Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | /// |
||
| 9 | /// \file |
||
| 10 | /// This file implements the BitVector class. |
||
| 11 | /// |
||
| 12 | //===----------------------------------------------------------------------===// |
||
| 13 | |||
| 14 | #ifndef LLVM_ADT_BITVECTOR_H |
||
| 15 | #define LLVM_ADT_BITVECTOR_H |
||
| 16 | |||
| 17 | #include "llvm/ADT/ArrayRef.h" |
||
| 18 | #include "llvm/ADT/DenseMapInfo.h" |
||
| 19 | #include "llvm/ADT/iterator_range.h" |
||
| 20 | #include "llvm/Support/MathExtras.h" |
||
| 21 | #include <algorithm> |
||
| 22 | #include <cassert> |
||
| 23 | #include <climits> |
||
| 24 | #include <cstdint> |
||
| 25 | #include <cstdlib> |
||
| 26 | #include <cstring> |
||
| 27 | #include <utility> |
||
| 28 | |||
| 29 | namespace llvm { |
||
| 30 | |||
| 31 | /// ForwardIterator for the bits that are set. |
||
| 32 | /// Iterators get invalidated when resize / reserve is called. |
||
| 33 | template <typename BitVectorT> class const_set_bits_iterator_impl { |
||
| 34 | const BitVectorT &Parent; |
||
| 35 | int Current = 0; |
||
| 36 | |||
| 37 | void advance() { |
||
| 38 | assert(Current != -1 && "Trying to advance past end."); |
||
| 39 | Current = Parent.find_next(Current); |
||
| 40 | } |
||
| 41 | |||
| 42 | public: |
||
| 43 | const_set_bits_iterator_impl(const BitVectorT &Parent, int Current) |
||
| 44 | : Parent(Parent), Current(Current) {} |
||
| 45 | explicit const_set_bits_iterator_impl(const BitVectorT &Parent) |
||
| 46 | : const_set_bits_iterator_impl(Parent, Parent.find_first()) {} |
||
| 47 | const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default; |
||
| 48 | |||
| 49 | const_set_bits_iterator_impl operator++(int) { |
||
| 50 | auto Prev = *this; |
||
| 51 | advance(); |
||
| 52 | return Prev; |
||
| 53 | } |
||
| 54 | |||
| 55 | const_set_bits_iterator_impl &operator++() { |
||
| 56 | advance(); |
||
| 57 | return *this; |
||
| 58 | } |
||
| 59 | |||
| 60 | unsigned operator*() const { return Current; } |
||
| 61 | |||
| 62 | bool operator==(const const_set_bits_iterator_impl &Other) const { |
||
| 63 | assert(&Parent == &Other.Parent && |
||
| 64 | "Comparing iterators from different BitVectors"); |
||
| 65 | return Current == Other.Current; |
||
| 66 | } |
||
| 67 | |||
| 68 | bool operator!=(const const_set_bits_iterator_impl &Other) const { |
||
| 69 | assert(&Parent == &Other.Parent && |
||
| 70 | "Comparing iterators from different BitVectors"); |
||
| 71 | return Current != Other.Current; |
||
| 72 | } |
||
| 73 | }; |
||
| 74 | |||
| 75 | class BitVector { |
||
| 76 | typedef uintptr_t BitWord; |
||
| 77 | |||
| 78 | enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; |
||
| 79 | |||
| 80 | static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, |
||
| 81 | "Unsupported word size"); |
||
| 82 | |||
| 83 | using Storage = SmallVector<BitWord>; |
||
| 84 | |||
| 85 | Storage Bits; // Actual bits. |
||
| 86 | unsigned Size = 0; // Size of bitvector in bits. |
||
| 87 | |||
| 88 | public: |
||
| 89 | using size_type = unsigned; |
||
| 90 | |||
| 91 | // Encapsulation of a single bit. |
||
| 92 | class reference { |
||
| 93 | |||
| 94 | BitWord *WordRef; |
||
| 95 | unsigned BitPos; |
||
| 96 | |||
| 97 | public: |
||
| 98 | reference(BitVector &b, unsigned Idx) { |
||
| 99 | WordRef = &b.Bits[Idx / BITWORD_SIZE]; |
||
| 100 | BitPos = Idx % BITWORD_SIZE; |
||
| 101 | } |
||
| 102 | |||
| 103 | reference() = delete; |
||
| 104 | reference(const reference&) = default; |
||
| 105 | |||
| 106 | reference &operator=(reference t) { |
||
| 107 | *this = bool(t); |
||
| 108 | return *this; |
||
| 109 | } |
||
| 110 | |||
| 111 | reference& operator=(bool t) { |
||
| 112 | if (t) |
||
| 113 | *WordRef |= BitWord(1) << BitPos; |
||
| 114 | else |
||
| 115 | *WordRef &= ~(BitWord(1) << BitPos); |
||
| 116 | return *this; |
||
| 117 | } |
||
| 118 | |||
| 119 | operator bool() const { |
||
| 120 | return ((*WordRef) & (BitWord(1) << BitPos)) != 0; |
||
| 121 | } |
||
| 122 | }; |
||
| 123 | |||
| 124 | typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator; |
||
| 125 | typedef const_set_bits_iterator set_iterator; |
||
| 126 | |||
| 127 | const_set_bits_iterator set_bits_begin() const { |
||
| 128 | return const_set_bits_iterator(*this); |
||
| 129 | } |
||
| 130 | const_set_bits_iterator set_bits_end() const { |
