Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file implements a coalescing interval map for small objects.
11
///
12
/// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13
/// same value are represented in a compressed form.
14
///
15
/// Iterators provide ordered access to the compressed intervals rather than the
16
/// individual keys, and insert and erase operations use key intervals as well.
17
///
18
/// Like SmallVector, IntervalMap will store the first N intervals in the map
19
/// object itself without any allocations. When space is exhausted it switches
20
/// to a B+-tree representation with very small overhead for small key and
21
/// value objects.
22
///
23
/// A Traits class specifies how keys are compared. It also allows IntervalMap
24
/// to work with both closed and half-open intervals.
25
///
26
/// Keys and values are not stored next to each other in a std::pair, so we
27
/// don't provide such a value_type. Dereferencing iterators only returns the
28
/// mapped value. The interval bounds are accessible through the start() and
29
/// stop() iterator methods.
30
///
31
/// IntervalMap is optimized for small key and value objects, 4 or 8 bytes
32
/// each is the optimal size. For large objects use std::map instead.
33
//
34
//===----------------------------------------------------------------------===//
35
//
36
// Synopsis:
37
//
38
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
39
// class IntervalMap {
40
// public:
41
//   typedef KeyT key_type;
42
//   typedef ValT mapped_type;
43
//   typedef RecyclingAllocator<...> Allocator;
44
//   class iterator;
45
//   class const_iterator;
46
//
47
//   explicit IntervalMap(Allocator&);
48
//   ~IntervalMap():
49
//
50
//   bool empty() const;
51
//   KeyT start() const;
52
//   KeyT stop() const;
53
//   ValT lookup(KeyT x, Value NotFound = Value()) const;
54
//
55
//   const_iterator begin() const;
56
//   const_iterator end() const;
57
//   iterator begin();
58
//   iterator end();
59
//   const_iterator find(KeyT x) const;
60
//   iterator find(KeyT x);
61
//
62
//   void insert(KeyT a, KeyT b, ValT y);
63
//   void clear();
64
// };
65
//
66
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
67
// class IntervalMap::const_iterator {
68
// public:
69
//   using iterator_category = std::bidirectional_iterator_tag;
70
//   using value_type = ValT;
71
//   using difference_type = std::ptrdiff_t;
72
//   using pointer = value_type *;
73
//   using reference = value_type &;
74
//
75
//   bool operator==(const const_iterator &) const;
76
//   bool operator!=(const const_iterator &) const;
77
//   bool valid() const;
78
//
79
//   const KeyT &start() const;
80
//   const KeyT &stop() const;
81
//   const ValT &value() const;
82
//   const ValT &operator*() const;
83
//   const ValT *operator->() const;
84
//
85
//   const_iterator &operator++();
86
//   const_iterator &operator++(int);
87
//   const_iterator &operator--();
88
//   const_iterator &operator--(int);
89
//   void goToBegin();
90
//   void goToEnd();
91
//   void find(KeyT x);
92
//   void advanceTo(KeyT x);
93
// };
94
//
95
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
96
// class IntervalMap::iterator : public const_iterator {
97
// public:
98
//   void insert(KeyT a, KeyT b, Value y);
99
//   void erase();
100
// };
101
//
102
//===----------------------------------------------------------------------===//
103
 
104
#ifndef LLVM_ADT_INTERVALMAP_H
105
#define LLVM_ADT_INTERVALMAP_H
106
 
107
#include "llvm/ADT/PointerIntPair.h"
108
#include "llvm/ADT/SmallVector.h"
109
#include "llvm/Support/Allocator.h"
110
#include "llvm/Support/RecyclingAllocator.h"
111
#include <algorithm>
112
#include <cassert>
113
#include <iterator>
114
#include <new>
115
#include <utility>
116
 
117
namespace llvm {
118
 
119
//===----------------------------------------------------------------------===//
120
//---                              Key traits                              ---//
121
//===----------------------------------------------------------------------===//
122
//
123
// The IntervalMap works with closed or half-open intervals.
124
// Adjacent intervals that map to the same value are coalesced.
125
//
126
// The IntervalMapInfo traits class is used to determine if a key is contained
127
// in an interval, and if two intervals are adjacent so they can be coalesced.
128
// The provided implementation works for closed integer intervals, other keys
129
// probably need a specialized version.
130
//
131
// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
132
//
133
// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
134
// allowed. This is so that stopLess(a, b) can be used to determine if two
135
// intervals overlap.
136
//
137
//===----------------------------------------------------------------------===//
138
 
139
template <typename T>
140
struct IntervalMapInfo {
141
  /// startLess - Return true if x is not in [a;b].
142
  /// This is x < a both for closed intervals and for [a;b) half-open intervals.
143
  static inline bool startLess(const T &x, const T &a) {
144
    return x < a;
145
  }
146
 
147
  /// stopLess - Return true if x is not in [a;b].
148
  /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
149
  static inline bool stopLess(const T &b, const T &x) {
150
    return b < x;
151
  }
152
 
153
  /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
154
  /// This is a+1 == b for closed intervals, a == b for half-open intervals.
155
  static inline bool adjacent(const T &a, const T &b) {
156
    return a+1 == b;
157
  }
158
 
159
  /// nonEmpty - Return true if [a;b] is non-empty.
160
  /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals.
161
  static inline bool nonEmpty(const T &a, const T &b) {
162
    return a <= b;
163
  }
164
};
165
 
166
template <typename T>
167
struct IntervalMapHalfOpenInfo {
168
  /// startLess - Return true if x is not in [a;b).
169
  static inline bool startLess(const T &x, const T &a) {
170
    return x < a;
171
  }
172
 
173
  /// stopLess - Return true if x is not in [a;b).
174
  static inline bool stopLess(const T &b, const T &x) {
175
    return b <= x;
176
  }
177
 
178
  /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
179
  static inline bool adjacent(const T &a, const T &b) {
180
    return a == b;
181
  }
182
 
183
  /// nonEmpty - Return true if [a;b) is non-empty.
184
  static inline bool nonEmpty(const T &a, const T &b) {
185
    return a < b;
186
  }
187
};
188
 
189
/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
190
/// It should be considered private to the implementation.
191
namespace IntervalMapImpl {
192
 
193
using IdxPair = std::pair<unsigned,unsigned>;
194
 
195
//===----------------------------------------------------------------------===//
196
//---                    IntervalMapImpl::NodeBase                         ---//
197
//===----------------------------------------------------------------------===//
198
//
199
// Both leaf and branch nodes store vectors of pairs.
200
// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
201
//
202
// Keys and values are stored in separate arrays to avoid padding caused by
203
// different object alignments. This also helps improve locality of reference
204
// when searching the keys.
205
//
206
// The nodes don't know how many elements they contain - that information is
207
// stored elsewhere. Omitting the size field prevents padding and allows a node
208
// to fill the allocated cache lines completely.
209
//
210
// These are typical key and value sizes, the node branching factor (N), and
211
// wasted space when nodes are sized to fit in three cache lines (192 bytes):
212
//
213
//   T1  T2   N Waste  Used by
214
//    4   4  24   0    Branch<4> (32-bit pointers)
215
//    8   4  16   0    Leaf<4,4>, Branch<4>
216
//    8   8  12   0    Leaf<4,8>, Branch<8>
217
//   16   4   9  12    Leaf<8,4>
218
//   16   8   8   0    Leaf<8,8>
219
//
220
//===----------------------------------------------------------------------===//
221
 
222
template <typename T1, typename T2, unsigned N>
223
class NodeBase {
224
public:
225
  enum { Capacity = N };
226
 
227
  T1 first[N];
228
  T2 second[N];
229
 
230
  /// copy - Copy elements from another node.
231
  /// @param Other Node elements are copied from.
232
  /// @param i     Beginning of the source range in other.
233
  /// @param j     Beginning of the destination range in this.
234
  /// @param Count Number of elements to copy.
235
  template <unsigned M>
236
  void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
237
            unsigned j, unsigned Count) {
238
    assert(i + Count <= M && "Invalid source range");
239
    assert(j + Count <= N && "Invalid dest range");
240
    for (unsigned e = i + Count; i != e; ++i, ++j) {
241
      first[j]  = Other.first[i];
242
      second[j] = Other.second[i];
243
    }
244
  }
245
 
246
  /// moveLeft - Move elements to the left.
247
  /// @param i     Beginning of the source range.
248
  /// @param j     Beginning of the destination range.
249
  /// @param Count Number of elements to copy.
250
  void moveLeft(unsigned i, unsigned j, unsigned Count) {
251
    assert(j <= i && "Use moveRight shift elements right");
252
    copy(*this, i, j, Count);
253
  }
254
 
255
  /// moveRight - Move elements to the right.
256
  /// @param i     Beginning of the source range.
257
  /// @param j     Beginning of the destination range.
258
  /// @param Count Number of elements to copy.
259
  void moveRight(unsigned i, unsigned j, unsigned Count) {
260
    assert(i <= j && "Use moveLeft shift elements left");
261
    assert(j + Count <= N && "Invalid range");
262
    while (Count--) {
263
      first[j + Count]  = first[i + Count];
264
      second[j + Count] = second[i + Count];
265
    }
266
  }
267
 
268
  /// erase - Erase elements [i;j).
269
  /// @param i    Beginning of the range to erase.
270
  /// @param j    End of the range. (Exclusive).
271
  /// @param Size Number of elements in node.
272
  void erase(unsigned i, unsigned j, unsigned Size) {
273
    moveLeft(j, i, Size - j);
274
  }
275
 
276
  /// erase - Erase element at i.
277
  /// @param i    Index of element to erase.
278
  /// @param Size Number of elements in node.
279
  void erase(unsigned i, unsigned Size) {
280
    erase(i, i+1, Size);
281
  }
282
 
283
  /// shift - Shift elements [i;size) 1 position to the right.
284
  /// @param i    Beginning of the range to move.
285
  /// @param Size Number of elements in node.
286
  void shift(unsigned i, unsigned Size) {
287
    moveRight(i, i + 1, Size - i);
288
  }
289
 
