Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// \file |
||
9 | /// This file provides a collection of function (or more generally, callable) |
||
10 | /// type erasure utilities supplementing those provided by the standard library |
||
11 | /// in `<function>`. |
||
12 | /// |
||
13 | /// It provides `unique_function`, which works like `std::function` but supports |
||
14 | /// move-only callable objects and const-qualification. |
||
15 | /// |
||
16 | /// Future plans: |
||
17 | /// - Add a `function` that provides ref-qualified support, which doesn't work |
||
18 | /// with `std::function`. |
||
19 | /// - Provide support for specifying multiple signatures to type erase callable |
||
20 | /// objects with an overload set, such as those produced by generic lambdas. |
||
21 | /// - Expand to include a copyable utility that directly replaces std::function |
||
22 | /// but brings the above improvements. |
||
23 | /// |
||
24 | /// Note that LLVM's utilities are greatly simplified by not supporting |
||
25 | /// allocators. |
||
26 | /// |
||
27 | /// If the standard library ever begins to provide comparable facilities we can |
||
28 | /// consider switching to those. |
||
29 | /// |
||
30 | //===----------------------------------------------------------------------===// |
||
31 | |||
32 | #ifndef LLVM_ADT_FUNCTIONEXTRAS_H |
||
33 | #define LLVM_ADT_FUNCTIONEXTRAS_H |
||
34 | |||
35 | #include "llvm/ADT/PointerIntPair.h" |
||
36 | #include "llvm/ADT/PointerUnion.h" |
||
37 | #include "llvm/ADT/STLForwardCompat.h" |
||
38 | #include "llvm/Support/MemAlloc.h" |
||
39 | #include "llvm/Support/type_traits.h" |
||
40 | #include <cstring> |
||
41 | #include <memory> |
||
42 | #include <type_traits> |
||
43 | |||
44 | namespace llvm { |
||
45 | |||
46 | /// unique_function is a type-erasing functor similar to std::function. |
||
47 | /// |
||
48 | /// It can hold move-only function objects, like lambdas capturing unique_ptrs. |
||
49 | /// Accordingly, it is movable but not copyable. |
||
50 | /// |
||
51 | /// It supports const-qualification: |
||
52 | /// - unique_function<int() const> has a const operator(). |
||
53 | /// It can only hold functions which themselves have a const operator(). |
||
54 | /// - unique_function<int()> has a non-const operator(). |
||
55 | /// It can hold functions with a non-const operator(), like mutable lambdas. |
||
56 | template <typename FunctionT> class unique_function; |
||
57 | |||
58 | namespace detail { |
||
59 | |||
60 | template <typename T> |
||
61 | using EnableIfTrivial = |
||
62 | std::enable_if_t<llvm::is_trivially_move_constructible<T>::value && |
||
63 | std::is_trivially_destructible<T>::value>; |
||
64 | template <typename CallableT, typename ThisT> |
||
65 | using EnableUnlessSameType = |
||
66 | std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>; |
||
67 | template <typename CallableT, typename Ret, typename... Params> |
||
68 | using EnableIfCallable = std::enable_if_t<std::disjunction< |
||
69 | std::is_void<Ret>, |
||
70 | std::is_same<decltype(std::declval<CallableT>()(std::declval<Params>()...)), |
||
71 | Ret>, |
||
72 | std::is_same<const decltype(std::declval<CallableT>()( |
||
73 | std::declval<Params>()...)), |
||
74 | Ret>, |
||
75 | std::is_convertible<decltype(std::declval<CallableT>()( |
||
76 | std::declval<Params>()...)), |
||
77 | Ret>>::value>; |
||
78 | |||
79 | template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase { |
||
80 | protected: |
||
81 | static constexpr size_t InlineStorageSize = sizeof(void *) * 3; |
||
82 | |||
83 | template <typename T, class = void> |
||
84 | struct IsSizeLessThanThresholdT : std::false_type {}; |
||
85 | |||
86 | template <typename T> |
||
87 | struct IsSizeLessThanThresholdT< |
