Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===-- IntervalTree.h ------------------------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file implements an interval tree. |
||
10 | // |
||
11 | // Further information: |
||
12 | // https://en.wikipedia.org/wiki/Interval_tree |
||
13 | // |
||
14 | //===----------------------------------------------------------------------===// |
||
15 | |||
16 | #ifndef LLVM_ADT_INTERVALTREE_H |
||
17 | #define LLVM_ADT_INTERVALTREE_H |
||
18 | |||
19 | #include "llvm/ADT/SmallSet.h" |
||
20 | #include "llvm/ADT/SmallVector.h" |
||
21 | #include "llvm/Support/Allocator.h" |
||
22 | #include "llvm/Support/Format.h" |
||
23 | #include "llvm/Support/raw_ostream.h" |
||
24 | #include <algorithm> |
||
25 | #include <cassert> |
||
26 | #include <iterator> |
||
27 | |||
28 | // IntervalTree is a light tree data structure to hold intervals. It allows |
||
29 | // finding all intervals that overlap with any given point. At this time, |
||
30 | // it does not support any deletion or rebalancing operations. |
||
31 | // |
||
32 | // The IntervalTree is designed to be set up once, and then queried without |
||
33 | // any further additions. |
||
34 | // |
||
35 | // Synopsis: |
||
36 | // Closed intervals delimited by PointT objects are mapped to ValueT objects. |
||
37 | // |
||
38 | // Restrictions: |
||
39 | // PointT must be a fundamental type. |
||
40 | // ValueT must be a fundamental or pointer type. |
||
41 | // |
||
42 | // template <typename PointT, typename ValueT, typename DataT> |
||
43 | // class IntervalTree { |
||
44 | // public: |
||
45 | // |
||
46 | // IntervalTree(); |
||
47 | // ~IntervalTree(): |
||
48 | // |
||
49 | // using IntervalReferences = SmallVector<IntervalData *>; |
||
50 | // |
||
51 | // void create(); |
||
52 | // void insert(PointT Left, PointT Right, ValueT Value); |
||
53 | // |
||
54 | // IntervalReferences getContaining(PointT Point); |
||
55 | // static void sortIntervals(IntervalReferences &Intervals, Sorting Sort); |
||
56 | // |
||
57 | // find_iterator begin(PointType Point) const; |
||
58 | // find_iterator end() const; |
||
59 | // |
||
60 | // bool empty() const; |
||
61 | // void clear(); |
||
62 | // |
||
63 | // void print(raw_ostream &OS, bool HexFormat = true); |
||
64 | // }; |
||
65 | // |
||
66 | //===----------------------------------------------------------------------===// |
||
67 | // |
||
68 | // In the below given dataset |
||
69 | // |
||
70 | // [a, b] <- (x) |
||
71 | // |
||
72 | // 'a' and 'b' describe a range and 'x' the value for that interval. |
||
73 | // |
||
74 | // The following data are purely for illustrative purposes: |
||
75 | // |
||
76 | // [30, 35] <- (3035), [39, 50] <- (3950), [55, 61] <- (5561), |
||
77 | // [31, 56] <- (3156), [12, 21] <- (1221), [25, 41] <- (2541), |
||
78 | // [49, 65] <- (4965), [71, 79] <- (7179), [11, 16] <- (1116), |
||
79 | // [20, 30] <- (2030), [36, 54] <- (3654), [60, 70] <- (6070), |
||
80 | // [74, 80] <- (7480), [15, 40] <- (1540), [43, 43] <- (4343), |
||
81 | // [50, 75] <- (5075), [10, 85] <- (1085) |
||
82 | // |
||
83 | // The data represents a set of overlapping intervals: |
||
84 | // |
||
85 | // 30--35 39------------50 55----61 |
||
86 | // 31------------------------56 |
||
87 | // 12--------21 25------------41 49-------------65 71-----79 |
||
88 | // 11----16 20-----30 36----------------54 60------70 74---- 80 |
||
89 | // 15---------------------40 43--43 50--------------------75 |
||
90 | // 10----------------------------------------------------------------------85 |
||
91 | // |
||
92 | // The items are stored in a binary tree with each node storing: |
||
93 | // |
||
94 | // MP: A middle point. |
||
