Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | /// |
||
| 9 | /// \file |
||
| 10 | /// This file implements a class to represent arbitrary precision |
||
| 11 | /// integral constant values and operations on them. |
||
| 12 | /// |
||
| 13 | //===----------------------------------------------------------------------===// |
||
| 14 | |||
| 15 | #ifndef LLVM_ADT_APINT_H |
||
| 16 | #define LLVM_ADT_APINT_H |
||
| 17 | |||
| 18 | #include "llvm/Support/Compiler.h" |
||
| 19 | #include "llvm/Support/MathExtras.h" |
||
| 20 | #include <cassert> |
||
| 21 | #include <climits> |
||
| 22 | #include <cstring> |
||
| 23 | #include <optional> |
||
| 24 | #include <utility> |
||
| 25 | |||
| 26 | namespace llvm { |
||
| 27 | class FoldingSetNodeID; |
||
| 28 | class StringRef; |
||
| 29 | class hash_code; |
||
| 30 | class raw_ostream; |
||
| 31 | |||
| 32 | template <typename T> class SmallVectorImpl; |
||
| 33 | template <typename T> class ArrayRef; |
||
| 34 | template <typename T, typename Enable> struct DenseMapInfo; |
||
| 35 | |||
| 36 | class APInt; |
||
| 37 | |||
| 38 | inline APInt operator-(APInt); |
||
| 39 | |||
| 40 | //===----------------------------------------------------------------------===// |
||
| 41 | // APInt Class |
||
| 42 | //===----------------------------------------------------------------------===// |
||
| 43 | |||
| 44 | /// Class for arbitrary precision integers. |
||
| 45 | /// |
||
| 46 | /// APInt is a functional replacement for common case unsigned integer type like |
||
| 47 | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
||
| 48 | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
||
| 49 | /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
||
| 50 | /// and methods to manipulate integer values of any bit-width. It supports both |
||
| 51 | /// the typical integer arithmetic and comparison operations as well as bitwise |
||
| 52 | /// manipulation. |
||
| 53 | /// |
||
| 54 | /// The class has several invariants worth noting: |
||
| 55 | /// * All bit, byte, and word positions are zero-based. |
||
| 56 | /// * Once the bit width is set, it doesn't change except by the Truncate, |
||
| 57 | /// SignExtend, or ZeroExtend operations. |
||
| 58 | /// * All binary operators must be on APInt instances of the same bit width. |
||
| 59 | /// Attempting to use these operators on instances with different bit |
||
| 60 | /// widths will yield an assertion. |
||
| 61 | /// * The value is stored canonically as an unsigned value. For operations |
||
| 62 | /// where it makes a difference, there are both signed and unsigned variants |
||
| 63 | /// of the operation. For example, sdiv and udiv. However, because the bit |
||
| 64 | /// widths must be the same, operations such as Mul and Add produce the same |
||
| 65 | /// results regardless of whether the values are interpreted as signed or |
||
| 66 | /// not. |
||
| 67 | /// * In general, the class tries to follow the style of computation that LLVM |
||
| 68 | /// uses in its IR. This simplifies its use for LLVM. |
||
| 69 | /// * APInt supports zero-bit-width values, but operations that require bits |
||
| 70 | /// are not defined on it (e.g. you cannot ask for the sign of a zero-bit |
||
| 71 | /// integer). This means that operations like zero extension and logical |
||
| 72 | /// shifts are defined, but sign extension and ashr is not. Zero bit values |
||
| 73 | /// compare and hash equal to themselves, and countLeadingZeros returns 0. |
||
| 74 | /// |
||
| 75 | class [[nodiscard]] APInt { |
||
| 76 | public: |
||
| 77 | typedef uint64_t WordType; |
||
| 78 | |||
| 79 | /// This enum is used to hold the constants we needed for APInt. |
||
| 80 | enum : unsigned { |
||
| 81 | /// Byte size of a word. |
||
| 82 | APINT_WORD_SIZE = sizeof(WordType), |
||
| 83 | /// Bits in a word. |
||
| 84 | APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT |
||
| 85 | }; |
||
| 86 | |||
| 87 | enum class Rounding { |
||
| 88 | DOWN, |
||
| 89 | TOWARD_ZERO, |
||
| 90 | UP, |
||
| 91 | }; |
||
| 92 | |||
| 93 | static constexpr WordType WORDTYPE_MAX = ~WordType(0); |
||
| 94 | |||
| 95 | /// \name Constructors |
||
| 96 | /// @{ |
||
| 97 | |||
| 98 | /// Create a new APInt of numBits width, initialized as val. |
||
| 99 | /// |
||
| 100 | /// If isSigned is true then val is treated as if it were a signed value |
||
| 101 | /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
||
| 102 | /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
||
| 103 | /// the range of val are zero filled). |
||
| 104 | /// |
||
| 105 | /// \param numBits the bit width of the constructed APInt |
||
| 106 | /// \param val the initial value of the APInt |
||
| 107 | /// \param isSigned how to treat signedness of val |
||
| 108 | APInt(unsigned numBits, uint64_t val, bool isSigned = false) |
||
| 109 | : BitWidth(numBits) { |
||
| 110 | if (isSingleWord()) { |
||
| 111 | U.VAL = val; |
||
| 112 | clearUnusedBits(); |
||
| 113 | } else { |
||
| 114 | initSlowCase(val, isSigned); |
||
| 115 | } |
||
| 116 | } |
||
| 117 | |||
| 118 | /// Construct an APInt of numBits width, initialized as bigVal[]. |
||
| 119 | /// |
||
| 120 | /// Note that bigVal.size() can be smaller or larger than the corresponding |
||
| 121 | /// bit width but any extraneous bits will be dropped. |
||
| 122 | /// |
||
| 123 | /// \param numBits the bit width of the constructed APInt |
||
| 124 | /// \param bigVal a sequence of words to form the initial value of the APInt |
||
| 125 | APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
||
| 126 | |||
| 127 | /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
||
| 128 | /// deprecated because this constructor is prone to ambiguity with the |
||
| 129 | /// APInt(unsigned, uint64_t, bool) constructor. |
||
| 130 | /// |
||
| 131 | /// If this overload is ever deleted, care should be taken to prevent calls |
||
| 132 | /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
||
| 133 | /// constructor. |
||
| 134 | APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
||
| 135 | |||
| 136 | /// Construct an APInt from a string representation. |
||
| 137 | /// |
||
| 138 | /// This constructor interprets the string \p str in the given radix. The |
||
| 139 | /// interpretation stops when the first character that is not suitable for the |
||
| 140 | /// radix is encountered, or the end of the string. Acceptable radix values |
||
| 141 | /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
||
| 142 | /// string to require more bits than numBits. |
||
| 143 | /// |
||
| 144 | /// \param numBits the bit width of the constructed APInt |
||
| 145 | /// \param str the string to be interpreted |
||
| 146 | /// \param radix the radix to use for the conversion |
||
| 147 | APInt(unsigned numBits, StringRef str, uint8_t radix); |
||
| 148 | |||
| 149 | /// Default constructor that creates an APInt with a 1-bit zero value. |
||
| 150 | explicit APInt() { U.VAL = 0; } |
||
| 151 | |||
| 152 | /// Copy Constructor. |
||
| 153 | APInt(const APInt &that) : BitWidth(that.BitWidth) { |
||
| 154 | if (isSingleWord()) |
||
| 155 | U.VAL = that.U.VAL; |
||
| 156 | else |
||
| 157 | initSlowCase(that); |
||
| 158 | } |
||
| 159 | |||
| 160 | /// Move Constructor. |
||
| 161 | APInt(APInt &&that) : BitWidth(that.BitWidth) { |
||
| 162 | memcpy(&U, &that.U, sizeof(U)); |
||
| 163 | that.BitWidth = 0; |
||
| 164 | } |
||
| 165 | |||
| 166 | /// Destructor. |
||
| 167 | ~APInt() { |
||
| 168 | if (needsCleanup()) |
||
| 169 | delete[] U.pVal; |
||
| 170 | } |
||
| 171 | |||
| 172 | /// @} |
||
| 173 | /// \name Value Generators |
||
| 174 | /// @{ |
||
| 175 | |||
| 176 | /// Get the '0' value for the specified bit-width. |
||
| 177 | static APInt getZero(unsigned numBits) { return APInt(numBits, 0); } |
||
| 178 | |||
| 179 | /// NOTE: This is soft-deprecated. Please use `getZero()` instead. |
||
| 180 | static APInt getNullValue(unsigned numBits) { return getZero(numBits); } |
||
| 181 | |||
| 182 | /// Return an APInt zero bits wide. |
||
| 183 | static APInt getZeroWidth() { return getZero(0); } |
||
| 184 | |||
| 185 | /// Gets maximum unsigned value of APInt for specific bit width. |
||
| 186 | static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); } |
||
| 187 | |||
| 188 | /// Gets maximum signed value of APInt for a specific bit width. |
||
| 189 | static APInt getSignedMaxValue(unsigned numBits) { |
||
| 190 | APInt API = getAllOnes(numBits); |
||
| 191 | API.clearBit(numBits - 1); |
||
| 192 | return API; |
||
| 193 | } |
||
| 194 | |||
| 195 | /// Gets minimum unsigned value of APInt for a specific bit width. |
||
| 196 | static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
||
| 197 | |||
| 198 | /// Gets minimum signed value of APInt for a specific bit width. |
||
| 199 | static APInt getSignedMinValue(unsigned numBits) { |
||
| 200 | APInt API(numBits, 0); |
||
| 201 | API.setBit(numBits - 1); |
||
| 202 | return API; |
||
| 203 | } |
||
| 204 | |||
| 205 | /// Get the SignMask for a specific bit width. |
||
| 206 | /// |
||
| 207 | /// This is just a wrapper function of getSignedMinValue(), and it helps code |
||
| 208 | /// readability when we want to get a SignMask. |
||
| 209 | static APInt getSignMask(unsigned BitWidth) { |
||
| 210 | return getSignedMinValue(BitWidth); |
||
| 211 | } |
||
| 212 | |||
| 213 | /// Return an APInt of a specified width with all bits set. |
||
| 214 | static APInt getAllOnes(unsigned numBits) { |
||
| 215 | return APInt(numBits, WORDTYPE_MAX, true); |
||
| 216 | } |
||
| 217 | |||
| 218 | /// NOTE: This is soft-deprecated. Please use `getAllOnes()` instead. |
||
| 219 | static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); } |
||
| 220 | |||
| 221 | /// Return an APInt with exactly one bit set in the result. |
||
| 222 | static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
||
| 223 | APInt Res(numBits, 0); |
||
| 224 | Res.setBit(BitNo); |
||
| 225 | return Res; |
||
| 226 | } |
||
| 227 | |||
| 228 | /// Get a value with a block of bits set. |
||
| 229 | /// |
||
| 230 | /// Constructs an APInt value that has a contiguous range of bits set. The |
||
| 231 | /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
||
| 232 | /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
||
| 233 | /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than |
||
| 234 | /// \p hiBit. |
||
| 235 | /// |
||
| 236 | /// \param numBits the intended bit width of the result |
||
| 237 | /// \param loBit the index of the lowest bit set. |
||
| 238 | /// \param hiBit the index of the highest bit set. |
||
| 239 | /// |
||
| 240 | /// \returns An APInt value with the requested bits set. |
||
| 241 | static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
||
| 242 | APInt Res(numBits, 0); |
||
| 243 | Res.setBits(loBit, hiBit); |
||
| 244 | return Res; |
||
| 245 | } |
||
| 246 | |||
| 247 | /// Wrap version of getBitsSet. |
||
| 248 | /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. |