||
| 131 | return const_set_bits_iterator(*this, -1); |
||
| 132 | } |
||
| 133 | iterator_range<const_set_bits_iterator> set_bits() const { |
||
| 134 | return make_range(set_bits_begin(), set_bits_end()); |
||
| 135 | } |
||
| 136 | |||
| 137 | /// BitVector default ctor - Creates an empty bitvector. |
||
| 138 | BitVector() = default; |
||
| 139 | |||
| 140 | /// BitVector ctor - Creates a bitvector of specified number of bits. All |
||
| 141 | /// bits are initialized to the specified value. |
||
| 142 | explicit BitVector(unsigned s, bool t = false) |
||
| 143 | : Bits(NumBitWords(s), 0 - (BitWord)t), Size(s) { |
||
| 144 | if (t) |
||
| 145 | clear_unused_bits(); |
||
| 146 | } |
||
| 147 | |||
| 148 | /// empty - Tests whether there are no bits in this bitvector. |
||
| 149 | bool empty() const { return Size == 0; } |
||
| 150 | |||
| 151 | /// size - Returns the number of bits in this bitvector. |
||
| 152 | size_type size() const { return Size; } |
||
| 153 | |||
| 154 | /// count - Returns the number of bits which are set. |
||
| 155 | size_type count() const { |
||
| 156 | unsigned NumBits = 0; |
||
| 157 | for (auto Bit : Bits) |
||
| 158 | NumBits += llvm::popcount(Bit); |
||
| 159 | return NumBits; |
||
| 160 | } |
||
| 161 | |||
| 162 | /// any - Returns true if any bit is set. |
||
| 163 | bool any() const { |
||
| 164 | return any_of(Bits, [](BitWord Bit) { return Bit != 0; }); |
||
| 165 | } |
||
| 166 | |||
| 167 | /// all - Returns true if all bits are set. |
||
| 168 | bool all() const { |
||
| 169 | for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) |
||
| 170 | if (Bits[i] != ~BitWord(0)) |
||
| 171 | return false; |
||
| 172 | |||
| 173 | // If bits remain check that they are ones. The unused bits are always zero. |
||
| 174 | if (unsigned Remainder = Size % BITWORD_SIZE) |
||
| 175 | return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1; |
||
| 176 | |||
| 177 | return true; |
||
| 178 | } |
||
| 179 | |||
| 180 | /// none - Returns true if none of the bits are set. |
||
| 181 | bool none() const { |
||
| 182 | return !any(); |
||
| 183 | } |
||
| 184 | |||
| 185 | /// find_first_in - Returns the index of the first set / unset bit, |
||
| 186 | /// depending on \p Set, in the range [Begin, End). |
||
| 187 | /// Returns -1 if all bits in the range are unset / set. |
||
| 188 | int find_first_in(unsigned Begin, unsigned End, bool Set = true) const { |
||
| 189 | assert(Begin <= End && End <= Size); |
||
| 190 | if (Begin == End) |
||
| 191 | return -1; |
||
| 192 | |||
| 193 | unsigned FirstWord = Begin / BITWORD_SIZE; |
||
| 194 | unsigned LastWord = (End - 1) / BITWORD_SIZE; |
||
| 195 | |||
| 196 | // Check subsequent words. |
||
| 197 | // The code below is based on search for the first _set_ bit. If |
||
| 198 | // we're searching for the first _unset_, we just take the |
||
| 199 | // complement of each word before we use it and apply |
||
| 200 | // the same method. |
||
| 201 | for (unsigned i = FirstWord; i <= LastWord; ++i) { |
||
| 202 | BitWord Copy = Bits[i]; |
||
| 203 | if (!Set) |
||
| 204 | Copy = ~Copy; |
||
| 205 | |||
| 206 | if (i == FirstWord) { |
||
| 207 | unsigned FirstBit = Begin % BITWORD_SIZE; |
||
| 208 | Copy &= maskTrailingZeros<BitWord>(FirstBit); |
||
| 209 | } |
||
| 210 | |||
| 211 | if (i == LastWord) { |
||
| 212 | unsigned LastBit = (End - 1) % BITWORD_SIZE; |
||
| 213 | Copy &= maskTrailingOnes<BitWord>(LastBit + 1); |
||
| 214 | } |
||
| 215 | if (Copy != 0) |
||
| 216 | return i * BITWORD_SIZE + countTrailingZeros(Copy); |
||
| 217 | } |
||
| 218 | return -1; |
||
| 219 | } |
||
| 220 | |||
| 221 | /// find_last_in - Returns the index of the last set bit in the range |
||
| 222 | /// [Begin, End). Returns -1 if all bits in the range are unset. |
||
| 223 | int find_last_in(unsigned Begin, unsigned End) const { |
||
| 224 | assert(Begin <= End && End <= Size); |
||
| 225 | if (Begin == End) |
||
| 226 | return -1; |
||
| 227 | |||
| 228 | unsigned LastWord = (End - 1) / BITWORD_SIZE; |
||
| 229 | unsigned FirstWord = Begin / BITWORD_SIZE; |
||
| 230 | |||
| 231 | for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { |
||
| 232 | unsigned CurrentWord = i - 1; |
||
| 233 | |||
| 234 | BitWord Copy = Bits[CurrentWord]; |
||
| 235 | if (CurrentWord == LastWord) { |
||