95 | // IL: All intervals whose left value are completely to the left of the middle |
||
96 | // point. They are sorted in ascending order by their beginning point. |
||
97 | // IR: All intervals whose right value are completely to the right of the |
||
98 | // middle point. They are sorted in descending order by their ending point. |
||
99 | // LS: Left subtree. |
||
100 | // RS: Right subtree. |
||
101 | // |
||
102 | // As IL and IR will contain the same intervals, in order to optimize space, |
||
103 | // instead of storing intervals on each node, we use two vectors that will |
||
104 | // contain the intervals described by IL and IR. Each node will contain an |
||
105 | // index into that vector (global bucket), to indicate the beginning of the |
||
106 | // intervals assigned to the node. |
||
107 | // |
||
108 | // The following is the output from print(): |
||
109 | // |
||
110 | // 0: MP:43 IR [10,85] [31,56] [36,54] [39,50] [43,43] |
||
111 | // 0: MP:43 IL [10,85] [31,56] [36,54] [39,50] [43,43] |
||
112 | // 1: MP:25 IR [25,41] [15,40] [20,30] |
||
113 | // 1: MP:25 IL [15,40] [20,30] [25,41] |
||
114 | // 2: MP:15 IR [12,21] [11,16] |
||
115 | // 2: MP:15 IL [11,16] [12,21] |
||
116 | // 2: MP:36 IR [] |
||
117 | // 2: MP:36 IL [] |
||
118 | // 3: MP:31 IR [30,35] |
||
119 | // 3: MP:31 IL [30,35] |
||
120 | // 1: MP:61 IR [50,75] [60,70] [49,65] [55,61] |
||
121 | // 1: MP:61 IL [49,65] [50,75] [55,61] [60,70] |
||
122 | // 2: MP:74 IR [74,80] [71,79] |
||
123 | // 2: MP:74 IL [71,79] [74,80] |
||
124 | // |
||
125 | // with: |
||
126 | // 0: Root Node. |
||
127 | // MP: Middle point. |
||
128 | // IL: Intervals to the left (in ascending order by beginning point). |
||
129 | // IR: Intervals to the right (in descending order by ending point). |
||
130 | // |
||
131 | // Root |
||
132 | // | |
||
133 | // V |
||
134 | // +------------MP:43------------+ |
||
135 | // | IL IR | |
||
136 | // | [10,85] [10,85] | |
||
137 | // LS | [31,56] [31,56] | RS |
||
138 | // | [36,54] [36,54] | |
||
139 | // | [39,50] [39,50] | |
||
140 | // | [43,43] [43,43] | |
||
141 | // V V |
||
142 | // +------------MP:25------------+ MP:61------------+ |
||
143 | // | IL IR | IL IR | |
||
144 | // | [15,40] [25,41] | [49,65] [50,75] | |
||
145 | // LS | [20,30] [15,40] | RS [50,75] [60,70] | RS |
||
146 | // | [25,41] [20,30] | [55,61] [49,65] | |
||
147 | // | | [60,70] [55,61] | |
||
148 | // V V V |
||
149 | // MP:15 +-------MP:36 MP:74 |
||
150 | // IL IR | IL IR IL IR |
||
151 | // [11,16] [12,21] LS | [] [] [71,79] [74,80] |
||
152 | // [12,21] [11,16] | [74,80] [71,79] |
||
153 | // V |
||
154 | // MP:31 |
||
155 | // IL IR |
||
156 | // [30,35] [30,35] |
||
157 | // |
||
158 | // The creation of an interval tree is done in 2 steps: |
||
159 | // 1) Insert the interval items by calling |
||
160 | // void insert(PointT Left, PointT Right, ValueT Value); |
||
161 | // Left, Right: the interval left and right limits. |
||
162 | // Value: the data associated with that specific interval. |
||
163 | // |
||
164 | // 2) Create the interval tree by calling |
||
165 | // void create(); |
||
166 | // |
||
167 | // Once the tree is created, it is switched to query mode. |
||
168 | // Query the tree by using iterators or container. |
||
169 | // |
||
170 | // a) Iterators over intervals overlapping the given point with very weak |
||
171 | // ordering guarantees. |
||
172 | // find_iterator begin(PointType Point) const; |
||
173 | // find_iterator end() const; |
||
174 | // Point: a target point to be tested for inclusion in any interval. |
||
175 | // |
||
176 | // b) Container: |
||
177 | // IntervalReferences getContaining(PointT Point); |
||
178 | // Point: a target point to be tested for inclusion in any interval. |
||