||
| 249 | /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, |
||
| 250 | /// with parameters (32, 28, 4), you would get 0xF000000F. |
||
| 251 | /// If \p hiBit is equal to \p loBit, you would get a result with all bits |
||
| 252 | /// set. |
||
| 253 | static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, |
||
| 254 | unsigned hiBit) { |
||
| 255 | APInt Res(numBits, 0); |
||
| 256 | Res.setBitsWithWrap(loBit, hiBit); |
||
| 257 | return Res; |
||
| 258 | } |
||
| 259 | |||
| 260 | /// Constructs an APInt value that has a contiguous range of bits set. The |
||
| 261 | /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other |
||
| 262 | /// bits will be zero. For example, with parameters(32, 12) you would get |
||
| 263 | /// 0xFFFFF000. |
||
| 264 | /// |
||
| 265 | /// \param numBits the intended bit width of the result |
||
| 266 | /// \param loBit the index of the lowest bit to set. |
||
| 267 | /// |
||
| 268 | /// \returns An APInt value with the requested bits set. |
||
| 269 | static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { |
||
| 270 | APInt Res(numBits, 0); |
||
| 271 | Res.setBitsFrom(loBit); |
||
| 272 | return Res; |
||
| 273 | } |
||
| 274 | |||
| 275 | /// Constructs an APInt value that has the top hiBitsSet bits set. |
||
| 276 | /// |
||
| 277 | /// \param numBits the bitwidth of the result |
||
| 278 | /// \param hiBitsSet the number of high-order bits set in the result. |
||
| 279 | static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
||
| 280 | APInt Res(numBits, 0); |
||
| 281 | Res.setHighBits(hiBitsSet); |
||
| 282 | return Res; |
||
| 283 | } |
||
| 284 | |||
| 285 | /// Constructs an APInt value that has the bottom loBitsSet bits set. |
||
| 286 | /// |
||
| 287 | /// \param numBits the bitwidth of the result |
||
| 288 | /// \param loBitsSet the number of low-order bits set in the result. |
||
| 289 | static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
||
| 290 | APInt Res(numBits, 0); |
||
| 291 | Res.setLowBits(loBitsSet); |
||
| 292 | return Res; |
||
| 293 | } |
||
| 294 | |||
| 295 | /// Return a value containing V broadcasted over NewLen bits. |
||
| 296 | static APInt getSplat(unsigned NewLen, const APInt &V); |
||
| 297 | |||
| 298 | /// @} |
||
| 299 | /// \name Value Tests |
||
| 300 | /// @{ |
||
| 301 | |||
| 302 | /// Determine if this APInt just has one word to store value. |
||
| 303 | /// |
||
| 304 | /// \returns true if the number of bits <= 64, false otherwise. |
||
| 305 | bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
||
| 306 | |||
| 307 | /// Determine sign of this APInt. |
||
| 308 | /// |
||
| 309 | /// This tests the high bit of this APInt to determine if it is set. |
||
| 310 | /// |
||
| 311 | /// \returns true if this APInt is negative, false otherwise |
||
| 312 | bool isNegative() const { return (*this)[BitWidth - 1]; } |
||
| 313 | |||
| 314 | /// Determine if this APInt Value is non-negative (>= 0) |
||
| 315 | /// |
||
| 316 | /// This tests the high bit of the APInt to determine if it is unset. |
||
| 317 | bool isNonNegative() const { return !isNegative(); } |
||
| 318 | |||
| 319 | /// Determine if sign bit of this APInt is set. |
||
| 320 | /// |
||
| 321 | /// This tests the high bit of this APInt to determine if it is set. |
||
| 322 | /// |
||
| 323 | /// \returns true if this APInt has its sign bit set, false otherwise. |
||
| 324 | bool isSignBitSet() const { return (*this)[BitWidth - 1]; } |
||
| 325 | |||
| 326 | /// Determine if sign bit of this APInt is clear. |
||
| 327 | /// |
||
| 328 | /// This tests the high bit of this APInt to determine if it is clear. |
||
| 329 | /// |
||
| 330 | /// \returns true if this APInt has its sign bit clear, false otherwise. |
||
| 331 | bool isSignBitClear() const { return !isSignBitSet(); } |
||
| 332 | |||
| 333 | /// Determine if this APInt Value is positive. |
||
| 334 | /// |
||
| 335 | /// This tests if the value of this APInt is positive (> 0). Note |
||
| 336 | /// that 0 is not a positive value. |
||
| 337 | /// |
||
| 338 | /// \returns true if this APInt is positive. |
||
| 339 | bool isStrictlyPositive() const { return isNonNegative() && !isZero(); } |
||
| 340 | |||
| 341 | /// Determine if this APInt Value is non-positive (<= 0). |
||
| 342 | /// |
||
| 343 | /// \returns true if this APInt is non-positive. |
||
| 344 | bool isNonPositive() const { return !isStrictlyPositive(); } |
||
| 345 | |||
| 346 | /// Determine if this APInt Value only has the specified bit set. |
||
| 347 | /// |
||
| 348 | /// \returns true if this APInt only has the specified bit set. |
||
| 349 | bool isOneBitSet(unsigned BitNo) const { |
||
| 350 | return (*this)[BitNo] && countPopulation() == 1; |
||
| 351 | } |
||
| 352 | |||
| 353 | /// Determine if all bits are set. This is true for zero-width values. |
||
| 354 | bool isAllOnes() const { |
||
| 355 | if (BitWidth == 0) |
||
| 356 | return true; |
||
| 357 | if (isSingleWord()) |
||
| 358 | return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); |
||
| 359 | return countTrailingOnesSlowCase() == BitWidth; |
||
| 360 | } |
||
| 361 | |||
| 362 | /// NOTE: This is soft-deprecated. Please use `isAllOnes()` instead. |
||
| 363 | bool isAllOnesValue() const { return isAllOnes(); } |
||
| 364 | |||
| 365 | /// Determine if this value is zero, i.e. all bits are clear. |
||
| 366 | bool isZero() const { |
||
| 367 | if (isSingleWord()) |
||
| 368 | return U.VAL == 0; |
||
| 369 | return countLeadingZerosSlowCase() == BitWidth; |
||
| 370 | } |
||
| 371 | |||
| 372 | /// NOTE: This is soft-deprecated. Please use `isZero()` instead. |
||
| 373 | bool isNullValue() const { return isZero(); } |
||
| 374 | |||
| 375 | /// Determine if this is a value of 1. |
||
| 376 | /// |
||
| 377 | /// This checks to see if the value of this APInt is one. |
||
| 378 | bool isOne() const { |
||
| 379 | if (isSingleWord()) |
||
| 380 | return U.VAL == 1; |
||
| 381 | return countLeadingZerosSlowCase() == BitWidth - 1; |
||
| 382 | } |
||
| 383 | |||
| 384 | /// NOTE: This is soft-deprecated. Please use `isOne()` instead. |
||
| 385 | bool isOneValue() const { return isOne(); } |
||
| 386 | |||
| 387 | /// Determine if this is the largest unsigned value. |
||
| 388 | /// |
||
| 389 | /// This checks to see if the value of this APInt is the maximum unsigned |
||
| 390 | /// value for the APInt's bit width. |
||
| 391 | bool isMaxValue() const { return isAllOnes(); } |
||
| 392 | |||
| 393 | /// Determine if this is the largest signed value. |
||
| 394 | /// |
||
| 395 | /// This checks to see if the value of this APInt is the maximum signed |
||
| 396 | /// value for the APInt's bit width. |
||
| 397 | bool isMaxSignedValue() const { |
||
| 398 | if (isSingleWord()) { |
||
| 399 | assert(BitWidth && "zero width values not allowed"); |
||
| 400 | return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); |
||
| 401 | } |
||
| 402 | return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; |
||
| 403 | } |
||
| 404 | |||
| 405 | /// Determine if this is the smallest unsigned value. |
||
| 406 | /// |
||
| 407 | /// This checks to see if the value of this APInt is the minimum unsigned |
||
| 408 | /// value for the APInt's bit width. |
||
| 409 | bool isMinValue() const { return isZero(); } |
||
| 410 | |||
| 411 | /// Determine if this is the smallest signed value. |
||
| 412 | /// |
||
| 413 | /// This checks to see if the value of this APInt is the minimum signed |
||
| 414 | /// value for the APInt's bit width. |
||
| 415 | bool isMinSignedValue() const { |
||
| 416 | if (isSingleWord()) { |
||
| 417 | assert(BitWidth && "zero width values not allowed"); |
||
| 418 | return U.VAL == (WordType(1) << (BitWidth - 1)); |
||
| 419 | } |
||
| 420 | return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; |
||
| 421 | } |
||
| 422 | |||
| 423 | /// Check if this APInt has an N-bits unsigned integer value. |
||
| 424 | bool isIntN(unsigned N) const { return getActiveBits() <= N; } |
||
| 425 | |||
| 426 | /// Check if this APInt has an N-bits signed integer value. |
||
| 427 | bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; } |
||
| 428 | |||
| 429 | /// Check if this APInt's value is a power of two greater than zero. |
||
| 430 | /// |
||
| 431 | /// \returns true if the argument APInt value is a power of two > 0. |
||
| 432 | bool isPowerOf2() const { |
||
| 433 | if (isSingleWord()) { |
||
| 434 | assert(BitWidth && "zero width values not allowed"); |
||
| 435 | return isPowerOf2_64(U.VAL); |
||
| 436 | } |
||
| 437 | return countPopulationSlowCase() == 1; |
||
| 438 | } |
||
| 439 | |||
| 440 | /// Check if this APInt's negated value is a power of two greater than zero. |
||
| 441 | bool isNegatedPowerOf2() const { |
||
| 442 | assert(BitWidth && "zero width values not allowed"); |
||
| 443 | if (isNonNegative()) |
||
| 444 | return false; |
||
| 445 | // NegatedPowerOf2 - shifted mask in the top bits. |
||
| 446 | unsigned LO = countLeadingOnes(); |
||
| 447 | unsigned TZ = countTrailingZeros(); |
||
| 448 | return (LO + TZ) == BitWidth; |
||
| 449 | } |
||
| 450 | |||
| 451 | /// Check if the APInt's value is returned by getSignMask. |
||
| 452 | /// |
||
| 453 | /// \returns true if this is the value returned by getSignMask. |
||
| 454 | bool isSignMask() const { return isMinSignedValue(); } |
||
| 455 | |||
| 456 | /// Convert APInt to a boolean value. |
||
| 457 | /// |
||
| 458 | /// This converts the APInt to a boolean value as a test against zero. |
||
| 459 | bool getBoolValue() const { return !isZero(); } |
||
| 460 | |||
| 461 | /// If this value is smaller than the specified limit, return it, otherwise |
||
| 462 | /// return the limit value. This causes the value to saturate to the limit. |
||
| 463 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { |
||
| 464 | return ugt(Limit) ? Limit : getZExtValue(); |
||
| 465 | } |
||
| 466 | |||
| 467 | /// Check if the APInt consists of a repeated bit pattern. |
||
| 468 | /// |
||
| 469 | /// e.g. 0x01010101 satisfies isSplat(8). |
||
| 470 | /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
||
| 471 | /// width without remainder. |
||
| 472 | bool isSplat(unsigned SplatSizeInBits) const; |
||
| 473 | |||
| 474 | /// \returns true if this APInt value is a sequence of \param numBits ones |
||
| 475 | /// starting at the least significant bit with the remainder zero. |
||
| 476 | bool isMask(unsigned numBits) const { |
||
| 477 | assert(numBits != 0 && "numBits must be non-zero"); |
||
| 478 | assert(numBits <= BitWidth && "numBits out of range"); |
||
| 479 | if (isSingleWord()) |
||
| 480 | return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); |
||
| 481 | unsigned Ones = countTrailingOnesSlowCase(); |
||
| 482 | return (numBits == Ones) && |
||
| 483 | ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
||
| 484 | } |
||
| 485 | |||
| 486 | /// \returns true if this APInt is a non-empty sequence of ones starting at |
