Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/FoldingSet.h - Uniquing Hash Set ----------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file defines a hash set that can be used to remove duplication of nodes
11
/// in a graph.  This code was originally created by Chris Lattner for use with
12
/// SelectionDAGCSEMap, but was isolated to provide use across the llvm code
13
/// set.
14
//===----------------------------------------------------------------------===//
15
 
16
#ifndef LLVM_ADT_FOLDINGSET_H
17
#define LLVM_ADT_FOLDINGSET_H
18
 
19
#include "llvm/ADT/Hashing.h"
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/iterator.h"
22
#include "llvm/Support/Allocator.h"
23
#include <cassert>
24
#include <cstddef>
25
#include <cstdint>
26
#include <type_traits>
27
#include <utility>
28
 
29
namespace llvm {
30
 
31
/// This folding set used for two purposes:
32
///   1. Given information about a node we want to create, look up the unique
33
///      instance of the node in the set.  If the node already exists, return
34
///      it, otherwise return the bucket it should be inserted into.
35
///   2. Given a node that has already been created, remove it from the set.
36
///
37
/// This class is implemented as a single-link chained hash table, where the
38
/// "buckets" are actually the nodes themselves (the next pointer is in the
39
/// node).  The last node points back to the bucket to simplify node removal.
40
///
41
/// Any node that is to be included in the folding set must be a subclass of
42
/// FoldingSetNode.  The node class must also define a Profile method used to
43
/// establish the unique bits of data for the node.  The Profile method is
44
/// passed a FoldingSetNodeID object which is used to gather the bits.  Just
45
/// call one of the Add* functions defined in the FoldingSetBase::NodeID class.
46
/// NOTE: That the folding set does not own the nodes and it is the
47
/// responsibility of the user to dispose of the nodes.
48
///
49
/// Eg.
50
///    class MyNode : public FoldingSetNode {
51
///    private:
52
///      std::string Name;
53
///      unsigned Value;
54
///    public:
55
///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
56
///       ...
57
///      void Profile(FoldingSetNodeID &ID) const {
58
///        ID.AddString(Name);
59
///        ID.AddInteger(Value);
60
///      }
61
///      ...
62
///    };
63
///
64
/// To define the folding set itself use the FoldingSet template;
65
///
66
/// Eg.
67
///    FoldingSet<MyNode> MyFoldingSet;
68
///
69
/// Four public methods are available to manipulate the folding set;
70
///
71
/// 1) If you have an existing node that you want add to the set but unsure
72
/// that the node might already exist then call;
73
///
74
///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
75
///
76
/// If The result is equal to the input then the node has been inserted.
77
/// Otherwise, the result is the node existing in the folding set, and the
78
/// input can be discarded (use the result instead.)
79
///
80
/// 2) If you are ready to construct a node but want to check if it already
81
/// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
82
/// check;
83
///
84
///   FoldingSetNodeID ID;
85
///   ID.AddString(Name);
86
///   ID.AddInteger(Value);
87
///   void *InsertPoint;
88
///
89
///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
90
///
91
/// If found then M will be non-NULL, else InsertPoint will point to where it
92
/// should be inserted using InsertNode.
93
///
94
/// 3) If you get a NULL result from FindNodeOrInsertPos then you can insert a
95
/// new node with InsertNode;
96
///
97
///    MyFoldingSet.InsertNode(M, InsertPoint);
98
///
99
/// 4) Finally, if you want to remove a node from the folding set call;
100
///
101
///    bool WasRemoved = MyFoldingSet.RemoveNode(M);
102
///
103
/// The result indicates whether the node existed in the folding set.
104
 
105
class FoldingSetNodeID;
106
class StringRef;
107
 
108
//===----------------------------------------------------------------------===//
109
/// FoldingSetBase - Implements the folding set functionality.  The main
110
/// structure is an array of buckets.  Each bucket is indexed by the hash of
111
/// the nodes it contains.  The bucket itself points to the nodes contained
112
/// in the bucket via a singly linked list.  The last node in the list points
113
/// back to the bucket to facilitate node removal.
114
///
115
class FoldingSetBase {
116
protected:
117
  /// Buckets - Array of bucket chains.
118
  void **Buckets;
119
 
