Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
/// This file provides a collection of function (or more generally, callable)
10
/// type erasure utilities supplementing those provided by the standard library
11
/// in `<function>`.
12
///
13
/// It provides `unique_function`, which works like `std::function` but supports
14
/// move-only callable objects and const-qualification.
15
///
16
/// Future plans:
17
/// - Add a `function` that provides ref-qualified support, which doesn't work
18
///   with `std::function`.
19
/// - Provide support for specifying multiple signatures to type erase callable
20
///   objects with an overload set, such as those produced by generic lambdas.
21
/// - Expand to include a copyable utility that directly replaces std::function
22
///   but brings the above improvements.
23
///
24
/// Note that LLVM's utilities are greatly simplified by not supporting
25
/// allocators.
26
///
27
/// If the standard library ever begins to provide comparable facilities we can
28
/// consider switching to those.
29
///
30
//===----------------------------------------------------------------------===//
31
 
32
#ifndef LLVM_ADT_FUNCTIONEXTRAS_H
33
#define LLVM_ADT_FUNCTIONEXTRAS_H
34
 
35
#include "llvm/ADT/PointerIntPair.h"
36
#include "llvm/ADT/PointerUnion.h"
37
#include "llvm/ADT/STLForwardCompat.h"
38
#include "llvm/Support/MemAlloc.h"
39
#include "llvm/Support/type_traits.h"
40
#include <cstring>
41
#include <memory>
42
#include <type_traits>
43
 
44
namespace llvm {
45
 
46
/// unique_function is a type-erasing functor similar to std::function.
47
///
48
/// It can hold move-only function objects, like lambdas capturing unique_ptrs.
49
/// Accordingly, it is movable but not copyable.
50
///
51
/// It supports const-qualification:
52
/// - unique_function<int() const> has a const operator().
53
///   It can only hold functions which themselves have a const operator().
54
/// - unique_function<int()> has a non-const operator().
55
///   It can hold functions with a non-const operator(), like mutable lambdas.
56
template <typename FunctionT> class unique_function;
57
 
58
namespace detail {
59
 
60
template <typename T>
61
using EnableIfTrivial =
62
    std::enable_if_t<llvm::is_trivially_move_constructible<T>::value &&
63
                     std::is_trivially_destructible<T>::value>;
64
template <typename CallableT, typename ThisT>
65
using EnableUnlessSameType =
66
    std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>;
67
template <typename CallableT, typename Ret, typename... Params>
68
using EnableIfCallable = std::enable_if_t<std::disjunction<
69
    std::is_void<Ret>,
70
    std::is_same<decltype(std::declval<CallableT>()(std::declval<Params>()...)),
71
                 Ret>,
72
    std::is_same<const decltype(std::declval<CallableT>()(
73
                     std::declval<Params>()...)),
74
                 Ret>,
75
    std::is_convertible<decltype(std::declval<CallableT>()(
76
                            std::declval<Params>()...)),
77
                        Ret>>::value>;
78
 
79
template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase {
80
protected:
81
  static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
82
 
83
  template <typename T, class = void>
84
  struct IsSizeLessThanThresholdT : std::false_type {};
85
 
86
  template <typename T>
87
  struct IsSizeLessThanThresholdT<
88
      T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {};
89
 
90
  // Provide a type function to map parameters that won't observe extra copies
91
  // or moves and which are small enough to likely pass in register to values
92
  // and all other types to l-value reference types. We use this to compute the
93
  // types used in our erased call utility to minimize copies and moves unless
94
  // doing so would force things unnecessarily into memory.
95
  //
96
  // The heuristic used is related to common ABI register passing conventions.
97
  // It doesn't have to be exact though, and in one way it is more strict
98
  // because we want to still be able to observe either moves *or* copies.
99
  template <typename T> struct AdjustedParamTBase {
100
    static_assert(!std::is_reference<T>::value,
101
                  "references should be handled by template specialization");
102
    using type = std::conditional_t<
103
        llvm::is_trivially_copy_constructible<T>::value &&
104
            llvm::is_trivially_move_constructible<T>::value &&
105
            IsSizeLessThanThresholdT<T>::value,
106
        T, T &>;
107
  };
108
 
