Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file defines the SmallVector class.
11
///
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_ADT_SMALLVECTOR_H
15
#define LLVM_ADT_SMALLVECTOR_H
16
 
17
#include "llvm/Support/Compiler.h"
18
#include "llvm/Support/type_traits.h"
19
#include <algorithm>
20
#include <cassert>
21
#include <cstddef>
22
#include <cstdlib>
23
#include <cstring>
24
#include <functional>
25
#include <initializer_list>
26
#include <iterator>
27
#include <limits>
28
#include <memory>
29
#include <new>
30
#include <type_traits>
31
#include <utility>
32
 
33
namespace llvm {
34
 
35
template <typename T> class ArrayRef;
36
 
37
template <typename IteratorT> class iterator_range;
38
 
39
template <class Iterator>
40
using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible<
41
    typename std::iterator_traits<Iterator>::iterator_category,
42
    std::input_iterator_tag>::value>;
43
 
44
/// This is all the stuff common to all SmallVectors.
45
///
46
/// The template parameter specifies the type which should be used to hold the
47
/// Size and Capacity of the SmallVector, so it can be adjusted.
48
/// Using 32 bit size is desirable to shrink the size of the SmallVector.
49
/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
50
/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
51
/// buffering bitcode output - which can exceed 4GB.
52
template <class Size_T> class SmallVectorBase {
53
protected:
54
  void *BeginX;
55
  Size_T Size = 0, Capacity;
56
 
57
  /// The maximum value of the Size_T used.
58
  static constexpr size_t SizeTypeMax() {
59
    return std::numeric_limits<Size_T>::max();
60
  }
61
 
62
  SmallVectorBase() = delete;
63
  SmallVectorBase(void *FirstEl, size_t TotalCapacity)
64
      : BeginX(FirstEl), Capacity(TotalCapacity) {}
65
 
66
  /// This is a helper for \a grow() that's out of line to reduce code
67
  /// duplication.  This function will report a fatal error if it can't grow at
68
  /// least to \p MinSize.
69
  void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize,
70
                      size_t &NewCapacity);
71
 
72
  /// This is an implementation of the grow() method which only works
73
  /// on POD-like data types and is out of line to reduce code duplication.
74
  /// This function will report a fatal error if it cannot increase capacity.
75
  void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
76
 
77
  /// If vector was first created with capacity 0, getFirstEl() points to the
78
  /// memory right after, an area unallocated. If a subsequent allocation,
79
  /// that grows the vector, happens to return the same pointer as getFirstEl(),
80
  /// get a new allocation, otherwise isSmall() will falsely return that no
81
  /// allocation was done (true) and the memory will not be freed in the
82
  /// destructor. If a VSize is given (vector size), also copy that many
83
  /// elements to the new allocation - used if realloca fails to increase
84
  /// space, and happens to allocate precisely at BeginX.
85
  /// This is unlikely to be called often, but resolves a memory leak when the
86
  /// situation does occur.
87
  void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity,
88
                          size_t VSize = 0);
89
 
90
public:
91
  size_t size() const { return Size; }
92
  size_t capacity() const { return Capacity; }
93
 
94
  [[nodiscard]] bool empty() const { return !Size; }
95
 
96
protected:
97
  /// Set the array size to \p N, which the current array must have enough
98
  /// capacity for.
99
  ///
100
  /// This does not construct or destroy any elements in the vector.
101
  void set_size(size_t N) {
102
    assert(N <= capacity());
103
    Size = N;
104
  }
105
};
106
 
107
template <class T>
108
using SmallVectorSizeType =
109
    std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
110
                       uint32_t>;
111
 
112
/// Figure out the offset of the first element.
113
template <class T, typename = void> struct SmallVectorAlignmentAndSize {
114
  alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
115
      SmallVectorBase<SmallVectorSizeType<T>>)];
116
  alignas(T) char FirstEl[sizeof(T)];
117
};
118
 
119
/// This is the part of SmallVectorTemplateBase which does not depend on whether
120
/// the type T is a POD. The extra dummy template argument is used by ArrayRef
121
/// to avoid unnecessarily requiring T to be complete.
122
template <typename T, typename = void>
123
class SmallVectorTemplateCommon
124
    : public SmallVectorBase<SmallVectorSizeType<T>> {
125
  using Base = SmallVectorBase<SmallVectorSizeType<T>>;
126
 
127
protected:
128
  /// Find the address of the first element.  For this pointer math to be valid
129
  /// with small-size of 0 for T with lots of alignment, it's important that
130
  /// SmallVectorStorage is properly-aligned even for small-size of 0.
131
  void *getFirstEl() const {
132
    return const_cast<void *>(reinterpret_cast<const void *>(
133
        reinterpret_cast<const char *>(this) +
134
        offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
135
  }
136
  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
137
 
138
  SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
139
 
140
  void grow_pod(size_t MinSize, size_t TSize) {
141
    Base::grow_pod(getFirstEl(), MinSize, TSize);
142
  }
143
 
144
  /// Return true if this is a smallvector which has not had dynamic
145
  /// memory allocated for it.
146
  bool isSmall() const { return this->BeginX == getFirstEl(); }
147
 
148
  /// Put this vector in a state of being small.
149
  void resetToSmall() {
150
    this->BeginX = getFirstEl();
151
    this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
152
  }
153
 
154
  /// Return true if V is an internal reference to the given range.
155
  bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
156
    // Use std::less to avoid UB.
157
    std::less<> LessThan;
158
    return !LessThan(V, First) && LessThan(V, Last);
159
  }
160
 
161
  /// Return true if V is an internal reference to this vector.
162
  bool isReferenceToStorage(const void *V) const {
163
    return isReferenceToRange(V, this->begin(), this->end());
164
  }
165
 