| 236 | unsigned LastBit = (End - 1) % BITWORD_SIZE; |
||
| 237 | Copy &= maskTrailingOnes<BitWord>(LastBit + 1); |
||
| 238 | } |
||
| 239 | |||
| 240 | if (CurrentWord == FirstWord) { |
||
| 241 | unsigned FirstBit = Begin % BITWORD_SIZE; |
||
| 242 | Copy &= maskTrailingZeros<BitWord>(FirstBit); |
||
| 243 | } |
||
| 244 | |||
| 245 | if (Copy != 0) |
||
| 246 | return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1; |
||
| 247 | } |
||
| 248 | |||
| 249 | return -1; |
||
| 250 | } |
||
| 251 | |||
| 252 | /// find_first_unset_in - Returns the index of the first unset bit in the |
||
| 253 | /// range [Begin, End). Returns -1 if all bits in the range are set. |
||
| 254 | int find_first_unset_in(unsigned Begin, unsigned End) const { |
||
| 255 | return find_first_in(Begin, End, /* Set = */ false); |
||
| 256 | } |
||
| 257 | |||
| 258 | /// find_last_unset_in - Returns the index of the last unset bit in the |
||
| 259 | /// range [Begin, End). Returns -1 if all bits in the range are set. |
||
| 260 | int find_last_unset_in(unsigned Begin, unsigned End) const { |
||
| 261 | assert(Begin <= End && End <= Size); |
||
| 262 | if (Begin == End) |
||
| 263 | return -1; |
||
| 264 | |||
| 265 | unsigned LastWord = (End - 1) / BITWORD_SIZE; |
||
| 266 | unsigned FirstWord = Begin / BITWORD_SIZE; |
||
| 267 | |||
| 268 | for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { |
||
| 269 | unsigned CurrentWord = i - 1; |
||
| 270 | |||
| 271 | BitWord Copy = Bits[CurrentWord]; |
||
| 272 | if (CurrentWord == LastWord) { |
||
| 273 | unsigned LastBit = (End - 1) % BITWORD_SIZE; |
||
| 274 | Copy |= maskTrailingZeros<BitWord>(LastBit + 1); |
||
| 275 | } |
||
| 276 | |||
| 277 | if (CurrentWord == FirstWord) { |
||
| 278 | unsigned FirstBit = Begin % BITWORD_SIZE; |
||
| 279 | Copy |= maskTrailingOnes<BitWord>(FirstBit); |
||
| 280 | } |
||
| 281 | |||
| 282 | if (Copy != ~BitWord(0)) { |
||
| 283 | unsigned Result = |
||
| 284 | (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1; |
||
| 285 | return Result < Size ? Result : -1; |
||
| 286 | } |
||
| 287 | } |
||
| 288 | return -1; |
||
| 289 | } |
||
| 290 | |||
| 291 | /// find_first - Returns the index of the first set bit, -1 if none |
||
| 292 | /// of the bits are set. |
||
| 293 | int find_first() const { return find_first_in(0, Size); } |
||
| 294 | |||
| 295 | /// find_last - Returns the index of the last set bit, -1 if none of the bits |
||
| 296 | /// are set. |
||
| 297 | int find_last() const { return find_last_in(0, Size); } |
||
| 298 | |||
| 299 | /// find_next - Returns the index of the next set bit following the |
||
| 300 | /// "Prev" bit. Returns -1 if the next set bit is not found. |
||
| 301 | int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); } |
||
| 302 | |||
| 303 | /// find_prev - Returns the index of the first set bit that precedes the |
||
| 304 | /// the bit at \p PriorTo. Returns -1 if all previous bits are unset. |
||
| 305 | int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); } |
||
| 306 | |||
| 307 | /// find_first_unset - Returns the index of the first unset bit, -1 if all |
||
| 308 | /// of the bits are set. |
||
| 309 | int find_first_unset() const { return find_first_unset_in(0, Size); } |
||
| 310 | |||
| 311 | /// find_next_unset - Returns the index of the next unset bit following the |
||
| 312 | /// "Prev" bit. Returns -1 if all remaining bits are set. |
||
| 313 | int find_next_unset(unsigned Prev) const { |
||
| 314 | return find_first_unset_in(Prev + 1, Size); |
||
| 315 | } |
||
| 316 | |||
| 317 | /// find_last_unset - Returns the index of the last unset bit, -1 if all of |
||
| 318 | /// the bits are set. |
||
| 319 | int find_last_unset() const { return find_last_unset_in(0, Size); } |
||
| 320 | |||
| 321 | /// find_prev_unset - Returns the index of the first unset bit that precedes |
||
| 322 | /// the bit at \p PriorTo. Returns -1 if all previous bits are set. |
||
| 323 | int find_prev_unset(unsigned PriorTo) { |
||
| 324 | return find_last_unset_in(0, PriorTo); |
||
| 325 | } |
||
| 326 | |||
| 327 | /// clear - Removes all bits from the bitvector. |
||
| 328 | void clear() { |
||
| 329 | Size = 0; |
||
| 330 | Bits.clear(); |
||
| 331 | } |
||
| 332 | |||
| 333 | /// resize - Grow or shrink the bitvector. |
||
| 334 | void resize(unsigned N, bool t = false) { |
||