||
88 | T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {}; |
||
89 | |||
90 | // Provide a type function to map parameters that won't observe extra copies |
||
91 | // or moves and which are small enough to likely pass in register to values |
||
92 | // and all other types to l-value reference types. We use this to compute the |
||
93 | // types used in our erased call utility to minimize copies and moves unless |
||
94 | // doing so would force things unnecessarily into memory. |
||
95 | // |
||
96 | // The heuristic used is related to common ABI register passing conventions. |
||
97 | // It doesn't have to be exact though, and in one way it is more strict |
||
98 | // because we want to still be able to observe either moves *or* copies. |
||
99 | template <typename T> struct AdjustedParamTBase { |
||
100 | static_assert(!std::is_reference<T>::value, |
||
101 | "references should be handled by template specialization"); |
||
102 | using type = std::conditional_t< |
||
103 | llvm::is_trivially_copy_constructible<T>::value && |
||
104 | llvm::is_trivially_move_constructible<T>::value && |
||
105 | IsSizeLessThanThresholdT<T>::value, |
||
106 | T, T &>; |
||
107 | }; |
||
108 | |||
109 | // This specialization ensures that 'AdjustedParam<V<T>&>' or |
||
110 | // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is |
||
111 | // an incomplete type and V a templated type. |
||
112 | template <typename T> struct AdjustedParamTBase<T &> { using type = T &; }; |
||
113 | template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; }; |
||
114 | |||
115 | template <typename T> |
||
116 | using AdjustedParamT = typename AdjustedParamTBase<T>::type; |
||
117 | |||
118 | // The type of the erased function pointer we use as a callback to dispatch to |
||
119 | // the stored callable when it is trivial to move and destroy. |
||
120 | using CallPtrT = ReturnT (*)(void *CallableAddr, |
||
121 | AdjustedParamT<ParamTs>... Params); |
||
122 | using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr); |
||
123 | using DestroyPtrT = void (*)(void *CallableAddr); |
||
124 | |||
125 | /// A struct to hold a single trivial callback with sufficient alignment for |
||
126 | /// our bitpacking. |
||
127 | struct alignas(8) TrivialCallback { |
||
128 | CallPtrT CallPtr; |
||
129 | }; |
||
130 | |||
131 | /// A struct we use to aggregate three callbacks when we need full set of |
||
132 | /// operations. |
||
133 | struct alignas(8) NonTrivialCallbacks { |
||
134 | CallPtrT CallPtr; |
||
135 | MovePtrT MovePtr; |
||
136 | DestroyPtrT DestroyPtr; |
||
137 | }; |
||
138 | |||
139 | // Create a pointer union between either a pointer to a static trivial call |
||
140 | // pointer in a struct or a pointer to a static struct of the call, move, and |
||
141 | // destroy pointers. |
||
142 | using CallbackPointerUnionT = |
||
143 | PointerUnion<TrivialCallback *, NonTrivialCallbacks *>; |
||
144 | |||
145 | // The main storage buffer. This will either have a pointer to out-of-line |
||
146 | // storage or an inline buffer storing the callable. |
||
147 | union StorageUnionT { |
||
148 | // For out-of-line storage we keep a pointer to the underlying storage and |
||
149 | // the size. This is enough to deallocate the memory. |
||
150 | struct OutOfLineStorageT { |
||
151 | void *StoragePtr; |
||
152 | size_t Size; |
||
153 | size_t Alignment; |
||
154 | } OutOfLineStorage; |
||
155 | static_assert( |
||
156 | sizeof(OutOfLineStorageT) <= InlineStorageSize, |
||
157 | "Should always use all of the out-of-line storage for inline storage!"); |
||
158 | |||
159 | // For in-line storage, we just provide an aligned character buffer. We |
||
160 | // provide three pointers worth of storage here. |
||