120
  /// NumBuckets - Length of the Buckets array.  Always a power of 2.
121
  unsigned NumBuckets;
122
 
123
  /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
124
  /// is greater than twice the number of buckets.
125
  unsigned NumNodes;
126
 
127
  explicit FoldingSetBase(unsigned Log2InitSize = 6);
128
  FoldingSetBase(FoldingSetBase &&Arg);
129
  FoldingSetBase &operator=(FoldingSetBase &&RHS);
130
  ~FoldingSetBase();
131
 
132
public:
133
  //===--------------------------------------------------------------------===//
134
  /// Node - This class is used to maintain the singly linked bucket list in
135
  /// a folding set.
136
  class Node {
137
  private:
138
    // NextInFoldingSetBucket - next link in the bucket list.
139
    void *NextInFoldingSetBucket = nullptr;
140
 
141
  public:
142
    Node() = default;
143
 
144
    // Accessors
145
    void *getNextInBucket() const { return NextInFoldingSetBucket; }
146
    void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
147
  };
148
 
149
  /// clear - Remove all nodes from the folding set.
150
  void clear();
151
 
152
  /// size - Returns the number of nodes in the folding set.
153
  unsigned size() const { return NumNodes; }
154
 
155
  /// empty - Returns true if there are no nodes in the folding set.
156
  bool empty() const { return NumNodes == 0; }
157
 
158
  /// capacity - Returns the number of nodes permitted in the folding set
159
  /// before a rebucket operation is performed.
160
  unsigned capacity() {
161
    // We allow a load factor of up to 2.0,
162
    // so that means our capacity is NumBuckets * 2
163
    return NumBuckets * 2;
164
  }
165
 
166
protected:
167
  /// Functions provided by the derived class to compute folding properties.
168
  /// This is effectively a vtable for FoldingSetBase, except that we don't
169
  /// actually store a pointer to it in the object.
170
  struct FoldingSetInfo {
171
    /// GetNodeProfile - Instantiations of the FoldingSet template implement
172
    /// this function to gather data bits for the given node.
173
    void (*GetNodeProfile)(const FoldingSetBase *Self, Node *N,
174
                           FoldingSetNodeID &ID);
175
 
176
    /// NodeEquals - Instantiations of the FoldingSet template implement
177
    /// this function to compare the given node with the given ID.
178
    bool (*NodeEquals)(const FoldingSetBase *Self, Node *N,
179
                       const FoldingSetNodeID &ID, unsigned IDHash,
180
                       FoldingSetNodeID &TempID);
181
 
182
    /// ComputeNodeHash - Instantiations of the FoldingSet template implement
183
    /// this function to compute a hash value for the given node.
184
    unsigned (*ComputeNodeHash)(const FoldingSetBase *Self, Node *N,
185
                                FoldingSetNodeID &TempID);
186
  };
187
 
188
private:
189
  /// GrowHashTable - Double the size of the hash table and rehash everything.
190
  void GrowHashTable(const FoldingSetInfo &Info);
191
 
192
  /// GrowBucketCount - resize the hash table and rehash everything.
193
  /// NewBucketCount must be a power of two, and must be greater than the old
194
  /// bucket count.
195
  void GrowBucketCount(unsigned NewBucketCount, const FoldingSetInfo &Info);
196
 
197
protected:
198
  // The below methods are protected to encourage subclasses to provide a more
199
  // type-safe API.
200
 
201
  /// reserve - Increase the number of buckets such that adding the
202
  /// EltCount-th node won't cause a rebucket operation. reserve is permitted
203
  /// to allocate more space than requested by EltCount.
204
  void reserve(unsigned EltCount, const FoldingSetInfo &Info);
205
 
206
  /// RemoveNode - Remove a node from the folding set, returning true if one
207
  /// was removed or false if the node was not in the folding set.
208
  bool RemoveNode(Node *N);
209
 