| 335 | set_unused_bits(t); |
||
| 336 | Size = N; |
||
| 337 | Bits.resize(NumBitWords(N), 0 - BitWord(t)); |
||
| 338 | clear_unused_bits(); |
||
| 339 | } |
||
| 340 | |||
| 341 | void reserve(unsigned N) { Bits.reserve(NumBitWords(N)); } |
||
| 342 | |||
| 343 | // Set, reset, flip |
||
| 344 | BitVector &set() { |
||
| 345 | init_words(true); |
||
| 346 | clear_unused_bits(); |
||
| 347 | return *this; |
||
| 348 | } |
||
| 349 | |||
| 350 | BitVector &set(unsigned Idx) { |
||
| 351 | assert(Idx < Size && "access in bound"); |
||
| 352 | Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); |
||
| 353 | return *this; |
||
| 354 | } |
||
| 355 | |||
| 356 | /// set - Efficiently set a range of bits in [I, E) |
||
| 357 | BitVector &set(unsigned I, unsigned E) { |
||
| 358 | assert(I <= E && "Attempted to set backwards range!"); |
||
| 359 | assert(E <= size() && "Attempted to set out-of-bounds range!"); |
||
| 360 | |||
| 361 | if (I == E) return *this; |
||
| 362 | |||
| 363 | if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
||
| 364 | BitWord EMask = BitWord(1) << (E % BITWORD_SIZE); |
||
| 365 | BitWord IMask = BitWord(1) << (I % BITWORD_SIZE); |
||
| 366 | BitWord Mask = EMask - IMask; |
||
| 367 | Bits[I / BITWORD_SIZE] |= Mask; |
||
| 368 | return *this; |
||
| 369 | } |
||
| 370 | |||
| 371 | BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE); |
||
| 372 | Bits[I / BITWORD_SIZE] |= PrefixMask; |
||
| 373 | I = alignTo(I, BITWORD_SIZE); |
||
| 374 | |||
| 375 | for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
||
| 376 | Bits[I / BITWORD_SIZE] = ~BitWord(0); |
||
| 377 | |||
| 378 | BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1; |
||
| 379 | if (I < E) |
||
| 380 | Bits[I / BITWORD_SIZE] |= PostfixMask; |
||
| 381 | |||
| 382 | return *this; |
||
| 383 | } |
||
| 384 | |||
| 385 | BitVector &reset() { |
||
| 386 | init_words(false); |
||
| 387 | return *this; |
||
| 388 | } |
||
| 389 | |||
| 390 | BitVector &reset(unsigned Idx) { |
||
| 391 | Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); |
||
| 392 | return *this; |
||
| 393 | } |
||
| 394 | |||
| 395 | /// reset - Efficiently reset a range of bits in [I, E) |
||
| 396 | BitVector &reset(unsigned I, unsigned E) { |
||
| 397 | assert(I <= E && "Attempted to reset backwards range!"); |
||
| 398 | assert(E <= size() && "Attempted to reset out-of-bounds range!"); |
||
| 399 | |||
| 400 | if (I == E) return *this; |
||
| 401 | |||
| 402 | if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
||
| 403 | BitWord EMask = BitWord(1) << (E % BITWORD_SIZE); |
||
| 404 | BitWord IMask = BitWord(1) << (I % BITWORD_SIZE); |
||
| 405 | BitWord Mask = EMask - IMask; |
||
| 406 | Bits[I / BITWORD_SIZE] &= ~Mask; |
||
| 407 | return *this; |
||
| 408 | } |
||
| 409 | |||
| 410 | BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE); |
||
| 411 | Bits[I / BITWORD_SIZE] &= ~PrefixMask; |
||
| 412 | I = alignTo(I, BITWORD_SIZE); |
||
| 413 | |||
| 414 | for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
||
| 415 | Bits[I / BITWORD_SIZE] = BitWord(0); |
||
| 416 | |||
| 417 | BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1; |
||
| 418 | if (I < E) |
||
| 419 | Bits[I / BITWORD_SIZE] &= ~PostfixMask; |
||
| 420 | |||
| 421 | return *this; |
||
| 422 | } |
||
| 423 | |||
| 424 | BitVector &flip() { |
||
| 425 | for (auto &Bit : Bits) |
||
| 426 | Bit = ~Bit; |
||
| 427 | clear_unused_bits(); |
||
| 428 | return *this; |
||
| 429 | } |
||
| 430 | |||
| 431 | BitVector &flip(unsigned Idx) { |
||
| 432 | Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); |
||
| 433 | return *this; |
||
| 434 | } |
||
| 435 | |||
| 436 | // Indexing. |
||
| 437 | reference operator[](unsigned Idx) { |
||
| 438 | assert (Idx < Size && "Out-of-bounds Bit access."); |
||
| 439 | return reference(*this, Idx); |
||
| 440 | } |
||
| 441 | |||
| 442 | bool operator[](unsigned Idx) const { |
||
| 443 | assert (Idx < Size && "Out-of-bounds Bit access."); |
||
| 444 | BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); |
||
| 445 | return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; |
||
| 446 | } |
||
| 447 | |||
| 448 | /// Return the last element in the vector. |
||
| 449 | bool back() const { |
||
| 450 | assert(!empty() && "Getting last element of empty vector."); |
||
| 451 | return (*this)[size() - 1]; |
