Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
///
10
/// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
11
/// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
12
/// algorithm.
13
///
14
/// The SCC iterator has the important property that if a node in SCC S1 has an
15
/// edge to a node in SCC S2, then it visits S1 *after* S2.
16
///
17
/// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
18
/// This requires some simple wrappers and is not supported yet.)
19
///
20
//===----------------------------------------------------------------------===//
21
 
22
#ifndef LLVM_ADT_SCCITERATOR_H
23
#define LLVM_ADT_SCCITERATOR_H
24
 
25
#include "llvm/ADT/DenseMap.h"
26
#include "llvm/ADT/GraphTraits.h"
27
#include "llvm/ADT/iterator.h"
28
#include <cassert>
29
#include <cstddef>
30
#include <iterator>
31
#include <queue>
32
#include <set>
33
#include <unordered_map>
34
#include <unordered_set>
35
#include <vector>
36
 
37
namespace llvm {
38
 
39
/// Enumerate the SCCs of a directed graph in reverse topological order
40
/// of the SCC DAG.
41
///
42
/// This is implemented using Tarjan's DFS algorithm using an internal stack to
43
/// build up a vector of nodes in a particular SCC. Note that it is a forward
44
/// iterator and thus you cannot backtrack or re-visit nodes.
45
template <class GraphT, class GT = GraphTraits<GraphT>>
46
class scc_iterator : public iterator_facade_base<
47
                         scc_iterator<GraphT, GT>, std::forward_iterator_tag,
48
                         const std::vector<typename GT::NodeRef>, ptrdiff_t> {
49
  using NodeRef = typename GT::NodeRef;
50
  using ChildItTy = typename GT::ChildIteratorType;
51
  using SccTy = std::vector<NodeRef>;
52
  using reference = typename scc_iterator::reference;
53
 
54
  /// Element of VisitStack during DFS.
55
  struct StackElement {
56
    NodeRef Node;         ///< The current node pointer.
57
    ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
58
    unsigned MinVisited;  ///< Minimum uplink value of all children of Node.
59
 
60
    StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
61
        : Node(Node), NextChild(Child), MinVisited(Min) {}
62
 
63
    bool operator==(const StackElement &Other) const {
64
      return Node == Other.Node &&
65
             NextChild == Other.NextChild &&
66
             MinVisited == Other.MinVisited;
67
    }
68
  };
69
 
70
  /// The visit counters used to detect when a complete SCC is on the stack.
71
  /// visitNum is the global counter.
72
  ///
73
  /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
74
  unsigned visitNum;
75
  DenseMap<NodeRef, unsigned> nodeVisitNumbers;
76
 
77
  /// Stack holding nodes of the SCC.
78
  std::vector<NodeRef> SCCNodeStack;
79
 
80
  /// The current SCC, retrieved using operator*().
81
  SccTy CurrentSCC;
82
 
83
  /// DFS stack, Used to maintain the ordering.  The top contains the current
84
  /// node, the next child to visit, and the minimum uplink value of all child
85
  std::vector<StackElement> VisitStack;
86
 
87
  /// A single "visit" within the non-recursive DFS traversal.
88
  void DFSVisitOne(NodeRef N);
89
 
90
  /// The stack-based DFS traversal; defined below.
91
  void DFSVisitChildren();
92
 
93
  /// Compute the next SCC using the DFS traversal.
94
  void GetNextSCC();
95
 
96
  scc_iterator(NodeRef entryN) : visitNum(0) {
97
    DFSVisitOne(entryN);
98
    GetNextSCC();
99
  }
100
 
101
  /// End is when the DFS stack is empty.
102
  scc_iterator() = default;
103
 
104
public:
105
  static scc_iterator begin(const GraphT &G) {
106
    return scc_iterator(GT::getEntryNode(G));
107
  }
108
  static scc_iterator end(const GraphT &) { return scc_iterator(); }
109
 
110
  /// Direct loop termination test which is more efficient than
111
  /// comparison with \c end().
112
  bool isAtEnd() const {
113
    assert(!CurrentSCC.empty() || VisitStack.empty());
114
    return CurrentSCC.empty();
115
  }
116
 
117
  bool operator==(const scc_iterator &x) const {
118
    return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
119
  }
120
 
121
  scc_iterator &operator++() {
122
    GetNextSCC();
123
    return *this;
124
  }
125
 
126
  reference operator*() const {
127
    assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
128
    return CurrentSCC;
129
  }
130
 
131
  /// Test if the current SCC has a cycle.
132
  ///
133
  /// If the SCC has more than one node, this is trivially true.  If not, it may
134
  /// still contain a cycle if the node has an edge back to itself.
135
  bool hasCycle() const;
136
 