290
  /// transferToLeftSib - Transfer elements to a left sibling node.
291
  /// @param Size  Number of elements in this.
292
  /// @param Sib   Left sibling node.
293
  /// @param SSize Number of elements in sib.
294
  /// @param Count Number of elements to transfer.
295
  void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
296
                         unsigned Count) {
297
    Sib.copy(*this, 0, SSize, Count);
298
    erase(0, Count, Size);
299
  }
300
 
301
  /// transferToRightSib - Transfer elements to a right sibling node.
302
  /// @param Size  Number of elements in this.
303
  /// @param Sib   Right sibling node.
304
  /// @param SSize Number of elements in sib.
305
  /// @param Count Number of elements to transfer.
306
  void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
307
                          unsigned Count) {
308
    Sib.moveRight(0, Count, SSize);
309
    Sib.copy(*this, Size-Count, 0, Count);
310
  }
311
 
312
  /// adjustFromLeftSib - Adjust the number if elements in this node by moving
313
  /// elements to or from a left sibling node.
314
  /// @param Size  Number of elements in this.
315
  /// @param Sib   Right sibling node.
316
  /// @param SSize Number of elements in sib.
317
  /// @param Add   The number of elements to add to this node, possibly < 0.
318
  /// @return      Number of elements added to this node, possibly negative.
319
  int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
320
    if (Add > 0) {
321
      // We want to grow, copy from sib.
322
      unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
323
      Sib.transferToRightSib(SSize, *this, Size, Count);
324
      return Count;
325
    } else {
326
      // We want to shrink, copy to sib.
327
      unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
328
      transferToLeftSib(Size, Sib, SSize, Count);
329
      return -Count;
330
    }
331
  }
332
};
333
 
334
/// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
335
/// @param Node  Array of pointers to sibling nodes.
336
/// @param Nodes Number of nodes.
337
/// @param CurSize Array of current node sizes, will be overwritten.
338
/// @param NewSize Array of desired node sizes.
339
template <typename NodeT>
340
void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
341
                        unsigned CurSize[], const unsigned NewSize[]) {
342
  // Move elements right.
343
  for (int n = Nodes - 1; n; --n) {
344
    if (CurSize[n] == NewSize[n])
345
      continue;
346
    for (int m = n - 1; m != -1; --m) {
347
      int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
348
                                         NewSize[n] - CurSize[n]);
349
      CurSize[m] -= d;
350
      CurSize[n] += d;
351
      // Keep going if the current node was exhausted.
352
      if (CurSize[n] >= NewSize[n])
353
          break;
354
    }
355
  }
356
 
357
  if (Nodes == 0)
358
    return;
359
 
360
  // Move elements left.
361
  for (unsigned n = 0; n != Nodes - 1; ++n) {
362
    if (CurSize[n] == NewSize[n])
363
      continue;
364
    for (unsigned m = n + 1; m != Nodes; ++m) {
365
      int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
366
                                        CurSize[n] -  NewSize[n]);
367
      CurSize[m] += d;
368
      CurSize[n] -= d;
369
      // Keep going if the current node was exhausted.
370
      if (CurSize[n] >= NewSize[n])
371
          break;
372
    }
373
  }
374
 
375
#ifndef NDEBUG
376
  for (unsigned n = 0; n != Nodes; n++)
377
    assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
378
#endif
379
}
380
 
381
/// IntervalMapImpl::distribute - Compute a new distribution of node elements
382
/// after an overflow or underflow. Reserve space for a new element at Position,
383
/// and compute the node that will hold Position after redistributing node
384
/// elements.
385
///
386
/// It is required that
387
///
388
///   Elements == sum(CurSize), and
389
///   Elements + Grow <= Nodes * Capacity.
390
///
391
/// NewSize[] will be filled in such that:
392
///
393
///   sum(NewSize) == Elements, and
394
///   NewSize[i] <= Capacity.
395
///
396
/// The returned index is the node where Position will go, so:
397
///
398
///   sum(NewSize[0..idx-1]) <= Position
399
///   sum(NewSize[0..idx])   >= Position
400
///
401
/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
402
/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
403
/// before the one holding the Position'th element where there is room for an
404
/// insertion.
405
///
406
/// @param Nodes    The number of nodes.
407
/// @param Elements Total elements in all nodes.
408
/// @param Capacity The capacity of each node.
409
/// @param CurSize  Array[Nodes] of current node sizes, or NULL.
410
/// @param NewSize  Array[Nodes] to receive the new node sizes.
411
/// @param Position Insert position.
412
/// @param Grow     Reserve space for a new element at Position.
413
/// @return         (node, offset) for Position.
414
IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
415
                   const unsigned *CurSize, unsigned NewSize[],
416
                   unsigned Position, bool Grow);
417
 
418
//===----------------------------------------------------------------------===//
419
//---                   IntervalMapImpl::NodeSizer                         ---//
420
//===----------------------------------------------------------------------===//
421
//
422
// Compute node sizes from key and value types.
423
//
424
// The branching factors are chosen to make nodes fit in three cache lines.
425
// This may not be possible if keys or values are very large. Such large objects
426
// are handled correctly, but a std::map would probably give better performance.
427
//
428
//===----------------------------------------------------------------------===//
429
 
430
enum {
431
  // Cache line size. Most architectures have 32 or 64 byte cache lines.
432
  // We use 64 bytes here because it provides good branching factors.
433
  Log2CacheLine = 6,
434
  CacheLineBytes = 1 << Log2CacheLine,
435
  DesiredNodeBytes = 3 * CacheLineBytes
436
};
437
 
438
template <typename KeyT, typename ValT>
439
struct NodeSizer {
440
  enum {
441
    // Compute the leaf node branching factor that makes a node fit in three
442
    // cache lines. The branching factor must be at least 3, or some B+-tree
443
    // balancing algorithms won't work.
444
    // LeafSize can't be larger than CacheLineBytes. This is required by the
445
    // PointerIntPair used by NodeRef.
446
    DesiredLeafSize = DesiredNodeBytes /
447
      static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
448
    MinLeafSize = 3,
449
    LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
450
  };
451
 
452
  using LeafBase = NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>;
453
 
454
  enum {
455
    // Now that we have the leaf branching factor, compute the actual allocation
456
    // unit size by rounding up to a whole number of cache lines.
457
    AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
458
 
459
    // Determine the branching factor for branch nodes.
460
    BranchSize = AllocBytes /
461
      static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
462
  };
463
 
464
  /// Allocator - The recycling allocator used for both branch and leaf nodes.
465
  /// This typedef is very likely to be identical for all IntervalMaps with
466
  /// reasonably sized entries, so the same allocator can be shared among
467
  /// different kinds of maps.
468
  using Allocator =
469
      RecyclingAllocator<BumpPtrAllocator, char, AllocBytes, CacheLineBytes>;
470
};
471
 
472
//===----------------------------------------------------------------------===//
473
//---                     IntervalMapImpl::NodeRef                         ---//
474
//===----------------------------------------------------------------------===//
475
//
476
// B+-tree nodes can be leaves or branches, so we need a polymorphic node
477
// pointer that can point to both kinds.
478
//
479
// All nodes are cache line aligned and the low 6 bits of a node pointer are
480
// always 0. These bits are used to store the number of elements in the
481
// referenced node. Besides saving space, placing node sizes in the parents
482
// allow tree balancing algorithms to run without faulting cache lines for nodes
483
// that may not need to be modified.
484
//
485
// A NodeRef doesn't know whether it references a leaf node or a branch node.
486
// It is the responsibility of the caller to use the correct types.
487
//
488
// Nodes are never supposed to be empty, and it is invalid to store a node size
489
// of 0 in a NodeRef. The valid range of sizes is 1-64.
490
//
491
//===----------------------------------------------------------------------===//
492
 
493
class NodeRef {
494
  struct CacheAlignedPointerTraits {
495
    static inline void *getAsVoidPointer(void *P) { return P; }
496
    static inline void *getFromVoidPointer(void *P) { return P; }
497
    static constexpr int NumLowBitsAvailable = Log2CacheLine;
498
  };
499
  PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
500
 
501
public:
502
  /// NodeRef - Create a null ref.
503
  NodeRef() = default;
504
 
505
  /// operator bool - Detect a null ref.
506
  explicit operator bool() const { return pip.getOpaqueValue(); }
507
 
508
  /// NodeRef - Create a reference to the node p with n elements.
509
  template <typename NodeT>
510
  NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
511
    assert(n <= NodeT::Capacity && "Size too big for node");
512
  }
513
 
514
  /// size - Return the number of elements in the referenced node.
515
  unsigned size() const { return pip.getInt() + 1; }
516
 
517
  /// setSize - Update the node size.
518
  void setSize(unsigned n) { pip.setInt(n - 1); }
519
 
520
  /// subtree - Access the i'th subtree reference in a branch node.
521
  /// This depends on branch nodes storing the NodeRef array as their first
522
  /// member.
523
  NodeRef &subtree(unsigned i) const {
524
    return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
525
  }
526
 
527
  /// get - Dereference as a NodeT reference.
528
  template <typename NodeT>
529
  NodeT &get() const {
530
    return *reinterpret_cast<NodeT*>(pip.getPointer());
531
  }
532
 
533
  bool operator==(const NodeRef &RHS) const {
534
    if (pip == RHS.pip)
535
      return true;
536
    assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
537
    return false;
538
  }
539
 
540
  bool operator!=(const NodeRef &RHS) const {
541
    return !operator==(RHS);
542
  }
543
};
544
 
545
//===----------------------------------------------------------------------===//
546
//---                      IntervalMapImpl::LeafNode                       ---//
547
//===----------------------------------------------------------------------===//
548
//
549
// Leaf nodes store up to N disjoint intervals with corresponding values.
550
//
551
// The intervals are kept sorted and fully coalesced so there are no adjacent
552
// intervals mapping to the same value.
553
//
554
// These constraints are always satisfied:
555
//
556
// - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
557
//
558
// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
559
//
560
// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
561
//                                          - Fully coalesced.
562
//
563
//===----------------------------------------------------------------------===//
564
 
