Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// |
||
9 | /// \file |
||
10 | /// Generic implementation of equivalence classes through the use Tarjan's |
||
11 | /// efficient union-find algorithm. |
||
12 | /// |
||
13 | //===----------------------------------------------------------------------===// |
||
14 | |||
15 | #ifndef LLVM_ADT_EQUIVALENCECLASSES_H |
||
16 | #define LLVM_ADT_EQUIVALENCECLASSES_H |
||
17 | |||
18 | #include <cassert> |
||
19 | #include <cstddef> |
||
20 | #include <cstdint> |
||
21 | #include <iterator> |
||
22 | #include <set> |
||
23 | |||
24 | namespace llvm { |
||
25 | |||
26 | /// EquivalenceClasses - This represents a collection of equivalence classes and |
||
27 | /// supports three efficient operations: insert an element into a class of its |
||
28 | /// own, union two classes, and find the class for a given element. In |
||
29 | /// addition to these modification methods, it is possible to iterate over all |
||
30 | /// of the equivalence classes and all of the elements in a class. |
||
31 | /// |
||
32 | /// This implementation is an efficient implementation that only stores one copy |
||
33 | /// of the element being indexed per entry in the set, and allows any arbitrary |
||
34 | /// type to be indexed (as long as it can be ordered with operator< or a |
||
35 | /// comparator is provided). |
||
36 | /// |
||
37 | /// Here is a simple example using integers: |
||
38 | /// |
||
39 | /// \code |
||
40 | /// EquivalenceClasses<int> EC; |
||
41 | /// EC.unionSets(1, 2); // insert 1, 2 into the same set |
||
42 | /// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets |
||
43 | /// EC.unionSets(5, 1); // merge the set for 1 with 5's set. |
||
44 | /// |
||
45 | /// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end(); |
||
46 | /// I != E; ++I) { // Iterate over all of the equivalence sets. |
||
47 | /// if (!I->isLeader()) continue; // Ignore non-leader sets. |
||
48 | /// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I); |
||
49 | /// MI != EC.member_end(); ++MI) // Loop over members in this set. |
||
50 | /// cerr << *MI << " "; // Print member. |
||
51 | /// cerr << "\n"; // Finish set. |
||
52 | /// } |
||
53 | /// \endcode |
||
54 | /// |
||
55 | /// This example prints: |
||
56 | /// 4 |
||
57 | /// 5 1 2 |
||
58 | /// |
||
59 | template <class ElemTy, class Compare = std::less<ElemTy>> |
||
60 | class EquivalenceClasses { |
||
61 | /// ECValue - The EquivalenceClasses data structure is just a set of these. |
||
62 | /// Each of these represents a relation for a value. First it stores the |
||
63 | /// value itself, which provides the ordering that the set queries. Next, it |
||
64 | /// provides a "next pointer", which is used to enumerate all of the elements |
||
65 | /// in the unioned set. Finally, it defines either a "end of list pointer" or |
||
66 | /// "leader pointer" depending on whether the value itself is a leader. A |
||
67 | /// "leader pointer" points to the node that is the leader for this element, |
||
68 | /// if the node is not a leader. A "end of list pointer" points to the last |
||
69 | /// node in the list of members of this list. Whether or not a node is a |
||
70 | /// leader is determined by a bit stolen from one of the pointers. |
||
71 | class ECValue { |
||
72 | friend class EquivalenceClasses; |
||
73 | |||
74 | mutable const ECValue *Leader, *Next; |
||
75 | ElemTy Data; |
||
76 | |||
77 | // ECValue ctor - Start out with EndOfList pointing to this node, Next is |
||
78 | // Null, isLeader = true. |
||
79 | ECValue(const ElemTy &Elt) |
||
80 | : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {} |
||
81 | |||
82 | const ECValue *getLeader() const { |
||
83 | if (isLeader()) return this; |
||
84 | if (Leader->isLeader()) return Leader; |
||
85 | // Path compression. |
||
86 | return Leader = Leader->getLeader(); |
||
87 | } |
||
88 | |||
89 | const ECValue *getEndOfList() const { |
||
90 | assert(isLeader() && "Cannot get the end of a list for a non-leader!"); |
||
91 | return Leader; |
||
92 | } |
||
93 | |||
94 | void setNext(const ECValue *NewNext) const { |
||
95 | assert(getNext() == nullptr && "Already has a next pointer!"); |
||
96 | Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader()); |
||
97 | } |
||
98 | |||
99 | public: |
||
100 | ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1), |