||
| 452 | } |
||
| 453 | |||
| 454 | bool test(unsigned Idx) const { |
||
| 455 | return (*this)[Idx]; |
||
| 456 | } |
||
| 457 | |||
| 458 | // Push single bit to end of vector. |
||
| 459 | void push_back(bool Val) { |
||
| 460 | unsigned OldSize = Size; |
||
| 461 | unsigned NewSize = Size + 1; |
||
| 462 | |||
| 463 | // Resize, which will insert zeros. |
||
| 464 | // If we already fit then the unused bits will be already zero. |
||
| 465 | if (NewSize > getBitCapacity()) |
||
| 466 | resize(NewSize, false); |
||
| 467 | else |
||
| 468 | Size = NewSize; |
||
| 469 | |||
| 470 | // If true, set single bit. |
||
| 471 | if (Val) |
||
| 472 | set(OldSize); |
||
| 473 | } |
||
| 474 | |||
| 475 | /// Pop one bit from the end of the vector. |
||
| 476 | void pop_back() { |
||
| 477 | assert(!empty() && "Empty vector has no element to pop."); |
||
| 478 | resize(size() - 1); |
||
| 479 | } |
||
| 480 | |||
| 481 | /// Test if any common bits are set. |
||
| 482 | bool anyCommon(const BitVector &RHS) const { |
||
| 483 | unsigned ThisWords = Bits.size(); |
||
| 484 | unsigned RHSWords = RHS.Bits.size(); |
||
| 485 | for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) |
||
| 486 | if (Bits[i] & RHS.Bits[i]) |
||
| 487 | return true; |
||
| 488 | return false; |
||
| 489 | } |
||
| 490 | |||
| 491 | // Comparison operators. |
||
| 492 | bool operator==(const BitVector &RHS) const { |
||
| 493 | if (size() != RHS.size()) |
||
| 494 | return false; |
||
| 495 | unsigned NumWords = Bits.size(); |
||
| 496 | return std::equal(Bits.begin(), Bits.begin() + NumWords, RHS.Bits.begin()); |
||
| 497 | } |
||
| 498 | |||
| 499 | bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } |
||
| 500 | |||
| 501 | /// Intersection, union, disjoint union. |
||
| 502 | BitVector &operator&=(const BitVector &RHS) { |
||
| 503 | unsigned ThisWords = Bits.size(); |
||
| 504 | unsigned RHSWords = RHS.Bits.size(); |
||
| 505 | unsigned i; |
||
| 506 | for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
||
| 507 | Bits[i] &= RHS.Bits[i]; |
||
| 508 | |||
| 509 | // Any bits that are just in this bitvector become zero, because they aren't |
||
| 510 | // in the RHS bit vector. Any words only in RHS are ignored because they |
||
| 511 | // are already zero in the LHS. |
||
| 512 | for (; i != ThisWords; ++i) |
||
| 513 | Bits[i] = 0; |
||
| 514 | |||
| 515 | return *this; |
||
| 516 | } |
||
| 517 | |||
| 518 | /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. |
||
| 519 | BitVector &reset(const BitVector &RHS) { |
||
| 520 | unsigned ThisWords = Bits.size(); |
||
| 521 | unsigned RHSWords = RHS.Bits.size(); |
||
| 522 | for (unsigned i = 0; i != std::min(ThisWords, RHSWords); ++i) |
||
| 523 | Bits[i] &= ~RHS.Bits[i]; |
||
| 524 | return *this; |
||
| 525 | } |
||
| 526 | |||
| 527 | /// test - Check if (This - RHS) is zero. |
||
| 528 | /// This is the same as reset(RHS) and any(). |
||
| 529 | bool test(const BitVector &RHS) const { |
||
| 530 | unsigned ThisWords = Bits.size(); |
||
| 531 | unsigned RHSWords = RHS.Bits.size(); |
||
| 532 | unsigned i; |
||
| 533 | for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
||
| 534 | if ((Bits[i] & ~RHS.Bits[i]) != 0) |
||
| 535 | return true; |
||
| 536 | |||
| 537 | for (; i != ThisWords ; ++i) |
||
| 538 | if (Bits[i] != 0) |
||
| 539 | return true; |
||
| 540 | |||
| 541 | return false; |
||
| 542 | } |
||
| 543 | |||
| 544 | template <class F, class... ArgTys> |
||
| 545 | static BitVector &apply(F &&f, BitVector &Out, BitVector const &Arg, |
||
| 546 | ArgTys const &...Args) { |
||
| 547 | assert(llvm::all_of( |
||
| 548 | std::initializer_list<unsigned>{Args.size()...}, |
||
| 549 | [&Arg](auto const &BV) { return Arg.size() == BV; }) && |
||
| 550 | "consistent sizes"); |
||
| 551 | Out.resize(Arg.size()); |
||
| 552 | for (size_type I = 0, E = Arg.Bits.size(); I != E; ++I) |
||
| 553 | Out.Bits[I] = f(Arg.Bits[I], Args.Bits[I]...); |
||
| 554 | Out.clear_unused_bits(); |
||
| 555 | return Out; |
||
| 556 | } |
||
| 557 | |||
| 558 | BitVector &operator|=(const BitVector &RHS) { |
||
| 559 | if (size() < RHS.size()) |
||
| 560 | resize(RHS.size()); |
||
| 561 | for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I) |
||
| 562 | Bits[I] |= RHS.Bits[I]; |
||
| 563 | return *this; |
||
| 564 | } |
||
| 565 | |||
