Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===-- llvm/ADT/Bitfield.h - Get and Set bits in an integer ---*- C++ -*--===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// |
||
9 | /// \file |
||
10 | /// This file implements methods to test, set and extract typed bits from packed |
||
11 | /// unsigned integers. |
||
12 | /// |
||
13 | /// Why not C++ bitfields? |
||
14 | /// ---------------------- |
||
15 | /// C++ bitfields do not offer control over the bit layout nor consistent |
||
16 | /// behavior when it comes to out of range values. |
||
17 | /// For instance, the layout is implementation defined and adjacent bits may be |
||
18 | /// packed together but are not required to. This is problematic when storage is |
||
19 | /// sparse and data must be stored in a particular integer type. |
||
20 | /// |
||
21 | /// The methods provided in this file ensure precise control over the |
||
22 | /// layout/storage as well as protection against out of range values. |
||
23 | /// |
||
24 | /// Usage example |
||
25 | /// ------------- |
||
26 | /// \code{.cpp} |
||
27 | /// uint8_t Storage = 0; |
||
28 | /// |
||
29 | /// // Store and retrieve a single bit as bool. |
||
30 | /// using Bool = Bitfield::Element<bool, 0, 1>; |
||
31 | /// Bitfield::set<Bool>(Storage, true); |
||
32 | /// EXPECT_EQ(Storage, 0b00000001); |
||
33 | /// // ^ |
||
34 | /// EXPECT_EQ(Bitfield::get<Bool>(Storage), true); |
||
35 | /// |
||
36 | /// // Store and retrieve a 2 bit typed enum. |
||
37 | /// // Note: enum underlying type must be unsigned. |
||
38 | /// enum class SuitEnum : uint8_t { CLUBS, DIAMONDS, HEARTS, SPADES }; |
||
39 | /// // Note: enum maximum value needs to be passed in as last parameter. |
||
40 | /// using Suit = Bitfield::Element<SuitEnum, 1, 2, SuitEnum::SPADES>; |
||
41 | /// Bitfield::set<Suit>(Storage, SuitEnum::HEARTS); |
||
42 | /// EXPECT_EQ(Storage, 0b00000101); |
||
43 | /// // ^^ |
||
44 | /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::HEARTS); |
||
45 | /// |
||
46 | /// // Store and retrieve a 5 bit value as unsigned. |
||
47 | /// using Value = Bitfield::Element<unsigned, 3, 5>; |
||
48 | /// Bitfield::set<Value>(Storage, 10); |
||
49 | /// EXPECT_EQ(Storage, 0b01010101); |
||
50 | /// // ^^^^^ |
||
51 | /// EXPECT_EQ(Bitfield::get<Value>(Storage), 10U); |
||
52 | /// |
||
53 | /// // Interpret the same 5 bit value as signed. |
||
54 | /// using SignedValue = Bitfield::Element<int, 3, 5>; |
||
55 | /// Bitfield::set<SignedValue>(Storage, -2); |
||
56 | /// EXPECT_EQ(Storage, 0b11110101); |
||
57 | /// // ^^^^^ |
||
58 | /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -2); |
||
59 | /// |
||
60 | /// // Ability to efficiently test if a field is non zero. |
||
61 | /// EXPECT_TRUE(Bitfield::test<Value>(Storage)); |
||
62 | /// |
||
63 | /// // Alter Storage changes value. |
||
64 | /// Storage = 0; |
||
65 | /// EXPECT_EQ(Bitfield::get<Bool>(Storage), false); |
||
66 | /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::CLUBS); |
||
67 | /// EXPECT_EQ(Bitfield::get<Value>(Storage), 0U); |
||
68 | /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), 0); |
||
69 | /// |
||
70 | /// Storage = 255; |
||
71 | /// EXPECT_EQ(Bitfield::get<Bool>(Storage), true); |
||
72 | /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::SPADES); |
||
73 | /// EXPECT_EQ(Bitfield::get<Value>(Storage), 31U); |
||
74 | /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -1); |
||