||
| 487 | /// the least significant bit with the remainder zero. |
||
| 488 | /// Ex. isMask(0x0000FFFFU) == true. |
||
| 489 | bool isMask() const { |
||
| 490 | if (isSingleWord()) |
||
| 491 | return isMask_64(U.VAL); |
||
| 492 | unsigned Ones = countTrailingOnesSlowCase(); |
||
| 493 | return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
||
| 494 | } |
||
| 495 | |||
| 496 | /// Return true if this APInt value contains a non-empty sequence of ones with |
||
| 497 | /// the remainder zero. |
||
| 498 | bool isShiftedMask() const { |
||
| 499 | if (isSingleWord()) |
||
| 500 | return isShiftedMask_64(U.VAL); |
||
| 501 | unsigned Ones = countPopulationSlowCase(); |
||
| 502 | unsigned LeadZ = countLeadingZerosSlowCase(); |
||
| 503 | return (Ones + LeadZ + countTrailingZeros()) == BitWidth; |
||
| 504 | } |
||
| 505 | |||
| 506 | /// Return true if this APInt value contains a non-empty sequence of ones with |
||
| 507 | /// the remainder zero. If true, \p MaskIdx will specify the index of the |
||
| 508 | /// lowest set bit and \p MaskLen is updated to specify the length of the |
||
| 509 | /// mask, else neither are updated. |
||
| 510 | bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const { |
||
| 511 | if (isSingleWord()) |
||
| 512 | return isShiftedMask_64(U.VAL, MaskIdx, MaskLen); |
||
| 513 | unsigned Ones = countPopulationSlowCase(); |
||
| 514 | unsigned LeadZ = countLeadingZerosSlowCase(); |
||
| 515 | unsigned TrailZ = countTrailingZerosSlowCase(); |
||
| 516 | if ((Ones + LeadZ + TrailZ) != BitWidth) |
||
| 517 | return false; |
||
| 518 | MaskLen = Ones; |
||
| 519 | MaskIdx = TrailZ; |
||
| 520 | return true; |
||
| 521 | } |
||
| 522 | |||
| 523 | /// Compute an APInt containing numBits highbits from this APInt. |
||
| 524 | /// |
||
| 525 | /// Get an APInt with the same BitWidth as this APInt, just zero mask the low |
||
| 526 | /// bits and right shift to the least significant bit. |
||
| 527 | /// |
||
| 528 | /// \returns the high "numBits" bits of this APInt. |
||
| 529 | APInt getHiBits(unsigned numBits) const; |
||
| 530 | |||
| 531 | /// Compute an APInt containing numBits lowbits from this APInt. |
||
| 532 | /// |
||
| 533 | /// Get an APInt with the same BitWidth as this APInt, just zero mask the high |
||
| 534 | /// bits. |
||
| 535 | /// |
||
| 536 | /// \returns the low "numBits" bits of this APInt. |
||
| 537 | APInt getLoBits(unsigned numBits) const; |
||
| 538 | |||
| 539 | /// Determine if two APInts have the same value, after zero-extending |
||
| 540 | /// one of them (if needed!) to ensure that the bit-widths match. |
||
| 541 | static bool isSameValue(const APInt &I1, const APInt &I2) { |
||
| 542 | if (I1.getBitWidth() == I2.getBitWidth()) |
||
| 543 | return I1 == I2; |
||
| 544 | |||
| 545 | if (I1.getBitWidth() > I2.getBitWidth()) |
||
| 546 | return I1 == I2.zext(I1.getBitWidth()); |
||
| 547 | |||
| 548 | return I1.zext(I2.getBitWidth()) == I2; |
||
| 549 | } |
||
| 550 | |||
| 551 | /// Overload to compute a hash_code for an APInt value. |
||
| 552 | friend hash_code hash_value(const APInt &Arg); |
||
| 553 | |||
| 554 | /// This function returns a pointer to the internal storage of the APInt. |
||
| 555 | /// This is useful for writing out the APInt in binary form without any |
||
| 556 | /// conversions. |
||
| 557 | const uint64_t *getRawData() const { |
||
| 558 | if (isSingleWord()) |
||
| 559 | return &U.VAL; |
||
| 560 | return &U.pVal[0]; |
||
| 561 | } |
||
| 562 | |||
| 563 | /// @} |
||
| 564 | /// \name Unary Operators |
||
| 565 | /// @{ |
||
| 566 | |||
| 567 | /// Postfix increment operator. Increment *this by 1. |
||
| 568 | /// |
||
| 569 | /// \returns a new APInt value representing the original value of *this. |
||
| 570 | APInt operator++(int) { |
||
| 571 | APInt API(*this); |
||
| 572 | ++(*this); |
||
| 573 | return API; |
||
| 574 | } |
||
| 575 | |||
| 576 | /// Prefix increment operator. |
||
| 577 | /// |
||
| 578 | /// \returns *this incremented by one |
||
| 579 | APInt &operator++(); |
||
| 580 | |||
| 581 | /// Postfix decrement operator. Decrement *this by 1. |
||
| 582 | /// |
||
| 583 | /// \returns a new APInt value representing the original value of *this. |
||
| 584 | APInt operator--(int) { |
||
| 585 | APInt API(*this); |
||
| 586 | --(*this); |
||
| 587 | return API; |
||
| 588 | } |
||
| 589 | |||
| 590 | /// Prefix decrement operator. |
||
| 591 | /// |
||
| 592 | /// \returns *this decremented by one. |
||
| 593 | APInt &operator--(); |
||
| 594 | |||
| 595 | /// Logical negation operation on this APInt returns true if zero, like normal |
||
| 596 | /// integers. |
||
| 597 | bool operator!() const { return isZero(); } |
||
| 598 | |||
| 599 | /// @} |
||
| 600 | /// \name Assignment Operators |
||
| 601 | /// @{ |
||
| 602 | |||
| 603 | /// Copy assignment operator. |
||
| 604 | /// |
||
| 605 | /// \returns *this after assignment of RHS. |
||
| 606 | APInt &operator=(const APInt &RHS) { |
||
| 607 | // The common case (both source or dest being inline) doesn't require |
||
| 608 | // allocation or deallocation. |
||
| 609 | if (isSingleWord() && RHS.isSingleWord()) { |
||
| 610 | U.VAL = RHS.U.VAL; |
||
| 611 | BitWidth = RHS.BitWidth; |
||
| 612 | return *this; |
||
| 613 | } |
||
| 614 | |||
| 615 | assignSlowCase(RHS); |
||
| 616 | return *this; |
||
| 617 | } |
||
| 618 | |||
| 619 | /// Move assignment operator. |
||
| 620 | APInt &operator=(APInt &&that) { |
||
| 621 | #ifdef EXPENSIVE_CHECKS |
||
| 622 | // Some std::shuffle implementations still do self-assignment. |
||
| 623 | if (this == &that) |
||
| 624 | return *this; |
||
| 625 | #endif |
||
| 626 | assert(this != &that && "Self-move not supported"); |
||
| 627 | if (!isSingleWord()) |
||
| 628 | delete[] U.pVal; |
||
| 629 | |||
| 630 | // Use memcpy so that type based alias analysis sees both VAL and pVal |
||
| 631 | // as modified. |
||
| 632 | memcpy(&U, &that.U, sizeof(U)); |
||
| 633 | |||
| 634 | BitWidth = that.BitWidth; |
||
| 635 | that.BitWidth = 0; |
||
| 636 | return *this; |
||
| 637 | } |
||
| 638 | |||
| 639 | /// Assignment operator. |
||
| 640 | /// |
||
| 641 | /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
||
| 642 | /// the bit width, the excess bits are truncated. If the bit width is larger |
||
| 643 | /// than 64, the value is zero filled in the unspecified high order bits. |
||
| 644 | /// |
||
| 645 | /// \returns *this after assignment of RHS value. |
||
| 646 | APInt &operator=(uint64_t RHS) { |
||
| 647 | if (isSingleWord()) { |
||
| 648 | U.VAL = RHS; |
||
| 649 | return clearUnusedBits(); |
||
| 650 | } |
||
| 651 | U.pVal[0] = RHS; |
||
| 652 | memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
||
| 653 | return *this; |
||
| 654 | } |
||
| 655 | |||
| 656 | /// Bitwise AND assignment operator. |
||
| 657 | /// |
||
| 658 | /// Performs a bitwise AND operation on this APInt and RHS. The result is |
||
| 659 | /// assigned to *this. |
||
| 660 | /// |
||
| 661 | /// \returns *this after ANDing with RHS. |
||
| 662 | APInt &operator&=(const APInt &RHS) { |
||
| 663 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
||
| 664 | if (isSingleWord()) |
||
| 665 | U.VAL &= RHS.U.VAL; |
||
| 666 | else |
||
| 667 | andAssignSlowCase(RHS); |
||
| 668 | return *this; |
||
| 669 | } |
||
| 670 | |||
| 671 | /// Bitwise AND assignment operator. |
||
| 672 | /// |
||
| 673 | /// Performs a bitwise AND operation on this APInt and RHS. RHS is |
||
| 674 | /// logically zero-extended or truncated to match the bit-width of |
||
| 675 | /// the LHS. |
||
| 676 | APInt &operator&=(uint64_t RHS) { |
||
| 677 | if (isSingleWord()) { |
||
| 678 | U.VAL &= RHS; |
||
| 679 | return *this; |
||
| 680 | } |
||
| 681 | U.pVal[0] &= RHS; |
||
| 682 | memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
||
| 683 | return *this; |
||
| 684 | } |
||
| 685 | |||
| 686 | /// Bitwise OR assignment operator. |
||
| 687 | /// |
||
| 688 | /// Performs a bitwise OR operation on this APInt and RHS. The result is |
||
| 689 | /// assigned *this; |
||
| 690 | /// |
||
| 691 | /// \returns *this after ORing with RHS. |
||
| 692 | APInt &operator|=(const APInt &RHS) { |
||
| 693 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
||
| 694 | if (isSingleWord()) |
||
| 695 | U.VAL |= RHS.U.VAL; |
||
| 696 | else |
||
| 697 | orAssignSlowCase(RHS); |
||
| 698 | return *this; |
||
| 699 | } |
||
| 700 | |||
| 701 | /// Bitwise OR assignment operator. |
||
| 702 | /// |
||
| 703 | /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
||
| 704 | /// logically zero-extended or truncated to match the bit-width of |
||
| 705 | /// the LHS. |
||
| 706 | APInt &operator|=(uint64_t RHS) { |
||
| 707 | if (isSingleWord()) { |
||
| 708 | U.VAL |= RHS; |
||
| 709 | return clearUnusedBits(); |
||
| 710 | } |
||
| 711 | U.pVal[0] |= RHS; |
||
| 712 | return *this; |
||
| 713 | } |
||
| 714 | |||
| 715 | /// Bitwise XOR assignment operator. |
||
| 716 | /// |
||
| 717 | /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
||
| 718 | /// assigned to *this. |
||
| 719 | /// |
||
| 720 | /// \returns *this after XORing with RHS. |
||
| 721 | APInt &operator^=(const APInt &RHS) { |
||
| 722 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
||
| 723 | if (isSingleWord()) |
||
| 724 | U.VAL ^= RHS.U.VAL; |
||
| 725 | else |
||
| 726 | xorAssignSlowCase(RHS); |
||
| 727 | return *this; |
||
| 728 | } |
||
| 729 | |||
| 730 | /// Bitwise XOR assignment operator. |
||
| 731 | /// |
||
| 732 | /// Performs a bitwise XOR operation on this APInt and RHS. RHS is |
||
| 733 | /// logically zero-extended or truncated to match the bit-width of |
||
| 734 | /// the LHS. |
||
| 735 | APInt &operator^=(uint64_t RHS) { |
||
| 736 | if (isSingleWord()) { |
||
| 737 | U.VAL ^= RHS; |
||
| 738 | return clearUnusedBits(); |
||
| 739 | } |
||
| 740 | U.pVal[0] ^= RHS; |
||
| 741 | return *this; |
||
| 742 | } |
||
| 743 | |||
| 744 | /// Multiplication assignment operator. |
||
| 745 | /// |
||
| 746 | /// Multiplies this APInt by RHS and assigns the result to *this. |
||
| 747 | /// |
||
| 748 | /// \returns *this |
||
| 749 | APInt &operator*=(const APInt &RHS); |
||
| 750 | APInt &operator*=(uint64_t RHS); |
||
| 751 | |||
| 752 | /// Addition assignment operator. |
||
| 753 | /// |
||
| 754 | /// Adds RHS to *this and assigns the result to *this. |
||
| 755 | /// |
||
| 756 | /// \returns *this |
||
| 757 | APInt &operator+=(const APInt &RHS); |
||
| 758 | APInt &operator+=(uint64_t RHS); |
||
| 759 | |||
| 760 | /// Subtraction assignment operator. |
||
| 761 | /// |
||
| 762 | /// Subtracts RHS from *this and assigns the result to *this. |
||
| 763 | /// |
||
| 764 | /// \returns *this |
||
| 765 | APInt &operator-=(const APInt &RHS); |
||
| 766 | APInt &operator-=(uint64_t RHS); |
||
| 767 | |||
| 768 | /// Left-shift assignment function. |
||
| 769 | /// |
||
| 770 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
||
| 771 | /// |
||