137
  /// This informs the \c scc_iterator that the specified \c Old node
138
  /// has been deleted, and \c New is to be used in its place.
139
  void ReplaceNode(NodeRef Old, NodeRef New) {
140
    assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
141
    // Do the assignment in two steps, in case 'New' is not yet in the map, and
142
    // inserting it causes the map to grow.
143
    auto tempVal = nodeVisitNumbers[Old];
144
    nodeVisitNumbers[New] = tempVal;
145
    nodeVisitNumbers.erase(Old);
146
  }
147
};
148
 
149
template <class GraphT, class GT>
150
void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
151
  ++visitNum;
152
  nodeVisitNumbers[N] = visitNum;
153
  SCCNodeStack.push_back(N);
154
  VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
155
#if 0 // Enable if needed when debugging.
156
  dbgs() << "TarjanSCC: Node " << N <<
157
        " : visitNum = " << visitNum << "\n";
158
#endif
159
}
160
 
161
template <class GraphT, class GT>
162
void scc_iterator<GraphT, GT>::DFSVisitChildren() {
163
  assert(!VisitStack.empty());
164
  while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
165
    // TOS has at least one more child so continue DFS
166
    NodeRef childN = *VisitStack.back().NextChild++;
167
    typename DenseMap<NodeRef, unsigned>::iterator Visited =
168
        nodeVisitNumbers.find(childN);
169
    if (Visited == nodeVisitNumbers.end()) {
170
      // this node has never been seen.
171
      DFSVisitOne(childN);
172
      continue;
173
    }
174
 
175
    unsigned childNum = Visited->second;
176
    if (VisitStack.back().MinVisited > childNum)
177
      VisitStack.back().MinVisited = childNum;
178
  }
179
}
180
 
181
template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
182
  CurrentSCC.clear(); // Prepare to compute the next SCC
183
  while (!VisitStack.empty()) {
184
    DFSVisitChildren();
185
 
186
    // Pop the leaf on top of the VisitStack.
187
    NodeRef visitingN = VisitStack.back().Node;
188
    unsigned minVisitNum = VisitStack.back().MinVisited;
189
    assert(VisitStack.back().NextChild == GT::child_end(visitingN));
190
    VisitStack.pop_back();
191
 
192
    // Propagate MinVisitNum to parent so we can detect the SCC starting node.
193
    if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
194
      VisitStack.back().MinVisited = minVisitNum;
195
 
196
#if 0 // Enable if needed when debugging.
197
    dbgs() << "TarjanSCC: Popped node " << visitingN <<
198
          " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
199
          nodeVisitNumbers[visitingN] << "\n";
200
#endif
201
 
202
    if (minVisitNum != nodeVisitNumbers[visitingN])
203
      continue;
204
 
205
    // A full SCC is on the SCCNodeStack!  It includes all nodes below
206
    // visitingN on the stack.  Copy those nodes to CurrentSCC,
207
    // reset their minVisit values, and return (this suspends
208
    // the DFS traversal till the next ++).
209
    do {
210
      CurrentSCC.push_back(SCCNodeStack.back());
211
      SCCNodeStack.pop_back();
212
      nodeVisitNumbers[CurrentSCC.back()] = ~0U;
213
    } while (CurrentSCC.back() != visitingN);
214
    return;
215
  }
216
}
217
 
218
template <class GraphT, class GT>
219
bool scc_iterator<GraphT, GT>::hasCycle() const {
220
    assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
221
    if (CurrentSCC.size() > 1)
222
      return true;
223
    NodeRef N = CurrentSCC.front();
224
    for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
225
         ++CI)
226
      if (*CI == N)
227
        return true;
228
    return false;
229
  }
230
 
231
/// Construct the begin iterator for a deduced graph type T.
232
template <class T> scc_iterator<T> scc_begin(const T &G) {
233
  return scc_iterator<T>::begin(G);
234
}
235
 
236
/// Construct the end iterator for a deduced graph type T.
237
template <class T> scc_iterator<T> scc_end(const T &G) {
238
  return scc_iterator<T>::end(G);
239
}
240
 
241
/// Sort the nodes of a directed SCC in the decreasing order of the edge
242
/// weights. The instantiating GraphT type should have weighted edge type
243
/// declared in its graph traits in order to use this iterator.
244
///
245
/// This is implemented using Kruskal's minimal spanning tree algorithm followed
246
/// by a BFS walk. First a maximum spanning tree (forest) is built based on all
247
/// edges within the SCC collection. Then a BFS walk is initiated on tree nodes
248
/// that do not have a predecessor. Finally, the BFS order computed is the
249
/// traversal order of the nodes of the SCC. Such order ensures that
250
/// high-weighted edges are visited first during the tranversal.
251
template <class GraphT, class GT = GraphTraits<GraphT>>
252
class scc_member_iterator {
253
  using NodeType = typename GT::NodeType;
254
  using EdgeType = typename GT::EdgeType;
255
  using NodesType = std::vector<NodeType *>;
256
 