166
  /// Return true if First and Last form a valid (possibly empty) range in this
167
  /// vector's storage.
168
  bool isRangeInStorage(const void *First, const void *Last) const {
169
    // Use std::less to avoid UB.
170
    std::less<> LessThan;
171
    return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
172
           !LessThan(this->end(), Last);
173
  }
174
 
175
  /// Return true unless Elt will be invalidated by resizing the vector to
176
  /// NewSize.
177
  bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
178
    // Past the end.
179
    if (LLVM_LIKELY(!isReferenceToStorage(Elt)))
180
      return true;
181
 
182
    // Return false if Elt will be destroyed by shrinking.
183
    if (NewSize <= this->size())
184
      return Elt < this->begin() + NewSize;
185
 
186
    // Return false if we need to grow.
187
    return NewSize <= this->capacity();
188
  }
189
 
190
  /// Check whether Elt will be invalidated by resizing the vector to NewSize.
191
  void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
192
    assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
193
           "Attempting to reference an element of the vector in an operation "
194
           "that invalidates it");
195
  }
196
 
197
  /// Check whether Elt will be invalidated by increasing the size of the
198
  /// vector by N.
199
  void assertSafeToAdd(const void *Elt, size_t N = 1) {
200
    this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
201
  }
202
 
203
  /// Check whether any part of the range will be invalidated by clearing.
204
  void assertSafeToReferenceAfterClear(const T *From, const T *To) {
205
    if (From == To)
206
      return;
207
    this->assertSafeToReferenceAfterResize(From, 0);
208
    this->assertSafeToReferenceAfterResize(To - 1, 0);
209
  }
210
  template <
211
      class ItTy,
212
      std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
213
                       bool> = false>
214
  void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
215
 
216
  /// Check whether any part of the range will be invalidated by growing.
217
  void assertSafeToAddRange(const T *From, const T *To) {
218
    if (From == To)
219
      return;
220
    this->assertSafeToAdd(From, To - From);
221
    this->assertSafeToAdd(To - 1, To - From);
222
  }
223
  template <
224
      class ItTy,
225
      std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
226
                       bool> = false>
227
  void assertSafeToAddRange(ItTy, ItTy) {}
228
 
229
  /// Reserve enough space to add one element, and return the updated element
230
  /// pointer in case it was a reference to the storage.
231
  template <class U>
232
  static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
233
                                                   size_t N) {
234
    size_t NewSize = This->size() + N;
235
    if (LLVM_LIKELY(NewSize <= This->capacity()))
236
      return &Elt;
237
 
238
    bool ReferencesStorage = false;
239
    int64_t Index = -1;
240
    if (!U::TakesParamByValue) {
241
      if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) {
242
        ReferencesStorage = true;
243
        Index = &Elt - This->begin();
244
      }
245
    }
246
    This->grow(NewSize);
247
    return ReferencesStorage ? This->begin() + Index : &Elt;
248
  }
249
 
250
public:
251
  using size_type = size_t;
252
  using difference_type = ptrdiff_t;
253
  using value_type = T;
254
  using iterator = T *;
255
  using const_iterator = const T *;
256
 
257
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
258
  using reverse_iterator = std::reverse_iterator<iterator>;
259
 
260
  using reference = T &;
261
  using const_reference = const T &;
262
  using pointer = T *;
263
  using const_pointer = const T *;
264
 
265
  using Base::capacity;
266
  using Base::empty;
267
  using Base::size;
268
 
269
  // forward iterator creation methods.
270
  iterator begin() { return (iterator)this->BeginX; }
271
  const_iterator begin() const { return (const_iterator)this->BeginX; }
272
  iterator end() { return begin() + size(); }
273
  const_iterator end() const { return begin() + size(); }
274
 
275
  // reverse iterator creation methods.
276
  reverse_iterator rbegin()            { return reverse_iterator(end()); }
277
  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
278
  reverse_iterator rend()              { return reverse_iterator(begin()); }
279
  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
280
 
281
  size_type size_in_bytes() const { return size() * sizeof(T); }
282
  size_type max_size() const {
283
    return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
284
  }
285
 
286
  size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
287
 
288
  /// Return a pointer to the vector's buffer, even if empty().
289
  pointer data() { return pointer(begin()); }
290
  /// Return a pointer to the vector's buffer, even if empty().
291
  const_pointer data() const { return const_pointer(begin()); }
292
 
293
  reference operator[](size_type idx) {
294
    assert(idx < size());
295
    return begin()[idx];
296
  }
297
  const_reference operator[](size_type idx) const {
298
    assert(idx < size());
299
    return begin()[idx];
300
  }
301
 
302
  reference front() {
303
    assert(!empty());
304
    return begin()[0];
305
  }
306
  const_reference front() const {
307
    assert(!empty());
308
    return begin()[0];
309
  }
310
 
311
  reference back() {
312
    assert(!empty());
313
    return end()[-1];
314
  }
315
  const_reference back() const {
316
    assert(!empty());
317
    return end()[-1];
318
  }
319
};
320
 
321
/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
322
/// method implementations that are designed to work with non-trivial T's.
323
///
324
/// We approximate is_trivially_copyable with trivial move/copy construction and
325
/// trivial destruction. While the standard doesn't specify that you're allowed
326
/// copy these types with memcpy, there is no way for the type to observe this.
327
/// This catches the important case of std::pair<POD, POD>, which is not
328
/// trivially assignable.
329
template <typename T, bool = (is_trivially_copy_constructible<T>::value) &&
330
                             (is_trivially_move_constructible<T>::value) &&
331
                             std::is_trivially_destructible<T>::value>
332
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
333
  friend class SmallVectorTemplateCommon<T>;
334
 
335
protected:
336
  static constexpr bool TakesParamByValue = false;
337
  using ValueParamT = const T &;
338
 
339
  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
340
 
341
  static void destroy_range(T *S, T *E) {
342
    while (S != E) {
343
      --E;
344
      E->~T();
345
    }
346
  }
347
 