| 772 | /// \returns *this after shifting left by ShiftAmt |
||
| 773 | APInt &operator<<=(unsigned ShiftAmt) { |
||
| 774 | assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
||
| 775 | if (isSingleWord()) { |
||
| 776 | if (ShiftAmt == BitWidth) |
||
| 777 | U.VAL = 0; |
||
| 778 | else |
||
| 779 | U.VAL <<= ShiftAmt; |
||
| 780 | return clearUnusedBits(); |
||
| 781 | } |
||
| 782 | shlSlowCase(ShiftAmt); |
||
| 783 | return *this; |
||
| 784 | } |
||
| 785 | |||
| 786 | /// Left-shift assignment function. |
||
| 787 | /// |
||
| 788 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
||
| 789 | /// |
||
| 790 | /// \returns *this after shifting left by ShiftAmt |
||
| 791 | APInt &operator<<=(const APInt &ShiftAmt); |
||
| 792 | |||
| 793 | /// @} |
||
| 794 | /// \name Binary Operators |
||
| 795 | /// @{ |
||
| 796 | |||
| 797 | /// Multiplication operator. |
||
| 798 | /// |
||
| 799 | /// Multiplies this APInt by RHS and returns the result. |
||
| 800 | APInt operator*(const APInt &RHS) const; |
||
| 801 | |||
| 802 | /// Left logical shift operator. |
||
| 803 | /// |
||
| 804 | /// Shifts this APInt left by \p Bits and returns the result. |
||
| 805 | APInt operator<<(unsigned Bits) const { return shl(Bits); } |
||
| 806 | |||
| 807 | /// Left logical shift operator. |
||
| 808 | /// |
||
| 809 | /// Shifts this APInt left by \p Bits and returns the result. |
||
| 810 | APInt operator<<(const APInt &Bits) const { return shl(Bits); } |
||
| 811 | |||
| 812 | /// Arithmetic right-shift function. |
||
| 813 | /// |
||
| 814 | /// Arithmetic right-shift this APInt by shiftAmt. |
||
| 815 | APInt ashr(unsigned ShiftAmt) const { |
||
| 816 | APInt R(*this); |
||
| 817 | R.ashrInPlace(ShiftAmt); |
||
| 818 | return R; |
||
| 819 | } |
||
| 820 | |||
| 821 | /// Arithmetic right-shift this APInt by ShiftAmt in place. |
||
| 822 | void ashrInPlace(unsigned ShiftAmt) { |
||
| 823 | assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
||
| 824 | if (isSingleWord()) { |
||
| 825 | int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); |
||
| 826 | if (ShiftAmt == BitWidth) |
||
| 827 | U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. |
||
| 828 | else |
||
| 829 | U.VAL = SExtVAL >> ShiftAmt; |
||
| 830 | clearUnusedBits(); |
||
| 831 | return; |
||
| 832 | } |
||
| 833 | ashrSlowCase(ShiftAmt); |
||
| 834 | } |
||
| 835 | |||
| 836 | /// Logical right-shift function. |
||
| 837 | /// |
||
| 838 | /// Logical right-shift this APInt by shiftAmt. |
||
| 839 | APInt lshr(unsigned shiftAmt) const { |
||
| 840 | APInt R(*this); |
||
| 841 | R.lshrInPlace(shiftAmt); |
||
| 842 | return R; |
||
| 843 | } |
||
| 844 | |||
| 845 | /// Logical right-shift this APInt by ShiftAmt in place. |
||
| 846 | void lshrInPlace(unsigned ShiftAmt) { |
||
| 847 | assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
||
| 848 | if (isSingleWord()) { |
||
| 849 | if (ShiftAmt == BitWidth) |
||
| 850 | U.VAL = 0; |
||
| 851 | else |
||
| 852 | U.VAL >>= ShiftAmt; |
||
| 853 | return; |
||
| 854 | } |
||
| 855 | lshrSlowCase(ShiftAmt); |
||
| 856 | } |
||
| 857 | |||
| 858 | /// Left-shift function. |
||
| 859 | /// |
||
| 860 | /// Left-shift this APInt by shiftAmt. |
||
| 861 | APInt shl(unsigned shiftAmt) const { |
||
| 862 | APInt R(*this); |
||
| 863 | R <<= shiftAmt; |
||
| 864 | return R; |
||
| 865 | } |
||
| 866 | |||
| 867 | /// relative logical shift right |
||
| 868 | APInt relativeLShr(int RelativeShift) const { |
||
| 869 | return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift); |
||
| 870 | } |
||
| 871 | |||
| 872 | /// relative logical shift left |
||
| 873 | APInt relativeLShl(int RelativeShift) const { |
||
| 874 | return relativeLShr(-RelativeShift); |
||
| 875 | } |
||
| 876 | |||
| 877 | /// relative arithmetic shift right |
||
| 878 | APInt relativeAShr(int RelativeShift) const { |
||
| 879 | return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift); |
||
| 880 | } |
||
| 881 | |||
| 882 | /// relative arithmetic shift left |
||
| 883 | APInt relativeAShl(int RelativeShift) const { |
||
| 884 | return relativeAShr(-RelativeShift); |
||
| 885 | } |
||
| 886 | |||
| 887 | /// Rotate left by rotateAmt. |
||
| 888 | APInt rotl(unsigned rotateAmt) const; |
||
| 889 | |||
| 890 | /// Rotate right by rotateAmt. |
||
| 891 | APInt rotr(unsigned rotateAmt) const; |
||
| 892 | |||
| 893 | /// Arithmetic right-shift function. |
||
| 894 | /// |
||
| 895 | /// Arithmetic right-shift this APInt by shiftAmt. |
||
| 896 | APInt ashr(const APInt &ShiftAmt) const { |
||
| 897 | APInt R(*this); |
||
| 898 | R.ashrInPlace(ShiftAmt); |
||
| 899 | return R; |
||
| 900 | } |
||
| 901 | |||
| 902 | /// Arithmetic right-shift this APInt by shiftAmt in place. |
||
| 903 | void ashrInPlace(const APInt &shiftAmt); |
||
| 904 | |||
| 905 | /// Logical right-shift function. |
||
| 906 | /// |
||
| 907 | /// Logical right-shift this APInt by shiftAmt. |
||
| 908 | APInt lshr(const APInt &ShiftAmt) const { |
||
| 909 | APInt R(*this); |
||
| 910 | R.lshrInPlace(ShiftAmt); |
||
| 911 | return R; |
||
| 912 | } |
||
| 913 | |||
| 914 | /// Logical right-shift this APInt by ShiftAmt in place. |
||
| 915 | void lshrInPlace(const APInt &ShiftAmt); |
||
| 916 | |||
| 917 | /// Left-shift function. |
||
| 918 | /// |
||
| 919 | /// Left-shift this APInt by shiftAmt. |
||
| 920 | APInt shl(const APInt &ShiftAmt) const { |
||
| 921 | APInt R(*this); |
||
| 922 | R <<= ShiftAmt; |
||
| 923 | return R; |
||
| 924 | } |
||
| 925 | |||
| 926 | /// Rotate left by rotateAmt. |
||
| 927 | APInt rotl(const APInt &rotateAmt) const; |
||
| 928 | |||
| 929 | /// Rotate right by rotateAmt. |
||
| 930 | APInt rotr(const APInt &rotateAmt) const; |
||
| 931 | |||
| 932 | /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is |
||
| 933 | /// equivalent to: |
||
| 934 | /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) |
||
| 935 | APInt concat(const APInt &NewLSB) const { |
||
| 936 | /// If the result will be small, then both the merged values are small. |
||
| 937 | unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); |
||
| 938 | if (NewWidth <= APINT_BITS_PER_WORD) |
||
| 939 | return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL); |
||
| 940 | return concatSlowCase(NewLSB); |
||
| 941 | } |
||
| 942 | |||
| 943 | /// Unsigned division operation. |
||
| 944 | /// |
||
| 945 | /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
||
| 946 | /// RHS are treated as unsigned quantities for purposes of this division. |
||
| 947 | /// |
||
| 948 | /// \returns a new APInt value containing the division result, rounded towards |
||
| 949 | /// zero. |
||
| 950 | APInt udiv(const APInt &RHS) const; |
||
| 951 | APInt udiv(uint64_t RHS) const; |
||
| 952 | |||
| 953 | /// Signed division function for APInt. |
||
| 954 | /// |
||
| 955 | /// Signed divide this APInt by APInt RHS. |
||
| 956 | /// |
||
| 957 | /// The result is rounded towards zero. |
||
| 958 | APInt sdiv(const APInt &RHS) const; |
||
| 959 | APInt sdiv(int64_t RHS) const; |
||
| 960 | |||
| 961 | /// Unsigned remainder operation. |
||
| 962 | /// |
||
| 963 | /// Perform an unsigned remainder operation on this APInt with RHS being the |
||
| 964 | /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
||
| 965 | /// of this operation. |
||
| 966 | /// |
||
| 967 | /// \returns a new APInt value containing the remainder result |
||
| 968 | APInt urem(const APInt &RHS) const; |
||
| 969 | uint64_t urem(uint64_t RHS) const; |
||
| 970 | |||
| 971 | /// Function for signed remainder operation. |
||
| 972 | /// |
||
| 973 | /// Signed remainder operation on APInt. |
||
| 974 | /// |
||
| 975 | /// Note that this is a true remainder operation and not a modulo operation |
||
| 976 | /// because the sign follows the sign of the dividend which is *this. |
||
| 977 | APInt srem(const APInt &RHS) const; |
||
| 978 | int64_t srem(int64_t RHS) const; |
||
| 979 | |||
| 980 | /// Dual division/remainder interface. |
||
| 981 | /// |
||
| 982 | /// Sometimes it is convenient to divide two APInt values and obtain both the |
||
| 983 | /// quotient and remainder. This function does both operations in the same |
||
| 984 | /// computation making it a little more efficient. The pair of input arguments |
||
| 985 | /// may overlap with the pair of output arguments. It is safe to call |
||
| 986 | /// udivrem(X, Y, X, Y), for example. |
||
| 987 | static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
||
| 988 | APInt &Remainder); |
||
| 989 | static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
||
| 990 | uint64_t &Remainder); |
||
| 991 | |||
| 992 | static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
||
| 993 | APInt &Remainder); |
||
| 994 | static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, |
||
| 995 | int64_t &Remainder); |
||
| 996 | |||
| 997 | // Operations that return overflow indicators. |
||
| 998 | APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
||
| 999 | APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
||
| 1000 | APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
||
| 1001 | APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
||
| 1002 | APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
||
| 1003 | APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
||
| 1004 | APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
||
| 1005 | APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
||
| 1006 | APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
||
| 1007 | |||
| 1008 | // Operations that saturate |
||
| 1009 | APInt sadd_sat(const APInt &RHS) const; |
||
| 1010 | APInt uadd_sat(const APInt &RHS) const; |
||
| 1011 | APInt ssub_sat(const APInt &RHS) const; |
||
| 1012 | APInt usub_sat(const APInt &RHS) const; |
||
| 1013 | APInt smul_sat(const APInt &RHS) const; |
||
| 1014 | APInt umul_sat(const APInt &RHS) const; |
||
| 1015 | APInt sshl_sat(const APInt &RHS) const; |
||
| 1016 | APInt ushl_sat(const APInt &RHS) const; |
||
| 1017 | |||
| 1018 | /// Array-indexing support. |
||
| 1019 | /// |
||
| 1020 | /// \returns the bit value at bitPosition |
||
| 1021 | bool operator[](unsigned bitPosition) const { |
||
| 1022 | assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); |
||
| 1023 | return (maskBit(bitPosition) & getWord(bitPosition)) != 0; |
||
| 1024 | } |
||
| 1025 | |||
| 1026 | /// @} |
||
| 1027 | /// \name Comparison Operators |
||
| 1028 | /// @{ |
||
| 1029 | |||
| 1030 | /// Equality operator. |
||
| 1031 | /// |
||
| 1032 | /// Compares this APInt with RHS for the validity of the equality |
||
| 1033 | /// relationship. |
||
| 1034 | bool operator==(const APInt &RHS) const { |
||
| 1035 | assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); |
||
| 1036 | if (isSingleWord()) |
||
| 1037 | return U.VAL == RHS.U.VAL; |
||
| 1038 | return equalSlowCase(RHS); |
||
| 1039 | } |
||
| 1040 | |||
| 1041 | /// Equality operator. |
||
| 1042 | /// |
||
