Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// \file |
||
9 | /// |
||
10 | /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly |
||
11 | /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS |
||
12 | /// algorithm. |
||
13 | /// |
||
14 | /// The SCC iterator has the important property that if a node in SCC S1 has an |
||
15 | /// edge to a node in SCC S2, then it visits S1 *after* S2. |
||
16 | /// |
||
17 | /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE: |
||
18 | /// This requires some simple wrappers and is not supported yet.) |
||
19 | /// |
||
20 | //===----------------------------------------------------------------------===// |
||
21 | |||
22 | #ifndef LLVM_ADT_SCCITERATOR_H |
||
23 | #define LLVM_ADT_SCCITERATOR_H |
||
24 | |||
25 | #include "llvm/ADT/DenseMap.h" |
||
26 | #include "llvm/ADT/GraphTraits.h" |
||
27 | #include "llvm/ADT/iterator.h" |
||
28 | #include <cassert> |
||
29 | #include <cstddef> |
||
30 | #include <iterator> |
||
31 | #include <queue> |
||
32 | #include <set> |
||
33 | #include <unordered_map> |
||
34 | #include <unordered_set> |
||
35 | #include <vector> |
||
36 | |||
37 | namespace llvm { |
||
38 | |||
39 | /// Enumerate the SCCs of a directed graph in reverse topological order |
||
40 | /// of the SCC DAG. |
||
41 | /// |
||
42 | /// This is implemented using Tarjan's DFS algorithm using an internal stack to |
||
43 | /// build up a vector of nodes in a particular SCC. Note that it is a forward |
||
44 | /// iterator and thus you cannot backtrack or re-visit nodes. |
||
45 | template <class GraphT, class GT = GraphTraits<GraphT>> |
||
46 | class scc_iterator : public iterator_facade_base< |
||
47 | scc_iterator<GraphT, GT>, std::forward_iterator_tag, |
||
48 | const std::vector<typename GT::NodeRef>, ptrdiff_t> { |
||
49 | using NodeRef = typename GT::NodeRef; |
||
50 | using ChildItTy = typename GT::ChildIteratorType; |
||
51 | using SccTy = std::vector<NodeRef>; |
||
52 | using reference = typename scc_iterator::reference; |
||
53 | |||
54 | /// Element of VisitStack during DFS. |
||
55 | struct StackElement { |
||
56 | NodeRef Node; ///< The current node pointer. |
||
57 | ChildItTy NextChild; ///< The next child, modified inplace during DFS. |
||
58 | unsigned MinVisited; ///< Minimum uplink value of all children of Node. |
||
59 | |||
60 | StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min) |
||
61 | : Node(Node), NextChild(Child), MinVisited(Min) {} |
||
62 | |||
63 | bool operator==(const StackElement &Other) const { |
||
64 | return Node == Other.Node && |
||
65 | NextChild == Other.NextChild && |
||
66 | MinVisited == Other.MinVisited; |
||
67 | } |
||
68 | }; |
||
69 | |||
70 | /// The visit counters used to detect when a complete SCC is on the stack. |
||
71 | /// visitNum is the global counter. |
||
72 | /// |
||
73 | /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags. |
||
74 | unsigned visitNum; |
||
75 | DenseMap<NodeRef, unsigned> nodeVisitNumbers; |
||
76 | |||
77 | /// Stack holding nodes of the SCC. |
||
78 | std::vector<NodeRef> SCCNodeStack; |
||
79 | |||
80 | /// The current SCC, retrieved using operator*(). |
||
81 | SccTy CurrentSCC; |
||
82 | |||
83 | /// DFS stack, Used to maintain the ordering. The top contains the current |
||
84 | /// node, the next child to visit, and the minimum uplink value of all child |
||
85 | std::vector<StackElement> VisitStack; |
||
86 | |||
87 | /// A single "visit" within the non-recursive DFS traversal. |
||
88 | void DFSVisitOne(NodeRef N); |
||
89 | |||
90 | /// The stack-based DFS traversal; defined below. |
||
91 | void DFSVisitChildren(); |
||
92 | |||
93 | /// Compute the next SCC using the DFS traversal. |
||
94 | void GetNextSCC(); |
||
95 | |||
96 | scc_iterator(NodeRef entryN) : visitNum(0) { |
||