210
  /// GetOrInsertNode - If there is an existing simple Node exactly
211
  /// equal to the specified node, return it.  Otherwise, insert 'N' and return
212
  /// it instead.
213
  Node *GetOrInsertNode(Node *N, const FoldingSetInfo &Info);
214
 
215
  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
216
  /// return it.  If not, return the insertion token that will make insertion
217
  /// faster.
218
  Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos,
219
                            const FoldingSetInfo &Info);
220
 
221
  /// InsertNode - Insert the specified node into the folding set, knowing that
222
  /// it is not already in the folding set.  InsertPos must be obtained from
223
  /// FindNodeOrInsertPos.
224
  void InsertNode(Node *N, void *InsertPos, const FoldingSetInfo &Info);
225
};
226
 
227
//===----------------------------------------------------------------------===//
228
 
229
/// DefaultFoldingSetTrait - This class provides default implementations
230
/// for FoldingSetTrait implementations.
231
template<typename T> struct DefaultFoldingSetTrait {
232
  static void Profile(const T &X, FoldingSetNodeID &ID) {
233
    X.Profile(ID);
234
  }
235
  static void Profile(T &X, FoldingSetNodeID &ID) {
236
    X.Profile(ID);
237
  }
238
 
239
  // Equals - Test if the profile for X would match ID, using TempID
240
  // to compute a temporary ID if necessary. The default implementation
241
  // just calls Profile and does a regular comparison. Implementations
242
  // can override this to provide more efficient implementations.
243
  static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
244
                            FoldingSetNodeID &TempID);
245
 
246
  // ComputeHash - Compute a hash value for X, using TempID to
247
  // compute a temporary ID if necessary. The default implementation
248
  // just calls Profile and does a regular hash computation.
249
  // Implementations can override this to provide more efficient
250
  // implementations.
251
  static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
252
};
253
 
254
/// FoldingSetTrait - This trait class is used to define behavior of how
255
/// to "profile" (in the FoldingSet parlance) an object of a given type.
256
/// The default behavior is to invoke a 'Profile' method on an object, but
257
/// through template specialization the behavior can be tailored for specific
258
/// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
259
/// to FoldingSets that were not originally designed to have that behavior.
260
template <typename T, typename Enable = void>
261
struct FoldingSetTrait : public DefaultFoldingSetTrait<T> {};
262
 
263
/// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
264
/// for ContextualFoldingSets.
265
template<typename T, typename Ctx>
266
struct DefaultContextualFoldingSetTrait {
267
  static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
268
    X.Profile(ID, Context);
269
  }
270
 
271
  static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
272
                            FoldingSetNodeID &TempID, Ctx Context);
273
  static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
274
                                     Ctx Context);
275
};
276
 
277
/// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
278
/// ContextualFoldingSets.
279
template<typename T, typename Ctx> struct ContextualFoldingSetTrait
280
  : public DefaultContextualFoldingSetTrait<T, Ctx> {};
281
 
282
//===--------------------------------------------------------------------===//
283
/// FoldingSetNodeIDRef - This class describes a reference to an interned
284
/// FoldingSetNodeID, which can be a useful to store node id data rather
285
/// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
286
/// is often much larger than necessary, and the possibility of heap
287
/// allocation means it requires a non-trivial destructor call.
288
class FoldingSetNodeIDRef {
289
  const unsigned *Data = nullptr;
290
  size_t Size = 0;
291
 
292
public:
293
  FoldingSetNodeIDRef() = default;
294
  FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
295
 
296
  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
297
  /// used to lookup the node in the FoldingSetBase.
298
  unsigned ComputeHash() const {
299
    return static_cast<unsigned>(hash_combine_range(Data, Data + Size));
300
  }
301
 
302
  bool operator==(FoldingSetNodeIDRef) const;
303
 
304
  bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
305
 
306
  /// Used to compare the "ordering" of two nodes as defined by the
307
  /// profiled bits and their ordering defined by memcmp().
308
  bool operator<(FoldingSetNodeIDRef) const;
309
 
310
  const unsigned *getData() const { return Data; }
311
  size_t getSize() const { return Size; }
312
};
313
 