| 1043 | /// Compares this APInt with a uint64_t for the validity of the equality |
||
| 1044 | /// relationship. |
||
| 1045 | /// |
||
| 1046 | /// \returns true if *this == Val |
||
| 1047 | bool operator==(uint64_t Val) const { |
||
| 1048 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; |
||
| 1049 | } |
||
| 1050 | |||
| 1051 | /// Equality comparison. |
||
| 1052 | /// |
||
| 1053 | /// Compares this APInt with RHS for the validity of the equality |
||
| 1054 | /// relationship. |
||
| 1055 | /// |
||
| 1056 | /// \returns true if *this == Val |
||
| 1057 | bool eq(const APInt &RHS) const { return (*this) == RHS; } |
||
| 1058 | |||
| 1059 | /// Inequality operator. |
||
| 1060 | /// |
||
| 1061 | /// Compares this APInt with RHS for the validity of the inequality |
||
| 1062 | /// relationship. |
||
| 1063 | /// |
||
| 1064 | /// \returns true if *this != Val |
||
| 1065 | bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
||
| 1066 | |||
| 1067 | /// Inequality operator. |
||
| 1068 | /// |
||
| 1069 | /// Compares this APInt with a uint64_t for the validity of the inequality |
||
| 1070 | /// relationship. |
||
| 1071 | /// |
||
| 1072 | /// \returns true if *this != Val |
||
| 1073 | bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
||
| 1074 | |||
| 1075 | /// Inequality comparison |
||
| 1076 | /// |
||
| 1077 | /// Compares this APInt with RHS for the validity of the inequality |
||
| 1078 | /// relationship. |
||
| 1079 | /// |
||
| 1080 | /// \returns true if *this != Val |
||
| 1081 | bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
||
| 1082 | |||
| 1083 | /// Unsigned less than comparison |
||
| 1084 | /// |
||
| 1085 | /// Regards both *this and RHS as unsigned quantities and compares them for |
||
| 1086 | /// the validity of the less-than relationship. |
||
| 1087 | /// |
||
| 1088 | /// \returns true if *this < RHS when both are considered unsigned. |
||
| 1089 | bool ult(const APInt &RHS) const { return compare(RHS) < 0; } |
||
| 1090 | |||
| 1091 | /// Unsigned less than comparison |
||
| 1092 | /// |
||
| 1093 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
||
| 1094 | /// the validity of the less-than relationship. |
||
| 1095 | /// |
||
| 1096 | /// \returns true if *this < RHS when considered unsigned. |
||
| 1097 | bool ult(uint64_t RHS) const { |
||
| 1098 | // Only need to check active bits if not a single word. |
||
| 1099 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; |
||
| 1100 | } |
||
| 1101 | |||
| 1102 | /// Signed less than comparison |
||
| 1103 | /// |
||
| 1104 | /// Regards both *this and RHS as signed quantities and compares them for |
||
| 1105 | /// validity of the less-than relationship. |
||
| 1106 | /// |
||
| 1107 | /// \returns true if *this < RHS when both are considered signed. |
||
| 1108 | bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } |
||
| 1109 | |||
| 1110 | /// Signed less than comparison |
||
| 1111 | /// |
||
| 1112 | /// Regards both *this as a signed quantity and compares it with RHS for |
||
| 1113 | /// the validity of the less-than relationship. |
||
| 1114 | /// |
||
| 1115 | /// \returns true if *this < RHS when considered signed. |
||
| 1116 | bool slt(int64_t RHS) const { |
||
| 1117 | return (!isSingleWord() && getSignificantBits() > 64) |
||
| 1118 | ? isNegative() |
||
| 1119 | : getSExtValue() < RHS; |
||
| 1120 | } |
||
| 1121 | |||
| 1122 | /// Unsigned less or equal comparison |
||
| 1123 | /// |
||
| 1124 | /// Regards both *this and RHS as unsigned quantities and compares them for |
||
| 1125 | /// validity of the less-or-equal relationship. |
||
| 1126 | /// |
||
| 1127 | /// \returns true if *this <= RHS when both are considered unsigned. |
||
| 1128 | bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } |
||
| 1129 | |||
| 1130 | /// Unsigned less or equal comparison |
||
| 1131 | /// |
||
| 1132 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
||
| 1133 | /// the validity of the less-or-equal relationship. |
||
| 1134 | /// |
||
| 1135 | /// \returns true if *this <= RHS when considered unsigned. |
||
| 1136 | bool ule(uint64_t RHS) const { return !ugt(RHS); } |
||
| 1137 | |||
| 1138 | /// Signed less or equal comparison |
||
| 1139 | /// |
||
| 1140 | /// Regards both *this and RHS as signed quantities and compares them for |
||
| 1141 | /// validity of the less-or-equal relationship. |
||
| 1142 | /// |
||
| 1143 | /// \returns true if *this <= RHS when both are considered signed. |
||
| 1144 | bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } |
||
| 1145 | |||
| 1146 | /// Signed less or equal comparison |
||
| 1147 | /// |
||
| 1148 | /// Regards both *this as a signed quantity and compares it with RHS for the |
||
| 1149 | /// validity of the less-or-equal relationship. |
||
| 1150 | /// |
||
| 1151 | /// \returns true if *this <= RHS when considered signed. |
||
| 1152 | bool sle(uint64_t RHS) const { return !sgt(RHS); } |
||
| 1153 | |||
| 1154 | /// Unsigned greater than comparison |
||
| 1155 | /// |
||
| 1156 | /// Regards both *this and RHS as unsigned quantities and compares them for |
||
| 1157 | /// the validity of the greater-than relationship. |
||
| 1158 | /// |
||
| 1159 | /// \returns true if *this > RHS when both are considered unsigned. |
||
| 1160 | bool ugt(const APInt &RHS) const { return !ule(RHS); } |
||
| 1161 | |||
| 1162 | /// Unsigned greater than comparison |
||
| 1163 | /// |
||
| 1164 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
||
| 1165 | /// the validity of the greater-than relationship. |
||
| 1166 | /// |
||
| 1167 | /// \returns true if *this > RHS when considered unsigned. |
||
| 1168 | bool ugt(uint64_t RHS) const { |
||
| 1169 | // Only need to check active bits if not a single word. |
||
| 1170 | return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; |
||
| 1171 | } |
||
| 1172 | |||
| 1173 | /// Signed greater than comparison |
||
| 1174 | /// |
||
| 1175 | /// Regards both *this and RHS as signed quantities and compares them for the |
||
| 1176 | /// validity of the greater-than relationship. |
||
| 1177 | /// |
||
| 1178 | /// \returns true if *this > RHS when both are considered signed. |
||
| 1179 | bool sgt(const APInt &RHS) const { return !sle(RHS); } |
||
| 1180 | |||
| 1181 | /// Signed greater than comparison |
||
| 1182 | /// |
||
| 1183 | /// Regards both *this as a signed quantity and compares it with RHS for |
||
| 1184 | /// the validity of the greater-than relationship. |
||
| 1185 | /// |
||
| 1186 | /// \returns true if *this > RHS when considered signed. |
||
| 1187 | bool sgt(int64_t RHS) const { |
||
| 1188 | return (!isSingleWord() && getSignificantBits() > 64) |
||
| 1189 | ? !isNegative() |
||
| 1190 | : getSExtValue() > RHS; |
||
| 1191 | } |
||
| 1192 | |||
| 1193 | /// Unsigned greater or equal comparison |
||
| 1194 | /// |
||
| 1195 | /// Regards both *this and RHS as unsigned quantities and compares them for |
||
| 1196 | /// validity of the greater-or-equal relationship. |
||
| 1197 | /// |
||
| 1198 | /// \returns true if *this >= RHS when both are considered unsigned. |
||
| 1199 | bool uge(const APInt &RHS) const { return !ult(RHS); } |
||
| 1200 | |||
| 1201 | /// Unsigned greater or equal comparison |
||
| 1202 | /// |
||
| 1203 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
||
| 1204 | /// the validity of the greater-or-equal relationship. |
||
| 1205 | /// |
||
| 1206 | /// \returns true if *this >= RHS when considered unsigned. |
||
| 1207 | bool uge(uint64_t RHS) const { return !ult(RHS); } |
||
| 1208 | |||
| 1209 | /// Signed greater or equal comparison |
||
| 1210 | /// |
||
| 1211 | /// Regards both *this and RHS as signed quantities and compares them for |
||
| 1212 | /// validity of the greater-or-equal relationship. |
||
| 1213 | /// |
||
| 1214 | /// \returns true if *this >= RHS when both are considered signed. |
||
| 1215 | bool sge(const APInt &RHS) const { return !slt(RHS); } |
||
| 1216 | |||
| 1217 | /// Signed greater or equal comparison |
||
| 1218 | /// |
||
| 1219 | /// Regards both *this as a signed quantity and compares it with RHS for |
||
| 1220 | /// the validity of the greater-or-equal relationship. |
||
| 1221 | /// |
||
| 1222 | /// \returns true if *this >= RHS when considered signed. |
||
| 1223 | bool sge(int64_t RHS) const { return !slt(RHS); } |
||
| 1224 | |||
| 1225 | /// This operation tests if there are any pairs of corresponding bits |
||
| 1226 | /// between this APInt and RHS that are both set. |
||
| 1227 | bool intersects(const APInt &RHS) const { |
||
| 1228 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
||
| 1229 | if (isSingleWord()) |
||
| 1230 | return (U.VAL & RHS.U.VAL) != 0; |
||
| 1231 | return intersectsSlowCase(RHS); |
||
| 1232 | } |
||
| 1233 | |||
| 1234 | /// This operation checks that all bits set in this APInt are also set in RHS. |
||
| 1235 | bool isSubsetOf(const APInt &RHS) const { |
||
| 1236 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
||
| 1237 | if (isSingleWord()) |
||
| 1238 | return (U.VAL & ~RHS.U.VAL) == 0; |
||
| 1239 | return isSubsetOfSlowCase(RHS); |
||
| 1240 | } |
||
| 1241 | |||
| 1242 | /// @} |
||
| 1243 | /// \name Resizing Operators |
||
| 1244 | /// @{ |
||
| 1245 | |||
| 1246 | /// Truncate to new width. |
||
| 1247 | /// |
||
| 1248 | /// Truncate the APInt to a specified width. It is an error to specify a width |
||
| 1249 | /// that is greater than the current width. |
||
| 1250 | APInt trunc(unsigned width) const; |
||
| 1251 | |||
| 1252 | /// Truncate to new width with unsigned saturation. |
||
| 1253 | /// |
||
| 1254 | /// If the APInt, treated as unsigned integer, can be losslessly truncated to |
||
| 1255 | /// the new bitwidth, then return truncated APInt. Else, return max value. |
||
| 1256 | APInt truncUSat(unsigned width) const; |
||
| 1257 | |||
| 1258 | /// Truncate to new width with signed saturation. |
||
| 1259 | /// |
||
| 1260 | /// If this APInt, treated as signed integer, can be losslessly truncated to |
||
| 1261 | /// the new bitwidth, then return truncated APInt. Else, return either |
||
| 1262 | /// signed min value if the APInt was negative, or signed max value. |
||
| 1263 | APInt truncSSat(unsigned width) const; |
||
| 1264 | |||
| 1265 | /// Sign extend to a new width. |
||
| 1266 | /// |
||
| 1267 | /// This operation sign extends the APInt to a new width. If the high order |
||
| 1268 | /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
||
| 1269 | /// It is an error to specify a width that is less than the |
||
| 1270 | /// current width. |
||
| 1271 | APInt sext(unsigned width) const; |
||
| 1272 | |||
| 1273 | /// Zero extend to a new width. |
||
| 1274 | /// |
||
| 1275 | /// This operation zero extends the APInt to a new width. The high order bits |
||
| 1276 | /// are filled with 0 bits. It is an error to specify a width that is less |
||
| 1277 | /// than the current width. |
||
| 1278 | APInt zext(unsigned width) const; |
||