179 | // Returns vector with all the intervals containing the target point. |
||
180 | // |
||
181 | // The returned intervals are in their natural tree location. They can |
||
182 | // be sorted: |
||
183 | // |
||
184 | // static void sortIntervals(IntervalReferences &Intervals, Sorting Sort); |
||
185 | // |
||
186 | // Ability to print the constructed interval tree: |
||
187 | // void print(raw_ostream &OS, bool HexFormat = true); |
||
188 | // Display the associated data in hexadecimal format. |
||
189 | |||
190 | namespace llvm { |
||
191 | |||
192 | //===----------------------------------------------------------------------===// |
||
193 | //--- IntervalData ----// |
||
194 | //===----------------------------------------------------------------------===// |
||
195 | /// An interval data composed by a \a Left and \a Right points and an |
||
196 | /// associated \a Value. |
||
197 | /// \a PointT corresponds to the interval endpoints type. |
||
198 | /// \a ValueT corresponds to the interval value type. |
||
199 | template <typename PointT, typename ValueT> class IntervalData { |
||
200 | protected: |
||
201 | using PointType = PointT; |
||
202 | using ValueType = ValueT; |
||
203 | |||
204 | private: |
||
205 | PointType Left; |
||
206 | PointType Right; |
||
207 | ValueType Value; |
||
208 | |||
209 | public: |
||
210 | IntervalData() = delete; |
||
211 | IntervalData(PointType Left, PointType Right, ValueType Value) |
||
212 | : Left(Left), Right(Right), Value(Value) { |
||
213 | assert(Left <= Right && "'Left' must be less or equal to 'Right'"); |
||
214 | } |
||
215 | virtual ~IntervalData() = default; |
||
216 | PointType left() const { return Left; } |
||
217 | PointType right() const { return Right; } |
||
218 | ValueType value() const { return Value; } |
||
219 | |||
220 | /// Return true if \a Point is inside the left bound of closed interval \a |
||
221 | /// [Left;Right]. This is Left <= Point for closed intervals. |
||
222 | bool left(const PointType &Point) const { return left() <= Point; } |
||
223 | |||
224 | /// Return true if \a Point is inside the right bound of closed interval \a |
||
225 | /// [Left;Right]. This is Point <= Right for closed intervals. |
||
226 | bool right(const PointType &Point) const { return Point <= right(); } |
||
227 | |||
228 | /// Return true when \a Point is contained in interval \a [Left;Right]. |
||
229 | /// This is Left <= Point <= Right for closed intervals. |
||
230 | bool contains(const PointType &Point) const { |
||
231 | return left(Point) && right(Point); |
||
232 | } |
||
233 | }; |
||
234 | |||
235 | //===----------------------------------------------------------------------===// |
||
236 | //--- IntervalTree ----// |
||
237 | //===----------------------------------------------------------------------===// |
||
238 | // Helper class template that is used by the IntervalTree to ensure that one |
||
239 | // does instantiate using only fundamental and/or pointer types. |
||
240 | template <typename T> |
||
241 | using PointTypeIsValid = std::bool_constant<std::is_fundamental<T>::value>; |
||
242 | |||
243 | template <typename T> |
||
244 | using ValueTypeIsValid = std::bool_constant<std::is_fundamental<T>::value || |
||
245 | std::is_pointer<T>::value>; |
||
246 | |||
247 | template <typename PointT, typename ValueT, |
||
248 | typename DataT = IntervalData<PointT, ValueT>> |
||
249 | class IntervalTree { |
||
250 | static_assert(PointTypeIsValid<PointT>::value, |
||
251 | "PointT must be a fundamental type"); |
||
252 | static_assert(ValueTypeIsValid<ValueT>::value, |
||
253 | "ValueT must be a fundamental or pointer type"); |
||
254 | |||
255 | public: |
||
256 | using PointType = PointT; |
||
257 | using ValueType = ValueT; |
||
258 | using DataType = DataT; |
