Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// Generic implementation of equivalence classes through the use Tarjan's
11
/// efficient union-find algorithm.
12
///
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_ADT_EQUIVALENCECLASSES_H
16
#define LLVM_ADT_EQUIVALENCECLASSES_H
17
 
18
#include <cassert>
19
#include <cstddef>
20
#include <cstdint>
21
#include <iterator>
22
#include <set>
23
 
24
namespace llvm {
25
 
26
/// EquivalenceClasses - This represents a collection of equivalence classes and
27
/// supports three efficient operations: insert an element into a class of its
28
/// own, union two classes, and find the class for a given element.  In
29
/// addition to these modification methods, it is possible to iterate over all
30
/// of the equivalence classes and all of the elements in a class.
31
///
32
/// This implementation is an efficient implementation that only stores one copy
33
/// of the element being indexed per entry in the set, and allows any arbitrary
34
/// type to be indexed (as long as it can be ordered with operator< or a
35
/// comparator is provided).
36
///
37
/// Here is a simple example using integers:
38
///
39
/// \code
40
///  EquivalenceClasses<int> EC;
41
///  EC.unionSets(1, 2);                // insert 1, 2 into the same set
42
///  EC.insert(4); EC.insert(5);        // insert 4, 5 into own sets
43
///  EC.unionSets(5, 1);                // merge the set for 1 with 5's set.
44
///
45
///  for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
46
///       I != E; ++I) {           // Iterate over all of the equivalence sets.
47
///    if (!I->isLeader()) continue;   // Ignore non-leader sets.
48
///    for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
49
///         MI != EC.member_end(); ++MI)   // Loop over members in this set.
50
///      cerr << *MI << " ";  // Print member.
51
///    cerr << "\n";   // Finish set.
52
///  }
53
/// \endcode
54
///
55
/// This example prints:
56
///   4
57
///   5 1 2
58
///
59
template <class ElemTy, class Compare = std::less<ElemTy>>
60
class EquivalenceClasses {
61
  /// ECValue - The EquivalenceClasses data structure is just a set of these.
62
  /// Each of these represents a relation for a value.  First it stores the
63
  /// value itself, which provides the ordering that the set queries.  Next, it
64
  /// provides a "next pointer", which is used to enumerate all of the elements
65
  /// in the unioned set.  Finally, it defines either a "end of list pointer" or
66
  /// "leader pointer" depending on whether the value itself is a leader.  A
67
  /// "leader pointer" points to the node that is the leader for this element,
68
  /// if the node is not a leader.  A "end of list pointer" points to the last
69
  /// node in the list of members of this list.  Whether or not a node is a
70
  /// leader is determined by a bit stolen from one of the pointers.
71
  class ECValue {
72
    friend class EquivalenceClasses;
73
 
74
    mutable const ECValue *Leader, *Next;
75
    ElemTy Data;
76
 
77
    // ECValue ctor - Start out with EndOfList pointing to this node, Next is
78
    // Null, isLeader = true.
79
    ECValue(const ElemTy &Elt)
80
      : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
81
 
82
    const ECValue *getLeader() const {
83
      if (isLeader()) return this;
84
      if (Leader->isLeader()) return Leader;
85
      // Path compression.
86
      return Leader = Leader->getLeader();
87
    }
88
 
89
    const ECValue *getEndOfList() const {
90
      assert(isLeader() && "Cannot get the end of a list for a non-leader!");
91
      return Leader;
92
    }
93
 
94
    void setNext(const ECValue *NewNext) const {
95
      assert(getNext() == nullptr && "Already has a next pointer!");
96
      Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
97
    }
98
 
99
  public:
100
    ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
101
                                  Data(RHS.Data) {
102
      // Only support copying of singleton nodes.
103
      assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
104
    }
105
 
106
    bool isLeader() const { return (intptr_t)Next & 1; }
107
    const ElemTy &getData() const { return Data; }
108
 
109
    const ECValue *getNext() const {
110
      return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
111
    }
112
  };
113
 
114
  /// A wrapper of the comparator, to be passed to the set.
115
  struct ECValueComparator {
116
    using is_transparent = void;
117
 
118
    ECValueComparator() : compare(Compare()) {}
119
 
120
    bool operator()(const ECValue &lhs, const ECValue &rhs) const {
121
      return compare(lhs.Data, rhs.Data);
122
    }
123
 
124
    template <typename T>
125
    bool operator()(const T &lhs, const ECValue &rhs) const {
126
      return compare(lhs, rhs.Data);
127
    }
128
 
129
    template <typename T>
130
    bool operator()(const ECValue &lhs, const T &rhs) const {
131
      return compare(lhs.Data, rhs);
132
    }
133
 
134
    const Compare compare;
135
  };
136
 
137
  /// TheMapping - This implicitly provides a mapping from ElemTy values to the
138
  /// ECValues, it just keeps the key as part of the value.
139
  std::set<ECValue, ECValueComparator> TheMapping;
140
 
141
public:
142
  EquivalenceClasses() = default;
143
  EquivalenceClasses(const EquivalenceClasses &RHS) {
144
    operator=(RHS);
145
  }
146
 
147
  const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
148
    TheMapping.clear();
149
    for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
150
      if (I->isLeader()) {
151
        member_iterator MI = RHS.member_begin(I);
152
        member_iterator LeaderIt = member_begin(insert(*MI));
153
        for (++MI; MI != member_end(); ++MI)
154
          unionSets(LeaderIt, member_begin(insert(*MI)));
155
      }
156
    return *this;
157
  }
158
 
159
  //===--------------------------------------------------------------------===//
160
  // Inspection methods
161
  //
162
 
163
  /// iterator* - Provides a way to iterate over all values in the set.
164
  using iterator =
165
      typename std::set<ECValue, ECValueComparator>::const_iterator;
166
 