348
  /// Move the range [I, E) into the uninitialized memory starting with "Dest",
349
  /// constructing elements as needed.
350
  template<typename It1, typename It2>
351
  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
352
    std::uninitialized_move(I, E, Dest);
353
  }
354
 
355
  /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
356
  /// constructing elements as needed.
357
  template<typename It1, typename It2>
358
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
359
    std::uninitialized_copy(I, E, Dest);
360
  }
361
 
362
  /// Grow the allocated memory (without initializing new elements), doubling
363
  /// the size of the allocated memory. Guarantees space for at least one more
364
  /// element, or MinSize more elements if specified.
365
  void grow(size_t MinSize = 0);
366
 
367
  /// Create a new allocation big enough for \p MinSize and pass back its size
368
  /// in \p NewCapacity. This is the first section of \a grow().
369
  T *mallocForGrow(size_t MinSize, size_t &NewCapacity);
370
 
371
  /// Move existing elements over to the new allocation \p NewElts, the middle
372
  /// section of \a grow().
373
  void moveElementsForGrow(T *NewElts);
374
 
375
  /// Transfer ownership of the allocation, finishing up \a grow().
376
  void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
377
 
378
  /// Reserve enough space to add one element, and return the updated element
379
  /// pointer in case it was a reference to the storage.
380
  const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
381
    return this->reserveForParamAndGetAddressImpl(this, Elt, N);
382
  }
383
 
384
  /// Reserve enough space to add one element, and return the updated element
385
  /// pointer in case it was a reference to the storage.
386
  T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
387
    return const_cast<T *>(
388
        this->reserveForParamAndGetAddressImpl(this, Elt, N));
389
  }
390
 
391
  static T &&forward_value_param(T &&V) { return std::move(V); }
392
  static const T &forward_value_param(const T &V) { return V; }
393
 
394
  void growAndAssign(size_t NumElts, const T &Elt) {
395
    // Grow manually in case Elt is an internal reference.
396
    size_t NewCapacity;
397
    T *NewElts = mallocForGrow(NumElts, NewCapacity);
398
    std::uninitialized_fill_n(NewElts, NumElts, Elt);
399
    this->destroy_range(this->begin(), this->end());
400
    takeAllocationForGrow(NewElts, NewCapacity);
401
    this->set_size(NumElts);
402
  }
403
 
404
  template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
405
    // Grow manually in case one of Args is an internal reference.
406
    size_t NewCapacity;
407
    T *NewElts = mallocForGrow(0, NewCapacity);
408
    ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
409
    moveElementsForGrow(NewElts);
410
    takeAllocationForGrow(NewElts, NewCapacity);
411
    this->set_size(this->size() + 1);
412
    return this->back();
413
  }
414
 
415
public:
416
  void push_back(const T &Elt) {
417
    const T *EltPtr = reserveForParamAndGetAddress(Elt);
418
    ::new ((void *)this->end()) T(*EltPtr);
419
    this->set_size(this->size() + 1);
420
  }
421
 
422
  void push_back(T &&Elt) {
423
    T *EltPtr = reserveForParamAndGetAddress(Elt);
424
    ::new ((void *)this->end()) T(::std::move(*EltPtr));
425
    this->set_size(this->size() + 1);
426
  }
427
 
428
  void pop_back() {
429
    this->set_size(this->size() - 1);
430
    this->end()->~T();
431
  }
432
};
433
 
434
// Define this out-of-line to dissuade the C++ compiler from inlining it.
435
template <typename T, bool TriviallyCopyable>
436
void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
437
  size_t NewCapacity;
438
  T *NewElts = mallocForGrow(MinSize, NewCapacity);
439
  moveElementsForGrow(NewElts);
440
  takeAllocationForGrow(NewElts, NewCapacity);
441
}
442
 
443
template <typename T, bool TriviallyCopyable>
444
T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow(
445
    size_t MinSize, size_t &NewCapacity) {
446
  return static_cast<T *>(
447
      SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
448
          this->getFirstEl(), MinSize, sizeof(T), NewCapacity));
449
}
450
 
451
// Define this out-of-line to dissuade the C++ compiler from inlining it.
452
template <typename T, bool TriviallyCopyable>
453
void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
454
    T *NewElts) {
455
  // Move the elements over.
456
  this->uninitialized_move(this->begin(), this->end(), NewElts);
457
 
458
  // Destroy the original elements.
459
  destroy_range(this->begin(), this->end());
460
}
461
 
462
// Define this out-of-line to dissuade the C++ compiler from inlining it.
463
template <typename T, bool TriviallyCopyable>
464
void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
465
    T *NewElts, size_t NewCapacity) {
466
  // If this wasn't grown from the inline copy, deallocate the old space.
467
  if (!this->isSmall())
468
    free(this->begin());
469
 
470
  this->BeginX = NewElts;
471
  this->Capacity = NewCapacity;
472
}
473
 
474
/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
475
/// method implementations that are designed to work with trivially copyable
476
/// T's. This allows using memcpy in place of copy/move construction and
477
/// skipping destruction.
478
template <typename T>
479
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
480
  friend class SmallVectorTemplateCommon<T>;
481
 
482
protected:
483
  /// True if it's cheap enough to take parameters by value. Doing so avoids
484
  /// overhead related to mitigations for reference invalidation.
485
  static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
486
 
487
  /// Either const T& or T, depending on whether it's cheap enough to take
488
  /// parameters by value.
489
  using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>;
490
 
491
  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
492
 
493
  // No need to do a destroy loop for POD's.
494
  static void destroy_range(T *, T *) {}
495
 
496
  /// Move the range [I, E) onto the uninitialized memory
497
  /// starting with "Dest", constructing elements into it as needed.
498
  template<typename It1, typename It2>
499
  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
500
    // Just do a copy.
501
    uninitialized_copy(I, E, Dest);
502
  }
503
 