||
259 | using Allocator = BumpPtrAllocator; |
||
260 | |||
261 | enum class Sorting { Ascending, Descending }; |
||
262 | using IntervalReferences = SmallVector<const DataType *, 4>; |
||
263 | |||
264 | private: |
||
265 | using IntervalVector = SmallVector<DataType, 4>; |
||
266 | using PointsVector = SmallVector<PointType, 4>; |
||
267 | |||
268 | class IntervalNode { |
||
269 | PointType MiddlePoint; // MP - Middle point. |
||
270 | IntervalNode *Left = nullptr; // LS - Left subtree. |
||
271 | IntervalNode *Right = nullptr; // RS - Right subtree. |
||
272 | unsigned BucketIntervalsStart = 0; // Starting index in global bucket. |
||
273 | unsigned BucketIntervalsSize = 0; // Size of bucket. |
||
274 | |||
275 | public: |
||
276 | PointType middle() const { return MiddlePoint; } |
||
277 | unsigned start() const { return BucketIntervalsStart; } |
||
278 | unsigned size() const { return BucketIntervalsSize; } |
||
279 | |||
280 | IntervalNode(PointType Point, unsigned Start) |
||
281 | : MiddlePoint(Point), BucketIntervalsStart(Start) {} |
||
282 | |||
283 | friend IntervalTree; |
||
284 | }; |
||
285 | |||
286 | Allocator &NodeAllocator; // Allocator used for creating interval nodes. |
||
287 | IntervalNode *Root = nullptr; // Interval tree root. |
||
288 | IntervalVector Intervals; // Storage for each interval and all of the fields |
||
289 | // point back into it. |
||
290 | PointsVector EndPoints; // Sorted left and right points of all the intervals. |
||
291 | |||
292 | // These vectors provide storage that nodes carve buckets of overlapping |
||
293 | // intervals out of. All intervals are recorded on each vector. |
||
294 | // The bucket with the intervals associated to a node, is determined by |
||
295 | // the fields 'BucketIntervalStart' and 'BucketIntervalSize' in the node. |
||
296 | // The buckets in the first vector are sorted in ascending order using |
||
297 | // the left value and the buckets in the second vector are sorted in |
||
298 | // descending order using the right value. Every interval in a bucket |
||
299 | // contains the middle point for the node. |
||
300 | IntervalReferences IntervalsLeft; // Intervals to the left of middle point. |
||
301 | IntervalReferences IntervalsRight; // Intervals to the right of middle point. |
||
302 | |||
303 | // Working vector used during the tree creation to sort the intervals. It is |
||
304 | // cleared once the tree is created. |
||
305 | IntervalReferences References; |
||
306 | |||
307 | /// Recursively delete the constructed tree. |
||
308 | void deleteTree(IntervalNode *Node) { |
||
309 | if (Node) { |
||
310 | deleteTree(Node->Left); |
||
311 | deleteTree(Node->Right); |
||
312 | Node->~IntervalNode(); |
||
313 | NodeAllocator.Deallocate(Node); |
||
314 | } |
||
315 | } |
||
316 | |||
317 | /// Print the interval list (left and right) for a given \a Node. |
||
318 | static void printList(raw_ostream &OS, IntervalReferences &IntervalSet, |
||
319 | unsigned Start, unsigned Size, bool HexFormat = true) { |
||
320 | assert(Start + Size <= IntervalSet.size() && |
||
321 | "Start + Size must be in bounds of the IntervalSet"); |
||
322 | const char *Format = HexFormat ? "[0x%08x,0x%08x] " : "[%2d,%2d] "; |
||
323 | if (Size) { |
||
324 | for (unsigned Position = Start; Position < Start + Size; ++Position) |
||
325 | OS << format(Format, IntervalSet[Position]->left(), |
||
326 | IntervalSet[Position]->right()); |
||
327 | } else { |
||
328 | OS << "[]"; |
||
329 | } |
||
330 | OS << "\n"; |
||
331 | } |
||
332 | |||
333 | /// Print an interval tree \a Node. |
||
334 | void printNode(raw_ostream &OS, unsigned Level, IntervalNode *Node, |
||
335 | bool HexFormat = true) { |
||
336 | const char *Format = HexFormat ? "MP:0x%08x " : "MP:%2d "; |