109
  // This specialization ensures that 'AdjustedParam<V<T>&>' or
110
  // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is
111
  // an incomplete type and V a templated type.
112
  template <typename T> struct AdjustedParamTBase<T &> { using type = T &; };
113
  template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; };
114
 
115
  template <typename T>
116
  using AdjustedParamT = typename AdjustedParamTBase<T>::type;
117
 
118
  // The type of the erased function pointer we use as a callback to dispatch to
119
  // the stored callable when it is trivial to move and destroy.
120
  using CallPtrT = ReturnT (*)(void *CallableAddr,
121
                               AdjustedParamT<ParamTs>... Params);
122
  using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
123
  using DestroyPtrT = void (*)(void *CallableAddr);
124
 
125
  /// A struct to hold a single trivial callback with sufficient alignment for
126
  /// our bitpacking.
127
  struct alignas(8) TrivialCallback {
128
    CallPtrT CallPtr;
129
  };
130
 
131
  /// A struct we use to aggregate three callbacks when we need full set of
132
  /// operations.
133
  struct alignas(8) NonTrivialCallbacks {
134
    CallPtrT CallPtr;
135
    MovePtrT MovePtr;
136
    DestroyPtrT DestroyPtr;
137
  };
138
 
139
  // Create a pointer union between either a pointer to a static trivial call
140
  // pointer in a struct or a pointer to a static struct of the call, move, and
141
  // destroy pointers.
142
  using CallbackPointerUnionT =
143
      PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
144
 
145
  // The main storage buffer. This will either have a pointer to out-of-line
146
  // storage or an inline buffer storing the callable.
147
  union StorageUnionT {
148
    // For out-of-line storage we keep a pointer to the underlying storage and
149
    // the size. This is enough to deallocate the memory.
150
    struct OutOfLineStorageT {
151
      void *StoragePtr;
152
      size_t Size;
153
      size_t Alignment;
154
    } OutOfLineStorage;
155
    static_assert(
156
        sizeof(OutOfLineStorageT) <= InlineStorageSize,
157
        "Should always use all of the out-of-line storage for inline storage!");
158
 
159
    // For in-line storage, we just provide an aligned character buffer. We
160
    // provide three pointers worth of storage here.
161
    // This is mutable as an inlined `const unique_function<void() const>` may
162
    // still modify its own mutable members.
163
    mutable std::aligned_storage_t<InlineStorageSize, alignof(void *)>
164
        InlineStorage;
165
  } StorageUnion;
166
 
167
  // A compressed pointer to either our dispatching callback or our table of
168
  // dispatching callbacks and the flag for whether the callable itself is
169
  // stored inline or not.
170
  PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
171
 
172
  bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
173
 
174
  bool isTrivialCallback() const {
175
    return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>();
176
  }
177
 
178
  CallPtrT getTrivialCallback() const {
179
    return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr;
180
  }
181
 
182
  NonTrivialCallbacks *getNonTrivialCallbacks() const {
183
    return CallbackAndInlineFlag.getPointer()
184
        .template get<NonTrivialCallbacks *>();
185
  }
186
 
187
  CallPtrT getCallPtr() const {
188
    return isTrivialCallback() ? getTrivialCallback()
189
                               : getNonTrivialCallbacks()->CallPtr;
190
  }
191
 
192
  // These three functions are only const in the narrow sense. They return
193
  // mutable pointers to function state.
194
  // This allows unique_function<T const>::operator() to be const, even if the
195
  // underlying functor may be internally mutable.
196
  //
197
  // const callers must ensure they're only used in const-correct ways.
198
  void *getCalleePtr() const {
199
    return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
200
  }
201
  void *getInlineStorage() const { return &StorageUnion.InlineStorage; }
202
  void *getOutOfLineStorage() const {
203
    return StorageUnion.OutOfLineStorage.StoragePtr;
204
  }
205
 