161 | // This is mutable as an inlined `const unique_function<void() const>` may |
||
162 | // still modify its own mutable members. |
||
163 | mutable std::aligned_storage_t<InlineStorageSize, alignof(void *)> |
||
164 | InlineStorage; |
||
165 | } StorageUnion; |
||
166 | |||
167 | // A compressed pointer to either our dispatching callback or our table of |
||
168 | // dispatching callbacks and the flag for whether the callable itself is |
||
169 | // stored inline or not. |
||
170 | PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag; |
||
171 | |||
172 | bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); } |
||
173 | |||
174 | bool isTrivialCallback() const { |
||
175 | return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>(); |
||
176 | } |
||
177 | |||
178 | CallPtrT getTrivialCallback() const { |
||
179 | return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr; |
||
180 | } |
||
181 | |||
182 | NonTrivialCallbacks *getNonTrivialCallbacks() const { |
||
183 | return CallbackAndInlineFlag.getPointer() |
||
184 | .template get<NonTrivialCallbacks *>(); |
||
185 | } |
||
186 | |||
187 | CallPtrT getCallPtr() const { |
||
188 | return isTrivialCallback() ? getTrivialCallback() |
||
189 | : getNonTrivialCallbacks()->CallPtr; |
||
190 | } |
||
191 | |||
192 | // These three functions are only const in the narrow sense. They return |
||
193 | // mutable pointers to function state. |
||
194 | // This allows unique_function<T const>::operator() to be const, even if the |
||
195 | // underlying functor may be internally mutable. |
||
196 | // |
||
197 | // const callers must ensure they're only used in const-correct ways. |
||
198 | void *getCalleePtr() const { |
||
199 | return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage(); |
||
200 | } |
||
201 | void *getInlineStorage() const { return &StorageUnion.InlineStorage; } |
||
202 | void *getOutOfLineStorage() const { |
||
203 | return StorageUnion.OutOfLineStorage.StoragePtr; |
||
204 | } |
||
205 | |||
206 | size_t getOutOfLineStorageSize() const { |
||
207 | return StorageUnion.OutOfLineStorage.Size; |
||
208 | } |
||
209 | size_t getOutOfLineStorageAlignment() const { |
||
210 | return StorageUnion.OutOfLineStorage.Alignment; |
||
211 | } |
||
212 | |||
213 | void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) { |
||
214 | StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment}; |
||
215 | } |
||
216 | |||
217 | template <typename CalledAsT> |
||
218 | static ReturnT CallImpl(void *CallableAddr, |
||
219 | AdjustedParamT<ParamTs>... Params) { |
||
220 | auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr); |
||
221 | return Func(std::forward<ParamTs>(Params)...); |
||
222 | } |
||
223 | |||
224 | template <typename CallableT> |
||
225 | static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept { |
||
226 | new (LHSCallableAddr) |
||
227 | CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr))); |
||
228 | } |
||
229 | |||
230 | template <typename CallableT> |
||
231 | static void DestroyImpl(void *CallableAddr) noexcept { |
||
232 | reinterpret_cast<CallableT *>(CallableAddr)->~CallableT(); |
||
233 | } |
||
234 | |||
235 | // The pointers to call/move/destroy functions are determined for each |
||
236 | // callable type (and called-as type, which determines the overload chosen). |
||
237 | // (definitions are out-of-line). |
||
238 | |||
239 | // By default, we need an object that contains all the different |
||
240 | // type erased behaviors needed. Create a static instance of the struct type |
||
241 | // here and each instance will contain a pointer to it. |
||
242 | // Wrap in a struct to avoid https://gcc.gnu.org/PR71954 |
||
243 | template <typename CallableT, typename CalledAs, typename Enable = void> |