||
337 | auto PrintNodeData = [&](StringRef Text, IntervalReferences &IntervalSet) { |
||
338 | OS << format("%5d: ", Level); |
||
339 | OS.indent(Level * 2); |
||
340 | OS << format(Format, Node->middle()) << Text << " "; |
||
341 | printList(OS, IntervalSet, Node->start(), Node->size(), HexFormat); |
||
342 | }; |
||
343 | |||
344 | PrintNodeData("IR", IntervalsRight); |
||
345 | PrintNodeData("IL", IntervalsLeft); |
||
346 | } |
||
347 | |||
348 | /// Recursively print all the interval nodes. |
||
349 | void printTree(raw_ostream &OS, unsigned Level, IntervalNode *Node, |
||
350 | bool HexFormat = true) { |
||
351 | if (Node) { |
||
352 | printNode(OS, Level, Node, HexFormat); |
||
353 | ++Level; |
||
354 | printTree(OS, Level, Node->Left, HexFormat); |
||
355 | printTree(OS, Level, Node->Right, HexFormat); |
||
356 | } |
||
357 | } |
||
358 | |||
359 | /// Recursively construct the interval tree. |
||
360 | /// IntervalsSize: Number of intervals that have been processed and it will |
||
361 | /// be used as the start for the intervals bucket for a node. |
||
362 | /// PointsBeginIndex, PointsEndIndex: Determine the range into the EndPoints |
||
363 | /// vector of end points to be processed. |
||
364 | /// ReferencesBeginIndex, ReferencesSize: Determine the range into the |
||
365 | /// intervals being processed. |
||
366 | IntervalNode *createTree(unsigned &IntervalsSize, int PointsBeginIndex, |
||
367 | int PointsEndIndex, int ReferencesBeginIndex, |
||
368 | int ReferencesSize) { |
||
369 | // We start by taking the entire range of all the intervals and dividing |
||
370 | // it in half at x_middle (in practice, x_middle should be picked to keep |
||
371 | // the tree relatively balanced). |
||
372 | // This gives three sets of intervals, those completely to the left of |
||
373 | // x_middle which we'll call S_left, those completely to the right of |
||
374 | // x_middle which we'll call S_right, and those overlapping x_middle |
||
375 | // which we'll call S_middle. |
||
376 | // The intervals in S_left and S_right are recursively divided in the |
||
377 | // same manner until there are no intervals remaining. |
||
378 | |||
379 | if (PointsBeginIndex > PointsEndIndex || |
||
380 | ReferencesBeginIndex >= ReferencesSize) |
||
381 | return nullptr; |
||
382 | |||
383 | int MiddleIndex = (PointsBeginIndex + PointsEndIndex) / 2; |
||
384 | PointType MiddlePoint = EndPoints[MiddleIndex]; |
||
385 | |||
386 | unsigned NewBucketStart = IntervalsSize; |
||
387 | unsigned NewBucketSize = 0; |
||
388 | int ReferencesRightIndex = ReferencesSize; |
||
389 | |||
390 | IntervalNode *Root = |
||
391 | new (NodeAllocator) IntervalNode(MiddlePoint, NewBucketStart); |
||
392 | |||
393 | // A quicksort implementation where all the intervals that overlap |
||
394 | // with the pivot are put into the "bucket", and "References" is the |
||
395 | // partition space where we recursively sort the remaining intervals. |
||
396 | for (int Index = ReferencesBeginIndex; Index < ReferencesRightIndex;) { |
||
397 | |||
398 | // Current interval contains the middle point. |
||
399 | if (References[Index]->contains(MiddlePoint)) { |
||
400 | IntervalsLeft[IntervalsSize] = References[Index]; |
||
401 | IntervalsRight[IntervalsSize] = References[Index]; |
||
402 | ++IntervalsSize; |
||
403 | Root->BucketIntervalsSize = ++NewBucketSize; |
||
404 | |||
405 | if (Index < --ReferencesRightIndex) |
||
406 | std::swap(References[Index], References[ReferencesRightIndex]); |
||
407 | if (ReferencesRightIndex < --ReferencesSize) |
||
408 | std::swap(References[ReferencesRightIndex], |
||
409 | References[ReferencesSize]); |
||
410 | continue; |
||
411 | } |
||
412 | |||
413 | if (References[Index]->left() > MiddlePoint) { |