97 | DFSVisitOne(entryN); |
||
98 | GetNextSCC(); |
||
99 | } |
||
100 | |||
101 | /// End is when the DFS stack is empty. |
||
102 | scc_iterator() = default; |
||
103 | |||
104 | public: |
||
105 | static scc_iterator begin(const GraphT &G) { |
||
106 | return scc_iterator(GT::getEntryNode(G)); |
||
107 | } |
||
108 | static scc_iterator end(const GraphT &) { return scc_iterator(); } |
||
109 | |||
110 | /// Direct loop termination test which is more efficient than |
||
111 | /// comparison with \c end(). |
||
112 | bool isAtEnd() const { |
||
113 | assert(!CurrentSCC.empty() || VisitStack.empty()); |
||
114 | return CurrentSCC.empty(); |
||
115 | } |
||
116 | |||
117 | bool operator==(const scc_iterator &x) const { |
||
118 | return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC; |
||
119 | } |
||
120 | |||
121 | scc_iterator &operator++() { |
||
122 | GetNextSCC(); |
||
123 | return *this; |
||
124 | } |
||
125 | |||
126 | reference operator*() const { |
||
127 | assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); |
||
128 | return CurrentSCC; |
||
129 | } |
||
130 | |||
131 | /// Test if the current SCC has a cycle. |
||
132 | /// |
||
133 | /// If the SCC has more than one node, this is trivially true. If not, it may |
||
134 | /// still contain a cycle if the node has an edge back to itself. |
||
135 | bool hasCycle() const; |
||
136 | |||
137 | /// This informs the \c scc_iterator that the specified \c Old node |
||
138 | /// has been deleted, and \c New is to be used in its place. |
||
139 | void ReplaceNode(NodeRef Old, NodeRef New) { |
||
140 | assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?"); |
||
141 | // Do the assignment in two steps, in case 'New' is not yet in the map, and |
||
142 | // inserting it causes the map to grow. |
||
143 | auto tempVal = nodeVisitNumbers[Old]; |
||
144 | nodeVisitNumbers[New] = tempVal; |
||
145 | nodeVisitNumbers.erase(Old); |
||
146 | } |
||
147 | }; |
||
148 | |||
149 | template <class GraphT, class GT> |
||
150 | void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) { |
||
151 | ++visitNum; |
||
152 | nodeVisitNumbers[N] = visitNum; |
||
153 | SCCNodeStack.push_back(N); |
||
154 | VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum)); |
||
155 | #if 0 // Enable if needed when debugging. |
||
156 | dbgs() << "TarjanSCC: Node " << N << |
||
157 | " : visitNum = " << visitNum << "\n"; |
||
158 | #endif |
||
159 | } |
||
160 | |||
161 | template <class GraphT, class GT> |
||
162 | void scc_iterator<GraphT, GT>::DFSVisitChildren() { |
||
163 | assert(!VisitStack.empty()); |
||
164 | while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) { |
||
165 | // TOS has at least one more child so continue DFS |
||
166 | NodeRef childN = *VisitStack.back().NextChild++; |
||
167 | typename DenseMap<NodeRef, unsigned>::iterator Visited = |
||
168 | nodeVisitNumbers.find(childN); |
||
169 | if (Visited == nodeVisitNumbers.end()) { |
||
170 | // this node has never been seen. |
||
171 | DFSVisitOne(childN); |
||
172 | continue; |
||
173 | } |
||
174 | |||
175 | unsigned childNum = Visited->second; |
||
176 | if (VisitStack.back().MinVisited > childNum) |
||
177 | VisitStack.back().MinVisited = childNum; |
||
178 | } |
||
179 | } |
||
180 | |||
181 | template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() { |
||
182 | CurrentSCC.clear(); // Prepare to compute the next SCC |
||
183 | while (!VisitStack.empty()) { |
||
184 | DFSVisitChildren(); |
||
185 | |||
186 | // Pop the leaf on top of the VisitStack. |
||
187 | NodeRef visitingN = VisitStack.back().Node; |
||
188 | unsigned minVisitNum = VisitStack.back().MinVisited; |
||
189 | assert(VisitStack.back().NextChild == GT::child_end(visitingN)); |
||
190 | VisitStack.pop_back(); |
||
191 | |||