565
template <typename KeyT, typename ValT, unsigned N, typename Traits>
566
class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
567
public:
568
  const KeyT &start(unsigned i) const { return this->first[i].first; }
569
  const KeyT &stop(unsigned i) const { return this->first[i].second; }
570
  const ValT &value(unsigned i) const { return this->second[i]; }
571
 
572
  KeyT &start(unsigned i) { return this->first[i].first; }
573
  KeyT &stop(unsigned i) { return this->first[i].second; }
574
  ValT &value(unsigned i) { return this->second[i]; }
575
 
576
  /// findFrom - Find the first interval after i that may contain x.
577
  /// @param i    Starting index for the search.
578
  /// @param Size Number of elements in node.
579
  /// @param x    Key to search for.
580
  /// @return     First index with !stopLess(key[i].stop, x), or size.
581
  ///             This is the first interval that can possibly contain x.
582
  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
583
    assert(i <= Size && Size <= N && "Bad indices");
584
    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
585
           "Index is past the needed point");
586
    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
587
    return i;
588
  }
589
 
590
  /// safeFind - Find an interval that is known to exist. This is the same as
591
  /// findFrom except is it assumed that x is at least within range of the last
592
  /// interval.
593
  /// @param i Starting index for the search.
594
  /// @param x Key to search for.
595
  /// @return  First index with !stopLess(key[i].stop, x), never size.
596
  ///          This is the first interval that can possibly contain x.
597
  unsigned safeFind(unsigned i, KeyT x) const {
598
    assert(i < N && "Bad index");
599
    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
600
           "Index is past the needed point");
601
    while (Traits::stopLess(stop(i), x)) ++i;
602
    assert(i < N && "Unsafe intervals");
603
    return i;
604
  }
605
 
606
  /// safeLookup - Lookup mapped value for a safe key.
607
  /// It is assumed that x is within range of the last entry.
608
  /// @param x        Key to search for.
609
  /// @param NotFound Value to return if x is not in any interval.
610
  /// @return         The mapped value at x or NotFound.
611
  ValT safeLookup(KeyT x, ValT NotFound) const {
612
    unsigned i = safeFind(0, x);
613
    return Traits::startLess(x, start(i)) ? NotFound : value(i);
614
  }
615
 
616
  unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
617
};
618
 
619
/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
620
/// possible. This may cause the node to grow by 1, or it may cause the node
621
/// to shrink because of coalescing.
622
/// @param Pos  Starting index = insertFrom(0, size, a)
623
/// @param Size Number of elements in node.
624
/// @param a    Interval start.
625
/// @param b    Interval stop.
626
/// @param y    Value be mapped.
627
/// @return     (insert position, new size), or (i, Capacity+1) on overflow.
628
template <typename KeyT, typename ValT, unsigned N, typename Traits>
629
unsigned LeafNode<KeyT, ValT, N, Traits>::
630
insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
631
  unsigned i = Pos;
632
  assert(i <= Size && Size <= N && "Invalid index");
633
  assert(!Traits::stopLess(b, a) && "Invalid interval");
634
 
635
  // Verify the findFrom invariant.
636
  assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
637
  assert((i == Size || !Traits::stopLess(stop(i), a)));
638
  assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
639
 
640
  // Coalesce with previous interval.
641
  if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
642
    Pos = i - 1;
643
    // Also coalesce with next interval?
644
    if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
645
      stop(i - 1) = stop(i);
646
      this->erase(i, Size);
647
      return Size - 1;
648
    }
649
    stop(i - 1) = b;
650
    return Size;
651
  }
652
 
653
  // Detect overflow.
654
  if (i == N)
655
    return N + 1;
656
 
657
  // Add new interval at end.
658
  if (i == Size) {
659
    start(i) = a;
660
    stop(i) = b;
661
    value(i) = y;
662
    return Size + 1;
663
  }
664
 
665
  // Try to coalesce with following interval.
666
  if (value(i) == y && Traits::adjacent(b, start(i))) {
667
    start(i) = a;
668
    return Size;
669
  }
670
 
671
  // We must insert before i. Detect overflow.
672
  if (Size == N)
673
    return N + 1;
674
 
675
  // Insert before i.
676
  this->shift(i, Size);
677
  start(i) = a;
678
  stop(i) = b;
679
  value(i) = y;
680
  return Size + 1;
681
}
682
 
683
//===----------------------------------------------------------------------===//
684
//---                   IntervalMapImpl::BranchNode                        ---//
685
//===----------------------------------------------------------------------===//
686
//
687
// A branch node stores references to 1--N subtrees all of the same height.
688
//
689
// The key array in a branch node holds the rightmost stop key of each subtree.
690
// It is redundant to store the last stop key since it can be found in the
691
// parent node, but doing so makes tree balancing a lot simpler.
692
//
693
// It is unusual for a branch node to only have one subtree, but it can happen
694
// in the root node if it is smaller than the normal nodes.
695
//
696
// When all of the leaf nodes from all the subtrees are concatenated, they must
697
// satisfy the same constraints as a single leaf node. They must be sorted,
698
// sane, and fully coalesced.
699
//
700
//===----------------------------------------------------------------------===//
701
 
702
template <typename KeyT, typename ValT, unsigned N, typename Traits>
703
class BranchNode : public NodeBase<NodeRef, KeyT, N> {
704
public:
705
  const KeyT &stop(unsigned i) const { return this->second[i]; }
706
  const NodeRef &subtree(unsigned i) const { return this->first[i]; }
707
 
708
  KeyT &stop(unsigned i) { return this->second[i]; }
709
  NodeRef &subtree(unsigned i) { return this->first[i]; }
710
 
711
  /// findFrom - Find the first subtree after i that may contain x.
712
  /// @param i    Starting index for the search.
713
  /// @param Size Number of elements in node.
714
  /// @param x    Key to search for.
715
  /// @return     First index with !stopLess(key[i], x), or size.
716
  ///             This is the first subtree that can possibly contain x.
717
  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
718
    assert(i <= Size && Size <= N && "Bad indices");
719
    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
720
           "Index to findFrom is past the needed point");
721
    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
722
    return i;
723
  }
724
 
725
  /// safeFind - Find a subtree that is known to exist. This is the same as
726
  /// findFrom except is it assumed that x is in range.
727
  /// @param i Starting index for the search.
728
  /// @param x Key to search for.
729
  /// @return  First index with !stopLess(key[i], x), never size.
730
  ///          This is the first subtree that can possibly contain x.
731
  unsigned safeFind(unsigned i, KeyT x) const {
732
    assert(i < N && "Bad index");
733
    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
734
           "Index is past the needed point");
735
    while (Traits::stopLess(stop(i), x)) ++i;
736
    assert(i < N && "Unsafe intervals");
737
    return i;
738
  }
739
 
740
  /// safeLookup - Get the subtree containing x, Assuming that x is in range.
741
  /// @param x Key to search for.
742
  /// @return  Subtree containing x
743
  NodeRef safeLookup(KeyT x) const {
744
    return subtree(safeFind(0, x));
745
  }
746
 
747
  /// insert - Insert a new (subtree, stop) pair.
748
  /// @param i    Insert position, following entries will be shifted.
749
  /// @param Size Number of elements in node.
750
  /// @param Node Subtree to insert.
751
  /// @param Stop Last key in subtree.
752
  void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
753
    assert(Size < N && "branch node overflow");
754
    assert(i <= Size && "Bad insert position");
755
    this->shift(i, Size);
756
    subtree(i) = Node;
757
    stop(i) = Stop;
758
  }
759
};
760
 
761
//===----------------------------------------------------------------------===//
762
//---                         IntervalMapImpl::Path                        ---//
763
//===----------------------------------------------------------------------===//
764
//
765
// A Path is used by iterators to represent a position in a B+-tree, and the
766
// path to get there from the root.
767
//
768
// The Path class also contains the tree navigation code that doesn't have to
769
// be templatized.
770
//
771
//===----------------------------------------------------------------------===//
772
 
773
class Path {
774
  /// Entry - Each step in the path is a node pointer and an offset into that
775
  /// node.
776
  struct Entry {
777
    void *node;
778
    unsigned size;
779
    unsigned offset;
780
 
781
    Entry(void *Node, unsigned Size, unsigned Offset)
782
      : node(Node), size(Size), offset(Offset) {}
783
 
784
    Entry(NodeRef Node, unsigned Offset)
785
      : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
786
 
787
    NodeRef &subtree(unsigned i) const {
788
      return reinterpret_cast<NodeRef*>(node)[i];
789
    }
790
  };
791
 
792
  /// path - The path entries, path[0] is the root node, path.back() is a leaf.
793
  SmallVector<Entry, 4> path;
794
 
795
public:
796
  // Node accessors.
797
  template <typename NodeT> NodeT &node(unsigned Level) const {
798
    return *reinterpret_cast<NodeT*>(path[Level].node);
799
  }
800
  unsigned size(unsigned Level) const { return path[Level].size; }
801
  unsigned offset(unsigned Level) const { return path[Level].offset; }
802
  unsigned &offset(unsigned Level) { return path[Level].offset; }
803
 
804
  // Leaf accessors.
805
  template <typename NodeT> NodeT &leaf() const {
806
    return *reinterpret_cast<NodeT*>(path.back().node);
807
  }
808
  unsigned leafSize() const { return path.back().size; }
809
  unsigned leafOffset() const { return path.back().offset; }
810
  unsigned &leafOffset() { return path.back().offset; }
811
 
812
  /// valid - Return true if path is at a valid node, not at end().
813
  bool valid() const {
814
    return !path.empty() && path.front().offset < path.front().size;
815
  }
816
 
817
  /// height - Return the height of the tree corresponding to this path.
818
  /// This matches map->height in a full path.
819
  unsigned height() const { return path.size() - 1; }
820
 
821
  /// subtree - Get the subtree referenced from Level. When the path is
822
  /// consistent, node(Level + 1) == subtree(Level).
823
  /// @param Level 0..height-1. The leaves have no subtrees.
824
  NodeRef &subtree(unsigned Level) const {
825
    return path[Level].subtree(path[Level].offset);
826
  }
827
 