75 | /// \endcode |
||
76 | /// |
||
77 | //===----------------------------------------------------------------------===// |
||
78 | |||
79 | #ifndef LLVM_ADT_BITFIELDS_H |
||
80 | #define LLVM_ADT_BITFIELDS_H |
||
81 | |||
82 | #include <cassert> |
||
83 | #include <climits> // CHAR_BIT |
||
84 | #include <cstddef> // size_t |
||
85 | #include <cstdint> // uintXX_t |
||
86 | #include <limits> // numeric_limits |
||
87 | #include <type_traits> |
||
88 | |||
89 | namespace llvm { |
||
90 | |||
91 | namespace bitfields_details { |
||
92 | |||
93 | /// A struct defining useful bit patterns for n-bits integer types. |
||
94 | template <typename T, unsigned Bits> struct BitPatterns { |
||
95 | /// Bit patterns are forged using the equivalent `Unsigned` type because of |
||
96 | /// undefined operations over signed types (e.g. Bitwise shift operators). |
||
97 | /// Moreover same size casting from unsigned to signed is well defined but not |
||
98 | /// the other way around. |
||
99 | using Unsigned = std::make_unsigned_t<T>; |
||
100 | static_assert(sizeof(Unsigned) == sizeof(T), "Types must have same size"); |
||
101 | |||
102 | static constexpr unsigned TypeBits = sizeof(Unsigned) * CHAR_BIT; |
||
103 | static_assert(TypeBits >= Bits, "n-bit must fit in T"); |
||
104 | |||
105 | /// e.g. with TypeBits == 8 and Bits == 6. |
||
106 | static constexpr Unsigned AllZeros = Unsigned(0); // 00000000 |
||
107 | static constexpr Unsigned AllOnes = ~Unsigned(0); // 11111111 |
||
108 | static constexpr Unsigned Umin = AllZeros; // 00000000 |
||
109 | static constexpr Unsigned Umax = AllOnes >> (TypeBits - Bits); // 00111111 |
||
110 | static constexpr Unsigned SignBitMask = Unsigned(1) << (Bits - 1); // 00100000 |
||
111 | static constexpr Unsigned Smax = Umax >> 1U; // 00011111 |
||
112 | static constexpr Unsigned Smin = ~Smax; // 11100000 |
||
113 | static constexpr Unsigned SignExtend = Unsigned(Smin << 1U); // 11000000 |
||
114 | }; |
||
115 | |||
116 | /// `Compressor` is used to manipulate the bits of a (possibly signed) integer |
||
117 | /// type so it can be packed and unpacked into a `bits` sized integer, |
||
118 | /// `Compressor` is specialized on signed-ness so no runtime cost is incurred. |
||
119 | /// The `pack` method also checks that the passed in `UserValue` is valid. |
||
120 | template <typename T, unsigned Bits, bool = std::is_unsigned<T>::value> |
||
121 | struct Compressor { |
||
122 | static_assert(std::is_unsigned<T>::value, "T must be unsigned"); |
||
123 | using BP = BitPatterns<T, Bits>; |
||
124 | |||
125 | static T pack(T UserValue, T UserMaxValue) { |
||
126 | assert(UserValue <= UserMaxValue && "value is too big"); |
||
127 | assert(UserValue <= BP::Umax && "value is too big"); |
||
128 | return UserValue; |
||
129 | } |
||
130 | |||
131 | static T unpack(T StorageValue) { return StorageValue; } |
||
132 | }; |
||
133 | |||
134 | template <typename T, unsigned Bits> struct Compressor<T, Bits, false> { |
||
135 | static_assert(std::is_signed<T>::value, "T must be signed"); |
||
136 | using BP = BitPatterns<T, Bits>; |
||
137 | |||
138 | static T pack(T UserValue, T UserMaxValue) { |
||
139 | assert(UserValue <= UserMaxValue && "value is too big"); |
||
140 | assert(UserValue <= T(BP::Smax) && "value is too big"); |
||
141 | assert(UserValue >= T(BP::Smin) && "value is too small"); |
||
142 | if (UserValue < 0) |
||
143 | UserValue &= ~BP::SignExtend; |
||
144 | return UserValue; |
||