206
  size_t getOutOfLineStorageSize() const {
207
    return StorageUnion.OutOfLineStorage.Size;
208
  }
209
  size_t getOutOfLineStorageAlignment() const {
210
    return StorageUnion.OutOfLineStorage.Alignment;
211
  }
212
 
213
  void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
214
    StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
215
  }
216
 
217
  template <typename CalledAsT>
218
  static ReturnT CallImpl(void *CallableAddr,
219
                          AdjustedParamT<ParamTs>... Params) {
220
    auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr);
221
    return Func(std::forward<ParamTs>(Params)...);
222
  }
223
 
224
  template <typename CallableT>
225
  static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
226
    new (LHSCallableAddr)
227
        CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
228
  }
229
 
230
  template <typename CallableT>
231
  static void DestroyImpl(void *CallableAddr) noexcept {
232
    reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
233
  }
234
 
235
  // The pointers to call/move/destroy functions are determined for each
236
  // callable type (and called-as type, which determines the overload chosen).
237
  // (definitions are out-of-line).
238
 
239
  // By default, we need an object that contains all the different
240
  // type erased behaviors needed. Create a static instance of the struct type
241
  // here and each instance will contain a pointer to it.
242
  // Wrap in a struct to avoid https://gcc.gnu.org/PR71954
243
  template <typename CallableT, typename CalledAs, typename Enable = void>
244
  struct CallbacksHolder {
245
    static NonTrivialCallbacks Callbacks;
246
  };
247
  // See if we can create a trivial callback. We need the callable to be
248
  // trivially moved and trivially destroyed so that we don't have to store
249
  // type erased callbacks for those operations.
250
  template <typename CallableT, typename CalledAs>
251
  struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> {
252
    static TrivialCallback Callbacks;
253
  };
254
 
255
  // A simple tag type so the call-as type to be passed to the constructor.
256
  template <typename T> struct CalledAs {};
257
 
258
  // Essentially the "main" unique_function constructor, but subclasses
259
  // provide the qualified type to be used for the call.
260
  // (We always store a T, even if the call will use a pointer to const T).
261
  template <typename CallableT, typename CalledAsT>
262
  UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) {
263
    bool IsInlineStorage = true;
264
    void *CallableAddr = getInlineStorage();
265
    if (sizeof(CallableT) > InlineStorageSize ||
266
        alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
267
      IsInlineStorage = false;
268
      // Allocate out-of-line storage. FIXME: Use an explicit alignment
269
      // parameter in C++17 mode.
270
      auto Size = sizeof(CallableT);
271
      auto Alignment = alignof(CallableT);
272
      CallableAddr = allocate_buffer(Size, Alignment);
273
      setOutOfLineStorage(CallableAddr, Size, Alignment);
274
    }
275
 
276
    // Now move into the storage.
277
    new (CallableAddr) CallableT(std::move(Callable));
278
    CallbackAndInlineFlag.setPointerAndInt(
279
        &CallbacksHolder<CallableT, CalledAsT>::Callbacks, IsInlineStorage);
280
  }
281
 
282
  ~UniqueFunctionBase() {
283
    if (!CallbackAndInlineFlag.getPointer())
284
      return;
285
 
286
    // Cache this value so we don't re-check it after type-erased operations.
287
    bool IsInlineStorage = isInlineStorage();
288
 
289
    if (!isTrivialCallback())
290
      getNonTrivialCallbacks()->DestroyPtr(
291
          IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
292
 
293
    if (!IsInlineStorage)
294
      deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
295
                        getOutOfLineStorageAlignment());
296
  }
297
 
298
  UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept {
299
    // Copy the callback and inline flag.
300
    CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
301
 