828
  /// reset - Reset cached information about node(Level) from subtree(Level -1).
829
  /// @param Level 1..height. The node to update after parent node changed.
830
  void reset(unsigned Level) {
831
    path[Level] = Entry(subtree(Level - 1), offset(Level));
832
  }
833
 
834
  /// push - Add entry to path.
835
  /// @param Node Node to add, should be subtree(path.size()-1).
836
  /// @param Offset Offset into Node.
837
  void push(NodeRef Node, unsigned Offset) {
838
    path.push_back(Entry(Node, Offset));
839
  }
840
 
841
  /// pop - Remove the last path entry.
842
  void pop() {
843
    path.pop_back();
844
  }
845
 
846
  /// setSize - Set the size of a node both in the path and in the tree.
847
  /// @param Level 0..height. Note that setting the root size won't change
848
  ///              map->rootSize.
849
  /// @param Size New node size.
850
  void setSize(unsigned Level, unsigned Size) {
851
    path[Level].size = Size;
852
    if (Level)
853
      subtree(Level - 1).setSize(Size);
854
  }
855
 
856
  /// setRoot - Clear the path and set a new root node.
857
  /// @param Node New root node.
858
  /// @param Size New root size.
859
  /// @param Offset Offset into root node.
860
  void setRoot(void *Node, unsigned Size, unsigned Offset) {
861
    path.clear();
862
    path.push_back(Entry(Node, Size, Offset));
863
  }
864
 
865
  /// replaceRoot - Replace the current root node with two new entries after the
866
  /// tree height has increased.
867
  /// @param Root The new root node.
868
  /// @param Size Number of entries in the new root.
869
  /// @param Offsets Offsets into the root and first branch nodes.
870
  void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
871
 
872
  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
873
  /// @param Level Get the sibling to node(Level).
874
  /// @return Left sibling, or NodeRef().
875
  NodeRef getLeftSibling(unsigned Level) const;
876
 
877
  /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
878
  /// unaltered.
879
  /// @param Level Move node(Level).
880
  void moveLeft(unsigned Level);
881
 
882
  /// fillLeft - Grow path to Height by taking leftmost branches.
883
  /// @param Height The target height.
884
  void fillLeft(unsigned Height) {
885
    while (height() < Height)
886
      push(subtree(height()), 0);
887
  }
888
 
889
  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
890
  /// @param Level Get the sibling to node(Level).
891
  /// @return Left sibling, or NodeRef().
892
  NodeRef getRightSibling(unsigned Level) const;
893
 
894
  /// moveRight - Move path to the left sibling at Level. Leave nodes below
895
  /// Level unaltered.
896
  /// @param Level Move node(Level).
897
  void moveRight(unsigned Level);
898
 
899
  /// atBegin - Return true if path is at begin().
900
  bool atBegin() const {
901
    for (unsigned i = 0, e = path.size(); i != e; ++i)
902
      if (path[i].offset != 0)
903
        return false;
904
    return true;
905
  }
906
 
907
  /// atLastEntry - Return true if the path is at the last entry of the node at
908
  /// Level.
909
  /// @param Level Node to examine.
910
  bool atLastEntry(unsigned Level) const {
911
    return path[Level].offset == path[Level].size - 1;
912
  }
913
 
914
  /// legalizeForInsert - Prepare the path for an insertion at Level. When the
915
  /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
916
  /// ensures that node(Level) is real by moving back to the last node at Level,
917
  /// and setting offset(Level) to size(Level) if required.
918
  /// @param Level The level where an insertion is about to take place.
919
  void legalizeForInsert(unsigned Level) {
920
    if (valid())
921
      return;
922
    moveLeft(Level);
923
    ++path[Level].offset;
924
  }
925
};
926
 
927
} // end namespace IntervalMapImpl
928
 
929
//===----------------------------------------------------------------------===//
930
//---                          IntervalMap                                ----//
931
//===----------------------------------------------------------------------===//
932
 
933
template <typename KeyT, typename ValT,
934
          unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
935
          typename Traits = IntervalMapInfo<KeyT>>
936
class IntervalMap {
937
  using Sizer = IntervalMapImpl::NodeSizer<KeyT, ValT>;
938
  using Leaf = IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits>;
939
  using Branch =
940
      IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>;
941
  using RootLeaf = IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits>;
942
  using IdxPair = IntervalMapImpl::IdxPair;
943
 
944
  // The RootLeaf capacity is given as a template parameter. We must compute the
945
  // corresponding RootBranch capacity.
946
  enum {
947
    DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
948
      (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
949
    RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
950
  };
951
 
952
  using RootBranch =
953
      IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>;
954
 
955
  // When branched, we store a global start key as well as the branch node.
956
  struct RootBranchData {
957
    KeyT start;
958
    RootBranch node;
959
  };
960
 
961
public:
962
  using Allocator = typename Sizer::Allocator;
963
  using KeyType = KeyT;
964
  using ValueType = ValT;
965
  using KeyTraits = Traits;
966
 
967
private:
968
  // The root data is either a RootLeaf or a RootBranchData instance.
969
  union {
970
    RootLeaf leaf;
971
    RootBranchData branchData;
972
  };
973
 
974
  // Tree height.
975
  // 0: Leaves in root.
976
  // 1: Root points to leaf.
977
  // 2: root->branch->leaf ...
978
  unsigned height = 0;
979
 
980
  // Number of entries in the root node.
981
  unsigned rootSize = 0;
982
 
983
  // Allocator used for creating external nodes.
984
  Allocator *allocator = nullptr;
985
 
986
  const RootLeaf &rootLeaf() const {
987
    assert(!branched() && "Cannot acces leaf data in branched root");
988
    return leaf;
989
  }
990
  RootLeaf &rootLeaf() {
991
    assert(!branched() && "Cannot acces leaf data in branched root");
992
    return leaf;
993
  }
994
 
995
  const RootBranchData &rootBranchData() const {
996
    assert(branched() && "Cannot access branch data in non-branched root");
997
    return branchData;
998
  }
999
  RootBranchData &rootBranchData() {
1000
    assert(branched() && "Cannot access branch data in non-branched root");
1001
    return branchData;
1002
  }
1003
 
1004
  const RootBranch &rootBranch() const { return rootBranchData().node; }
1005
  RootBranch &rootBranch()             { return rootBranchData().node; }
1006
  KeyT rootBranchStart() const { return rootBranchData().start; }
1007
  KeyT &rootBranchStart()      { return rootBranchData().start; }
1008
 
1009
  template <typename NodeT> NodeT *newNode() {
1010
    return new (allocator->template Allocate<NodeT>()) NodeT();
1011
  }
1012
 
1013
  template <typename NodeT> void deleteNode(NodeT *P) {
1014
    P->~NodeT();
1015
    allocator->Deallocate(P);
1016
  }
1017
 
1018
  IdxPair branchRoot(unsigned Position);
1019
  IdxPair splitRoot(unsigned Position);
1020
 
1021
  void switchRootToBranch() {
1022
    rootLeaf().~RootLeaf();
1023
    height = 1;
1024
    new (&rootBranchData()) RootBranchData();
1025
  }
1026
 
1027
  void switchRootToLeaf() {
1028
    rootBranchData().~RootBranchData();
1029
    height = 0;
1030
    new(&rootLeaf()) RootLeaf();
1031
  }
1032
 
1033
  bool branched() const { return height > 0; }
1034
 
1035
  ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1036
  void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1037
                  unsigned Level));
1038
  void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1039
 
1040
public:
1041
  explicit IntervalMap(Allocator &a) : allocator(&a) {
1042
    new (&rootLeaf()) RootLeaf();
1043
  }
1044
 
1045
  ///@{
1046
  /// NOTE: The moved-from or copied-from object's allocator needs to have a
1047
  /// lifetime equal to or exceeding the moved-to or copied-to object to avoid
1048
  /// undefined behaviour.
1049
  IntervalMap(IntervalMap const &RHS) : IntervalMap(*RHS.allocator) {
1050
    // Future-proofing assertion: this function assumes the IntervalMap
1051
    // constructor doesn't add any nodes.
1052
    assert(empty() && "Expected emptry tree");
1053
    *this = RHS;
1054
  }
1055
  IntervalMap &operator=(IntervalMap const &RHS) {
1056
    clear();
1057
    allocator = RHS.allocator;
1058
    for (auto It = RHS.begin(), End = RHS.end(); It != End; ++It)
1059
      insert(It.start(), It.stop(), It.value());
1060
    return *this;
1061
  }
1062
 
1063
  IntervalMap(IntervalMap &&RHS) : IntervalMap(*RHS.allocator) {
1064
    // Future-proofing assertion: this function assumes the IntervalMap
1065
    // constructor doesn't add any nodes.
1066
    assert(empty() && "Expected emptry tree");
1067
    *this = std::move(RHS);
1068
  }
1069
  IntervalMap &operator=(IntervalMap &&RHS) {
1070
    // Calling clear deallocates memory and switches to rootLeaf.
1071
    clear();
1072
    // Destroy the new rootLeaf.
1073
    rootLeaf().~RootLeaf();
1074
 
1075
    height = RHS.height;
1076
    rootSize = RHS.rootSize;
1077
    allocator = RHS.allocator;
1078
 
1079
    // rootLeaf and rootBranch are both uninitialized. Move RHS data into
1080
    // appropriate field.
1081
    if (RHS.branched()) {
1082
      rootBranch() = std::move(RHS.rootBranch());
1083
      // Prevent RHS deallocating memory LHS now owns by replacing RHS
1084
      // rootBranch with a new rootLeaf.
1085
      RHS.rootBranch().~RootBranch();
1086
      RHS.height = 0;
1087
      new (&RHS.rootLeaf()) RootLeaf();
1088
    } else {
1089
      rootLeaf() = std::move(RHS.rootLeaf());
1090
    }
1091
    return *this;
1092
  }
1093
  ///@}
1094
 
1095
  ~IntervalMap() {
1096
    clear();
1097
    rootLeaf().~RootLeaf();
1098
  }
1099
 
1100
  /// empty -  Return true when no intervals are mapped.
1101
  bool empty() const {
1102
    return rootSize == 0;
1103
  }
1104
 