314
//===--------------------------------------------------------------------===//
315
/// FoldingSetNodeID - This class is used to gather all the unique data bits of
316
/// a node.  When all the bits are gathered this class is used to produce a
317
/// hash value for the node.
318
class FoldingSetNodeID {
319
  /// Bits - Vector of all the data bits that make the node unique.
320
  /// Use a SmallVector to avoid a heap allocation in the common case.
321
  SmallVector<unsigned, 32> Bits;
322
 
323
public:
324
  FoldingSetNodeID() = default;
325
 
326
  FoldingSetNodeID(FoldingSetNodeIDRef Ref)
327
    : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
328
 
329
  /// Add* - Add various data types to Bit data.
330
  void AddPointer(const void *Ptr) {
331
    // Note: this adds pointers to the hash using sizes and endianness that
332
    // depend on the host. It doesn't matter, however, because hashing on
333
    // pointer values is inherently unstable. Nothing should depend on the
334
    // ordering of nodes in the folding set.
335
    static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
336
                  "unexpected pointer size");
337
    AddInteger(reinterpret_cast<uintptr_t>(Ptr));
338
  }
339
  void AddInteger(signed I) { Bits.push_back(I); }
340
  void AddInteger(unsigned I) { Bits.push_back(I); }
341
  void AddInteger(long I) { AddInteger((unsigned long)I); }
342
  void AddInteger(unsigned long I) {
343
    if (sizeof(long) == sizeof(int))
344
      AddInteger(unsigned(I));
345
    else if (sizeof(long) == sizeof(long long)) {
346
      AddInteger((unsigned long long)I);
347
    } else {
348
      llvm_unreachable("unexpected sizeof(long)");
349
    }
350
  }
351
  void AddInteger(long long I) { AddInteger((unsigned long long)I); }
352
  void AddInteger(unsigned long long I) {
353
    AddInteger(unsigned(I));
354
    AddInteger(unsigned(I >> 32));
355
  }
356
 
357
  void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
358
  void AddString(StringRef String);
359
  void AddNodeID(const FoldingSetNodeID &ID);
360
 
361
  template <typename T>
362
  inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
363
 
364
  /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
365
  /// object to be used to compute a new profile.
366
  inline void clear() { Bits.clear(); }
367
 
368
  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
369
  /// to lookup the node in the FoldingSetBase.
370
  unsigned ComputeHash() const {
371
    return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
372
  }
373
 
374
  /// operator== - Used to compare two nodes to each other.
375
  bool operator==(const FoldingSetNodeID &RHS) const;
376
  bool operator==(const FoldingSetNodeIDRef RHS) const;
377
 
378
  bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
379
  bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
380
 
381
  /// Used to compare the "ordering" of two nodes as defined by the
382
  /// profiled bits and their ordering defined by memcmp().
383
  bool operator<(const FoldingSetNodeID &RHS) const;
384
  bool operator<(const FoldingSetNodeIDRef RHS) const;
385
 
386
  /// Intern - Copy this node's data to a memory region allocated from the
387
  /// given allocator and return a FoldingSetNodeIDRef describing the
388
  /// interned data.
389
  FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
390
};
391
 
392
// Convenience type to hide the implementation of the folding set.
393
using FoldingSetNode = FoldingSetBase::Node;
394
template<class T> class FoldingSetIterator;
395
template<class T> class FoldingSetBucketIterator;
396
 
397
// Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
398
// require the definition of FoldingSetNodeID.
399
template<typename T>
400
inline bool
401
DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
402
                                  unsigned /*IDHash*/,
403
                                  FoldingSetNodeID &TempID) {
404
  FoldingSetTrait<T>::Profile(X, TempID);
405
  return TempID == ID;
406
}
407
template<typename T>
408
inline unsigned
409
DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
410
  FoldingSetTrait<T>::Profile(X, TempID);
411
  return TempID.ComputeHash();
412
}
413
template<typename T, typename Ctx>
414
inline bool
415
DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
416
                                                 const FoldingSetNodeID &ID,
417
                                                 unsigned /*IDHash*/,
418
                                                 FoldingSetNodeID &TempID,
419
                                                 Ctx Context) {
420
  ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
421
  return TempID == ID;
422
}
423
template<typename T, typename Ctx>
424
inline unsigned
425
DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
426
                                                      FoldingSetNodeID &TempID,
427
                                                      Ctx Context) {
428
  ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
429
  return TempID.ComputeHash();
430
}
431
 