||
101 | Data(RHS.Data) { |
||
102 | // Only support copying of singleton nodes. |
||
103 | assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!"); |
||
104 | } |
||
105 | |||
106 | bool isLeader() const { return (intptr_t)Next & 1; } |
||
107 | const ElemTy &getData() const { return Data; } |
||
108 | |||
109 | const ECValue *getNext() const { |
||
110 | return (ECValue*)((intptr_t)Next & ~(intptr_t)1); |
||
111 | } |
||
112 | }; |
||
113 | |||
114 | /// A wrapper of the comparator, to be passed to the set. |
||
115 | struct ECValueComparator { |
||
116 | using is_transparent = void; |
||
117 | |||
118 | ECValueComparator() : compare(Compare()) {} |
||
119 | |||
120 | bool operator()(const ECValue &lhs, const ECValue &rhs) const { |
||
121 | return compare(lhs.Data, rhs.Data); |
||
122 | } |
||
123 | |||
124 | template <typename T> |
||
125 | bool operator()(const T &lhs, const ECValue &rhs) const { |
||
126 | return compare(lhs, rhs.Data); |
||
127 | } |
||
128 | |||
129 | template <typename T> |
||
130 | bool operator()(const ECValue &lhs, const T &rhs) const { |
||
131 | return compare(lhs.Data, rhs); |
||
132 | } |
||
133 | |||
134 | const Compare compare; |
||
135 | }; |
||
136 | |||
137 | /// TheMapping - This implicitly provides a mapping from ElemTy values to the |
||
138 | /// ECValues, it just keeps the key as part of the value. |
||
139 | std::set<ECValue, ECValueComparator> TheMapping; |
||
140 | |||
141 | public: |
||
142 | EquivalenceClasses() = default; |
||
143 | EquivalenceClasses(const EquivalenceClasses &RHS) { |
||
144 | operator=(RHS); |
||
145 | } |
||
146 | |||
147 | const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) { |
||
148 | TheMapping.clear(); |
||
149 | for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) |
||
150 | if (I->isLeader()) { |
||
151 | member_iterator MI = RHS.member_begin(I); |
||
152 | member_iterator LeaderIt = member_begin(insert(*MI)); |
||
153 | for (++MI; MI != member_end(); ++MI) |
||
154 | unionSets(LeaderIt, member_begin(insert(*MI))); |
||
155 | } |
||
156 | return *this; |
||
157 | } |
||
158 | |||
159 | //===--------------------------------------------------------------------===// |
||
160 | // Inspection methods |
||
161 | // |
||
162 | |||
163 | /// iterator* - Provides a way to iterate over all values in the set. |
||
164 | using iterator = |
||
165 | typename std::set<ECValue, ECValueComparator>::const_iterator; |
||
166 | |||
167 | iterator begin() const { return TheMapping.begin(); } |
||
168 | iterator end() const { return TheMapping.end(); } |
||
169 | |||
170 | bool empty() const { return TheMapping.empty(); } |
||
171 | |||
172 | /// member_* Iterate over the members of an equivalence class. |
||
173 | class member_iterator; |
||
174 | member_iterator member_begin(iterator I) const { |
||
175 | // Only leaders provide anything to iterate over. |
||
176 | return member_iterator(I->isLeader() ? &*I : nullptr); |
||
177 | } |
||
178 | member_iterator member_end() const { |
||
179 | return member_iterator(nullptr); |
||
180 | } |
||
181 | |||
182 | /// findValue - Return an iterator to the specified value. If it does not |
||
183 | /// exist, end() is returned. |
||
184 | iterator findValue(const ElemTy &V) const { |
||
185 | return TheMapping.find(V); |
||
186 | } |
||
187 | |||
188 | /// getLeaderValue - Return the leader for the specified value that is in the |
||
189 | /// set. It is an error to call this method for a value that is not yet in |
||
190 | /// the set. For that, call getOrInsertLeaderValue(V). |
||
191 | const ElemTy &getLeaderValue(const ElemTy &V) const { |
||
192 | member_iterator MI = findLeader(V); |
||
193 | assert(MI != member_end() && "Value is not in the set!"); |
||
194 | return *MI; |
||
195 | } |
||
196 | |||
197 | /// getOrInsertLeaderValue - Return the leader for the specified value that is |
||
198 | /// in the set. If the member is not in the set, it is inserted, then |
||
199 | /// returned. |
||
200 | const ElemTy &getOrInsertLeaderValue(const ElemTy &V) { |
||
201 | member_iterator MI = findLeader(insert(V)); |
||
202 | assert(MI != member_end() && "Value is not in the set!"); |
||
203 | return *MI; |
||
204 | } |
||
205 | |||
206 | /// getNumClasses - Return the number of equivalence classes in this set. |
||
207 | /// Note that this is a linear time operation. |
||