257
  // Auxilary node information used during the MST calculation.
258
  struct NodeInfo {
259
    NodeInfo *Group = this;
260
    uint32_t Rank = 0;
261
    bool Visited = true;
262
  };
263
 
264
  // Find the root group of the node and compress the path from node to the
265
  // root.
266
  NodeInfo *find(NodeInfo *Node) {
267
    if (Node->Group != Node)
268
      Node->Group = find(Node->Group);
269
    return Node->Group;
270
  }
271
 
272
  // Union the source and target node into the same group and return true.
273
  // Returns false if they are already in the same group.
274
  bool unionGroups(const EdgeType *Edge) {
275
    NodeInfo *G1 = find(&NodeInfoMap[Edge->Source]);
276
    NodeInfo *G2 = find(&NodeInfoMap[Edge->Target]);
277
 
278
    // If the edge forms a cycle, do not add it to MST
279
    if (G1 == G2)
280
      return false;
281
 
282
    // Make the smaller rank tree a direct child or the root of high rank tree.
283
    if (G1->Rank < G1->Rank)
284
      G1->Group = G2;
285
    else {
286
      G2->Group = G1;
287
      // If the ranks are the same, increment root of one tree by one.
288
      if (G1->Rank == G2->Rank)
289
        G2->Rank++;
290
    }
291
    return true;
292
  }
293
 
294
  std::unordered_map<NodeType *, NodeInfo> NodeInfoMap;
295
  NodesType Nodes;
296
 
297
public:
298
  scc_member_iterator(const NodesType &InputNodes);
299
 
300
  NodesType &operator*() { return Nodes; }
301
};
302
 
303
template <class GraphT, class GT>
304
scc_member_iterator<GraphT, GT>::scc_member_iterator(
305
    const NodesType &InputNodes) {
306
  if (InputNodes.size() <= 1) {
307
    Nodes = InputNodes;
308
    return;
309
  }
310
 
311
  // Initialize auxilary node information.
312
  NodeInfoMap.clear();
313
  for (auto *Node : InputNodes) {
314
    // This is specifically used to construct a `NodeInfo` object in place. An
315
    // insert operation will involve a copy construction which invalidate the
316
    // initial value of the `Group` field which should be `this`.
317
    (void)NodeInfoMap[Node].Group;
318
  }
319
 
320
  // Sort edges by weights.
321
  struct EdgeComparer {
322
    bool operator()(const EdgeType *L, const EdgeType *R) const {
323
      return L->Weight > R->Weight;
324
    }
325
  };
326
 
327
  std::multiset<const EdgeType *, EdgeComparer> SortedEdges;
328
  for (auto *Node : InputNodes) {
329
    for (auto &Edge : Node->Edges) {
330
      if (NodeInfoMap.count(Edge.Target))
331
        SortedEdges.insert(&Edge);
332
    }
333
  }
334
 
335
  // Traverse all the edges and compute the Maximum Weight Spanning Tree
336
  // using Kruskal's algorithm.
337
  std::unordered_set<const EdgeType *> MSTEdges;
338
  for (auto *Edge : SortedEdges) {
339
    if (unionGroups(Edge))
340
      MSTEdges.insert(Edge);
341
  }
342
 
343
  // Do BFS on MST, starting from nodes that have no incoming edge. These nodes
344
  // are "roots" of the MST forest. This ensures that nodes are visited before
345
  // their decsendents are, thus ensures hot edges are processed before cold
346
  // edges, based on how MST is computed.
347
  for (const auto *Edge : MSTEdges)
348
    NodeInfoMap[Edge->Target].Visited = false;
349
 
350
  std::queue<NodeType *> Queue;
351
  // Initialze the queue with MST roots. Note that walking through SortedEdges
352
  // instead of NodeInfoMap ensures an ordered deterministic push.
353
  for (auto *Edge : SortedEdges) {
354
    if (NodeInfoMap[Edge->Source].Visited) {
355
      Queue.push(Edge->Source);
356
      NodeInfoMap[Edge->Source].Visited = false;
357
    }
358
  }
359
 
360
  while (!Queue.empty()) {
361
    auto *Node = Queue.front();
362
    Queue.pop();
363
    Nodes.push_back(Node);
364
    for (auto &Edge : Node->Edges) {
365
      if (MSTEdges.count(&Edge) && !NodeInfoMap[Edge.Target].Visited) {
366
        NodeInfoMap[Edge.Target].Visited = true;
367
        Queue.push(Edge.Target);
368
      }
369
    }
370
  }
371
 
372
  assert(InputNodes.size() == Nodes.size() && "missing nodes in MST");
373
  std::reverse(Nodes.begin(), Nodes.end());
374
}
375
} // end namespace llvm
376
 
377
#endif // LLVM_ADT_SCCITERATOR_H