///
276
  /// This invalidates all iterators, but erase() returns an iterator pointing
277
  /// to the next element.  This makes it possible to erase selected elements
278
  /// while iterating over the set:
279
  ///
280
  ///   for (SparseSet::iterator I = Set.begin(); I != Set.end();)
281
  ///     if (test(*I))
282
  ///       I = Set.erase(I);
283
  ///     else
284
  ///       ++I;
285
  ///
286
  /// Note that end() changes when elements are erased, unlike std::list.
287
  ///
288
  iterator erase(iterator I) {
289
    assert(unsigned(I - begin()) < size() && "Invalid iterator");
290
    if (I != end() - 1) {
291
      *I = Dense.back();
292
      unsigned BackIdx = ValIndexOf(Dense.back());
293
      assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
294
      Sparse[BackIdx] = I - begin();
295
    }
296
    // This depends on SmallVector::pop_back() not invalidating iterators.
297
    // std::vector::pop_back() doesn't give that guarantee.
298
    Dense.pop_back();
299
    return I;
300
  }
301
 
302
  /// erase - Erases an element identified by Key, if it exists.
303
  ///
304
  /// @param   Key The key identifying the element to erase.
305
  /// @returns True when an element was erased, false if no element was found.
306
  ///
307
  bool erase(const KeyT &Key) {
308
    iterator I = find(Key);
309
    if (I == end())
310
      return false;
311
    erase(I);
312
    return true;
313
  }
314
};
315
 
316
} // end namespace llvm
317
 
318
#endif // LLVM_ADT_SPARSESET_H