432
//===----------------------------------------------------------------------===//
433
/// FoldingSetImpl - An implementation detail that lets us share code between
434
/// FoldingSet and ContextualFoldingSet.
435
template <class Derived, class T> class FoldingSetImpl : public FoldingSetBase {
436
protected:
437
  explicit FoldingSetImpl(unsigned Log2InitSize)
438
      : FoldingSetBase(Log2InitSize) {}
439
 
440
  FoldingSetImpl(FoldingSetImpl &&Arg) = default;
441
  FoldingSetImpl &operator=(FoldingSetImpl &&RHS) = default;
442
  ~FoldingSetImpl() = default;
443
 
444
public:
445
  using iterator = FoldingSetIterator<T>;
446
 
447
  iterator begin() { return iterator(Buckets); }
448
  iterator end() { return iterator(Buckets+NumBuckets); }
449
 
450
  using const_iterator = FoldingSetIterator<const T>;
451
 
452
  const_iterator begin() const { return const_iterator(Buckets); }
453
  const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
454
 
455
  using bucket_iterator = FoldingSetBucketIterator<T>;
456
 
457
  bucket_iterator bucket_begin(unsigned hash) {
458
    return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
459
  }
460
 
461
  bucket_iterator bucket_end(unsigned hash) {
462
    return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
463
  }
464
 
465
  /// reserve - Increase the number of buckets such that adding the
466
  /// EltCount-th node won't cause a rebucket operation. reserve is permitted
467
  /// to allocate more space than requested by EltCount.
468
  void reserve(unsigned EltCount) {
469
    return FoldingSetBase::reserve(EltCount, Derived::getFoldingSetInfo());
470
  }
471
 
472
  /// RemoveNode - Remove a node from the folding set, returning true if one
473
  /// was removed or false if the node was not in the folding set.
474
  bool RemoveNode(T *N) {
475
    return FoldingSetBase::RemoveNode(N);
476
  }
477
 
478
  /// GetOrInsertNode - If there is an existing simple Node exactly
479
  /// equal to the specified node, return it.  Otherwise, insert 'N' and
480
  /// return it instead.
481
  T *GetOrInsertNode(T *N) {
482
    return static_cast<T *>(
483
        FoldingSetBase::GetOrInsertNode(N, Derived::getFoldingSetInfo()));
484
  }
485
 
486
  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
487
  /// return it.  If not, return the insertion token that will make insertion
488
  /// faster.
489
  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
490
    return static_cast<T *>(FoldingSetBase::FindNodeOrInsertPos(
491
        ID, InsertPos, Derived::getFoldingSetInfo()));
492
  }
493
 
494
  /// InsertNode - Insert the specified node into the folding set, knowing that
495
  /// it is not already in the folding set.  InsertPos must be obtained from
496
  /// FindNodeOrInsertPos.
497
  void InsertNode(T *N, void *InsertPos) {
498
    FoldingSetBase::InsertNode(N, InsertPos, Derived::getFoldingSetInfo());
499
  }
500
 
501
  /// InsertNode - Insert the specified node into the folding set, knowing that
502
  /// it is not already in the folding set.
503
  void InsertNode(T *N) {
504
    T *Inserted = GetOrInsertNode(N);
505
    (void)Inserted;
506
    assert(Inserted == N && "Node already inserted!");
507
  }
508
};
509
 
510
//===----------------------------------------------------------------------===//
511
/// FoldingSet - This template class is used to instantiate a specialized
512
/// implementation of the folding set to the node class T.  T must be a
513
/// subclass of FoldingSetNode and implement a Profile function.
514
///
515
/// Note that this set type is movable and move-assignable. However, its
516
/// moved-from state is not a valid state for anything other than
517
/// move-assigning and destroying. This is primarily to enable movable APIs
518
/// that incorporate these objects.
519
template <class T>
520
class FoldingSet : public FoldingSetImpl<FoldingSet<T>, T> {
521
  using Super = FoldingSetImpl<FoldingSet, T>;
522
  using Node = typename Super::Node;
523
 