145 | } |
||
146 | |||
147 | static T unpack(T StorageValue) { |
||
148 | if (StorageValue >= T(BP::SignBitMask)) |
||
149 | StorageValue |= BP::SignExtend; |
||
150 | return StorageValue; |
||
151 | } |
||
152 | }; |
||
153 | |||
154 | /// Impl is where Bifield description and Storage are put together to interact |
||
155 | /// with values. |
||
156 | template <typename Bitfield, typename StorageType> struct Impl { |
||
157 | static_assert(std::is_unsigned<StorageType>::value, |
||
158 | "Storage must be unsigned"); |
||
159 | using IntegerType = typename Bitfield::IntegerType; |
||
160 | using C = Compressor<IntegerType, Bitfield::Bits>; |
||
161 | using BP = BitPatterns<StorageType, Bitfield::Bits>; |
||
162 | |||
163 | static constexpr size_t StorageBits = sizeof(StorageType) * CHAR_BIT; |
||
164 | static_assert(Bitfield::FirstBit <= StorageBits, "Data must fit in mask"); |
||
165 | static_assert(Bitfield::LastBit <= StorageBits, "Data must fit in mask"); |
||
166 | static constexpr StorageType Mask = BP::Umax << Bitfield::Shift; |
||
167 | |||
168 | /// Checks `UserValue` is within bounds and packs it between `FirstBit` and |
||
169 | /// `LastBit` of `Packed` leaving the rest unchanged. |
||
170 | static void update(StorageType &Packed, IntegerType UserValue) { |
||
171 | const StorageType StorageValue = C::pack(UserValue, Bitfield::UserMaxValue); |
||
172 | Packed &= ~Mask; |
||
173 | Packed |= StorageValue << Bitfield::Shift; |
||
174 | } |
||
175 | |||
176 | /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as |
||
177 | /// an`IntegerType`. |
||
178 | static IntegerType extract(StorageType Packed) { |
||
179 | const StorageType StorageValue = (Packed & Mask) >> Bitfield::Shift; |
||
180 | return C::unpack(StorageValue); |
||
181 | } |
||
182 | |||
183 | /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as |
||
184 | /// an`IntegerType`. |
||
185 | static StorageType test(StorageType Packed) { return Packed & Mask; } |
||
186 | }; |
||
187 | |||
188 | /// `Bitfield` deals with the following type: |
||
189 | /// - unsigned enums |
||
190 | /// - signed and unsigned integer |
||
191 | /// - `bool` |
||
192 | /// Internally though we only manipulate integer with well defined and |
||
193 | /// consistent semantics, this excludes typed enums and `bool` that are replaced |
||
194 | /// with their unsigned counterparts. The correct type is restored in the public |
||
195 | /// API. |
||
196 | template <typename T, bool = std::is_enum<T>::value> |
||
197 | struct ResolveUnderlyingType { |
||
198 | using type = std::underlying_type_t<T>; |
||
199 | }; |
||
200 | template <typename T> struct ResolveUnderlyingType<T, false> { |
||
201 | using type = T; |
||
202 | }; |
||
203 | template <> struct ResolveUnderlyingType<bool, false> { |
||
204 | /// In case sizeof(bool) != 1, replace `void` by an additionnal |
||
205 | /// std::conditional. |
||
206 | using type = std::conditional_t<sizeof(bool) == 1, uint8_t, void>; |
||
207 | }; |
||
208 | |||
209 | } // namespace bitfields_details |
||
210 | |||
211 | /// Holds functions to get, set or test bitfields. |
||
212 | struct Bitfield { |
||
213 | /// Describes an element of a Bitfield. This type is then used with the |
||
214 | /// Bitfield static member functions. |
||
215 | /// \tparam T The type of the field once in unpacked form. |
||
216 | /// \tparam Offset The position of the first bit. |
||
217 | /// \tparam Size The size of the field. |
||