1105
  /// start - Return the smallest mapped key in a non-empty map.
1106
  KeyT start() const {
1107
    assert(!empty() && "Empty IntervalMap has no start");
1108
    return !branched() ? rootLeaf().start(0) : rootBranchStart();
1109
  }
1110
 
1111
  /// stop - Return the largest mapped key in a non-empty map.
1112
  KeyT stop() const {
1113
    assert(!empty() && "Empty IntervalMap has no stop");
1114
    return !branched() ? rootLeaf().stop(rootSize - 1) :
1115
                         rootBranch().stop(rootSize - 1);
1116
  }
1117
 
1118
  /// lookup - Return the mapped value at x or NotFound.
1119
  ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1120
    if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1121
      return NotFound;
1122
    return branched() ? treeSafeLookup(x, NotFound) :
1123
                        rootLeaf().safeLookup(x, NotFound);
1124
  }
1125
 
1126
  /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1127
  /// It is assumed that no key in the interval is mapped to another value, but
1128
  /// overlapping intervals already mapped to y will be coalesced.
1129
  void insert(KeyT a, KeyT b, ValT y) {
1130
    if (branched() || rootSize == RootLeaf::Capacity)
1131
      return find(a).insert(a, b, y);
1132
 
1133
    // Easy insert into root leaf.
1134
    unsigned p = rootLeaf().findFrom(0, rootSize, a);
1135
    rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1136
  }
1137
 
1138
  /// clear - Remove all entries.
1139
  void clear();
1140
 
1141
  class const_iterator;
1142
  class iterator;
1143
  friend class const_iterator;
1144
  friend class iterator;
1145
 
1146
  const_iterator begin() const {
1147
    const_iterator I(*this);
1148
    I.goToBegin();
1149
    return I;
1150
  }
1151
 
1152
  iterator begin() {
1153
    iterator I(*this);
1154
    I.goToBegin();
1155
    return I;
1156
  }
1157
 
1158
  const_iterator end() const {
1159
    const_iterator I(*this);
1160
    I.goToEnd();
1161
    return I;
1162
  }
1163
 
1164
  iterator end() {
1165
    iterator I(*this);
1166
    I.goToEnd();
1167
    return I;
1168
  }
1169
 
1170
  /// find - Return an iterator pointing to the first interval ending at or
1171
  /// after x, or end().
1172
  const_iterator find(KeyT x) const {
1173
    const_iterator I(*this);
1174
    I.find(x);
1175
    return I;
1176
  }
1177
 
1178
  iterator find(KeyT x) {
1179
    iterator I(*this);
1180
    I.find(x);
1181
    return I;
1182
  }
1183
 
1184
  /// overlaps(a, b) - Return true if the intervals in this map overlap with the
1185
  /// interval [a;b].
1186
  bool overlaps(KeyT a, KeyT b) const {
1187
    assert(Traits::nonEmpty(a, b));
1188
    const_iterator I = find(a);
1189
    if (!I.valid())
1190
      return false;
1191
    // [a;b] and [x;y] overlap iff x<=b and a<=y. The find() call guarantees the
1192
    // second part (y = find(a).stop()), so it is sufficient to check the first
1193
    // one.
1194
    return !Traits::stopLess(b, I.start());
1195
  }
1196
};
1197
 
1198
/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1199
/// branched root.
1200
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1201
ValT IntervalMap<KeyT, ValT, N, Traits>::
1202
treeSafeLookup(KeyT x, ValT NotFound) const {
1203
  assert(branched() && "treeLookup assumes a branched root");
1204
 
1205
  IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1206
  for (unsigned h = height-1; h; --h)
1207
    NR = NR.get<Branch>().safeLookup(x);
1208
  return NR.get<Leaf>().safeLookup(x, NotFound);
1209
}
1210
 
1211
// branchRoot - Switch from a leaf root to a branched root.
1212
// Return the new (root offset, node offset) corresponding to Position.
1213
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1214
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1215
branchRoot(unsigned Position) {
1216
  using namespace IntervalMapImpl;
1217
  // How many external leaf nodes to hold RootLeaf+1?
1218
  const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1219
 
1220
  // Compute element distribution among new nodes.
1221
  unsigned size[Nodes];
1222
  IdxPair NewOffset(0, Position);
1223
 
1224
  // Is is very common for the root node to be smaller than external nodes.
1225
  if (Nodes == 1)
1226
    size[0] = rootSize;
1227
  else
1228
    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, size,
1229
                           Position, true);
1230
 
1231
  // Allocate new nodes.
1232
  unsigned pos = 0;
1233
  NodeRef node[Nodes];
1234
  for (unsigned n = 0; n != Nodes; ++n) {
1235
    Leaf *L = newNode<Leaf>();
1236
    L->copy(rootLeaf(), pos, 0, size[n]);
1237
    node[n] = NodeRef(L, size[n]);
1238
    pos += size[n];
1239
  }
1240
 
1241
  // Destroy the old leaf node, construct branch node instead.
1242
  switchRootToBranch();
1243
  for (unsigned n = 0; n != Nodes; ++n) {
1244
    rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1245
    rootBranch().subtree(n) = node[n];
1246
  }
1247
  rootBranchStart() = node[0].template get<Leaf>().start(0);
1248
  rootSize = Nodes;
1249
  return NewOffset;
1250
}
1251
 
1252
// splitRoot - Split the current BranchRoot into multiple Branch nodes.
1253
// Return the new (root offset, node offset) corresponding to Position.
1254
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1255
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1256
splitRoot(unsigned Position) {
1257
  using namespace IntervalMapImpl;
1258
  // How many external leaf nodes to hold RootBranch+1?
1259
  const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1260
 
1261
  // Compute element distribution among new nodes.
1262
  unsigned Size[Nodes];
1263
  IdxPair NewOffset(0, Position);
1264
 
1265
  // Is is very common for the root node to be smaller than external nodes.
1266
  if (Nodes == 1)
1267
    Size[0] = rootSize;
1268
  else
1269
    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, Size,
1270
                           Position, true);
1271
 
1272
  // Allocate new nodes.
1273
  unsigned Pos = 0;
1274
  NodeRef Node[Nodes];
1275
  for (unsigned n = 0; n != Nodes; ++n) {
1276
    Branch *B = newNode<Branch>();
1277
    B->copy(rootBranch(), Pos, 0, Size[n]);
1278
    Node[n] = NodeRef(B, Size[n]);
1279
    Pos += Size[n];
1280
  }
1281
 
1282
  for (unsigned n = 0; n != Nodes; ++n) {
1283
    rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1284
    rootBranch().subtree(n) = Node[n];
1285
  }
1286
  rootSize = Nodes;
1287
  ++height;
1288
  return NewOffset;
1289
}
1290
 
1291
/// visitNodes - Visit each external node.
1292
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1293
void IntervalMap<KeyT, ValT, N, Traits>::
1294
visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1295
  if (!branched())
1296
    return;
1297
  SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1298
 
1299
  // Collect level 0 nodes from the root.
1300
  for (unsigned i = 0; i != rootSize; ++i)
1301
    Refs.push_back(rootBranch().subtree(i));
1302
 
1303
  // Visit all branch nodes.
1304
  for (unsigned h = height - 1; h; --h) {
1305
    for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1306
      for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1307
        NextRefs.push_back(Refs[i].subtree(j));
1308
      (this->*f)(Refs[i], h);
1309
    }
1310
    Refs.clear();
1311
    Refs.swap(NextRefs);
1312
  }
1313
 
1314
  // Visit all leaf nodes.
1315
  for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1316
    (this->*f)(Refs[i], 0);
1317
}
1318
 
1319
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1320
void IntervalMap<KeyT, ValT, N, Traits>::
1321
deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1322
  if (Level)
1323
    deleteNode(&Node.get<Branch>());
1324
  else
1325
    deleteNode(&Node.get<Leaf>());
1326
}
1327
 
1328
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1329
void IntervalMap<KeyT, ValT, N, Traits>::
1330
clear() {
1331
  if (branched()) {
1332
    visitNodes(&IntervalMap::deleteNode);
1333
    switchRootToLeaf();
1334
  }
1335
  rootSize = 0;
1336
}
1337
 
1338
//===----------------------------------------------------------------------===//
1339
//---                   IntervalMap::const_iterator                       ----//
1340
//===----------------------------------------------------------------------===//
1341
 
1342
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1343
class IntervalMap<KeyT, ValT, N, Traits>::const_iterator {
1344
  friend class IntervalMap;
1345
 
1346
public:
1347
  using iterator_category = std::bidirectional_iterator_tag;
1348
  using value_type = ValT;
1349
  using difference_type = std::ptrdiff_t;
1350
  using pointer = value_type *;
1351
  using reference = value_type &;
1352
 
1353
protected:
1354
  // The map referred to.
1355
  IntervalMap *map = nullptr;
1356
 
1357
  // We store a full path from the root to the current position.
1358
  // The path may be partially filled, but never between iterator calls.
1359
  IntervalMapImpl::Path path;
1360
 
1361
  explicit const_iterator(const IntervalMap &map) :
1362
    map(const_cast<IntervalMap*>(&map)) {}
1363
 
1364
  bool branched() const {
1365
    assert(map && "Invalid iterator");
1366
    return map->branched();
1367
  }
1368
 
1369
  void setRoot(unsigned Offset) {
1370
    if (branched())
1371
      path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1372
    else
1373
      path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1374
  }
1375
 
1376
  void pathFillFind(KeyT x);
1377
  void treeFind(KeyT x);
1378
  void treeAdvanceTo(KeyT x);
1379
 
1380
  /// unsafeStart - Writable access to start() for iterator.
1381
  KeyT &unsafeStart() const {
1382
    assert(valid() && "Cannot access invalid iterator");
1383
    return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1384
                        path.leaf<RootLeaf>().start(path.leafOffset());
1385
  }
1386
 
1387
  /// unsafeStop - Writable access to stop() for iterator.
1388
  KeyT &unsafeStop() const {
1389
    assert(valid() && "Cannot access invalid iterator");
1390
    return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1391
                        path.leaf<RootLeaf>().stop(path.leafOffset());
1392
  }
1393
 