||
244 | struct CallbacksHolder { |
||
245 | static NonTrivialCallbacks Callbacks; |
||
246 | }; |
||
247 | // See if we can create a trivial callback. We need the callable to be |
||
248 | // trivially moved and trivially destroyed so that we don't have to store |
||
249 | // type erased callbacks for those operations. |
||
250 | template <typename CallableT, typename CalledAs> |
||
251 | struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> { |
||
252 | static TrivialCallback Callbacks; |
||
253 | }; |
||
254 | |||
255 | // A simple tag type so the call-as type to be passed to the constructor. |
||
256 | template <typename T> struct CalledAs {}; |
||
257 | |||
258 | // Essentially the "main" unique_function constructor, but subclasses |
||
259 | // provide the qualified type to be used for the call. |
||
260 | // (We always store a T, even if the call will use a pointer to const T). |
||
261 | template <typename CallableT, typename CalledAsT> |
||
262 | UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) { |
||
263 | bool IsInlineStorage = true; |
||
264 | void *CallableAddr = getInlineStorage(); |
||
265 | if (sizeof(CallableT) > InlineStorageSize || |
||
266 | alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) { |
||
267 | IsInlineStorage = false; |
||
268 | // Allocate out-of-line storage. FIXME: Use an explicit alignment |
||
269 | // parameter in C++17 mode. |
||
270 | auto Size = sizeof(CallableT); |
||
271 | auto Alignment = alignof(CallableT); |
||
272 | CallableAddr = allocate_buffer(Size, Alignment); |
||
273 | setOutOfLineStorage(CallableAddr, Size, Alignment); |
||
274 | } |
||
275 | |||
276 | // Now move into the storage. |
||
277 | new (CallableAddr) CallableT(std::move(Callable)); |
||
278 | CallbackAndInlineFlag.setPointerAndInt( |
||
279 | &CallbacksHolder<CallableT, CalledAsT>::Callbacks, IsInlineStorage); |
||
280 | } |
||
281 | |||
282 | ~UniqueFunctionBase() { |
||
283 | if (!CallbackAndInlineFlag.getPointer()) |
||
284 | return; |
||
285 | |||
286 | // Cache this value so we don't re-check it after type-erased operations. |
||
287 | bool IsInlineStorage = isInlineStorage(); |
||
288 | |||
289 | if (!isTrivialCallback()) |
||
290 | getNonTrivialCallbacks()->DestroyPtr( |
||
291 | IsInlineStorage ? getInlineStorage() : getOutOfLineStorage()); |
||
292 | |||
293 | if (!IsInlineStorage) |
||
294 | deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(), |
||
295 | getOutOfLineStorageAlignment()); |
||
296 | } |
||
297 | |||
298 | UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept { |
||
299 | // Copy the callback and inline flag. |
||
300 | CallbackAndInlineFlag = RHS.CallbackAndInlineFlag; |
||
301 | |||
302 | // If the RHS is empty, just copying the above is sufficient. |
||
303 | if (!RHS) |
||
304 | return; |
||
305 | |||
306 | if (!isInlineStorage()) { |
||
307 | // The out-of-line case is easiest to move. |
||
308 | StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage; |
||
309 | } else if (isTrivialCallback()) { |
||
310 | // Move is trivial, just memcpy the bytes across. |
||
311 | memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize); |
||
312 | } else { |
||
313 | // Non-trivial move, so dispatch to a type-erased implementation. |
||
314 | getNonTrivialCallbacks()->MovePtr(getInlineStorage(), |
||
315 | RHS.getInlineStorage()); |
||
316 | } |
||
317 | |||
318 | // Clear the old callback and inline flag to get back to as-if-null. |
||
319 | RHS.CallbackAndInlineFlag = {}; |
||
320 | |||
321 | #ifndef NDEBUG |
||
322 | // In debug builds, we also scribble across the rest of the storage. |
||
323 | memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize); |
||
324 | #endif |
||
325 | } |
||
326 | |||