504
  /// Copy the range [I, E) onto the uninitialized memory
505
  /// starting with "Dest", constructing elements into it as needed.
506
  template<typename It1, typename It2>
507
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
508
    // Arbitrary iterator types; just use the basic implementation.
509
    std::uninitialized_copy(I, E, Dest);
510
  }
511
 
512
  /// Copy the range [I, E) onto the uninitialized memory
513
  /// starting with "Dest", constructing elements into it as needed.
514
  template <typename T1, typename T2>
515
  static void uninitialized_copy(
516
      T1 *I, T1 *E, T2 *Dest,
517
      std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * =
518
          nullptr) {
519
    // Use memcpy for PODs iterated by pointers (which includes SmallVector
520
    // iterators): std::uninitialized_copy optimizes to memmove, but we can
521
    // use memcpy here. Note that I and E are iterators and thus might be
522
    // invalid for memcpy if they are equal.
523
    if (I != E)
524
      memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
525
  }
526
 
527
  /// Double the size of the allocated memory, guaranteeing space for at
528
  /// least one more element or MinSize if specified.
529
  void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
530
 
531
  /// Reserve enough space to add one element, and return the updated element
532
  /// pointer in case it was a reference to the storage.
533
  const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
534
    return this->reserveForParamAndGetAddressImpl(this, Elt, N);
535
  }
536
 
537
  /// Reserve enough space to add one element, and return the updated element
538
  /// pointer in case it was a reference to the storage.
539
  T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
540
    return const_cast<T *>(
541
        this->reserveForParamAndGetAddressImpl(this, Elt, N));
542
  }
543
 
544
  /// Copy \p V or return a reference, depending on \a ValueParamT.
545
  static ValueParamT forward_value_param(ValueParamT V) { return V; }
546
 
547
  void growAndAssign(size_t NumElts, T Elt) {
548
    // Elt has been copied in case it's an internal reference, side-stepping
549
    // reference invalidation problems without losing the realloc optimization.
550
    this->set_size(0);
551
    this->grow(NumElts);
552
    std::uninitialized_fill_n(this->begin(), NumElts, Elt);
553
    this->set_size(NumElts);
554
  }
555
 
556
  template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
557
    // Use push_back with a copy in case Args has an internal reference,
558
    // side-stepping reference invalidation problems without losing the realloc
559
    // optimization.
560
    push_back(T(std::forward<ArgTypes>(Args)...));
561
    return this->back();
562
  }
563
 
564
public:
565
  void push_back(ValueParamT Elt) {
566
    const T *EltPtr = reserveForParamAndGetAddress(Elt);
567
    memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
568
    this->set_size(this->size() + 1);
569
  }
570
 
571
  void pop_back() { this->set_size(this->size() - 1); }
572
};
573
 
574
/// This class consists of common code factored out of the SmallVector class to
575
/// reduce code duplication based on the SmallVector 'N' template parameter.
576
template <typename T>
577
class SmallVectorImpl : public SmallVectorTemplateBase<T> {
578
  using SuperClass = SmallVectorTemplateBase<T>;
579
 
580
public:
581
  using iterator = typename SuperClass::iterator;
582
  using const_iterator = typename SuperClass::const_iterator;
583
  using reference = typename SuperClass::reference;
584
  using size_type = typename SuperClass::size_type;
585
 
586
protected:
587
  using SmallVectorTemplateBase<T>::TakesParamByValue;
588
  using ValueParamT = typename SuperClass::ValueParamT;
589
 
590
  // Default ctor - Initialize to empty.
591
  explicit SmallVectorImpl(unsigned N)
592
      : SmallVectorTemplateBase<T>(N) {}
593
 
594
  void assignRemote(SmallVectorImpl &&RHS) {
595
    this->destroy_range(this->begin(), this->end());
596
    if (!this->isSmall())
597
      free(this->begin());
598
    this->BeginX = RHS.BeginX;
599
    this->Size = RHS.Size;
600
    this->Capacity = RHS.Capacity;
601
    RHS.resetToSmall();
602
  }
603
 
604
public:
605
  SmallVectorImpl(const SmallVectorImpl &) = delete;
606
 
607
  ~SmallVectorImpl() {
608
    // Subclass has already destructed this vector's elements.
609
    // If this wasn't grown from the inline copy, deallocate the old space.
610
    if (!this->isSmall())
611
      free(this->begin());
612
  }
613
 
614
  void clear() {
615
    this->destroy_range(this->begin(), this->end());
616
    this->Size = 0;
617
  }
618
 
619
private:
620
  // Make set_size() private to avoid misuse in subclasses.
621
  using SuperClass::set_size;
622
 
623
  template <bool ForOverwrite> void resizeImpl(size_type N) {
624
    if (N == this->size())
625
      return;
626
 
627
    if (N < this->size()) {
628
      this->truncate(N);
629
      return;
630
    }
631
 
632
    this->reserve(N);
633
    for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
634
      if (ForOverwrite)
635
        new (&*I) T;
636
      else
637
        new (&*I) T();
638
    this->set_size(N);
639
  }
640
 
641
public:
642
  void resize(size_type N) { resizeImpl<false>(N); }
643
 
644
  /// Like resize, but \ref T is POD, the new values won't be initialized.
645
  void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
646
 
647
  /// Like resize, but requires that \p N is less than \a size().
648
  void truncate(size_type N) {
649
    assert(this->size() >= N && "Cannot increase size with truncate");
650
    this->destroy_range(this->begin() + N, this->end());
651
    this->set_size(N);
652
  }
653
 
654
  void resize(size_type N, ValueParamT NV) {
655
    if (N == this->size())
656
      return;
657
 
658
    if (N < this->size()) {
659
      this->truncate(N);
660
      return;
661
    }
662
 
663
    // N > this->size(). Defer to append.
664
    this->append(N - this->size(), NV);
665
  }
666
 