218 | /// \tparam MaxValue For enums the maximum enum allowed. |
||
219 | template <typename T, unsigned Offset, unsigned Size, |
||
220 | T MaxValue = std::is_enum<T>::value |
||
221 | ? T(0) // coupled with static_assert below |
||
222 | : std::numeric_limits<T>::max()> |
||
223 | struct Element { |
||
224 | using Type = T; |
||
225 | using IntegerType = |
||
226 | typename bitfields_details::ResolveUnderlyingType<T>::type; |
||
227 | static constexpr unsigned Shift = Offset; |
||
228 | static constexpr unsigned Bits = Size; |
||
229 | static constexpr unsigned FirstBit = Offset; |
||
230 | static constexpr unsigned LastBit = Shift + Bits - 1; |
||
231 | static constexpr unsigned NextBit = Shift + Bits; |
||
232 | |||
233 | private: |
||
234 | template <typename, typename> friend struct bitfields_details::Impl; |
||
235 | |||
236 | static_assert(Bits > 0, "Bits must be non zero"); |
||
237 | static constexpr size_t TypeBits = sizeof(IntegerType) * CHAR_BIT; |
||
238 | static_assert(Bits <= TypeBits, "Bits may not be greater than T size"); |
||
239 | static_assert(!std::is_enum<T>::value || MaxValue != T(0), |
||
240 | "Enum Bitfields must provide a MaxValue"); |
||
241 | static_assert(!std::is_enum<T>::value || |
||
242 | std::is_unsigned<IntegerType>::value, |
||
243 | "Enum must be unsigned"); |
||
244 | static_assert(std::is_integral<IntegerType>::value && |
||
245 | std::numeric_limits<IntegerType>::is_integer, |
||
246 | "IntegerType must be an integer type"); |
||
247 | |||
248 | static constexpr IntegerType UserMaxValue = |
||
249 | static_cast<IntegerType>(MaxValue); |
||
250 | }; |
||
251 | |||
252 | /// Unpacks the field from the `Packed` value. |
||
253 | template <typename Bitfield, typename StorageType> |
||
254 | static typename Bitfield::Type get(StorageType Packed) { |
||
255 | using I = bitfields_details::Impl<Bitfield, StorageType>; |
||
256 | return static_cast<typename Bitfield::Type>(I::extract(Packed)); |
||
257 | } |
||
258 | |||
259 | /// Return a non-zero value if the field is non-zero. |
||
260 | /// It is more efficient than `getField`. |
||
261 | template <typename Bitfield, typename StorageType> |
||
262 | static StorageType test(StorageType Packed) { |
||
263 | using I = bitfields_details::Impl<Bitfield, StorageType>; |
||
264 | return I::test(Packed); |
||
265 | } |
||
266 | |||
267 | /// Sets the typed value in the provided `Packed` value. |
||
268 | /// The method will asserts if the provided value is too big to fit in. |
||
269 | template <typename Bitfield, typename StorageType> |
||
270 | static void set(StorageType &Packed, typename Bitfield::Type Value) { |
||
271 | using I = bitfields_details::Impl<Bitfield, StorageType>; |
||
272 | I::update(Packed, static_cast<typename Bitfield::IntegerType>(Value)); |
||
273 | } |
||
274 | |||
275 | /// Returns whether the two bitfields share common bits. |
||
276 | template <typename A, typename B> static constexpr bool isOverlapping() { |
||
277 | return A::LastBit >= B::FirstBit && B::LastBit >= A::FirstBit; |
||
278 | } |
||
279 | |||
280 | template <typename A> static constexpr bool areContiguous() { return true; } |
||
281 | template <typename A, typename B, typename... Others> |
||
282 | static constexpr bool areContiguous() { |
||
283 | return A::NextBit == B::FirstBit && areContiguous<B, Others...>(); |
||
284 | } |
||
285 | }; |
||
286 | |||
287 | } // namespace llvm |
||
288 | |||
289 | #endif // LLVM_ADT_BITFIELDS_H |