524
  /// GetNodeProfile - Each instantiation of the FoldingSet needs to provide a
525
  /// way to convert nodes into a unique specifier.
526
  static void GetNodeProfile(const FoldingSetBase *, Node *N,
527
                             FoldingSetNodeID &ID) {
528
    T *TN = static_cast<T *>(N);
529
    FoldingSetTrait<T>::Profile(*TN, ID);
530
  }
531
 
532
  /// NodeEquals - Instantiations may optionally provide a way to compare a
533
  /// node with a specified ID.
534
  static bool NodeEquals(const FoldingSetBase *, Node *N,
535
                         const FoldingSetNodeID &ID, unsigned IDHash,
536
                         FoldingSetNodeID &TempID) {
537
    T *TN = static_cast<T *>(N);
538
    return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
539
  }
540
 
541
  /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
542
  /// hash value directly from a node.
543
  static unsigned ComputeNodeHash(const FoldingSetBase *, Node *N,
544
                                  FoldingSetNodeID &TempID) {
545
    T *TN = static_cast<T *>(N);
546
    return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
547
  }
548
 
549
  static const FoldingSetBase::FoldingSetInfo &getFoldingSetInfo() {
550
    static constexpr FoldingSetBase::FoldingSetInfo Info = {
551
        GetNodeProfile, NodeEquals, ComputeNodeHash};
552
    return Info;
553
  }
554
  friend Super;
555
 
556
public:
557
  explicit FoldingSet(unsigned Log2InitSize = 6) : Super(Log2InitSize) {}
558
  FoldingSet(FoldingSet &&Arg) = default;
559
  FoldingSet &operator=(FoldingSet &&RHS) = default;
560
};
561
 
562
//===----------------------------------------------------------------------===//
563
/// ContextualFoldingSet - This template class is a further refinement
564
/// of FoldingSet which provides a context argument when calling
565
/// Profile on its nodes.  Currently, that argument is fixed at
566
/// initialization time.
567
///
568
/// T must be a subclass of FoldingSetNode and implement a Profile
569
/// function with signature
570
///   void Profile(FoldingSetNodeID &, Ctx);
571
template <class T, class Ctx>
572
class ContextualFoldingSet
573
    : public FoldingSetImpl<ContextualFoldingSet<T, Ctx>, T> {
574
  // Unfortunately, this can't derive from FoldingSet<T> because the
575
  // construction of the vtable for FoldingSet<T> requires
576
  // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
577
  // requires a single-argument T::Profile().
578
 
579
  using Super = FoldingSetImpl<ContextualFoldingSet, T>;
580
  using Node = typename Super::Node;
581
 
582
  Ctx Context;
583
 
584
  static const Ctx &getContext(const FoldingSetBase *Base) {
585
    return static_cast<const ContextualFoldingSet*>(Base)->Context;
586
  }
587
 
588
  /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
589
  /// way to convert nodes into a unique specifier.
590
  static void GetNodeProfile(const FoldingSetBase *Base, Node *N,
591
                             FoldingSetNodeID &ID) {
592
    T *TN = static_cast<T *>(N);
593
    ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, getContext(Base));
594
  }
595
 
596
  static bool NodeEquals(const FoldingSetBase *Base, Node *N,
597
                         const FoldingSetNodeID &ID, unsigned IDHash,
598
                         FoldingSetNodeID &TempID) {
599
    T *TN = static_cast<T *>(N);
600
    return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
601
                                                     getContext(Base));
602
  }
603
 
604
  static unsigned ComputeNodeHash(const FoldingSetBase *Base, Node *N,
605
                                  FoldingSetNodeID &TempID) {
606
    T *TN = static_cast<T *>(N);
607
    return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID,
608
                                                          getContext(Base));
609
  }
610
 