327 | UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept { |
||
328 | if (this == &RHS) |
||
329 | return *this; |
||
330 | |||
331 | // Because we don't try to provide any exception safety guarantees we can |
||
332 | // implement move assignment very simply by first destroying the current |
||
333 | // object and then move-constructing over top of it. |
||
334 | this->~UniqueFunctionBase(); |
||
335 | new (this) UniqueFunctionBase(std::move(RHS)); |
||
336 | return *this; |
||
337 | } |
||
338 | |||
339 | UniqueFunctionBase() = default; |
||
340 | |||
341 | public: |
||
342 | explicit operator bool() const { |
||
343 | return (bool)CallbackAndInlineFlag.getPointer(); |
||
344 | } |
||
345 | }; |
||
346 | |||
347 | template <typename R, typename... P> |
||
348 | template <typename CallableT, typename CalledAsT, typename Enable> |
||
349 | typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase< |
||
350 | R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = { |
||
351 | &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>}; |
||
352 | |||
353 | template <typename R, typename... P> |
||
354 | template <typename CallableT, typename CalledAsT> |
||
355 | typename UniqueFunctionBase<R, P...>::TrivialCallback |
||
356 | UniqueFunctionBase<R, P...>::CallbacksHolder< |
||
357 | CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{ |
||
358 | &CallImpl<CalledAsT>}; |
||
359 | |||
360 | } // namespace detail |
||
361 | |||
362 | template <typename R, typename... P> |
||
363 | class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> { |
||
364 | using Base = detail::UniqueFunctionBase<R, P...>; |
||
365 | |||
366 | public: |
||
367 | unique_function() = default; |
||
368 | unique_function(std::nullptr_t) {} |
||
369 | unique_function(unique_function &&) = default; |
||
370 | unique_function(const unique_function &) = delete; |
||
371 | unique_function &operator=(unique_function &&) = default; |
||
372 | unique_function &operator=(const unique_function &) = delete; |
||
373 | |||
374 | template <typename CallableT> |
||
375 | unique_function( |
||
376 | CallableT Callable, |
||
377 | detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr, |
||
378 | detail::EnableIfCallable<CallableT, R, P...> * = nullptr) |
||
379 | : Base(std::forward<CallableT>(Callable), |
||
380 | typename Base::template CalledAs<CallableT>{}) {} |
||
381 | |||
382 | R operator()(P... Params) { |
||
383 | return this->getCallPtr()(this->getCalleePtr(), Params...); |
||
384 | } |
||
385 | }; |
||
386 | |||
387 | template <typename R, typename... P> |
||
388 | class unique_function<R(P...) const> |
||
389 | : public detail::UniqueFunctionBase<R, P...> { |
||
390 | using Base = detail::UniqueFunctionBase<R, P...>; |
||
391 | |||
392 | public: |
||
393 | unique_function() = default; |
||
394 | unique_function(std::nullptr_t) {} |
||
395 | unique_function(unique_function &&) = default; |
||
396 | unique_function(const unique_function &) = delete; |
||
397 | unique_function &operator=(unique_function &&) = default; |
||
398 | unique_function &operator=(const unique_function &) = delete; |
||
399 | |||
400 | template <typename CallableT> |
||
401 | unique_function( |
||
402 | CallableT Callable, |
||
403 | detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr, |
||
404 | detail::EnableIfCallable<const CallableT, R, P...> * = nullptr) |
||
405 | : Base(std::forward<CallableT>(Callable), |
||
406 | typename Base::template CalledAs<const CallableT>{}) {} |
||
407 | |||
408 | R operator()(P... Params) const { |
||
409 | return this->getCallPtr()(this->getCalleePtr(), Params...); |
||
410 | } |
||
411 | }; |
||
412 | |||
413 | } // end namespace llvm |
||
414 | |||
415 | #endif // LLVM_ADT_FUNCTIONEXTRAS_H |