667
  void reserve(size_type N) {
668
    if (this->capacity() < N)
669
      this->grow(N);
670
  }
671
 
672
  void pop_back_n(size_type NumItems) {
673
    assert(this->size() >= NumItems);
674
    truncate(this->size() - NumItems);
675
  }
676
 
677
  [[nodiscard]] T pop_back_val() {
678
    T Result = ::std::move(this->back());
679
    this->pop_back();
680
    return Result;
681
  }
682
 
683
  void swap(SmallVectorImpl &RHS);
684
 
685
  /// Add the specified range to the end of the SmallVector.
686
  template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
687
  void append(ItTy in_start, ItTy in_end) {
688
    this->assertSafeToAddRange(in_start, in_end);
689
    size_type NumInputs = std::distance(in_start, in_end);
690
    this->reserve(this->size() + NumInputs);
691
    this->uninitialized_copy(in_start, in_end, this->end());
692
    this->set_size(this->size() + NumInputs);
693
  }
694
 
695
  /// Append \p NumInputs copies of \p Elt to the end.
696
  void append(size_type NumInputs, ValueParamT Elt) {
697
    const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
698
    std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
699
    this->set_size(this->size() + NumInputs);
700
  }
701
 
702
  void append(std::initializer_list<T> IL) {
703
    append(IL.begin(), IL.end());
704
  }
705
 
706
  void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
707
 
708
  void assign(size_type NumElts, ValueParamT Elt) {
709
    // Note that Elt could be an internal reference.
710
    if (NumElts > this->capacity()) {
711
      this->growAndAssign(NumElts, Elt);
712
      return;
713
    }
714
 
715
    // Assign over existing elements.
716
    std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
717
    if (NumElts > this->size())
718
      std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
719
    else if (NumElts < this->size())
720
      this->destroy_range(this->begin() + NumElts, this->end());
721
    this->set_size(NumElts);
722
  }
723
 
724
  // FIXME: Consider assigning over existing elements, rather than clearing &
725
  // re-initializing them - for all assign(...) variants.
726
 
727
  template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
728
  void assign(ItTy in_start, ItTy in_end) {
729
    this->assertSafeToReferenceAfterClear(in_start, in_end);
730
    clear();
731
    append(in_start, in_end);
732
  }
733
 
734
  void assign(std::initializer_list<T> IL) {
735
    clear();
736
    append(IL);
737
  }
738
 
739
  void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
740
 
741
  iterator erase(const_iterator CI) {
742
    // Just cast away constness because this is a non-const member function.
743
    iterator I = const_cast<iterator>(CI);
744
 
745
    assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");
746
 
747
    iterator N = I;
748
    // Shift all elts down one.
749
    std::move(I+1, this->end(), I);
750
    // Drop the last elt.
751
    this->pop_back();
752
    return(N);
753
  }
754
 
755
  iterator erase(const_iterator CS, const_iterator CE) {
756
    // Just cast away constness because this is a non-const member function.
757
    iterator S = const_cast<iterator>(CS);
758
    iterator E = const_cast<iterator>(CE);
759
 
760
    assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");
761
 
762
    iterator N = S;
763
    // Shift all elts down.
764
    iterator I = std::move(E, this->end(), S);
765
    // Drop the last elts.
766
    this->destroy_range(I, this->end());
767
    this->set_size(I - this->begin());
768
    return(N);
769
  }
770
 
771
private:
772
  template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
773
    // Callers ensure that ArgType is derived from T.
774
    static_assert(
775
        std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
776
                     T>::value,
777
        "ArgType must be derived from T!");
778
 
779
    if (I == this->end()) {  // Important special case for empty vector.
780
      this->push_back(::std::forward<ArgType>(Elt));
781
      return this->end()-1;
782
    }
783
 
784
    assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
785
 
786
    // Grow if necessary.
787
    size_t Index = I - this->begin();
788
    std::remove_reference_t<ArgType> *EltPtr =
789
        this->reserveForParamAndGetAddress(Elt);
790
    I = this->begin() + Index;
791
 
792
    ::new ((void*) this->end()) T(::std::move(this->back()));
793
    // Push everything else over.
794
    std::move_backward(I, this->end()-1, this->end());
795
    this->set_size(this->size() + 1);
796
 
797
    // If we just moved the element we're inserting, be sure to update
798
    // the reference (never happens if TakesParamByValue).
799
    static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
800
                  "ArgType must be 'T' when taking by value!");
801
    if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
802
      ++EltPtr;
803
 
804
    *I = ::std::forward<ArgType>(*EltPtr);
805
    return I;
806
  }
807
 
808
public:
809
  iterator insert(iterator I, T &&Elt) {
810
    return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
811
  }
812
 
813
  iterator insert(iterator I, const T &Elt) {
814
    return insert_one_impl(I, this->forward_value_param(Elt));
815
  }
816
 
817
  iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
818
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
819
    size_t InsertElt = I - this->begin();
820
 
821
    if (I == this->end()) {  // Important special case for empty vector.
822
      append(NumToInsert, Elt);
823
      return this->begin()+InsertElt;
824
    }
825
 
826
    assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
827
 
828
    // Ensure there is enough space, and get the (maybe updated) address of
829
    // Elt.
830
    const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
831
 
832
    // Uninvalidate the iterator.
833
    I = this->begin()+InsertElt;
834
 
835
    // If there are more elements between the insertion point and the end of the
836
    // range than there are being inserted, we can use a simple approach to
837
    // insertion.  Since we already reserved space, we know that this won't
838
    // reallocate the vector.
839
    if (size_t(this->end()-I) >= NumToInsert) {
840
      T *OldEnd = this->end();
841
      append(std::move_iterator<iterator>(this->end() - NumToInsert),
842
             std::move_iterator<iterator>(this->end()));
843
 