167
  iterator begin() const { return TheMapping.begin(); }
168
  iterator end() const { return TheMapping.end(); }
169
 
170
  bool empty() const { return TheMapping.empty(); }
171
 
172
  /// member_* Iterate over the members of an equivalence class.
173
  class member_iterator;
174
  member_iterator member_begin(iterator I) const {
175
    // Only leaders provide anything to iterate over.
176
    return member_iterator(I->isLeader() ? &*I : nullptr);
177
  }
178
  member_iterator member_end() const {
179
    return member_iterator(nullptr);
180
  }
181
 
182
  /// findValue - Return an iterator to the specified value.  If it does not
183
  /// exist, end() is returned.
184
  iterator findValue(const ElemTy &V) const {
185
    return TheMapping.find(V);
186
  }
187
 
188
  /// getLeaderValue - Return the leader for the specified value that is in the
189
  /// set.  It is an error to call this method for a value that is not yet in
190
  /// the set.  For that, call getOrInsertLeaderValue(V).
191
  const ElemTy &getLeaderValue(const ElemTy &V) const {
192
    member_iterator MI = findLeader(V);
193
    assert(MI != member_end() && "Value is not in the set!");
194
    return *MI;
195
  }
196
 
197
  /// getOrInsertLeaderValue - Return the leader for the specified value that is
198
  /// in the set.  If the member is not in the set, it is inserted, then
199
  /// returned.
200
  const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
201
    member_iterator MI = findLeader(insert(V));
202
    assert(MI != member_end() && "Value is not in the set!");
203
    return *MI;
204
  }
205
 
206
  /// getNumClasses - Return the number of equivalence classes in this set.
207
  /// Note that this is a linear time operation.
208
  unsigned getNumClasses() const {
209
    unsigned NC = 0;
210
    for (iterator I = begin(), E = end(); I != E; ++I)
211
      if (I->isLeader()) ++NC;
212
    return NC;
213
  }
214
 
215
  //===--------------------------------------------------------------------===//
216
  // Mutation methods
217
 
218
  /// insert - Insert a new value into the union/find set, ignoring the request
219
  /// if the value already exists.
220
  iterator insert(const ElemTy &Data) {
221
    return TheMapping.insert(ECValue(Data)).first;
222
  }
223
 
224
  /// findLeader - Given a value in the set, return a member iterator for the
225
  /// equivalence class it is in.  This does the path-compression part that
226
  /// makes union-find "union findy".  This returns an end iterator if the value
227
  /// is not in the equivalence class.
228
  member_iterator findLeader(iterator I) const {
229
    if (I == TheMapping.end()) return member_end();
230
    return member_iterator(I->getLeader());
231
  }
232
  member_iterator findLeader(const ElemTy &V) const {
233
    return findLeader(TheMapping.find(V));
234
  }
235
 
236
  /// union - Merge the two equivalence sets for the specified values, inserting
237
  /// them if they do not already exist in the equivalence set.
238
  member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
239
    iterator V1I = insert(V1), V2I = insert(V2);
240
    return unionSets(findLeader(V1I), findLeader(V2I));
241
  }
242
  member_iterator unionSets(member_iterator L1, member_iterator L2) {
243
    assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
244
    if (L1 == L2) return L1;   // Unifying the same two sets, noop.
245
 
246
    // Otherwise, this is a real union operation.  Set the end of the L1 list to
247
    // point to the L2 leader node.
248
    const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
249
    L1LV.getEndOfList()->setNext(&L2LV);
250
 
251
    // Update L1LV's end of list pointer.
252
    L1LV.Leader = L2LV.getEndOfList();
253
 
254
    // Clear L2's leader flag:
255
    L2LV.Next = L2LV.getNext();
256
 
257
    // L2's leader is now L1.
258
    L2LV.Leader = &L1LV;
259
    return L1;
260
  }
261
 
262
  // isEquivalent - Return true if V1 is equivalent to V2. This can happen if
263
  // V1 is equal to V2 or if they belong to one equivalence class.
264
  bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const {
265
    // Fast path: any element is equivalent to itself.
266
    if (V1 == V2)
267
      return true;
268
    auto It = findLeader(V1);
269
    return It != member_end() && It == findLeader(V2);
270
  }
271
 
272
  class member_iterator {
273
    friend class EquivalenceClasses;
274
 
275
    const ECValue *Node;
276
 
277
  public:
278
    using iterator_category = std::forward_iterator_tag;
279
    using value_type = const ElemTy;
280
    using size_type = std::size_t;
281
    using difference_type = std::ptrdiff_t;
282
    using pointer = value_type *;
283
    using reference = value_type &;
284
 
285
    explicit member_iterator() = default;
286
    explicit member_iterator(const ECValue *N) : Node(N) {}
287
 
288
    reference operator*() const {
289
      assert(Node != nullptr && "Dereferencing end()!");
290
      return Node->getData();
291
    }
292
    pointer operator->() const { return &operator*(); }
293
 
294
    member_iterator &operator++() {
295
      assert(Node != nullptr && "++'d off the end of the list!");
296
      Node = Node->getNext();
297
      return *this;
298
    }
299
 
300
    member_iterator operator++(int) {    // postincrement operators.
301
      member_iterator tmp = *this;
302
      ++*this;
303
      return tmp;
304
    }
305
 
306
    bool operator==(const member_iterator &RHS) const {
307
      return Node == RHS.Node;
308
    }
309
    bool operator!=(const member_iterator &RHS) const {
310
      return Node != RHS.Node;
311
    }
312
  };
313
};
314
 
315
} // end namespace llvm
316
 
317
#endif // LLVM_ADT_EQUIVALENCECLASSES_H