1394
  /// unsafeValue - Writable access to value() for iterator.
1395
  ValT &unsafeValue() const {
1396
    assert(valid() && "Cannot access invalid iterator");
1397
    return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1398
                        path.leaf<RootLeaf>().value(path.leafOffset());
1399
  }
1400
 
1401
public:
1402
  /// const_iterator - Create an iterator that isn't pointing anywhere.
1403
  const_iterator() = default;
1404
 
1405
  /// setMap - Change the map iterated over. This call must be followed by a
1406
  /// call to goToBegin(), goToEnd(), or find()
1407
  void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1408
 
1409
  /// valid - Return true if the current position is valid, false for end().
1410
  bool valid() const { return path.valid(); }
1411
 
1412
  /// atBegin - Return true if the current position is the first map entry.
1413
  bool atBegin() const { return path.atBegin(); }
1414
 
1415
  /// start - Return the beginning of the current interval.
1416
  const KeyT &start() const { return unsafeStart(); }
1417
 
1418
  /// stop - Return the end of the current interval.
1419
  const KeyT &stop() const { return unsafeStop(); }
1420
 
1421
  /// value - Return the mapped value at the current interval.
1422
  const ValT &value() const { return unsafeValue(); }
1423
 
1424
  const ValT &operator*() const { return value(); }
1425
 
1426
  bool operator==(const const_iterator &RHS) const {
1427
    assert(map == RHS.map && "Cannot compare iterators from different maps");
1428
    if (!valid())
1429
      return !RHS.valid();
1430
    if (path.leafOffset() != RHS.path.leafOffset())
1431
      return false;
1432
    return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1433
  }
1434
 
1435
  bool operator!=(const const_iterator &RHS) const {
1436
    return !operator==(RHS);
1437
  }
1438
 
1439
  /// goToBegin - Move to the first interval in map.
1440
  void goToBegin() {
1441
    setRoot(0);
1442
    if (branched())
1443
      path.fillLeft(map->height);
1444
  }
1445
 
1446
  /// goToEnd - Move beyond the last interval in map.
1447
  void goToEnd() {
1448
    setRoot(map->rootSize);
1449
  }
1450
 
1451
  /// preincrement - Move to the next interval.
1452
  const_iterator &operator++() {
1453
    assert(valid() && "Cannot increment end()");
1454
    if (++path.leafOffset() == path.leafSize() && branched())
1455
      path.moveRight(map->height);
1456
    return *this;
1457
  }
1458
 
1459
  /// postincrement - Don't do that!
1460
  const_iterator operator++(int) {
1461
    const_iterator tmp = *this;
1462
    operator++();
1463
    return tmp;
1464
  }
1465
 
1466
  /// predecrement - Move to the previous interval.
1467
  const_iterator &operator--() {
1468
    if (path.leafOffset() && (valid() || !branched()))
1469
      --path.leafOffset();
1470
    else
1471
      path.moveLeft(map->height);
1472
    return *this;
1473
  }
1474
 
1475
  /// postdecrement - Don't do that!
1476
  const_iterator operator--(int) {
1477
    const_iterator tmp = *this;
1478
    operator--();
1479
    return tmp;
1480
  }
1481
 
1482
  /// find - Move to the first interval with stop >= x, or end().
1483
  /// This is a full search from the root, the current position is ignored.
1484
  void find(KeyT x) {
1485
    if (branched())
1486
      treeFind(x);
1487
    else
1488
      setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1489
  }
1490
 
1491
  /// advanceTo - Move to the first interval with stop >= x, or end().
1492
  /// The search is started from the current position, and no earlier positions
1493
  /// can be found. This is much faster than find() for small moves.
1494
  void advanceTo(KeyT x) {
1495
    if (!valid())
1496
      return;
1497
    if (branched())
1498
      treeAdvanceTo(x);
1499
    else
1500
      path.leafOffset() =
1501
        map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1502
  }
1503
};
1504
 
1505
/// pathFillFind - Complete path by searching for x.
1506
/// @param x Key to search for.
1507
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1508
void IntervalMap<KeyT, ValT, N, Traits>::
1509
const_iterator::pathFillFind(KeyT x) {
1510
  IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1511
  for (unsigned i = map->height - path.height() - 1; i; --i) {
1512
    unsigned p = NR.get<Branch>().safeFind(0, x);
1513
    path.push(NR, p);
1514
    NR = NR.subtree(p);
1515
  }
1516
  path.push(NR, NR.get<Leaf>().safeFind(0, x));
1517
}
1518
 
1519
/// treeFind - Find in a branched tree.
1520
/// @param x Key to search for.
1521
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1522
void IntervalMap<KeyT, ValT, N, Traits>::
1523
const_iterator::treeFind(KeyT x) {
1524
  setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1525
  if (valid())
1526
    pathFillFind(x);
1527
}
1528
 
1529
/// treeAdvanceTo - Find position after the current one.
1530
/// @param x Key to search for.
1531
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1532
void IntervalMap<KeyT, ValT, N, Traits>::
1533
const_iterator::treeAdvanceTo(KeyT x) {
1534
  // Can we stay on the same leaf node?
1535
  if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1536
    path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1537
    return;
1538
  }
1539
 
1540
  // Drop the current leaf.
1541
  path.pop();
1542
 
1543
  // Search towards the root for a usable subtree.
1544
  if (path.height()) {
1545
    for (unsigned l = path.height() - 1; l; --l) {
1546
      if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1547
        // The branch node at l+1 is usable
1548
        path.offset(l + 1) =
1549
          path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1550
        return pathFillFind(x);
1551
      }
1552
      path.pop();
1553
    }
1554
    // Is the level-1 Branch usable?
1555
    if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1556
      path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1557
      return pathFillFind(x);
1558
    }
1559
  }
1560
 
1561
  // We reached the root.
1562
  setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1563
  if (valid())
1564
    pathFillFind(x);
1565
}
1566
 
1567
//===----------------------------------------------------------------------===//
1568
//---                       IntervalMap::iterator                         ----//
1569
//===----------------------------------------------------------------------===//
1570
 
1571
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1572
class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1573
  friend class IntervalMap;
1574
 
1575
  using IdxPair = IntervalMapImpl::IdxPair;
1576
 
1577
  explicit iterator(IntervalMap &map) : const_iterator(map) {}
1578
 
1579
  void setNodeStop(unsigned Level, KeyT Stop);
1580
  bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1581
  template <typename NodeT> bool overflow(unsigned Level);
1582
  void treeInsert(KeyT a, KeyT b, ValT y);
1583
  void eraseNode(unsigned Level);
1584
  void treeErase(bool UpdateRoot = true);
1585
  bool canCoalesceLeft(KeyT Start, ValT x);
1586
  bool canCoalesceRight(KeyT Stop, ValT x);
1587
 
1588
public:
1589
  /// iterator - Create null iterator.
1590
  iterator() = default;
1591
 
1592
  /// setStart - Move the start of the current interval.
1593
  /// This may cause coalescing with the previous interval.
1594
  /// @param a New start key, must not overlap the previous interval.
1595
  void setStart(KeyT a);
1596
 
1597
  /// setStop - Move the end of the current interval.
1598
  /// This may cause coalescing with the following interval.
1599
  /// @param b New stop key, must not overlap the following interval.
1600
  void setStop(KeyT b);
1601
 
1602
  /// setValue - Change the mapped value of the current interval.
1603
  /// This may cause coalescing with the previous and following intervals.
1604
  /// @param x New value.
1605
  void setValue(ValT x);
1606
 
1607
  /// setStartUnchecked - Move the start of the current interval without
1608
  /// checking for coalescing or overlaps.
1609
  /// This should only be used when it is known that coalescing is not required.
1610
  /// @param a New start key.
1611
  void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1612
 
1613
  /// setStopUnchecked - Move the end of the current interval without checking
1614
  /// for coalescing or overlaps.
1615
  /// This should only be used when it is known that coalescing is not required.
1616
  /// @param b New stop key.
1617
  void setStopUnchecked(KeyT b) {
1618
    this->unsafeStop() = b;
1619
    // Update keys in branch nodes as well.
1620
    if (this->path.atLastEntry(this->path.height()))
1621
      setNodeStop(this->path.height(), b);
1622
  }
1623
 
1624
  /// setValueUnchecked - Change the mapped value of the current interval
1625
  /// without checking for coalescing.
1626
  /// @param x New value.
1627
  void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1628
 
1629
  /// insert - Insert mapping [a;b] -> y before the current position.
1630
  void insert(KeyT a, KeyT b, ValT y);
1631
 
1632
  /// erase - Erase the current interval.
1633
  void erase();
1634
 
1635
  iterator &operator++() {
1636
    const_iterator::operator++();
1637
    return *this;
1638
  }
1639
 
1640
  iterator operator++(int) {
1641
    iterator tmp = *this;
1642
    operator++();
1643
    return tmp;
1644
  }
1645
 
1646
  iterator &operator--() {
1647
    const_iterator::operator--();
1648
    return *this;
1649
  }
1650
 
1651
  iterator operator--(int) {
1652
    iterator tmp = *this;
1653
    operator--();
1654
    return tmp;
1655
  }
1656
};
1657
 
1658
/// canCoalesceLeft - Can the current interval coalesce to the left after
1659
/// changing start or value?
1660
/// @param Start New start of current interval.
1661
/// @param Value New value for current interval.
1662
/// @return True when updating the current interval would enable coalescing.
1663
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1664
bool IntervalMap<KeyT, ValT, N, Traits>::
1665
iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1666
  using namespace IntervalMapImpl;
1667
  Path &P = this->path;
1668
  if (!this->branched()) {
1669
    unsigned i = P.leafOffset();
1670
    RootLeaf &Node = P.leaf<RootLeaf>();
1671
    return i && Node.value(i-1) == Value &&
1672
                Traits::adjacent(Node.stop(i-1), Start);
1673
  }
1674
  // Branched.
1675
  if (unsigned i = P.leafOffset()) {
1676
    Leaf &Node = P.leaf<Leaf>();
1677
    return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1678
  } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1679
    unsigned i = NR.size() - 1;
1680
    Leaf &Node = NR.get<Leaf>();
1681
    return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1682
  }
1683
  return false;
1684
}
1685
 