192 | // Propagate MinVisitNum to parent so we can detect the SCC starting node. |
||
193 | if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum) |
||
194 | VisitStack.back().MinVisited = minVisitNum; |
||
195 | |||
196 | #if 0 // Enable if needed when debugging. |
||
197 | dbgs() << "TarjanSCC: Popped node " << visitingN << |
||
198 | " : minVisitNum = " << minVisitNum << "; Node visit num = " << |
||
199 | nodeVisitNumbers[visitingN] << "\n"; |
||
200 | #endif |
||
201 | |||
202 | if (minVisitNum != nodeVisitNumbers[visitingN]) |
||
203 | continue; |
||
204 | |||
205 | // A full SCC is on the SCCNodeStack! It includes all nodes below |
||
206 | // visitingN on the stack. Copy those nodes to CurrentSCC, |
||
207 | // reset their minVisit values, and return (this suspends |
||
208 | // the DFS traversal till the next ++). |
||
209 | do { |
||
210 | CurrentSCC.push_back(SCCNodeStack.back()); |
||
211 | SCCNodeStack.pop_back(); |
||
212 | nodeVisitNumbers[CurrentSCC.back()] = ~0U; |
||
213 | } while (CurrentSCC.back() != visitingN); |
||
214 | return; |
||
215 | } |
||
216 | } |
||
217 | |||
218 | template <class GraphT, class GT> |
||
219 | bool scc_iterator<GraphT, GT>::hasCycle() const { |
||
220 | assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); |
||
221 | if (CurrentSCC.size() > 1) |
||
222 | return true; |
||
223 | NodeRef N = CurrentSCC.front(); |
||
224 | for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE; |
||
225 | ++CI) |
||
226 | if (*CI == N) |
||
227 | return true; |
||
228 | return false; |
||
229 | } |
||
230 | |||
231 | /// Construct the begin iterator for a deduced graph type T. |
||
232 | template <class T> scc_iterator<T> scc_begin(const T &G) { |
||
233 | return scc_iterator<T>::begin(G); |
||
234 | } |
||
235 | |||
236 | /// Construct the end iterator for a deduced graph type T. |
||
237 | template <class T> scc_iterator<T> scc_end(const T &G) { |
||
238 | return scc_iterator<T>::end(G); |
||
239 | } |
||
240 | |||
241 | /// Sort the nodes of a directed SCC in the decreasing order of the edge |
||
242 | /// weights. The instantiating GraphT type should have weighted edge type |
||
243 | /// declared in its graph traits in order to use this iterator. |
||
244 | /// |
||
245 | /// This is implemented using Kruskal's minimal spanning tree algorithm followed |
||
246 | /// by a BFS walk. First a maximum spanning tree (forest) is built based on all |
||
247 | /// edges within the SCC collection. Then a BFS walk is initiated on tree nodes |
||
248 | /// that do not have a predecessor. Finally, the BFS order computed is the |
||
249 | /// traversal order of the nodes of the SCC. Such order ensures that |
||
250 | /// high-weighted edges are visited first during the tranversal. |
||
251 | template <class GraphT, class GT = GraphTraits<GraphT>> |
||
252 | class scc_member_iterator { |
||
253 | using NodeType = typename GT::NodeType; |
||
254 | using EdgeType = typename GT::EdgeType; |
||
255 | using NodesType = std::vector<NodeType *>; |
||
256 | |||
257 | // Auxilary node information used during the MST calculation. |
||
258 | struct NodeInfo { |
||
259 | NodeInfo *Group = this; |
||
260 | uint32_t Rank = 0; |
||
261 | bool Visited = true; |
||
262 | }; |
||
263 | |||
264 | // Find the root group of the node and compress the path from node to the |
||
265 | // root. |
||
266 | NodeInfo *find(NodeInfo *Node) { |
||
267 | if (Node->Group != Node) |
||
268 | Node->Group = find(Node->Group); |
||
269 | return Node->Group; |
||
270 | } |
||
271 | |||
272 | // Union the source and target node into the same group and return true. |
||
273 | // Returns false if they are already in the same group. |
||
274 | bool unionGroups(const EdgeType *Edge) { |
||
275 | NodeInfo *G1 = find(&NodeInfoMap[Edge->Source]); |
||
276 | NodeInfo *G2 = find(&NodeInfoMap[Edge->Target]); |