| 1279 | |||
| 1280 | /// Sign extend or truncate to width |
||
| 1281 | /// |
||
| 1282 | /// Make this APInt have the bit width given by \p width. The value is sign |
||
| 1283 | /// extended, truncated, or left alone to make it that width. |
||
| 1284 | APInt sextOrTrunc(unsigned width) const; |
||
| 1285 | |||
| 1286 | /// Zero extend or truncate to width |
||
| 1287 | /// |
||
| 1288 | /// Make this APInt have the bit width given by \p width. The value is zero |
||
| 1289 | /// extended, truncated, or left alone to make it that width. |
||
| 1290 | APInt zextOrTrunc(unsigned width) const; |
||
| 1291 | |||
| 1292 | /// @} |
||
| 1293 | /// \name Bit Manipulation Operators |
||
| 1294 | /// @{ |
||
| 1295 | |||
| 1296 | /// Set every bit to 1. |
||
| 1297 | void setAllBits() { |
||
| 1298 | if (isSingleWord()) |
||
| 1299 | U.VAL = WORDTYPE_MAX; |
||
| 1300 | else |
||
| 1301 | // Set all the bits in all the words. |
||
| 1302 | memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); |
||
| 1303 | // Clear the unused ones |
||
| 1304 | clearUnusedBits(); |
||
| 1305 | } |
||
| 1306 | |||
| 1307 | /// Set the given bit to 1 whose position is given as "bitPosition". |
||
| 1308 | void setBit(unsigned BitPosition) { |
||
| 1309 | assert(BitPosition < BitWidth && "BitPosition out of range"); |
||
| 1310 | WordType Mask = maskBit(BitPosition); |
||
| 1311 | if (isSingleWord()) |
||
| 1312 | U.VAL |= Mask; |
||
| 1313 | else |
||
| 1314 | U.pVal[whichWord(BitPosition)] |= Mask; |
||
| 1315 | } |
||
| 1316 | |||
| 1317 | /// Set the sign bit to 1. |
||
| 1318 | void setSignBit() { setBit(BitWidth - 1); } |
||
| 1319 | |||
| 1320 | /// Set a given bit to a given value. |
||
| 1321 | void setBitVal(unsigned BitPosition, bool BitValue) { |
||
| 1322 | if (BitValue) |
||
| 1323 | setBit(BitPosition); |
||
| 1324 | else |
||
| 1325 | clearBit(BitPosition); |
||
| 1326 | } |
||
| 1327 | |||
| 1328 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
||
| 1329 | /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls |
||
| 1330 | /// setBits when \p loBit < \p hiBit. |
||
| 1331 | /// For \p loBit == \p hiBit wrap case, set every bit to 1. |
||
| 1332 | void setBitsWithWrap(unsigned loBit, unsigned hiBit) { |
||
| 1333 | assert(hiBit <= BitWidth && "hiBit out of range"); |
||
| 1334 | assert(loBit <= BitWidth && "loBit out of range"); |
||
| 1335 | if (loBit < hiBit) { |
||
| 1336 | setBits(loBit, hiBit); |
||
| 1337 | return; |
||
| 1338 | } |
||
| 1339 | setLowBits(hiBit); |
||
| 1340 | setHighBits(BitWidth - loBit); |
||
| 1341 | } |
||
| 1342 | |||
| 1343 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
||
| 1344 | /// This function handles case when \p loBit <= \p hiBit. |
||
| 1345 | void setBits(unsigned loBit, unsigned hiBit) { |
||
| 1346 | assert(hiBit <= BitWidth && "hiBit out of range"); |
||
| 1347 | assert(loBit <= BitWidth && "loBit out of range"); |
||
| 1348 | assert(loBit <= hiBit && "loBit greater than hiBit"); |
||
| 1349 | if (loBit == hiBit) |
||
| 1350 | return; |
||
| 1351 | if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { |
||
| 1352 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); |
||
| 1353 | mask <<= loBit; |
||
| 1354 | if (isSingleWord()) |
||
| 1355 | U.VAL |= mask; |
||
| 1356 | else |
||
| 1357 | U.pVal[0] |= mask; |
||
| 1358 | } else { |
||
| 1359 | setBitsSlowCase(loBit, hiBit); |
||
| 1360 | } |
||
| 1361 | } |
||
| 1362 | |||
| 1363 | /// Set the top bits starting from loBit. |
||
| 1364 | void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); } |
||
| 1365 | |||
| 1366 | /// Set the bottom loBits bits. |
||
| 1367 | void setLowBits(unsigned loBits) { return setBits(0, loBits); } |
||
| 1368 | |||
| 1369 | /// Set the top hiBits bits. |
||
| 1370 | void setHighBits(unsigned hiBits) { |
||
| 1371 | return setBits(BitWidth - hiBits, BitWidth); |
||
| 1372 | } |
||
| 1373 | |||
| 1374 | /// Set every bit to 0. |
||
| 1375 | void clearAllBits() { |
||
| 1376 | if (isSingleWord()) |
||
| 1377 | U.VAL = 0; |
||
| 1378 | else |
||
| 1379 | memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); |
||
| 1380 | } |
||
| 1381 | |||
| 1382 | /// Set a given bit to 0. |
||
| 1383 | /// |
||
| 1384 | /// Set the given bit to 0 whose position is given as "bitPosition". |
||
| 1385 | void clearBit(unsigned BitPosition) { |
||
| 1386 | assert(BitPosition < BitWidth && "BitPosition out of range"); |
||
| 1387 | WordType Mask = ~maskBit(BitPosition); |
||
| 1388 | if (isSingleWord()) |
||
| 1389 | U.VAL &= Mask; |
||
| 1390 | else |
||
| 1391 | U.pVal[whichWord(BitPosition)] &= Mask; |
||
| 1392 | } |
||
| 1393 | |||
| 1394 | /// Set bottom loBits bits to 0. |
||
| 1395 | void clearLowBits(unsigned loBits) { |
||
| 1396 | assert(loBits <= BitWidth && "More bits than bitwidth"); |
||
| 1397 | APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); |
||
| 1398 | *this &= Keep; |
||
| 1399 | } |
||
| 1400 | |||
| 1401 | /// Set the sign bit to 0. |
||
| 1402 | void clearSignBit() { clearBit(BitWidth - 1); } |
||
| 1403 | |||
| 1404 | /// Toggle every bit to its opposite value. |
||
| 1405 | void flipAllBits() { |
||
| 1406 | if (isSingleWord()) { |
||
| 1407 | U.VAL ^= WORDTYPE_MAX; |
||
| 1408 | clearUnusedBits(); |
||
| 1409 | } else { |
||
| 1410 | flipAllBitsSlowCase(); |
||
| 1411 | } |
||
| 1412 | } |
||
| 1413 | |||
| 1414 | /// Toggles a given bit to its opposite value. |
||
| 1415 | /// |
||
| 1416 | /// Toggle a given bit to its opposite value whose position is given |
||
| 1417 | /// as "bitPosition". |
||
| 1418 | void flipBit(unsigned bitPosition); |
||
| 1419 | |||
| 1420 | /// Negate this APInt in place. |
||
| 1421 | void negate() { |
||
| 1422 | flipAllBits(); |
||
| 1423 | ++(*this); |
||
| 1424 | } |
||
| 1425 | |||
| 1426 | /// Insert the bits from a smaller APInt starting at bitPosition. |
||
| 1427 | void insertBits(const APInt &SubBits, unsigned bitPosition); |
||
| 1428 | void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); |
||
| 1429 | |||
| 1430 | /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). |
||
| 1431 | APInt extractBits(unsigned numBits, unsigned bitPosition) const; |
||
| 1432 | uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; |
||
| 1433 | |||
| 1434 | /// @} |
||
| 1435 | /// \name Value Characterization Functions |
||
| 1436 | /// @{ |
||
| 1437 | |||
| 1438 | /// Return the number of bits in the APInt. |
||
| 1439 | unsigned getBitWidth() const { return BitWidth; } |
||
| 1440 | |||
| 1441 | /// Get the number of words. |
||
| 1442 | /// |
||
| 1443 | /// Here one word's bitwidth equals to that of uint64_t. |
||
| 1444 | /// |
||
| 1445 | /// \returns the number of words to hold the integer value of this APInt. |
||
| 1446 | unsigned getNumWords() const { return getNumWords(BitWidth); } |
||
| 1447 | |||
| 1448 | /// Get the number of words. |
||
| 1449 | /// |
||
| 1450 | /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
||
| 1451 | /// |
||
| 1452 | /// \returns the number of words to hold the integer value with a given bit |
||
| 1453 | /// width. |
||
| 1454 | static unsigned getNumWords(unsigned BitWidth) { |
||
| 1455 | return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
||
| 1456 | } |
||
| 1457 | |||
| 1458 | /// Compute the number of active bits in the value |
||
| 1459 | /// |
||
| 1460 | /// This function returns the number of active bits which is defined as the |
||
| 1461 | /// bit width minus the number of leading zeros. This is used in several |
||
| 1462 | /// computations to see how "wide" the value is. |
||
| 1463 | unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } |
||
| 1464 | |||
| 1465 | /// Compute the number of active words in the value of this APInt. |
||
| 1466 | /// |
||
| 1467 | /// This is used in conjunction with getActiveData to extract the raw value of |
||
| 1468 | /// the APInt. |
||
| 1469 | unsigned getActiveWords() const { |
||
| 1470 | unsigned numActiveBits = getActiveBits(); |
||
| 1471 | return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; |
||
| 1472 | } |
||
| 1473 | |||
| 1474 | /// Get the minimum bit size for this signed APInt |
||
| 1475 | /// |
||
| 1476 | /// Computes the minimum bit width for this APInt while considering it to be a |
||
| 1477 | /// signed (and probably negative) value. If the value is not negative, this |
||
| 1478 | /// function returns the same value as getActiveBits()+1. Otherwise, it |
||
| 1479 | /// returns the smallest bit width that will retain the negative value. For |
||
| 1480 | /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
||
| 1481 | /// for -1, this function will always return 1. |
||
| 1482 | unsigned getSignificantBits() const { |
||
| 1483 | return BitWidth - getNumSignBits() + 1; |
||
| 1484 | } |
||
| 1485 | |||
| 1486 | /// NOTE: This is soft-deprecated. Please use `getSignificantBits()` instead. |
||
| 1487 | unsigned getMinSignedBits() const { return getSignificantBits(); } |
||
| 1488 | |||
| 1489 | /// Get zero extended value |
||
| 1490 | /// |
||
| 1491 | /// This method attempts to return the value of this APInt as a zero extended |
||
| 1492 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
||
| 1493 | /// uint64_t. Otherwise an assertion will result. |
||
| 1494 | uint64_t getZExtValue() const { |
||
| 1495 | if (isSingleWord()) |
||
| 1496 | return U.VAL; |
||
| 1497 | assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); |
||
| 1498 | return U.pVal[0]; |
||
| 1499 | } |
||
| 1500 | |||
| 1501 | /// Get zero extended value if possible |
||
| 1502 | /// |
||
| 1503 | /// This method attempts to return the value of this APInt as a zero extended |
||
| 1504 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
||
| 1505 | /// uint64_t. Otherwise no value is returned. |
||
| 1506 | std::optional<uint64_t> tryZExtValue() const { |
||
| 1507 | return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue()) |
||
| 1508 | : std::nullopt; |
||
| 1509 | }; |
||
| 1510 | |||
| 1511 | /// Get sign extended value |
||
| 1512 | /// |
||
| 1513 | /// This method attempts to return the value of this APInt as a sign extended |
||
| 1514 | /// int64_t. The bit width must be <= 64 or the value must fit within an |
||
| 1515 | /// int64_t. Otherwise an assertion will result. |
||
| 1516 | int64_t getSExtValue() const { |
||
| 1517 | if (isSingleWord()) |
||
| 1518 | return SignExtend64(U.VAL, BitWidth); |
||
| 1519 | assert(getSignificantBits() <= 64 && "Too many bits for int64_t"); |
||
| 1520 | return int64_t(U.pVal[0]); |
||
| 1521 | } |
||
| 1522 | |||
| 1523 | /// Get sign extended value if possible |
||
| 1524 | /// |
||
| 1525 | /// This method attempts to return the value of this APInt as a sign extended |
||
| 1526 | /// int64_t. The bitwidth must be <= 64 or the value must fit within an |
||
| 1527 | /// int64_t. Otherwise no value is returned. |
||
| 1528 | std::optional<int64_t> trySExtValue() const { |
||
| 1529 | return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue()) |