302
    // If the RHS is empty, just copying the above is sufficient.
303
    if (!RHS)
304
      return;
305
 
306
    if (!isInlineStorage()) {
307
      // The out-of-line case is easiest to move.
308
      StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
309
    } else if (isTrivialCallback()) {
310
      // Move is trivial, just memcpy the bytes across.
311
      memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
312
    } else {
313
      // Non-trivial move, so dispatch to a type-erased implementation.
314
      getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
315
                                        RHS.getInlineStorage());
316
    }
317
 
318
    // Clear the old callback and inline flag to get back to as-if-null.
319
    RHS.CallbackAndInlineFlag = {};
320
 
321
#ifndef NDEBUG
322
    // In debug builds, we also scribble across the rest of the storage.
323
    memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
324
#endif
325
  }
326
 
327
  UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept {
328
    if (this == &RHS)
329
      return *this;
330
 
331
    // Because we don't try to provide any exception safety guarantees we can
332
    // implement move assignment very simply by first destroying the current
333
    // object and then move-constructing over top of it.
334
    this->~UniqueFunctionBase();
335
    new (this) UniqueFunctionBase(std::move(RHS));
336
    return *this;
337
  }
338
 
339
  UniqueFunctionBase() = default;
340
 
341
public:
342
  explicit operator bool() const {
343
    return (bool)CallbackAndInlineFlag.getPointer();
344
  }
345
};
346
 
347
template <typename R, typename... P>
348
template <typename CallableT, typename CalledAsT, typename Enable>
349
typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase<
350
    R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = {
351
    &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
352
 
353
template <typename R, typename... P>
354
template <typename CallableT, typename CalledAsT>
355
typename UniqueFunctionBase<R, P...>::TrivialCallback
356
    UniqueFunctionBase<R, P...>::CallbacksHolder<
357
        CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{
358
        &CallImpl<CalledAsT>};
359
 
360
} // namespace detail
361
 
362
template <typename R, typename... P>
363
class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> {
364
  using Base = detail::UniqueFunctionBase<R, P...>;
365
 
366
public:
367
  unique_function() = default;
368
  unique_function(std::nullptr_t) {}
369
  unique_function(unique_function &&) = default;
370
  unique_function(const unique_function &) = delete;
371
  unique_function &operator=(unique_function &&) = default;
372
  unique_function &operator=(const unique_function &) = delete;
373
 
374
  template <typename CallableT>
375
  unique_function(
376
      CallableT Callable,
377
      detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
378
      detail::EnableIfCallable<CallableT, R, P...> * = nullptr)
379
      : Base(std::forward<CallableT>(Callable),
380
             typename Base::template CalledAs<CallableT>{}) {}
381
 
382
  R operator()(P... Params) {
383
    return this->getCallPtr()(this->getCalleePtr(), Params...);
384
  }
385
};
386
 
387
template <typename R, typename... P>
388
class unique_function<R(P...) const>
389
    : public detail::UniqueFunctionBase<R, P...> {
390
  using Base = detail::UniqueFunctionBase<R, P...>;
391
 
392
public:
393
  unique_function() = default;
394
  unique_function(std::nullptr_t) {}
395
  unique_function(unique_function &&) = default;
396
  unique_function(const unique_function &) = delete;
397
  unique_function &operator=(unique_function &&) = default;
398
  unique_function &operator=(const unique_function &) = delete;
399
 
400
  template <typename CallableT>
401
  unique_function(
402
      CallableT Callable,
403
      detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
404
      detail::EnableIfCallable<const CallableT, R, P...> * = nullptr)
405
      : Base(std::forward<CallableT>(Callable),
406
             typename Base::template CalledAs<const CallableT>{}) {}
407
 
408
  R operator()(P... Params) const {
409
    return this->getCallPtr()(this->getCalleePtr(), Params...);
410
  }
411
};
412
 
413
} // end namespace llvm
414
 
415
#endif // LLVM_ADT_FUNCTIONEXTRAS_H