||
414 | if (Index < --ReferencesRightIndex) |
||
415 | std::swap(References[Index], References[ReferencesRightIndex]); |
||
416 | continue; |
||
417 | } |
||
418 | ++Index; |
||
419 | } |
||
420 | |||
421 | // Sort intervals on the left and right of the middle point. |
||
422 | if (NewBucketSize > 1) { |
||
423 | // Sort the intervals in ascending order by their beginning point. |
||
424 | std::stable_sort(IntervalsLeft.begin() + NewBucketStart, |
||
425 | IntervalsLeft.begin() + NewBucketStart + NewBucketSize, |
||
426 | [](const DataType *LHS, const DataType *RHS) { |
||
427 | return LHS->left() < RHS->left(); |
||
428 | }); |
||
429 | // Sort the intervals in descending order by their ending point. |
||
430 | std::stable_sort(IntervalsRight.begin() + NewBucketStart, |
||
431 | IntervalsRight.begin() + NewBucketStart + NewBucketSize, |
||
432 | [](const DataType *LHS, const DataType *RHS) { |
||
433 | return LHS->right() > RHS->right(); |
||
434 | }); |
||
435 | } |
||
436 | |||
437 | if (PointsBeginIndex <= MiddleIndex - 1) { |
||
438 | Root->Left = createTree(IntervalsSize, PointsBeginIndex, MiddleIndex - 1, |
||
439 | ReferencesBeginIndex, ReferencesRightIndex); |
||
440 | } |
||
441 | |||
442 | if (MiddleIndex + 1 <= PointsEndIndex) { |
||
443 | Root->Right = createTree(IntervalsSize, MiddleIndex + 1, PointsEndIndex, |
||
444 | ReferencesRightIndex, ReferencesSize); |
||
445 | } |
||
446 | |||
447 | return Root; |
||
448 | } |
||
449 | |||
450 | public: |
||
451 | class find_iterator { |
||
452 | public: |
||
453 | using iterator_category = std::forward_iterator_tag; |
||
454 | using value_type = DataType; |
||
455 | using difference_type = DataType; |
||
456 | using pointer = DataType *; |
||
457 | using reference = DataType &; |
||
458 | |||
459 | private: |
||
460 | const IntervalReferences *AscendingBuckets = nullptr; |
||
461 | const IntervalReferences *DescendingBuckets = nullptr; |
||
462 | |||
463 | // Current node and index while traversing the intervals that contain |
||
464 | // the reference point. |
||
465 | IntervalNode *Node = nullptr; |
||
466 | PointType Point; |
||
467 | unsigned Index = 0; |
||
468 | |||
469 | // For the current node, check if we have intervals that contain the |
||
470 | // reference point. We return when the node does have intervals that |
||
471 | // contain such point. Otherwise we keep descending on that branch. |
||
472 | void initNode() { |
||
473 | Index = 0; |
||
474 | while (Node) { |
||
475 | // Return if the reference point is the same as the middle point or |
||
476 | // the current node doesn't have any intervals at all. |
||
477 | if (Point == Node->middle()) { |
||
478 | if (Node->size() == 0) { |
||
479 | // No intervals that contain the reference point. |
||
480 | Node = nullptr; |
||
481 | } |
||
482 | return; |
||
483 | } |
||
484 | |||
485 | if (Point < Node->middle()) { |
||
486 | // The reference point can be at the left or right of the middle |
||
487 | // point. Return if the current node has intervals that contain the |
||
488 | // reference point; otherwise descend on the respective branch. |
||
489 | if (Node->size() && (*AscendingBuckets)[Node->start()]->left(Point)) { |
||
490 | return; |
||
491 | } |
||
492 | Node = Node->Left; |
||
493 | } else { |
||
494 | if (Node->size() && |
||
495 | (*DescendingBuckets)[Node->start()]->right(Point)) { |
||
496 | return; |
||
497 | } |
||
498 | Node = Node->Right; |
||
499 | } |
||
500 | } |
||
501 | } |
||
502 | |||
503 | // Given the current node (which was initialized by initNode), move to |
||
504 | // the next interval in the list of intervals that contain the reference |
||
505 | // point. Otherwise move to the next node, as the intervals contained |
||