1686
/// canCoalesceRight - Can the current interval coalesce to the right after
1687
/// changing stop or value?
1688
/// @param Stop New stop of current interval.
1689
/// @param Value New value for current interval.
1690
/// @return True when updating the current interval would enable coalescing.
1691
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1692
bool IntervalMap<KeyT, ValT, N, Traits>::
1693
iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1694
  using namespace IntervalMapImpl;
1695
  Path &P = this->path;
1696
  unsigned i = P.leafOffset() + 1;
1697
  if (!this->branched()) {
1698
    if (i >= P.leafSize())
1699
      return false;
1700
    RootLeaf &Node = P.leaf<RootLeaf>();
1701
    return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1702
  }
1703
  // Branched.
1704
  if (i < P.leafSize()) {
1705
    Leaf &Node = P.leaf<Leaf>();
1706
    return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1707
  } else if (NodeRef NR = P.getRightSibling(P.height())) {
1708
    Leaf &Node = NR.get<Leaf>();
1709
    return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1710
  }
1711
  return false;
1712
}
1713
 
1714
/// setNodeStop - Update the stop key of the current node at level and above.
1715
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1716
void IntervalMap<KeyT, ValT, N, Traits>::
1717
iterator::setNodeStop(unsigned Level, KeyT Stop) {
1718
  // There are no references to the root node, so nothing to update.
1719
  if (!Level)
1720
    return;
1721
  IntervalMapImpl::Path &P = this->path;
1722
  // Update nodes pointing to the current node.
1723
  while (--Level) {
1724
    P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1725
    if (!P.atLastEntry(Level))
1726
      return;
1727
  }
1728
  // Update root separately since it has a different layout.
1729
  P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1730
}
1731
 
1732
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1733
void IntervalMap<KeyT, ValT, N, Traits>::
1734
iterator::setStart(KeyT a) {
1735
  assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop");
1736
  KeyT &CurStart = this->unsafeStart();
1737
  if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1738
    CurStart = a;
1739
    return;
1740
  }
1741
  // Coalesce with the interval to the left.
1742
  --*this;
1743
  a = this->start();
1744
  erase();
1745
  setStartUnchecked(a);
1746
}
1747
 
1748
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1749
void IntervalMap<KeyT, ValT, N, Traits>::
1750
iterator::setStop(KeyT b) {
1751
  assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start");
1752
  if (Traits::startLess(b, this->stop()) ||
1753
      !canCoalesceRight(b, this->value())) {
1754
    setStopUnchecked(b);
1755
    return;
1756
  }
1757
  // Coalesce with interval to the right.
1758
  KeyT a = this->start();
1759
  erase();
1760
  setStartUnchecked(a);
1761
}
1762
 
1763
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1764
void IntervalMap<KeyT, ValT, N, Traits>::
1765
iterator::setValue(ValT x) {
1766
  setValueUnchecked(x);
1767
  if (canCoalesceRight(this->stop(), x)) {
1768
    KeyT a = this->start();
1769
    erase();
1770
    setStartUnchecked(a);
1771
  }
1772
  if (canCoalesceLeft(this->start(), x)) {
1773
    --*this;
1774
    KeyT a = this->start();
1775
    erase();
1776
    setStartUnchecked(a);
1777
  }
1778
}
1779
 
1780
/// insertNode - insert a node before the current path at level.
1781
/// Leave the current path pointing at the new node.
1782
/// @param Level path index of the node to be inserted.
1783
/// @param Node The node to be inserted.
1784
/// @param Stop The last index in the new node.
1785
/// @return True if the tree height was increased.
1786
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1787
bool IntervalMap<KeyT, ValT, N, Traits>::
1788
iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1789
  assert(Level && "Cannot insert next to the root");
1790
  bool SplitRoot = false;
1791
  IntervalMap &IM = *this->map;
1792
  IntervalMapImpl::Path &P = this->path;
1793
 
1794
  if (Level == 1) {
1795
    // Insert into the root branch node.
1796
    if (IM.rootSize < RootBranch::Capacity) {
1797
      IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1798
      P.setSize(0, ++IM.rootSize);
1799
      P.reset(Level);
1800
      return SplitRoot;
1801
    }
1802
 
1803
    // We need to split the root while keeping our position.
1804
    SplitRoot = true;
1805
    IdxPair Offset = IM.splitRoot(P.offset(0));
1806
    P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1807
 
1808
    // Fall through to insert at the new higher level.
1809
    ++Level;
1810
  }
1811
 
1812
  // When inserting before end(), make sure we have a valid path.
1813
  P.legalizeForInsert(--Level);
1814
 
1815
  // Insert into the branch node at Level-1.
1816
  if (P.size(Level) == Branch::Capacity) {
1817
    // Branch node is full, handle handle the overflow.
1818
    assert(!SplitRoot && "Cannot overflow after splitting the root");
1819
    SplitRoot = overflow<Branch>(Level);
1820
    Level += SplitRoot;
1821
  }
1822
  P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1823
  P.setSize(Level, P.size(Level) + 1);
1824
  if (P.atLastEntry(Level))
1825
    setNodeStop(Level, Stop);
1826
  P.reset(Level + 1);
1827
  return SplitRoot;
1828
}
1829
 
1830
// insert
1831
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1832
void IntervalMap<KeyT, ValT, N, Traits>::
1833
iterator::insert(KeyT a, KeyT b, ValT y) {
1834
  if (this->branched())
1835
    return treeInsert(a, b, y);
1836
  IntervalMap &IM = *this->map;
1837
  IntervalMapImpl::Path &P = this->path;
1838
 
1839
  // Try simple root leaf insert.
1840
  unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1841
 
1842
  // Was the root node insert successful?
1843
  if (Size <= RootLeaf::Capacity) {
1844
    P.setSize(0, IM.rootSize = Size);
1845
    return;
1846
  }
1847
 
1848
  // Root leaf node is full, we must branch.
1849
  IdxPair Offset = IM.branchRoot(P.leafOffset());
1850
  P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1851
 
1852
  // Now it fits in the new leaf.
1853
  treeInsert(a, b, y);
1854
}
1855
 
1856
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1857
void IntervalMap<KeyT, ValT, N, Traits>::
1858
iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1859
  using namespace IntervalMapImpl;
1860
  Path &P = this->path;
1861
 
1862
  if (!P.valid())
1863
    P.legalizeForInsert(this->map->height);
1864
 
1865
  // Check if this insertion will extend the node to the left.
1866
  if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1867
    // Node is growing to the left, will it affect a left sibling node?
1868
    if (NodeRef Sib = P.getLeftSibling(P.height())) {
1869
      Leaf &SibLeaf = Sib.get<Leaf>();
1870
      unsigned SibOfs = Sib.size() - 1;
1871
      if (SibLeaf.value(SibOfs) == y &&
1872
          Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1873
        // This insertion will coalesce with the last entry in SibLeaf. We can
1874
        // handle it in two ways:
1875
        //  1. Extend SibLeaf.stop to b and be done, or
1876
        //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1877
        // We prefer 1., but need 2 when coalescing to the right as well.
1878
        Leaf &CurLeaf = P.leaf<Leaf>();
1879
        P.moveLeft(P.height());
1880
        if (Traits::stopLess(b, CurLeaf.start(0)) &&
1881
            (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1882
          // Easy, just extend SibLeaf and we're done.
1883
          setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1884
          return;
1885
        } else {
1886
          // We have both left and right coalescing. Erase the old SibLeaf entry
1887
          // and continue inserting the larger interval.
1888
          a = SibLeaf.start(SibOfs);
1889
          treeErase(/* UpdateRoot= */false);
1890
        }
1891
      }
1892
    } else {
1893
      // No left sibling means we are at begin(). Update cached bound.
1894
      this->map->rootBranchStart() = a;
1895
    }
1896
  }
1897
 
1898
  // When we are inserting at the end of a leaf node, we must update stops.
1899
  unsigned Size = P.leafSize();
1900
  bool Grow = P.leafOffset() == Size;
1901
  Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1902
 
1903
  // Leaf insertion unsuccessful? Overflow and try again.
1904
  if (Size > Leaf::Capacity) {
1905
    overflow<Leaf>(P.height());
1906
    Grow = P.leafOffset() == P.leafSize();
1907
    Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1908
    assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1909
  }
1910
 
1911
  // Inserted, update offset and leaf size.
1912
  P.setSize(P.height(), Size);
1913
 
1914
  // Insert was the last node entry, update stops.
1915
  if (Grow)
1916
    setNodeStop(P.height(), b);
1917
}
1918
 
1919
/// erase - erase the current interval and move to the next position.
1920
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1921
void IntervalMap<KeyT, ValT, N, Traits>::
1922
iterator::erase() {
1923
  IntervalMap &IM = *this->map;
1924
  IntervalMapImpl::Path &P = this->path;
1925
  assert(P.valid() && "Cannot erase end()");
1926
  if (this->branched())
1927
    return treeErase();
1928
  IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1929
  P.setSize(0, --IM.rootSize);
1930
}
1931
 
1932
/// treeErase - erase() for a branched tree.
1933
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1934
void IntervalMap<KeyT, ValT, N, Traits>::
1935
iterator::treeErase(bool UpdateRoot) {
1936
  IntervalMap &IM = *this->map;
1937
  IntervalMapImpl::Path &P = this->path;
1938
  Leaf &Node = P.leaf<Leaf>();
1939
 
1940
  // Nodes are not allowed to become empty.
1941
  if (P.leafSize() == 1) {
1942
    IM.deleteNode(&Node);
1943
    eraseNode(IM.height);
1944
    // Update rootBranchStart if we erased begin().
1945
    if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1946
      IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1947
    return;
1948
  }
1949
 
1950
  // Erase current entry.
1951
  Node.erase(P.leafOffset(), P.leafSize());
1952
  unsigned NewSize = P.leafSize() - 1;
1953
  P.setSize(IM.height, NewSize);
1954
  // When we erase the last entry, update stop and move to a legal position.
1955
  if (P.leafOffset() == NewSize) {
1956
    setNodeStop(IM.height, Node.stop(NewSize - 1));
1957
    P.moveRight(IM.height);
1958
  } else if (UpdateRoot && P.atBegin())
1959
    IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1960
}
1961
 