| 566 | BitVector &operator^=(const BitVector &RHS) { |
||
| 567 | if (size() < RHS.size()) |
||
| 568 | resize(RHS.size()); |
||
| 569 | for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I) |
||
| 570 | Bits[I] ^= RHS.Bits[I]; |
||
| 571 | return *this; |
||
| 572 | } |
||
| 573 | |||
| 574 | BitVector &operator>>=(unsigned N) { |
||
| 575 | assert(N <= Size); |
||
| 576 | if (LLVM_UNLIKELY(empty() || N == 0)) |
||
| 577 | return *this; |
||
| 578 | |||
| 579 | unsigned NumWords = Bits.size(); |
||
| 580 | assert(NumWords >= 1); |
||
| 581 | |||
| 582 | wordShr(N / BITWORD_SIZE); |
||
| 583 | |||
| 584 | unsigned BitDistance = N % BITWORD_SIZE; |
||
| 585 | if (BitDistance == 0) |
||
| 586 | return *this; |
||
| 587 | |||
| 588 | // When the shift size is not a multiple of the word size, then we have |
||
| 589 | // a tricky situation where each word in succession needs to extract some |
||
| 590 | // of the bits from the next word and or them into this word while |
||
| 591 | // shifting this word to make room for the new bits. This has to be done |
||
| 592 | // for every word in the array. |
||
| 593 | |||
| 594 | // Since we're shifting each word right, some bits will fall off the end |
||
| 595 | // of each word to the right, and empty space will be created on the left. |
||
| 596 | // The final word in the array will lose bits permanently, so starting at |
||
| 597 | // the beginning, work forwards shifting each word to the right, and |
||
| 598 | // OR'ing in the bits from the end of the next word to the beginning of |
||
| 599 | // the current word. |
||
| 600 | |||
| 601 | // Example: |
||
| 602 | // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right |
||
| 603 | // by 4 bits. |
||
| 604 | // Step 1: Word[0] >>= 4 ; 0x0ABBCCDD |
||
| 605 | // Step 2: Word[0] |= 0x10000000 ; 0x1ABBCCDD |
||
| 606 | // Step 3: Word[1] >>= 4 ; 0x0EEFF001 |
||
| 607 | // Step 4: Word[1] |= 0x50000000 ; 0x5EEFF001 |
||
| 608 | // Step 5: Word[2] >>= 4 ; 0x02334455 |
||
| 609 | // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 } |
||
| 610 | const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance); |
||
| 611 | const unsigned LSH = BITWORD_SIZE - BitDistance; |
||
| 612 | |||
| 613 | for (unsigned I = 0; I < NumWords - 1; ++I) { |
||
| 614 | Bits[I] >>= BitDistance; |
||
| 615 | Bits[I] |= (Bits[I + 1] & Mask) << LSH; |
||
| 616 | } |
||
| 617 | |||
| 618 | Bits[NumWords - 1] >>= BitDistance; |
||
| 619 | |||
| 620 | return *this; |
||
| 621 | } |
||
| 622 | |||
| 623 | BitVector &operator<<=(unsigned N) { |
||
| 624 | assert(N <= Size); |
||
| 625 | if (LLVM_UNLIKELY(empty() || N == 0)) |
||
| 626 | return *this; |
||
| 627 | |||
| 628 | unsigned NumWords = Bits.size(); |
||
| 629 | assert(NumWords >= 1); |
||
| 630 | |||
| 631 | wordShl(N / BITWORD_SIZE); |
||
| 632 | |||
| 633 | unsigned BitDistance = N % BITWORD_SIZE; |
||
| 634 | if (BitDistance == 0) |
||
| 635 | return *this; |
||
| 636 | |||
| 637 | // When the shift size is not a multiple of the word size, then we have |
||
| 638 | // a tricky situation where each word in succession needs to extract some |
||
| 639 | // of the bits from the previous word and or them into this word while |
||
| 640 | // shifting this word to make room for the new bits. This has to be done |
||
| 641 | // for every word in the array. This is similar to the algorithm outlined |
||
| 642 | // in operator>>=, but backwards. |
||
| 643 | |||
| 644 | // Since we're shifting each word left, some bits will fall off the end |
||
| 645 | // of each word to the left, and empty space will be created on the right. |
||
| 646 | // The first word in the array will lose bits permanently, so starting at |
||
| 647 | // the end, work backwards shifting each word to the left, and OR'ing |
||
| 648 | // in the bits from the end of the next word to the beginning of the |
||
| 649 | // current word. |
||
| 650 | |||
| 651 | // Example: |
||
| 652 | // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left |
||
| 653 | // by 4 bits. |
||
| 654 | // Step 1: Word[2] <<= 4 ; 0x23344550 |
||
| 655 | // Step 2: Word[2] |= 0x0000000E ; 0x2334455E |
||
| 656 | // Step 3: Word[1] <<= 4 ; 0xEFF00110 |
||
| 657 | // Step 4: Word[1] |= 0x0000000A ; 0xEFF0011A |
||
| 658 | // Step 5: Word[0] <<= 4 ; 0xABBCCDD0 |
||
| 659 | // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E } |