506 | // in that node, can contain the reference point. |
||
507 | void nextInterval() { |
||
508 | // If there are available intervals that contain the reference point, |
||
509 | // traverse them; otherwise move to the left or right node, depending |
||
510 | // on the middle point value. |
||
511 | if (++Index < Node->size()) { |
||
512 | if (Node->middle() == Point) |
||
513 | return; |
||
514 | if (Point < Node->middle()) { |
||
515 | // Reference point is on the left. |
||
516 | if (!(*AscendingBuckets)[Node->start() + Index]->left(Point)) { |
||
517 | // The intervals don't contain the reference point. Move to the |
||
518 | // next node, preserving the descending order. |
||
519 | Node = Node->Left; |
||
520 | initNode(); |
||
521 | } |
||
522 | } else { |
||
523 | // Reference point is on the right. |
||
524 | if (!(*DescendingBuckets)[Node->start() + Index]->right(Point)) { |
||
525 | // The intervals don't contain the reference point. Move to the |
||
526 | // next node, preserving the ascending order. |
||
527 | Node = Node->Right; |
||
528 | initNode(); |
||
529 | } |
||
530 | } |
||
531 | } else { |
||
532 | // We have traversed all the intervals in the current node. |
||
533 | if (Point == Node->middle()) { |
||
534 | Node = nullptr; |
||
535 | Index = 0; |
||
536 | return; |
||
537 | } |
||
538 | // Select a branch based on the middle point. |
||
539 | Node = Point < Node->middle() ? Node->Left : Node->Right; |
||
540 | initNode(); |
||
541 | } |
||
542 | } |
||
543 | |||
544 | find_iterator() = default; |
||
545 | explicit find_iterator(const IntervalReferences *Left, |
||
546 | const IntervalReferences *Right, IntervalNode *Node, |
||
547 | PointType Point) |
||
548 | : AscendingBuckets(Left), DescendingBuckets(Right), Node(Node), |
||
549 | Point(Point), Index(0) { |
||
550 | initNode(); |
||
551 | } |
||
552 | |||
553 | const DataType *current() const { |
||
554 | return (Point <= Node->middle()) |
||
555 | ? (*AscendingBuckets)[Node->start() + Index] |
||
556 | : (*DescendingBuckets)[Node->start() + Index]; |
||
557 | } |
||
558 | |||
559 | public: |
||
560 | find_iterator &operator++() { |
||
561 | nextInterval(); |
||
562 | return *this; |
||
563 | } |
||
564 | |||
565 | find_iterator operator++(int) { |
||
566 | find_iterator Iter(*this); |
||
567 | nextInterval(); |
||
568 | return Iter; |
||
569 | } |
||
570 | |||
571 | /// Dereference operators. |
||
572 | const DataType *operator->() const { return current(); } |
||
573 | const DataType &operator*() const { return *(current()); } |
||
574 | |||
575 | /// Comparison operators. |
||
576 | friend bool operator==(const find_iterator &LHS, const find_iterator &RHS) { |
||
577 | return (!LHS.Node && !RHS.Node && !LHS.Index && !RHS.Index) || |
||
578 | (LHS.Point == RHS.Point && LHS.Node == RHS.Node && |
||
579 | LHS.Index == RHS.Index); |
||
580 | } |
||
581 | friend bool operator!=(const find_iterator &LHS, const find_iterator &RHS) { |
||
582 | return !(LHS == RHS); |
||
583 | } |
||
584 | |||
585 | friend IntervalTree; |
||
586 | }; |
||
587 | |||
588 | private: |
||
589 | find_iterator End; |
||
590 | |||
591 | public: |
||
592 | explicit IntervalTree(Allocator &NodeAllocator) |
||
593 | : NodeAllocator(NodeAllocator) {} |
||
594 | ~IntervalTree() { clear(); } |
||
595 | |||
596 | /// Return true when no intervals are mapped. |
||
597 | bool empty() const { return Root == nullptr; } |
||
598 | |||
599 | /// Remove all entries. |
||
600 | void clear() { |
||
601 | deleteTree(Root); |
||
602 | Root = nullptr; |
||
603 | Intervals.clear(); |
||
604 | IntervalsLeft.clear(); |
||
605 | IntervalsRight.clear(); |
||
606 | EndPoints.clear(); |
||
607 | } |
||
608 | |||
609 | /// Add a mapping of [Left;Right] to \a Value. |
||