1962
/// eraseNode - Erase the current node at Level from its parent and move path to
1963
/// the first entry of the next sibling node.
1964
/// The node must be deallocated by the caller.
1965
/// @param Level 1..height, the root node cannot be erased.
1966
template <typename KeyT, typename ValT, unsigned N, typename Traits>
1967
void IntervalMap<KeyT, ValT, N, Traits>::
1968
iterator::eraseNode(unsigned Level) {
1969
  assert(Level && "Cannot erase root node");
1970
  IntervalMap &IM = *this->map;
1971
  IntervalMapImpl::Path &P = this->path;
1972
 
1973
  if (--Level == 0) {
1974
    IM.rootBranch().erase(P.offset(0), IM.rootSize);
1975
    P.setSize(0, --IM.rootSize);
1976
    // If this cleared the root, switch to height=0.
1977
    if (IM.empty()) {
1978
      IM.switchRootToLeaf();
1979
      this->setRoot(0);
1980
      return;
1981
    }
1982
  } else {
1983
    // Remove node ref from branch node at Level.
1984
    Branch &Parent = P.node<Branch>(Level);
1985
    if (P.size(Level) == 1) {
1986
      // Branch node became empty, remove it recursively.
1987
      IM.deleteNode(&Parent);
1988
      eraseNode(Level);
1989
    } else {
1990
      // Branch node won't become empty.
1991
      Parent.erase(P.offset(Level), P.size(Level));
1992
      unsigned NewSize = P.size(Level) - 1;
1993
      P.setSize(Level, NewSize);
1994
      // If we removed the last branch, update stop and move to a legal pos.
1995
      if (P.offset(Level) == NewSize) {
1996
        setNodeStop(Level, Parent.stop(NewSize - 1));
1997
        P.moveRight(Level);
1998
      }
1999
    }
2000
  }
2001
  // Update path cache for the new right sibling position.
2002
  if (P.valid()) {
2003
    P.reset(Level + 1);
2004
    P.offset(Level + 1) = 0;
2005
  }
2006
}
2007
 
2008
/// overflow - Distribute entries of the current node evenly among
2009
/// its siblings and ensure that the current node is not full.
2010
/// This may require allocating a new node.
2011
/// @tparam NodeT The type of node at Level (Leaf or Branch).
2012
/// @param Level path index of the overflowing node.
2013
/// @return True when the tree height was changed.
2014
template <typename KeyT, typename ValT, unsigned N, typename Traits>
2015
template <typename NodeT>
2016
bool IntervalMap<KeyT, ValT, N, Traits>::
2017
iterator::overflow(unsigned Level) {
2018
  using namespace IntervalMapImpl;
2019
  Path &P = this->path;
2020
  unsigned CurSize[4];
2021
  NodeT *Node[4];
2022
  unsigned Nodes = 0;
2023
  unsigned Elements = 0;
2024
  unsigned Offset = P.offset(Level);
2025
 
2026
  // Do we have a left sibling?
2027
  NodeRef LeftSib = P.getLeftSibling(Level);
2028
  if (LeftSib) {
2029
    Offset += Elements = CurSize[Nodes] = LeftSib.size();
2030
    Node[Nodes++] = &LeftSib.get<NodeT>();
2031
  }
2032
 
2033
  // Current node.
2034
  Elements += CurSize[Nodes] = P.size(Level);
2035
  Node[Nodes++] = &P.node<NodeT>(Level);
2036
 
2037
  // Do we have a right sibling?
2038
  NodeRef RightSib = P.getRightSibling(Level);
2039
  if (RightSib) {
2040
    Elements += CurSize[Nodes] = RightSib.size();
2041
    Node[Nodes++] = &RightSib.get<NodeT>();
2042
  }
2043
 
2044
  // Do we need to allocate a new node?
2045
  unsigned NewNode = 0;
2046
  if (Elements + 1 > Nodes * NodeT::Capacity) {
2047
    // Insert NewNode at the penultimate position, or after a single node.
2048
    NewNode = Nodes == 1 ? 1 : Nodes - 1;
2049
    CurSize[Nodes] = CurSize[NewNode];
2050
    Node[Nodes] = Node[NewNode];
2051
    CurSize[NewNode] = 0;
2052
    Node[NewNode] = this->map->template newNode<NodeT>();
2053
    ++Nodes;
2054
  }
2055
 
2056
  // Compute the new element distribution.
2057
  unsigned NewSize[4];
2058
  IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
2059
                                 CurSize, NewSize, Offset, true);
2060
  adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
2061
 
2062
  // Move current location to the leftmost node.
2063
  if (LeftSib)
2064
    P.moveLeft(Level);
2065
 
2066
  // Elements have been rearranged, now update node sizes and stops.
2067
  bool SplitRoot = false;
2068
  unsigned Pos = 0;
2069
  while (true) {
2070
    KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
2071
    if (NewNode && Pos == NewNode) {
2072
      SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2073
      Level += SplitRoot;
2074
    } else {
2075
      P.setSize(Level, NewSize[Pos]);
2076
      setNodeStop(Level, Stop);
2077
    }
2078
    if (Pos + 1 == Nodes)
2079
      break;
2080
    P.moveRight(Level);
2081
    ++Pos;
2082
  }
2083
 
2084
  // Where was I? Find NewOffset.
2085
  while(Pos != NewOffset.first) {
2086
    P.moveLeft(Level);
2087
    --Pos;
2088
  }
2089
  P.offset(Level) = NewOffset.second;
2090
  return SplitRoot;
2091
}
2092
 
2093
//===----------------------------------------------------------------------===//
2094
//---                       IntervalMapOverlaps                           ----//
2095
//===----------------------------------------------------------------------===//
2096
 
2097
/// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2098
/// IntervalMaps. The maps may be different, but the KeyT and Traits types
2099
/// should be the same.
2100
///
2101
/// Typical uses:
2102
///
2103
/// 1. Test for overlap:
2104
///    bool overlap = IntervalMapOverlaps(a, b).valid();
2105
///
2106
/// 2. Enumerate overlaps:
2107
///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2108
///
2109
template <typename MapA, typename MapB>
2110
class IntervalMapOverlaps {
2111
  using KeyType = typename MapA::KeyType;
2112
  using Traits = typename MapA::KeyTraits;
2113
 
2114
  typename MapA::const_iterator posA;
2115
  typename MapB::const_iterator posB;
2116
 
2117
  /// advance - Move posA and posB forward until reaching an overlap, or until
2118
  /// either meets end.
2119
  /// Don't move the iterators if they are already overlapping.
2120
  void advance() {
2121
    if (!valid())
2122
      return;
2123
 
2124
    if (Traits::stopLess(posA.stop(), posB.start())) {
2125
      // A ends before B begins. Catch up.
2126
      posA.advanceTo(posB.start());
2127
      if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2128
        return;
2129
    } else if (Traits::stopLess(posB.stop(), posA.start())) {
2130
      // B ends before A begins. Catch up.
2131
      posB.advanceTo(posA.start());
2132
      if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2133
        return;
2134
    } else
2135
      // Already overlapping.
2136
      return;
2137
 
2138
    while (true) {
2139
      // Make a.end > b.start.
2140
      posA.advanceTo(posB.start());
2141
      if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2142
        return;
2143
      // Make b.end > a.start.
2144
      posB.advanceTo(posA.start());
2145
      if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2146
        return;
2147
    }
2148
  }
2149
 
2150
public:
2151
  /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
2152
  IntervalMapOverlaps(const MapA &a, const MapB &b)
2153
    : posA(b.empty() ? a.end() : a.find(b.start())),
2154
      posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2155
 
2156
  /// valid - Return true if iterator is at an overlap.
2157
  bool valid() const {
2158
    return posA.valid() && posB.valid();
2159
  }
2160
 
2161
  /// a - access the left hand side in the overlap.
2162
  const typename MapA::const_iterator &a() const { return posA; }
2163
 
2164
  /// b - access the right hand side in the overlap.
2165
  const typename MapB::const_iterator &b() const { return posB; }
2166
 
2167
  /// start - Beginning of the overlapping interval.
2168
  KeyType start() const {
2169
    KeyType ak = a().start();
2170
    KeyType bk = b().start();
2171
    return Traits::startLess(ak, bk) ? bk : ak;
2172
  }
2173
 
2174
  /// stop - End of the overlapping interval.
2175
  KeyType stop() const {
2176
    KeyType ak = a().stop();
2177
    KeyType bk = b().stop();
2178
    return Traits::startLess(ak, bk) ? ak : bk;
2179
  }
2180
 
2181
  /// skipA - Move to the next overlap that doesn't involve a().
2182
  void skipA() {
2183
    ++posA;
2184
    advance();
2185
  }
2186
 
2187
  /// skipB - Move to the next overlap that doesn't involve b().
2188
  void skipB() {
2189
    ++posB;
2190
    advance();
2191
  }
2192
 
2193
  /// Preincrement - Move to the next overlap.
2194
  IntervalMapOverlaps &operator++() {
2195
    // Bump the iterator that ends first. The other one may have more overlaps.
2196
    if (Traits::startLess(posB.stop(), posA.stop()))
2197
      skipB();
2198
    else
2199
      skipA();
2200
    return *this;
2201
  }
2202
 
2203
  /// advanceTo - Move to the first overlapping interval with
2204
  /// stopLess(x, stop()).
2205
  void advanceTo(KeyType x) {
2206
    if (!valid())
2207
      return;
2208
    // Make sure advanceTo sees monotonic keys.
2209
    if (Traits::stopLess(posA.stop(), x))
2210
      posA.advanceTo(x);
2211
    if (Traits::stopLess(posB.stop(), x))
2212
      posB.advanceTo(x);
2213
    advance();
2214
  }
2215
};
2216
 
2217
} // end namespace llvm
2218
 
2219
#endif // LLVM_ADT_INTERVALMAP_H