||
| 660 | const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance); |
||
| 661 | const unsigned RSH = BITWORD_SIZE - BitDistance; |
||
| 662 | |||
| 663 | for (int I = NumWords - 1; I > 0; --I) { |
||
| 664 | Bits[I] <<= BitDistance; |
||
| 665 | Bits[I] |= (Bits[I - 1] & Mask) >> RSH; |
||
| 666 | } |
||
| 667 | Bits[0] <<= BitDistance; |
||
| 668 | clear_unused_bits(); |
||
| 669 | |||
| 670 | return *this; |
||
| 671 | } |
||
| 672 | |||
| 673 | void swap(BitVector &RHS) { |
||
| 674 | std::swap(Bits, RHS.Bits); |
||
| 675 | std::swap(Size, RHS.Size); |
||
| 676 | } |
||
| 677 | |||
| 678 | void invalid() { |
||
| 679 | assert(!Size && Bits.empty()); |
||
| 680 | Size = (unsigned)-1; |
||
| 681 | } |
||
| 682 | bool isInvalid() const { return Size == (unsigned)-1; } |
||
| 683 | |||
| 684 | ArrayRef<BitWord> getData() const { return {&Bits[0], Bits.size()}; } |
||
| 685 | |||
| 686 | //===--------------------------------------------------------------------===// |
||
| 687 | // Portable bit mask operations. |
||
| 688 | //===--------------------------------------------------------------------===// |
||
| 689 | // |
||
| 690 | // These methods all operate on arrays of uint32_t, each holding 32 bits. The |
||
| 691 | // fixed word size makes it easier to work with literal bit vector constants |
||
| 692 | // in portable code. |
||
| 693 | // |
||
| 694 | // The LSB in each word is the lowest numbered bit. The size of a portable |
||
| 695 | // bit mask is always a whole multiple of 32 bits. If no bit mask size is |
||
| 696 | // given, the bit mask is assumed to cover the entire BitVector. |
||
| 697 | |||
| 698 | /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. |
||
| 699 | /// This computes "*this |= Mask". |
||
| 700 | void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
||
| 701 | applyMask<true, false>(Mask, MaskWords); |
||
| 702 | } |
||
| 703 | |||
| 704 | /// clearBitsInMask - Clear any bits in this vector that are set in Mask. |
||
| 705 | /// Don't resize. This computes "*this &= ~Mask". |
||
| 706 | void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
||
| 707 | applyMask<false, false>(Mask, MaskWords); |
||
| 708 | } |
||
| 709 | |||
| 710 | /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. |
||
| 711 | /// Don't resize. This computes "*this |= ~Mask". |
||
| 712 | void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
||
| 713 | applyMask<true, true>(Mask, MaskWords); |
||
| 714 | } |
||
| 715 | |||
| 716 | /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. |
||
| 717 | /// Don't resize. This computes "*this &= Mask". |
||
| 718 | void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
||
| 719 | applyMask<false, true>(Mask, MaskWords); |
||
| 720 | } |
||
| 721 | |||
| 722 | private: |
||
| 723 | /// Perform a logical left shift of \p Count words by moving everything |
||
| 724 | /// \p Count words to the right in memory. |
||
| 725 | /// |
||
| 726 | /// While confusing, words are stored from least significant at Bits[0] to |
||
| 727 | /// most significant at Bits[NumWords-1]. A logical shift left, however, |
||
| 728 | /// moves the current least significant bit to a higher logical index, and |
||
| 729 | /// fills the previous least significant bits with 0. Thus, we actually |
||
| 730 | /// need to move the bytes of the memory to the right, not to the left. |
||
| 731 | /// Example: |
||
| 732 | /// Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000] |
||
| 733 | /// represents a BitVector where 0xBBBBAAAA contain the least significant |
||
| 734 | /// bits. So if we want to shift the BitVector left by 2 words, we need |
||
| 735 | /// to turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a |
||
| 736 | /// memmove which moves right, not left. |
||
| 737 | void wordShl(uint32_t Count) { |
||
| 738 | if (Count == 0) |
||
| 739 | return; |
||
| 740 | |||
| 741 | uint32_t NumWords = Bits.size(); |
||
| 742 | |||
| 743 | // Since we always move Word-sized chunks of data with src and dest both |
||
| 744 | // aligned to a word-boundary, we don't need to worry about endianness |
||
| 745 | // here. |
||
| 746 | std::copy(Bits.begin(), Bits.begin() + NumWords - Count, |
||
| 747 | Bits.begin() + Count); |
||
| 748 | std::fill(Bits.begin(), Bits.begin() + Count, 0); |
||
| 749 | clear_unused_bits(); |
||
| 750 | } |