844
      // Copy the existing elements that get replaced.
845
      std::move_backward(I, OldEnd-NumToInsert, OldEnd);
846
 
847
      // If we just moved the element we're inserting, be sure to update
848
      // the reference (never happens if TakesParamByValue).
849
      if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
850
        EltPtr += NumToInsert;
851
 
852
      std::fill_n(I, NumToInsert, *EltPtr);
853
      return I;
854
    }
855
 
856
    // Otherwise, we're inserting more elements than exist already, and we're
857
    // not inserting at the end.
858
 
859
    // Move over the elements that we're about to overwrite.
860
    T *OldEnd = this->end();
861
    this->set_size(this->size() + NumToInsert);
862
    size_t NumOverwritten = OldEnd-I;
863
    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
864
 
865
    // If we just moved the element we're inserting, be sure to update
866
    // the reference (never happens if TakesParamByValue).
867
    if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
868
      EltPtr += NumToInsert;
869
 
870
    // Replace the overwritten part.
871
    std::fill_n(I, NumOverwritten, *EltPtr);
872
 
873
    // Insert the non-overwritten middle part.
874
    std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
875
    return I;
876
  }
877
 
878
  template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
879
  iterator insert(iterator I, ItTy From, ItTy To) {
880
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
881
    size_t InsertElt = I - this->begin();
882
 
883
    if (I == this->end()) {  // Important special case for empty vector.
884
      append(From, To);
885
      return this->begin()+InsertElt;
886
    }
887
 
888
    assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
889
 
890
    // Check that the reserve that follows doesn't invalidate the iterators.
891
    this->assertSafeToAddRange(From, To);
892
 
893
    size_t NumToInsert = std::distance(From, To);
894
 
895
    // Ensure there is enough space.
896
    reserve(this->size() + NumToInsert);
897
 
898
    // Uninvalidate the iterator.
899
    I = this->begin()+InsertElt;
900
 
901
    // If there are more elements between the insertion point and the end of the
902
    // range than there are being inserted, we can use a simple approach to
903
    // insertion.  Since we already reserved space, we know that this won't
904
    // reallocate the vector.
905
    if (size_t(this->end()-I) >= NumToInsert) {
906
      T *OldEnd = this->end();
907
      append(std::move_iterator<iterator>(this->end() - NumToInsert),
908
             std::move_iterator<iterator>(this->end()));
909
 
910
      // Copy the existing elements that get replaced.
911
      std::move_backward(I, OldEnd-NumToInsert, OldEnd);
912
 
913
      std::copy(From, To, I);
914
      return I;
915
    }
916
 
917
    // Otherwise, we're inserting more elements than exist already, and we're
918
    // not inserting at the end.
919
 
920
    // Move over the elements that we're about to overwrite.
921
    T *OldEnd = this->end();
922
    this->set_size(this->size() + NumToInsert);
923
    size_t NumOverwritten = OldEnd-I;
924
    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
925
 
926
    // Replace the overwritten part.
927
    for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
928
      *J = *From;
929
      ++J; ++From;
930
    }
931
 
932
    // Insert the non-overwritten middle part.
933
    this->uninitialized_copy(From, To, OldEnd);
934
    return I;
935
  }
936
 
937
  void insert(iterator I, std::initializer_list<T> IL) {
938
    insert(I, IL.begin(), IL.end());
939
  }
940
 
941
  template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
942
    if (LLVM_UNLIKELY(this->size() >= this->capacity()))
943
      return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
944
 
945
    ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
946
    this->set_size(this->size() + 1);
947
    return this->back();
948
  }
949
 
950
  SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
951
 
952
  SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
953
 
954
  bool operator==(const SmallVectorImpl &RHS) const {
955
    if (this->size() != RHS.size()) return false;
956
    return std::equal(this->begin(), this->end(), RHS.begin());
957
  }
958
  bool operator!=(const SmallVectorImpl &RHS) const {
959
    return !(*this == RHS);
960
  }
961
 
962
  bool operator<(const SmallVectorImpl &RHS) const {
963
    return std::lexicographical_compare(this->begin(), this->end(),
964
                                        RHS.begin(), RHS.end());
965
  }
966
  bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; }
967
  bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); }
968
  bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); }
969
};
970
 
971
template <typename T>
972
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
973
  if (this == &RHS) return;
974
 
975
  // We can only avoid copying elements if neither vector is small.
976
  if (!this->isSmall() && !RHS.isSmall()) {
977
    std::swap(this->BeginX, RHS.BeginX);
978
    std::swap(this->Size, RHS.Size);
979
    std::swap(this->Capacity, RHS.Capacity);
980
    return;
981
  }
982
  this->reserve(RHS.size());
983
  RHS.reserve(this->size());
984
 
985
  // Swap the shared elements.
986
  size_t NumShared = this->size();
987
  if (NumShared > RHS.size()) NumShared = RHS.size();
988
  for (size_type i = 0; i != NumShared; ++i)
989
    std::swap((*this)[i], RHS[i]);
990
 
991
  // Copy over the extra elts.
992
  if (this->size() > RHS.size()) {
993
    size_t EltDiff = this->size() - RHS.size();
994
    this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
995
    RHS.set_size(RHS.size() + EltDiff);
996
    this->destroy_range(this->begin()+NumShared, this->end());
997
    this->set_size(NumShared);
998
  } else if (RHS.size() > this->size()) {
999
    size_t EltDiff = RHS.size() - this->size();
1000
    this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
1001
    this->set_size(this->size() + EltDiff);
1002
    this->destroy_range(RHS.begin()+NumShared, RHS.end());
1003
    RHS.set_size(NumShared);
1004
  }
1005
}
1006
 
1007
template <typename T>
1008
SmallVectorImpl<T> &SmallVectorImpl<T>::
1009
  operator=(const SmallVectorImpl<T> &RHS) {
1010
  // Avoid self-assignment.
1011
  if (this == &RHS) return *this;
1012
 