||
| 1530 | : std::nullopt; |
||
| 1531 | }; |
||
| 1532 | |||
| 1533 | /// Get bits required for string value. |
||
| 1534 | /// |
||
| 1535 | /// This method determines how many bits are required to hold the APInt |
||
| 1536 | /// equivalent of the string given by \p str. |
||
| 1537 | static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
||
| 1538 | |||
| 1539 | /// Get the bits that are sufficient to represent the string value. This may |
||
| 1540 | /// over estimate the amount of bits required, but it does not require |
||
| 1541 | /// parsing the value in the string. |
||
| 1542 | static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix); |
||
| 1543 | |||
| 1544 | /// The APInt version of the countLeadingZeros functions in |
||
| 1545 | /// MathExtras.h. |
||
| 1546 | /// |
||
| 1547 | /// It counts the number of zeros from the most significant bit to the first |
||
| 1548 | /// one bit. |
||
| 1549 | /// |
||
| 1550 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
||
| 1551 | /// zeros from the most significant bit to the first one bits. |
||
| 1552 | unsigned countLeadingZeros() const { |
||
| 1553 | if (isSingleWord()) { |
||
| 1554 | unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
||
| 1555 | return llvm::countLeadingZeros(U.VAL) - unusedBits; |
||
| 1556 | } |
||
| 1557 | return countLeadingZerosSlowCase(); |
||
| 1558 | } |
||
| 1559 | |||
| 1560 | /// Count the number of leading one bits. |
||
| 1561 | /// |
||
| 1562 | /// This function is an APInt version of the countLeadingOnes |
||
| 1563 | /// functions in MathExtras.h. It counts the number of ones from the most |
||
| 1564 | /// significant bit to the first zero bit. |
||
| 1565 | /// |
||
| 1566 | /// \returns 0 if the high order bit is not set, otherwise returns the number |
||
| 1567 | /// of 1 bits from the most significant to the least |
||
| 1568 | unsigned countLeadingOnes() const { |
||
| 1569 | if (isSingleWord()) { |
||
| 1570 | if (LLVM_UNLIKELY(BitWidth == 0)) |
||
| 1571 | return 0; |
||
| 1572 | return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); |
||
| 1573 | } |
||
| 1574 | return countLeadingOnesSlowCase(); |
||
| 1575 | } |
||
| 1576 | |||
| 1577 | /// Computes the number of leading bits of this APInt that are equal to its |
||
| 1578 | /// sign bit. |
||
| 1579 | unsigned getNumSignBits() const { |
||
| 1580 | return isNegative() ? countLeadingOnes() : countLeadingZeros(); |
||
| 1581 | } |
||
| 1582 | |||
| 1583 | /// Count the number of trailing zero bits. |
||
| 1584 | /// |
||
| 1585 | /// This function is an APInt version of the countTrailingZeros |
||
| 1586 | /// functions in MathExtras.h. It counts the number of zeros from the least |
||
| 1587 | /// significant bit to the first set bit. |
||
| 1588 | /// |
||
| 1589 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
||
| 1590 | /// zeros from the least significant bit to the first one bit. |
||
| 1591 | unsigned countTrailingZeros() const { |
||
| 1592 | if (isSingleWord()) { |
||
| 1593 | unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL); |
||
| 1594 | return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); |
||
| 1595 | } |
||
| 1596 | return countTrailingZerosSlowCase(); |
||
| 1597 | } |
||
| 1598 | |||
| 1599 | /// Count the number of trailing one bits. |
||
| 1600 | /// |
||
| 1601 | /// This function is an APInt version of the countTrailingOnes |
||
| 1602 | /// functions in MathExtras.h. It counts the number of ones from the least |
||
| 1603 | /// significant bit to the first zero bit. |
||
| 1604 | /// |
||
| 1605 | /// \returns BitWidth if the value is all ones, otherwise returns the number |
||
| 1606 | /// of ones from the least significant bit to the first zero bit. |
||
| 1607 | unsigned countTrailingOnes() const { |
||
| 1608 | if (isSingleWord()) |
||
| 1609 | return llvm::countTrailingOnes(U.VAL); |
||
| 1610 | return countTrailingOnesSlowCase(); |
||
| 1611 | } |
||
| 1612 | |||
| 1613 | /// Count the number of bits set. |
||
| 1614 | /// |
||
| 1615 | /// This function is an APInt version of the countPopulation functions |
||
| 1616 | /// in MathExtras.h. It counts the number of 1 bits in the APInt value. |
||
| 1617 | /// |
||
| 1618 | /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
||
| 1619 | unsigned countPopulation() const { |
||
| 1620 | if (isSingleWord()) |
||
| 1621 | return llvm::popcount(U.VAL); |
||
| 1622 | return countPopulationSlowCase(); |
||
| 1623 | } |
||
| 1624 | |||
| 1625 | /// @} |
||
| 1626 | /// \name Conversion Functions |
||
| 1627 | /// @{ |
||
| 1628 | void print(raw_ostream &OS, bool isSigned) const; |
||
| 1629 | |||
| 1630 | /// Converts an APInt to a string and append it to Str. Str is commonly a |
||
| 1631 | /// SmallString. |
||
| 1632 | void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
||
| 1633 | bool formatAsCLiteral = false) const; |
||
| 1634 | |||
| 1635 | /// Considers the APInt to be unsigned and converts it into a string in the |
||
| 1636 | /// radix given. The radix can be 2, 8, 10 16, or 36. |
||
| 1637 | void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
||
| 1638 | toString(Str, Radix, false, false); |
||
| 1639 | } |
||
| 1640 | |||
| 1641 | /// Considers the APInt to be signed and converts it into a string in the |
||
| 1642 | /// radix given. The radix can be 2, 8, 10, 16, or 36. |
||
| 1643 | void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
||
| 1644 | toString(Str, Radix, true, false); |
||
| 1645 | } |
||
| 1646 | |||
| 1647 | /// \returns a byte-swapped representation of this APInt Value. |
||
| 1648 | APInt byteSwap() const; |
||
| 1649 | |||
| 1650 | /// \returns the value with the bit representation reversed of this APInt |
||
| 1651 | /// Value. |
||
| 1652 | APInt reverseBits() const; |
||
| 1653 | |||
| 1654 | /// Converts this APInt to a double value. |
||
| 1655 | double roundToDouble(bool isSigned) const; |
||
| 1656 | |||
| 1657 | /// Converts this unsigned APInt to a double value. |
||
| 1658 | double roundToDouble() const { return roundToDouble(false); } |
||
| 1659 | |||
| 1660 | /// Converts this signed APInt to a double value. |
||
| 1661 | double signedRoundToDouble() const { return roundToDouble(true); } |
||
| 1662 | |||
| 1663 | /// Converts APInt bits to a double |
||
| 1664 | /// |
||
| 1665 | /// The conversion does not do a translation from integer to double, it just |
||
| 1666 | /// re-interprets the bits as a double. Note that it is valid to do this on |
||
| 1667 | /// any bit width. Exactly 64 bits will be translated. |
||
| 1668 | double bitsToDouble() const { return BitsToDouble(getWord(0)); } |
||
| 1669 | |||
| 1670 | /// Converts APInt bits to a float |
||
| 1671 | /// |
||
| 1672 | /// The conversion does not do a translation from integer to float, it just |
||
| 1673 | /// re-interprets the bits as a float. Note that it is valid to do this on |
||
| 1674 | /// any bit width. Exactly 32 bits will be translated. |
||
| 1675 | float bitsToFloat() const { |
||
| 1676 | return BitsToFloat(static_cast<uint32_t>(getWord(0))); |
||
| 1677 | } |
||
| 1678 | |||
| 1679 | /// Converts a double to APInt bits. |
||
| 1680 | /// |
||
| 1681 | /// The conversion does not do a translation from double to integer, it just |
||
| 1682 | /// re-interprets the bits of the double. |
||
| 1683 | static APInt doubleToBits(double V) { |
||
| 1684 | return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); |
||
| 1685 | } |
||
| 1686 | |||
| 1687 | /// Converts a float to APInt bits. |
||
| 1688 | /// |
||
| 1689 | /// The conversion does not do a translation from float to integer, it just |
||
| 1690 | /// re-interprets the bits of the float. |
||
| 1691 | static APInt floatToBits(float V) { |
||
| 1692 | return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); |
||
| 1693 | } |
||
| 1694 | |||
| 1695 | /// @} |
||
| 1696 | /// \name Mathematics Operations |
||
| 1697 | /// @{ |
||
| 1698 | |||
| 1699 | /// \returns the floor log base 2 of this APInt. |
||
| 1700 | unsigned logBase2() const { return getActiveBits() - 1; } |
||
| 1701 | |||
| 1702 | /// \returns the ceil log base 2 of this APInt. |
||
| 1703 | unsigned ceilLogBase2() const { |
||
| 1704 | APInt temp(*this); |
||
| 1705 | --temp; |
||
| 1706 | return temp.getActiveBits(); |
||
| 1707 | } |
||
| 1708 | |||
| 1709 | /// \returns the nearest log base 2 of this APInt. Ties round up. |
||
| 1710 | /// |
||
| 1711 | /// NOTE: When we have a BitWidth of 1, we define: |
||
| 1712 | /// |
||
| 1713 | /// log2(0) = UINT32_MAX |
||
| 1714 | /// log2(1) = 0 |
||
| 1715 | /// |
||
| 1716 | /// to get around any mathematical concerns resulting from |
||
| 1717 | /// referencing 2 in a space where 2 does no exist. |
||
| 1718 | unsigned nearestLogBase2() const; |
||
| 1719 | |||
| 1720 | /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
||
| 1721 | /// otherwise |
||
| 1722 | int32_t exactLogBase2() const { |
||
| 1723 | if (!isPowerOf2()) |
||
| 1724 | return -1; |
||
| 1725 | return logBase2(); |
||
| 1726 | } |
||
| 1727 | |||
| 1728 | /// Compute the square root. |
||
| 1729 | APInt sqrt() const; |
||
| 1730 | |||
| 1731 | /// Get the absolute value. If *this is < 0 then return -(*this), otherwise |
||
| 1732 | /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit |
||
| 1733 | /// wide APInt) is unchanged due to how negation works. |
||
| 1734 | APInt abs() const { |
||
| 1735 | if (isNegative()) |
||
| 1736 | return -(*this); |
||
| 1737 | return *this; |
||
| 1738 | } |
||
| 1739 | |||
| 1740 | /// \returns the multiplicative inverse for a given modulo. |
||
| 1741 | APInt multiplicativeInverse(const APInt &modulo) const; |
||
| 1742 | |||
| 1743 | /// @} |
||
| 1744 | /// \name Building-block Operations for APInt and APFloat |
||
| 1745 | /// @{ |
||
| 1746 | |||
| 1747 | // These building block operations operate on a representation of arbitrary |
||
| 1748 | // precision, two's-complement, bignum integer values. They should be |
||
| 1749 | // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
||
| 1750 | // generally a pointer to the base of an array of integer parts, representing |
||
| 1751 | // an unsigned bignum, and a count of how many parts there are. |
||
| 1752 | |||
| 1753 | /// Sets the least significant part of a bignum to the input value, and zeroes |
||
| 1754 | /// out higher parts. |
||
| 1755 | static void tcSet(WordType *, WordType, unsigned); |
||
| 1756 | |||
| 1757 | /// Assign one bignum to another. |
||
| 1758 | static void tcAssign(WordType *, const WordType *, unsigned); |
||
| 1759 | |||
| 1760 | /// Returns true if a bignum is zero, false otherwise. |
||
| 1761 | static bool tcIsZero(const WordType *, unsigned); |
||
| 1762 | |||
| 1763 | /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
||
| 1764 | static int tcExtractBit(const WordType *, unsigned bit); |
||
| 1765 | |||
| 1766 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
||
| 1767 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