||
| 751 | |||
| 752 | /// Perform a logical right shift of \p Count words by moving those |
||
| 753 | /// words to the left in memory. See wordShl for more information. |
||
| 754 | /// |
||
| 755 | void wordShr(uint32_t Count) { |
||
| 756 | if (Count == 0) |
||
| 757 | return; |
||
| 758 | |||
| 759 | uint32_t NumWords = Bits.size(); |
||
| 760 | |||
| 761 | std::copy(Bits.begin() + Count, Bits.begin() + NumWords, Bits.begin()); |
||
| 762 | std::fill(Bits.begin() + NumWords - Count, Bits.begin() + NumWords, 0); |
||
| 763 | } |
||
| 764 | |||
| 765 | int next_unset_in_word(int WordIndex, BitWord Word) const { |
||
| 766 | unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word); |
||
| 767 | return Result < size() ? Result : -1; |
||
| 768 | } |
||
| 769 | |||
| 770 | unsigned NumBitWords(unsigned S) const { |
||
| 771 | return (S + BITWORD_SIZE-1) / BITWORD_SIZE; |
||
| 772 | } |
||
| 773 | |||
| 774 | // Set the unused bits in the high words. |
||
| 775 | void set_unused_bits(bool t = true) { |
||
| 776 | // Then set any stray high bits of the last used word. |
||
| 777 | if (unsigned ExtraBits = Size % BITWORD_SIZE) { |
||
| 778 | BitWord ExtraBitMask = ~BitWord(0) << ExtraBits; |
||
| 779 | if (t) |
||
| 780 | Bits.back() |= ExtraBitMask; |
||
| 781 | else |
||
| 782 | Bits.back() &= ~ExtraBitMask; |
||
| 783 | } |
||
| 784 | } |
||
| 785 | |||
| 786 | // Clear the unused bits in the high words. |
||
| 787 | void clear_unused_bits() { |
||
| 788 | set_unused_bits(false); |
||
| 789 | } |
||
| 790 | |||
| 791 | void init_words(bool t) { |
||
| 792 | std::fill(Bits.begin(), Bits.end(), 0 - (BitWord)t); |
||
| 793 | } |
||
| 794 | |||
| 795 | template<bool AddBits, bool InvertMask> |
||
| 796 | void applyMask(const uint32_t *Mask, unsigned MaskWords) { |
||
| 797 | static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); |
||
| 798 | MaskWords = std::min(MaskWords, (size() + 31) / 32); |
||
| 799 | const unsigned Scale = BITWORD_SIZE / 32; |
||
| 800 | unsigned i; |
||
| 801 | for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { |
||
| 802 | BitWord BW = Bits[i]; |
||
| 803 | // This inner loop should unroll completely when BITWORD_SIZE > 32. |
||
| 804 | for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { |
||
| 805 | uint32_t M = *Mask++; |
||
| 806 | if (InvertMask) M = ~M; |
||
| 807 | if (AddBits) BW |= BitWord(M) << b; |
||
| 808 | else BW &= ~(BitWord(M) << b); |
||
| 809 | } |
||
| 810 | Bits[i] = BW; |
||
| 811 | } |
||
| 812 | for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { |
||
| 813 | uint32_t M = *Mask++; |
||
| 814 | if (InvertMask) M = ~M; |
||
| 815 | if (AddBits) Bits[i] |= BitWord(M) << b; |
||
| 816 | else Bits[i] &= ~(BitWord(M) << b); |
||
| 817 | } |
||
| 818 | if (AddBits) |
||
| 819 | clear_unused_bits(); |
||
| 820 | } |
||
| 821 | |||
| 822 | public: |
||
| 823 | /// Return the size (in bytes) of the bit vector. |
||
| 824 | size_type getMemorySize() const { return Bits.size() * sizeof(BitWord); } |
||
| 825 | size_type getBitCapacity() const { return Bits.size() * BITWORD_SIZE; } |
||
| 826 | }; |
||
| 827 | |||
| 828 | inline BitVector::size_type capacity_in_bytes(const BitVector &X) { |
||
| 829 | return X.getMemorySize(); |
||
| 830 | } |
||
| 831 | |||
| 832 | template <> struct DenseMapInfo<BitVector> { |
||
| 833 | static inline BitVector getEmptyKey() { return {}; } |
||
| 834 | static inline BitVector getTombstoneKey() { |
||
| 835 | BitVector V; |
||
| 836 | V.invalid(); |
||
| 837 | return V; |
||
| 838 | } |
||
| 839 | static unsigned getHashValue(const BitVector &V) { |
||
| 840 | return DenseMapInfo<std::pair<BitVector::size_type, ArrayRef<uintptr_t>>>:: |
||
| 841 | getHashValue(std::make_pair(V.size(), V.getData())); |
||
| 842 | } |
||
| 843 | static bool isEqual(const BitVector &LHS, const BitVector &RHS) { |
||
| 844 | if (LHS.isInvalid() || RHS.isInvalid()) |
||
| 845 | return LHS.isInvalid() == RHS.isInvalid(); |
||
| 846 | return LHS == RHS; |
||
| 847 | } |
||
| 848 | }; |
||
| 849 | } // end namespace llvm |
||
| 850 | |||
| 851 | namespace std { |
||
| 852 | /// Implement std::swap in terms of BitVector swap. |
||
| 853 | inline void swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { LHS.swap(RHS); } |
||
| 854 | } // end namespace std |
||
| 855 | |||
| 856 | #endif // LLVM_ADT_BITVECTOR_H |