1013
  // If we already have sufficient space, assign the common elements, then
1014
  // destroy any excess.
1015
  size_t RHSSize = RHS.size();
1016
  size_t CurSize = this->size();
1017
  if (CurSize >= RHSSize) {
1018
    // Assign common elements.
1019
    iterator NewEnd;
1020
    if (RHSSize)
1021
      NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
1022
    else
1023
      NewEnd = this->begin();
1024
 
1025
    // Destroy excess elements.
1026
    this->destroy_range(NewEnd, this->end());
1027
 
1028
    // Trim.
1029
    this->set_size(RHSSize);
1030
    return *this;
1031
  }
1032
 
1033
  // If we have to grow to have enough elements, destroy the current elements.
1034
  // This allows us to avoid copying them during the grow.
1035
  // FIXME: don't do this if they're efficiently moveable.
1036
  if (this->capacity() < RHSSize) {
1037
    // Destroy current elements.
1038
    this->clear();
1039
    CurSize = 0;
1040
    this->grow(RHSSize);
1041
  } else if (CurSize) {
1042
    // Otherwise, use assignment for the already-constructed elements.
1043
    std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
1044
  }
1045
 
1046
  // Copy construct the new elements in place.
1047
  this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
1048
                           this->begin()+CurSize);
1049
 
1050
  // Set end.
1051
  this->set_size(RHSSize);
1052
  return *this;
1053
}
1054
 
1055
template <typename T>
1056
SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
1057
  // Avoid self-assignment.
1058
  if (this == &RHS) return *this;
1059
 
1060
  // If the RHS isn't small, clear this vector and then steal its buffer.
1061
  if (!RHS.isSmall()) {
1062
    this->assignRemote(std::move(RHS));
1063
    return *this;
1064
  }
1065
 
1066
  // If we already have sufficient space, assign the common elements, then
1067
  // destroy any excess.
1068
  size_t RHSSize = RHS.size();
1069
  size_t CurSize = this->size();
1070
  if (CurSize >= RHSSize) {
1071
    // Assign common elements.
1072
    iterator NewEnd = this->begin();
1073
    if (RHSSize)
1074
      NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
1075
 
1076
    // Destroy excess elements and trim the bounds.
1077
    this->destroy_range(NewEnd, this->end());
1078
    this->set_size(RHSSize);
1079
 
1080
    // Clear the RHS.
1081
    RHS.clear();
1082
 
1083
    return *this;
1084
  }
1085
 
1086
  // If we have to grow to have enough elements, destroy the current elements.
1087
  // This allows us to avoid copying them during the grow.
1088
  // FIXME: this may not actually make any sense if we can efficiently move
1089
  // elements.
1090
  if (this->capacity() < RHSSize) {
1091
    // Destroy current elements.
1092
    this->clear();
1093
    CurSize = 0;
1094
    this->grow(RHSSize);
1095
  } else if (CurSize) {
1096
    // Otherwise, use assignment for the already-constructed elements.
1097
    std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
1098
  }
1099
 
1100
  // Move-construct the new elements in place.
1101
  this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
1102
                           this->begin()+CurSize);
1103
 
1104
  // Set end.
1105
  this->set_size(RHSSize);
1106
 
1107
  RHS.clear();
1108
  return *this;
1109
}
1110
 
1111
/// Storage for the SmallVector elements.  This is specialized for the N=0 case
1112
/// to avoid allocating unnecessary storage.
1113
template <typename T, unsigned N>
1114
struct SmallVectorStorage {
1115
  alignas(T) char InlineElts[N * sizeof(T)];
1116
};
1117
 
1118
/// We need the storage to be properly aligned even for small-size of 0 so that
1119
/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
1120
/// well-defined.
1121
template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
1122
 
1123
/// Forward declaration of SmallVector so that
1124
/// calculateSmallVectorDefaultInlinedElements can reference
1125
/// `sizeof(SmallVector<T, 0>)`.
1126
template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector;
1127
 
1128
/// Helper class for calculating the default number of inline elements for
1129
/// `SmallVector<T>`.
1130
///
1131
/// This should be migrated to a constexpr function when our minimum
1132
/// compiler support is enough for multi-statement constexpr functions.
1133
template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
1134
  // Parameter controlling the default number of inlined elements
1135
  // for `SmallVector<T>`.
1136
  //
1137
  // The default number of inlined elements ensures that
1138
  // 1. There is at least one inlined element.
1139
  // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
1140
  // it contradicts 1.
1141
  static constexpr size_t kPreferredSmallVectorSizeof = 64;
1142
 
1143
  // static_assert that sizeof(T) is not "too big".
1144
  //
1145
  // Because our policy guarantees at least one inlined element, it is possible
1146
  // for an arbitrarily large inlined element to allocate an arbitrarily large
1147
  // amount of inline storage. We generally consider it an antipattern for a
1148
  // SmallVector to allocate an excessive amount of inline storage, so we want
1149
  // to call attention to these cases and make sure that users are making an
1150
  // intentional decision if they request a lot of inline storage.
1151
  //
1152
  // We want this assertion to trigger in pathological cases, but otherwise
1153
  // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
1154
  // larger than kPreferredSmallVectorSizeof (otherwise,
1155
  // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
1156
  // pattern seems useful in practice).
1157
  //
1158
  // One wrinkle is that this assertion is in theory non-portable, since
1159
  // sizeof(T) is in general platform-dependent. However, we don't expect this
1160
  // to be much of an issue, because most LLVM development happens on 64-bit
1161
  // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
1162
  // 32-bit hosts, dodging the issue. The reverse situation, where development
1163
  // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
1164
  // 64-bit host, is expected to be very rare.
1165
  static_assert(
1166
      sizeof(T) <= 256,
1167
      "You are trying to use a default number of inlined elements for "
1168
      "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
1169
      "explicit number of inlined elements with `SmallVector<T, N>` to make "
1170
      "sure you really want that much inline storage.");
1171
 