611
  static const FoldingSetBase::FoldingSetInfo &getFoldingSetInfo() {
612
    static constexpr FoldingSetBase::FoldingSetInfo Info = {
613
        GetNodeProfile, NodeEquals, ComputeNodeHash};
614
    return Info;
615
  }
616
  friend Super;
617
 
618
public:
619
  explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
620
      : Super(Log2InitSize), Context(Context) {}
621
 
622
  Ctx getContext() const { return Context; }
623
};
624
 
625
//===----------------------------------------------------------------------===//
626
/// FoldingSetVector - This template class combines a FoldingSet and a vector
627
/// to provide the interface of FoldingSet but with deterministic iteration
628
/// order based on the insertion order. T must be a subclass of FoldingSetNode
629
/// and implement a Profile function.
630
template <class T, class VectorT = SmallVector<T*, 8>>
631
class FoldingSetVector {
632
  FoldingSet<T> Set;
633
  VectorT Vector;
634
 
635
public:
636
  explicit FoldingSetVector(unsigned Log2InitSize = 6) : Set(Log2InitSize) {}
637
 
638
  using iterator = pointee_iterator<typename VectorT::iterator>;
639
 
640
  iterator begin() { return Vector.begin(); }
641
  iterator end()   { return Vector.end(); }
642
 
643
  using const_iterator = pointee_iterator<typename VectorT::const_iterator>;
644
 
645
  const_iterator begin() const { return Vector.begin(); }
646
  const_iterator end()   const { return Vector.end(); }
647
 
648
  /// clear - Remove all nodes from the folding set.
649
  void clear() { Set.clear(); Vector.clear(); }
650
 
651
  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
652
  /// return it.  If not, return the insertion token that will make insertion
653
  /// faster.
654
  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
655
    return Set.FindNodeOrInsertPos(ID, InsertPos);
656
  }
657
 
658
  /// GetOrInsertNode - If there is an existing simple Node exactly
659
  /// equal to the specified node, return it.  Otherwise, insert 'N' and
660
  /// return it instead.
661
  T *GetOrInsertNode(T *N) {
662
    T *Result = Set.GetOrInsertNode(N);
663
    if (Result == N) Vector.push_back(N);
664
    return Result;
665
  }
666
 
667
  /// InsertNode - Insert the specified node into the folding set, knowing that
668
  /// it is not already in the folding set.  InsertPos must be obtained from
669
  /// FindNodeOrInsertPos.
670
  void InsertNode(T *N, void *InsertPos) {
671
    Set.InsertNode(N, InsertPos);
672
    Vector.push_back(N);
673
  }
674
 
675
  /// InsertNode - Insert the specified node into the folding set, knowing that
676
  /// it is not already in the folding set.
677
  void InsertNode(T *N) {
678
    Set.InsertNode(N);
679
    Vector.push_back(N);
680
  }
681
 
682
  /// size - Returns the number of nodes in the folding set.
683
  unsigned size() const { return Set.size(); }
684
 
685
  /// empty - Returns true if there are no nodes in the folding set.
686
  bool empty() const { return Set.empty(); }
687
};
688
 
689
//===----------------------------------------------------------------------===//
690
/// FoldingSetIteratorImpl - This is the common iterator support shared by all
691
/// folding sets, which knows how to walk the folding set hash table.
692
class FoldingSetIteratorImpl {
693
protected:
694
  FoldingSetNode *NodePtr;
695
 
696
  FoldingSetIteratorImpl(void **Bucket);
697
 
698
  void advance();
699
 
700
public:
701
  bool operator==(const FoldingSetIteratorImpl &RHS) const {
702
    return NodePtr == RHS.NodePtr;
703
  }
704
  bool operator!=(const FoldingSetIteratorImpl &RHS) const {
705
    return NodePtr != RHS.NodePtr;
706
  }
707
};
708
 
709
template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
710
public:
711
  explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
712
 