208 | unsigned getNumClasses() const { |
||
209 | unsigned NC = 0; |
||
210 | for (iterator I = begin(), E = end(); I != E; ++I) |
||
211 | if (I->isLeader()) ++NC; |
||
212 | return NC; |
||
213 | } |
||
214 | |||
215 | //===--------------------------------------------------------------------===// |
||
216 | // Mutation methods |
||
217 | |||
218 | /// insert - Insert a new value into the union/find set, ignoring the request |
||
219 | /// if the value already exists. |
||
220 | iterator insert(const ElemTy &Data) { |
||
221 | return TheMapping.insert(ECValue(Data)).first; |
||
222 | } |
||
223 | |||
224 | /// findLeader - Given a value in the set, return a member iterator for the |
||
225 | /// equivalence class it is in. This does the path-compression part that |
||
226 | /// makes union-find "union findy". This returns an end iterator if the value |
||
227 | /// is not in the equivalence class. |
||
228 | member_iterator findLeader(iterator I) const { |
||
229 | if (I == TheMapping.end()) return member_end(); |
||
230 | return member_iterator(I->getLeader()); |
||
231 | } |
||
232 | member_iterator findLeader(const ElemTy &V) const { |
||
233 | return findLeader(TheMapping.find(V)); |
||
234 | } |
||
235 | |||
236 | /// union - Merge the two equivalence sets for the specified values, inserting |
||
237 | /// them if they do not already exist in the equivalence set. |
||
238 | member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) { |
||
239 | iterator V1I = insert(V1), V2I = insert(V2); |
||
240 | return unionSets(findLeader(V1I), findLeader(V2I)); |
||
241 | } |
||
242 | member_iterator unionSets(member_iterator L1, member_iterator L2) { |
||
243 | assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!"); |
||
244 | if (L1 == L2) return L1; // Unifying the same two sets, noop. |
||
245 | |||
246 | // Otherwise, this is a real union operation. Set the end of the L1 list to |
||
247 | // point to the L2 leader node. |
||
248 | const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node; |
||
249 | L1LV.getEndOfList()->setNext(&L2LV); |
||
250 | |||
251 | // Update L1LV's end of list pointer. |
||
252 | L1LV.Leader = L2LV.getEndOfList(); |
||
253 | |||
254 | // Clear L2's leader flag: |
||
255 | L2LV.Next = L2LV.getNext(); |
||
256 | |||
257 | // L2's leader is now L1. |
||
258 | L2LV.Leader = &L1LV; |
||
259 | return L1; |
||
260 | } |
||
261 | |||
262 | // isEquivalent - Return true if V1 is equivalent to V2. This can happen if |
||
263 | // V1 is equal to V2 or if they belong to one equivalence class. |
||
264 | bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const { |
||
265 | // Fast path: any element is equivalent to itself. |
||
266 | if (V1 == V2) |
||
267 | return true; |
||
268 | auto It = findLeader(V1); |
||
269 | return It != member_end() && It == findLeader(V2); |
||
270 | } |
||
271 | |||
272 | class member_iterator { |
||
273 | friend class EquivalenceClasses; |
||
274 | |||
275 | const ECValue *Node; |
||
276 | |||
277 | public: |
||
278 | using iterator_category = std::forward_iterator_tag; |
||
279 | using value_type = const ElemTy; |
||
280 | using size_type = std::size_t; |
||
281 | using difference_type = std::ptrdiff_t; |
||
282 | using pointer = value_type *; |
||
283 | using reference = value_type &; |
||
284 | |||
285 | explicit member_iterator() = default; |
||
286 | explicit member_iterator(const ECValue *N) : Node(N) {} |
||
287 | |||
288 | reference operator*() const { |
||
289 | assert(Node != nullptr && "Dereferencing end()!"); |
||
290 | return Node->getData(); |
||
291 | } |
||
292 | pointer operator->() const { return &operator*(); } |
||
293 | |||
294 | member_iterator &operator++() { |
||
295 | assert(Node != nullptr && "++'d off the end of the list!"); |
||
296 | Node = Node->getNext(); |
||
297 | return *this; |
||
298 | } |
||
299 | |||
300 | member_iterator operator++(int) { // postincrement operators. |
||
301 | member_iterator tmp = *this; |
||
302 | ++*this; |
||
303 | return tmp; |
||
304 | } |
||
305 | |||
306 | bool operator==(const member_iterator &RHS) const { |
||
307 | return Node == RHS.Node; |
||
308 | } |
||
309 | bool operator!=(const member_iterator &RHS) const { |
||
310 | return Node != RHS.Node; |
||
311 | } |
||
312 | }; |
||
313 | }; |
||
314 | |||
315 | } // end namespace llvm |
||
316 | |||
317 | #endif // LLVM_ADT_EQUIVALENCECLASSES_H |