1172
  // Discount the size of the header itself when calculating the maximum inline
1173
  // bytes.
1174
  static constexpr size_t PreferredInlineBytes =
1175
      kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
1176
  static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
1177
  static constexpr size_t value =
1178
      NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
1179
};
1180
 
1181
/// This is a 'vector' (really, a variable-sized array), optimized
1182
/// for the case when the array is small.  It contains some number of elements
1183
/// in-place, which allows it to avoid heap allocation when the actual number of
1184
/// elements is below that threshold.  This allows normal "small" cases to be
1185
/// fast without losing generality for large inputs.
1186
///
1187
/// \note
1188
/// In the absence of a well-motivated choice for the number of inlined
1189
/// elements \p N, it is recommended to use \c SmallVector<T> (that is,
1190
/// omitting the \p N). This will choose a default number of inlined elements
1191
/// reasonable for allocation on the stack (for example, trying to keep \c
1192
/// sizeof(SmallVector<T>) around 64 bytes).
1193
///
1194
/// \warning This does not attempt to be exception safe.
1195
///
1196
/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
1197
template <typename T,
1198
          unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
1199
class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>,
1200
                                   SmallVectorStorage<T, N> {
1201
public:
1202
  SmallVector() : SmallVectorImpl<T>(N) {}
1203
 
1204
  ~SmallVector() {
1205
    // Destroy the constructed elements in the vector.
1206
    this->destroy_range(this->begin(), this->end());
1207
  }
1208
 
1209
  explicit SmallVector(size_t Size, const T &Value = T())
1210
    : SmallVectorImpl<T>(N) {
1211
    this->assign(Size, Value);
1212
  }
1213
 
1214
  template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
1215
  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
1216
    this->append(S, E);
1217
  }
1218
 
1219
  template <typename RangeTy>
1220
  explicit SmallVector(const iterator_range<RangeTy> &R)
1221
      : SmallVectorImpl<T>(N) {
1222
    this->append(R.begin(), R.end());
1223
  }
1224
 
1225
  SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
1226
    this->append(IL);
1227
  }
1228
 
1229
  template <typename U,
1230
            typename = std::enable_if_t<std::is_convertible<U, T>::value>>
1231
  explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) {
1232
    this->append(A.begin(), A.end());
1233
  }
1234
 
1235
  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
1236
    if (!RHS.empty())
1237
      SmallVectorImpl<T>::operator=(RHS);
1238
  }
1239
 
1240
  SmallVector &operator=(const SmallVector &RHS) {
1241
    SmallVectorImpl<T>::operator=(RHS);
1242
    return *this;
1243
  }
1244
 
1245
  SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
1246
    if (!RHS.empty())
1247
      SmallVectorImpl<T>::operator=(::std::move(RHS));
1248
  }
1249
 
1250
  SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
1251
    if (!RHS.empty())
1252
      SmallVectorImpl<T>::operator=(::std::move(RHS));
1253
  }
1254
 
1255
  SmallVector &operator=(SmallVector &&RHS) {
1256
    if (N) {
1257
      SmallVectorImpl<T>::operator=(::std::move(RHS));
1258
      return *this;
1259
    }
1260
    // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the
1261
    // case.
1262
    if (this == &RHS)
1263
      return *this;
1264
    if (RHS.empty()) {
1265
      this->destroy_range(this->begin(), this->end());
1266
      this->Size = 0;
1267
    } else {
1268
      this->assignRemote(std::move(RHS));
1269
    }
1270
    return *this;
1271
  }
1272
 
1273
  SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
1274
    SmallVectorImpl<T>::operator=(::std::move(RHS));
1275
    return *this;
1276
  }
1277
 
1278
  SmallVector &operator=(std::initializer_list<T> IL) {
1279
    this->assign(IL);
1280
    return *this;
1281
  }
1282
};
1283
 
1284
template <typename T, unsigned N>
1285
inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
1286
  return X.capacity_in_bytes();
1287
}
1288
 
1289
template <typename RangeType>
1290
using ValueTypeFromRangeType =
1291
    std::remove_const_t<std::remove_reference_t<decltype(*std::begin(
1292
        std::declval<RangeType &>()))>>;
1293
 
1294
/// Given a range of type R, iterate the entire range and return a
1295
/// SmallVector with elements of the vector.  This is useful, for example,
1296
/// when you want to iterate a range and then sort the results.
1297
template <unsigned Size, typename R>
1298
SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) {
1299
  return {std::begin(Range), std::end(Range)};
1300
}
1301
template <typename R>
1302
SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) {
1303
  return {std::begin(Range), std::end(Range)};
1304
}
1305
 
1306
template <typename Out, unsigned Size, typename R>
1307
SmallVector<Out, Size> to_vector_of(R &&Range) {
1308
  return {std::begin(Range), std::end(Range)};
1309
}
1310
 
1311
template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) {
1312
  return {std::begin(Range), std::end(Range)};
1313
}
1314
 
1315
// Explicit instantiations
1316
extern template class llvm::SmallVectorBase<uint32_t>;
1317
#if SIZE_MAX > UINT32_MAX
1318
extern template class llvm::SmallVectorBase<uint64_t>;
1319
#endif
1320
 
1321
} // end namespace llvm
1322
 
1323
namespace std {
1324
 
1325
  /// Implement std::swap in terms of SmallVector swap.
1326
  template<typename T>
1327
  inline void
1328
  swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
1329
    LHS.swap(RHS);
1330
  }
1331
 
1332
  /// Implement std::swap in terms of SmallVector swap.
1333
  template<typename T, unsigned N>
1334
  inline void
1335
  swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
1336
    LHS.swap(RHS);
1337
  }
1338
 
1339
} // end namespace std
1340
 
1341
#endif // LLVM_ADT_SMALLVECTOR_H