713
  T &operator*() const {
714
    return *static_cast<T*>(NodePtr);
715
  }
716
 
717
  T *operator->() const {
718
    return static_cast<T*>(NodePtr);
719
  }
720
 
721
  inline FoldingSetIterator &operator++() {          // Preincrement
722
    advance();
723
    return *this;
724
  }
725
  FoldingSetIterator operator++(int) {        // Postincrement
726
    FoldingSetIterator tmp = *this; ++*this; return tmp;
727
  }
728
};
729
 
730
//===----------------------------------------------------------------------===//
731
/// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
732
/// shared by all folding sets, which knows how to walk a particular bucket
733
/// of a folding set hash table.
734
class FoldingSetBucketIteratorImpl {
735
protected:
736
  void *Ptr;
737
 
738
  explicit FoldingSetBucketIteratorImpl(void **Bucket);
739
 
740
  FoldingSetBucketIteratorImpl(void **Bucket, bool) : Ptr(Bucket) {}
741
 
742
  void advance() {
743
    void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
744
    uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
745
    Ptr = reinterpret_cast<void*>(x);
746
  }
747
 
748
public:
749
  bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
750
    return Ptr == RHS.Ptr;
751
  }
752
  bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
753
    return Ptr != RHS.Ptr;
754
  }
755
};
756
 
757
template <class T>
758
class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
759
public:
760
  explicit FoldingSetBucketIterator(void **Bucket) :
761
    FoldingSetBucketIteratorImpl(Bucket) {}
762
 
763
  FoldingSetBucketIterator(void **Bucket, bool) :
764
    FoldingSetBucketIteratorImpl(Bucket, true) {}
765
 
766
  T &operator*() const { return *static_cast<T*>(Ptr); }
767
  T *operator->() const { return static_cast<T*>(Ptr); }
768
 
769
  inline FoldingSetBucketIterator &operator++() { // Preincrement
770
    advance();
771
    return *this;
772
  }
773
  FoldingSetBucketIterator operator++(int) {      // Postincrement
774
    FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
775
  }
776
};
777
 
778
//===----------------------------------------------------------------------===//
779
/// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
780
/// types in an enclosing object so that they can be inserted into FoldingSets.
781
template <typename T>
782
class FoldingSetNodeWrapper : public FoldingSetNode {
783
  T data;
784
 
785
public:
786
  template <typename... Ts>
787
  explicit FoldingSetNodeWrapper(Ts &&... Args)
788
      : data(std::forward<Ts>(Args)...) {}
789
 
790
  void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
791
 
792
  T &getValue() { return data; }
793
  const T &getValue() const { return data; }
794
 
795
  operator T&() { return data; }
796
  operator const T&() const { return data; }
797
};
798
 
799
//===----------------------------------------------------------------------===//
800
/// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
801
/// a FoldingSetNodeID value rather than requiring the node to recompute it
802
/// each time it is needed. This trades space for speed (which can be
803
/// significant if the ID is long), and it also permits nodes to drop
804
/// information that would otherwise only be required for recomputing an ID.
805
class FastFoldingSetNode : public FoldingSetNode {
806
  FoldingSetNodeID FastID;
807
 
808
protected:
809
  explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
810
 
811
public:
812
  void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
813
};
814
 
815
//===----------------------------------------------------------------------===//
816
// Partial specializations of FoldingSetTrait.
817
 
818
template<typename T> struct FoldingSetTrait<T*> {
819
  static inline void Profile(T *X, FoldingSetNodeID &ID) {
820
    ID.AddPointer(X);
821
  }
822
};
823
template <typename T1, typename T2>
824
struct FoldingSetTrait<std::pair<T1, T2>> {
825
  static inline void Profile(const std::pair<T1, T2> &P,
826
                             FoldingSetNodeID &ID) {
827
    ID.Add(P.first);
828
    ID.Add(P.second);
829
  }
830
};
831
 
832
template <typename T>
833
struct FoldingSetTrait<T, std::enable_if_t<std::is_enum<T>::value>> {
834
  static void Profile(const T &X, FoldingSetNodeID &ID) {
835
    ID.AddInteger(static_cast<std::underlying_type_t<T>>(X));
836
  }
837
};
838
 
839
} // end namespace llvm
840
 
841
#endif // LLVM_ADT_FOLDINGSET_H