||
277 | |||
278 | // If the edge forms a cycle, do not add it to MST |
||
279 | if (G1 == G2) |
||
280 | return false; |
||
281 | |||
282 | // Make the smaller rank tree a direct child or the root of high rank tree. |
||
283 | if (G1->Rank < G1->Rank) |
||
284 | G1->Group = G2; |
||
285 | else { |
||
286 | G2->Group = G1; |
||
287 | // If the ranks are the same, increment root of one tree by one. |
||
288 | if (G1->Rank == G2->Rank) |
||
289 | G2->Rank++; |
||
290 | } |
||
291 | return true; |
||
292 | } |
||
293 | |||
294 | std::unordered_map<NodeType *, NodeInfo> NodeInfoMap; |
||
295 | NodesType Nodes; |
||
296 | |||
297 | public: |
||
298 | scc_member_iterator(const NodesType &InputNodes); |
||
299 | |||
300 | NodesType &operator*() { return Nodes; } |
||
301 | }; |
||
302 | |||
303 | template <class GraphT, class GT> |
||
304 | scc_member_iterator<GraphT, GT>::scc_member_iterator( |
||
305 | const NodesType &InputNodes) { |
||
306 | if (InputNodes.size() <= 1) { |
||
307 | Nodes = InputNodes; |
||
308 | return; |
||
309 | } |
||
310 | |||
311 | // Initialize auxilary node information. |
||
312 | NodeInfoMap.clear(); |
||
313 | for (auto *Node : InputNodes) { |
||
314 | // This is specifically used to construct a `NodeInfo` object in place. An |
||
315 | // insert operation will involve a copy construction which invalidate the |
||
316 | // initial value of the `Group` field which should be `this`. |
||
317 | (void)NodeInfoMap[Node].Group; |
||
318 | } |
||
319 | |||
320 | // Sort edges by weights. |
||
321 | struct EdgeComparer { |
||
322 | bool operator()(const EdgeType *L, const EdgeType *R) const { |
||
323 | return L->Weight > R->Weight; |
||
324 | } |
||
325 | }; |
||
326 | |||
327 | std::multiset<const EdgeType *, EdgeComparer> SortedEdges; |
||
328 | for (auto *Node : InputNodes) { |
||
329 | for (auto &Edge : Node->Edges) { |
||
330 | if (NodeInfoMap.count(Edge.Target)) |
||
331 | SortedEdges.insert(&Edge); |
||
332 | } |
||
333 | } |
||
334 | |||
335 | // Traverse all the edges and compute the Maximum Weight Spanning Tree |
||
336 | // using Kruskal's algorithm. |
||
337 | std::unordered_set<const EdgeType *> MSTEdges; |
||
338 | for (auto *Edge : SortedEdges) { |
||
339 | if (unionGroups(Edge)) |
||
340 | MSTEdges.insert(Edge); |
||
341 | } |
||
342 | |||
343 | // Do BFS on MST, starting from nodes that have no incoming edge. These nodes |
||
344 | // are "roots" of the MST forest. This ensures that nodes are visited before |
||
345 | // their decsendents are, thus ensures hot edges are processed before cold |
||
346 | // edges, based on how MST is computed. |
||
347 | for (const auto *Edge : MSTEdges) |
||
348 | NodeInfoMap[Edge->Target].Visited = false; |
||
349 | |||
350 | std::queue<NodeType *> Queue; |
||
351 | // Initialze the queue with MST roots. Note that walking through SortedEdges |
||
352 | // instead of NodeInfoMap ensures an ordered deterministic push. |
||
353 | for (auto *Edge : SortedEdges) { |
||
354 | if (NodeInfoMap[Edge->Source].Visited) { |
||
355 | Queue.push(Edge->Source); |
||
356 | NodeInfoMap[Edge->Source].Visited = false; |
||
357 | } |
||
358 | } |
||
359 | |||
360 | while (!Queue.empty()) { |
||
361 | auto *Node = Queue.front(); |
||
362 | Queue.pop(); |
||
363 | Nodes.push_back(Node); |
||
364 | for (auto &Edge : Node->Edges) { |
||
365 | if (MSTEdges.count(&Edge) && !NodeInfoMap[Edge.Target].Visited) { |
||
366 | NodeInfoMap[Edge.Target].Visited = true; |
||
367 | Queue.push(Edge.Target); |
||
368 | } |
||
369 | } |
||
370 | } |
||
371 | |||
372 | assert(InputNodes.size() == Nodes.size() && "missing nodes in MST"); |
||
373 | std::reverse(Nodes.begin(), Nodes.end()); |
||
374 | } |
||
375 | } // end namespace llvm |
||
376 | |||
377 | #endif // LLVM_ADT_SCCITERATOR_H |