610 | void insert(PointType Left, PointType Right, ValueType Value) { |
||
611 | assert(empty() && "Invalid insertion. Interval tree already constructed."); |
||
612 | Intervals.emplace_back(Left, Right, Value); |
||
613 | } |
||
614 | |||
615 | /// Return all the intervals in their natural tree location, that |
||
616 | /// contain the given point. |
||
617 | IntervalReferences getContaining(PointType Point) const { |
||
618 | assert(!empty() && "Interval tree it is not constructed."); |
||
619 | IntervalReferences IntervalSet; |
||
620 | for (find_iterator Iter = find(Point), E = find_end(); Iter != E; ++Iter) |
||
621 | IntervalSet.push_back(const_cast<DataType *>(&(*Iter))); |
||
622 | return IntervalSet; |
||
623 | } |
||
624 | |||
625 | /// Sort the given intervals using the following sort options: |
||
626 | /// Ascending: return the intervals with the smallest at the front. |
||
627 | /// Descending: return the intervals with the biggest at the front. |
||
628 | static void sortIntervals(IntervalReferences &IntervalSet, Sorting Sort) { |
||
629 | std::stable_sort(IntervalSet.begin(), IntervalSet.end(), |
||
630 | [Sort](const DataType *RHS, const DataType *LHS) { |
||
631 | return Sort == Sorting::Ascending |
||
632 | ? (LHS->right() - LHS->left()) > |
||
633 | (RHS->right() - RHS->left()) |
||
634 | : (LHS->right() - LHS->left()) < |
||
635 | (RHS->right() - RHS->left()); |
||
636 | }); |
||
637 | } |
||
638 | |||
639 | /// Print the interval tree. |
||
640 | /// When \a HexFormat is true, the interval tree interval ranges and |
||
641 | /// associated values are printed in hexadecimal format. |
||
642 | void print(raw_ostream &OS, bool HexFormat = true) { |
||
643 | printTree(OS, 0, Root, HexFormat); |
||
644 | } |
||
645 | |||
646 | /// Create the interval tree. |
||
647 | void create() { |
||
648 | assert(empty() && "Interval tree already constructed."); |
||
649 | // Sorted vector of unique end points values of all the intervals. |
||
650 | // Records references to the collected intervals. |
||
651 | SmallVector<PointType, 4> Points; |
||
652 | for (const DataType &Data : Intervals) { |
||
653 | Points.push_back(Data.left()); |
||
654 | Points.push_back(Data.right()); |
||
655 | References.push_back(std::addressof(Data)); |
||
656 | } |
||
657 | std::stable_sort(Points.begin(), Points.end()); |
||
658 | auto Last = std::unique(Points.begin(), Points.end()); |
||
659 | Points.erase(Last, Points.end()); |
||
660 | |||
661 | EndPoints.assign(Points.begin(), Points.end()); |
||
662 | |||
663 | IntervalsLeft.resize(Intervals.size()); |
||
664 | IntervalsRight.resize(Intervals.size()); |
||
665 | |||
666 | // Given a set of n intervals, construct a data structure so that |
||
667 | // we can efficiently retrieve all intervals overlapping another |
||
668 | // interval or point. |
||
669 | unsigned IntervalsSize = 0; |
||
670 | Root = |
||
671 | createTree(IntervalsSize, /*PointsBeginIndex=*/0, EndPoints.size() - 1, |
||
672 | /*ReferencesBeginIndex=*/0, References.size()); |
||
673 | |||
674 | // Save to clear this storage, as it used only to sort the intervals. |
||
675 | References.clear(); |
||
676 | } |
||
677 | |||
678 | /// Iterator to start a find operation; it returns find_end() if the |
||
679 | /// tree has not been built. |
||
680 | /// There is no support to iterate over all the elements of the tree. |
||
681 | find_iterator find(PointType Point) const { |
||
682 | return empty() |
||
683 | ? find_end() |
||
684 | : find_iterator(&IntervalsLeft, &IntervalsRight, Root, Point); |
||
685 | } |
||
686 | |||
687 | /// Iterator to end find operation. |
||
688 | find_iterator find_end() const { return End; } |
||
689 | }; |
||
690 | |||
691 | } // namespace llvm |
||
692 | |||
693 | #endif // LLVM_ADT_INTERVALTREE_H |