||
| 1768 | /// significant bit of DST. All high bits above srcBITS in DST are |
||
| 1769 | /// zero-filled. |
||
| 1770 | static void tcExtract(WordType *, unsigned dstCount, const WordType *, |
||
| 1771 | unsigned srcBits, unsigned srcLSB); |
||
| 1772 | |||
| 1773 | /// Set the given bit of a bignum. Zero-based. |
||
| 1774 | static void tcSetBit(WordType *, unsigned bit); |
||
| 1775 | |||
| 1776 | /// Clear the given bit of a bignum. Zero-based. |
||
| 1777 | static void tcClearBit(WordType *, unsigned bit); |
||
| 1778 | |||
| 1779 | /// Returns the bit number of the least or most significant set bit of a |
||
| 1780 | /// number. If the input number has no bits set -1U is returned. |
||
| 1781 | static unsigned tcLSB(const WordType *, unsigned n); |
||
| 1782 | static unsigned tcMSB(const WordType *parts, unsigned n); |
||
| 1783 | |||
| 1784 | /// Negate a bignum in-place. |
||
| 1785 | static void tcNegate(WordType *, unsigned); |
||
| 1786 | |||
| 1787 | /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
||
| 1788 | static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned); |
||
| 1789 | /// DST += RHS. Returns the carry flag. |
||
| 1790 | static WordType tcAddPart(WordType *, WordType, unsigned); |
||
| 1791 | |||
| 1792 | /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
||
| 1793 | static WordType tcSubtract(WordType *, const WordType *, WordType carry, |
||
| 1794 | unsigned); |
||
| 1795 | /// DST -= RHS. Returns the carry flag. |
||
| 1796 | static WordType tcSubtractPart(WordType *, WordType, unsigned); |
||
| 1797 | |||
| 1798 | /// DST += SRC * MULTIPLIER + PART if add is true |
||
| 1799 | /// DST = SRC * MULTIPLIER + PART if add is false |
||
| 1800 | /// |
||
| 1801 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
||
| 1802 | /// start at the same point, i.e. DST == SRC. |
||
| 1803 | /// |
||
| 1804 | /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
||
| 1805 | /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
||
| 1806 | /// result, and if all of the omitted higher parts were zero return zero, |
||
| 1807 | /// otherwise overflow occurred and return one. |
||
| 1808 | static int tcMultiplyPart(WordType *dst, const WordType *src, |
||
| 1809 | WordType multiplier, WordType carry, |
||
| 1810 | unsigned srcParts, unsigned dstParts, bool add); |
||
| 1811 | |||
| 1812 | /// DST = LHS * RHS, where DST has the same width as the operands and is |
||
| 1813 | /// filled with the least significant parts of the result. Returns one if |
||
| 1814 | /// overflow occurred, otherwise zero. DST must be disjoint from both |
||
| 1815 | /// operands. |
||
| 1816 | static int tcMultiply(WordType *, const WordType *, const WordType *, |
||
| 1817 | unsigned); |
||
| 1818 | |||
| 1819 | /// DST = LHS * RHS, where DST has width the sum of the widths of the |
||
| 1820 | /// operands. No overflow occurs. DST must be disjoint from both operands. |
||
| 1821 | static void tcFullMultiply(WordType *, const WordType *, const WordType *, |
||
| 1822 | unsigned, unsigned); |
||
| 1823 | |||
| 1824 | /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
||
| 1825 | /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
||
| 1826 | /// REMAINDER to the remainder, return zero. i.e. |
||
| 1827 | /// |
||
| 1828 | /// OLD_LHS = RHS * LHS + REMAINDER |
||
| 1829 | /// |
||
| 1830 | /// SCRATCH is a bignum of the same size as the operands and result for use by |
||
| 1831 | /// the routine; its contents need not be initialized and are destroyed. LHS, |
||
| 1832 | /// REMAINDER and SCRATCH must be distinct. |
||
| 1833 | static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder, |
||
| 1834 | WordType *scratch, unsigned parts); |
||
| 1835 | |||
| 1836 | /// Shift a bignum left Count bits. Shifted in bits are zero. There are no |
||
| 1837 | /// restrictions on Count. |
||
| 1838 | static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); |
||
| 1839 | |||
| 1840 | /// Shift a bignum right Count bits. Shifted in bits are zero. There are no |
||
| 1841 | /// restrictions on Count. |
||
| 1842 | static void tcShiftRight(WordType *, unsigned Words, unsigned Count); |
||
| 1843 | |||
| 1844 | /// Comparison (unsigned) of two bignums. |
||
| 1845 | static int tcCompare(const WordType *, const WordType *, unsigned); |
||
| 1846 | |||
| 1847 | /// Increment a bignum in-place. Return the carry flag. |
||
| 1848 | static WordType tcIncrement(WordType *dst, unsigned parts) { |
||
| 1849 | return tcAddPart(dst, 1, parts); |
||
| 1850 | } |
||
| 1851 | |||
| 1852 | /// Decrement a bignum in-place. Return the borrow flag. |
||
| 1853 | static WordType tcDecrement(WordType *dst, unsigned parts) { |
||
| 1854 | return tcSubtractPart(dst, 1, parts); |
||
| 1855 | } |
||
| 1856 | |||
| 1857 | /// Used to insert APInt objects, or objects that contain APInt objects, into |
||
| 1858 | /// FoldingSets. |
||
| 1859 | void Profile(FoldingSetNodeID &id) const; |
||
| 1860 | |||
| 1861 | /// debug method |
||
| 1862 | void dump() const; |
||
| 1863 | |||
| 1864 | /// Returns whether this instance allocated memory. |
||
| 1865 | bool needsCleanup() const { return !isSingleWord(); } |
||
| 1866 | |||
| 1867 | private: |
||
| 1868 | /// This union is used to store the integer value. When the |
||
| 1869 | /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
||
| 1870 | union { |
||
| 1871 | uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
||
| 1872 | uint64_t *pVal; ///< Used to store the >64 bits integer value. |
||
| 1873 | } U; |
||
| 1874 | |||
| 1875 | unsigned BitWidth = 1; ///< The number of bits in this APInt. |
||
| 1876 | |||
| 1877 | friend struct DenseMapInfo<APInt, void>; |
||
| 1878 | friend class APSInt; |
||
| 1879 | |||
| 1880 | /// This constructor is used only internally for speed of construction of |
||
| 1881 | /// temporaries. It is unsafe since it takes ownership of the pointer, so it |
||
| 1882 | /// is not public. |
||
| 1883 | APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; } |
||
| 1884 | |||
| 1885 | /// Determine which word a bit is in. |
||
| 1886 | /// |
||
| 1887 | /// \returns the word position for the specified bit position. |
||
| 1888 | static unsigned whichWord(unsigned bitPosition) { |
||
| 1889 | return bitPosition / APINT_BITS_PER_WORD; |
||
| 1890 | } |
||
| 1891 | |||
| 1892 | /// Determine which bit in a word the specified bit position is in. |
||
| 1893 | static unsigned whichBit(unsigned bitPosition) { |
||
| 1894 | return bitPosition % APINT_BITS_PER_WORD; |
||
| 1895 | } |
||
| 1896 | |||
| 1897 | /// Get a single bit mask. |
||
| 1898 | /// |
||
| 1899 | /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
||
| 1900 | /// This method generates and returns a uint64_t (word) mask for a single |
||
| 1901 | /// bit at a specific bit position. This is used to mask the bit in the |
||
| 1902 | /// corresponding word. |
||
| 1903 | static uint64_t maskBit(unsigned bitPosition) { |
||
| 1904 | return 1ULL << whichBit(bitPosition); |
||
| 1905 | } |
||
| 1906 | |||
| 1907 | /// Clear unused high order bits |
||
| 1908 | /// |
||
| 1909 | /// This method is used internally to clear the top "N" bits in the high order |
||
| 1910 | /// word that are not used by the APInt. This is needed after the most |
||
| 1911 | /// significant word is assigned a value to ensure that those bits are |
||
| 1912 | /// zero'd out. |
||
| 1913 | APInt &clearUnusedBits() { |
||
| 1914 | // Compute how many bits are used in the final word. |
||
| 1915 | unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1; |
||
| 1916 | |||
| 1917 | // Mask out the high bits. |
||
| 1918 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); |
||
| 1919 | if (LLVM_UNLIKELY(BitWidth == 0)) |
||
| 1920 | mask = 0; |
||
| 1921 | |||
| 1922 | if (isSingleWord()) |
||
| 1923 | U.VAL &= mask; |
||
| 1924 | else |
||
| 1925 | U.pVal[getNumWords() - 1] &= mask; |
||
| 1926 | return *this; |
||
| 1927 | } |
||
| 1928 | |||
| 1929 | /// Get the word corresponding to a bit position |
||
| 1930 | /// \returns the corresponding word for the specified bit position. |
||
| 1931 | uint64_t getWord(unsigned bitPosition) const { |
||
| 1932 | return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; |
||
| 1933 | } |
||
| 1934 | |||
| 1935 | /// Utility method to change the bit width of this APInt to new bit width, |
||
| 1936 | /// allocating and/or deallocating as necessary. There is no guarantee on the |
||
| 1937 | /// value of any bits upon return. Caller should populate the bits after. |
||
| 1938 | void reallocate(unsigned NewBitWidth); |
||
| 1939 | |||
| 1940 | /// Convert a char array into an APInt |
||
| 1941 | /// |
||
| 1942 | /// \param radix 2, 8, 10, 16, or 36 |
||
| 1943 | /// Converts a string into a number. The string must be non-empty |
||
| 1944 | /// and well-formed as a number of the given base. The bit-width |
||
| 1945 | /// must be sufficient to hold the result. |
||
| 1946 | /// |
||
| 1947 | /// This is used by the constructors that take string arguments. |
||
| 1948 | /// |
||
| 1949 | /// StringRef::getAsInteger is superficially similar but (1) does |
||
| 1950 | /// not assume that the string is well-formed and (2) grows the |
||
| 1951 | /// result to hold the input. |
||
| 1952 | void fromString(unsigned numBits, StringRef str, uint8_t radix); |
||
| 1953 | |||
| 1954 | /// An internal division function for dividing APInts. |
||
| 1955 | /// |
||
| 1956 | /// This is used by the toString method to divide by the radix. It simply |
||
| 1957 | /// provides a more convenient form of divide for internal use since KnuthDiv |
||
| 1958 | /// has specific constraints on its inputs. If those constraints are not met |
||
| 1959 | /// then it provides a simpler form of divide. |
||
| 1960 | static void divide(const WordType *LHS, unsigned lhsWords, |
||
| 1961 | const WordType *RHS, unsigned rhsWords, WordType *Quotient, |
||
| 1962 | WordType *Remainder); |
||
| 1963 | |||
| 1964 | /// out-of-line slow case for inline constructor |
||
| 1965 | void initSlowCase(uint64_t val, bool isSigned); |
||
| 1966 | |||
| 1967 | /// shared code between two array constructors |
||
| 1968 | void initFromArray(ArrayRef<uint64_t> array); |
||
| 1969 | |||
| 1970 | /// out-of-line slow case for inline copy constructor |
||
| 1971 | void initSlowCase(const APInt &that); |
||
| 1972 | |||
| 1973 | /// out-of-line slow case for shl |
||
| 1974 | void shlSlowCase(unsigned ShiftAmt); |
||
| 1975 | |||
| 1976 | /// out-of-line slow case for lshr. |
||
| 1977 | void lshrSlowCase(unsigned ShiftAmt); |
||
| 1978 | |||
| 1979 | /// out-of-line slow case for ashr. |
||
| 1980 | void ashrSlowCase(unsigned ShiftAmt); |
||
| 1981 | |||
| 1982 | /// out-of-line slow case for operator= |
||
| 1983 | void assignSlowCase(const APInt &RHS); |
||
| 1984 | |||
| 1985 | /// out-of-line slow case for operator== |
||
| 1986 | bool equalSlowCase(const APInt &RHS) const LLVM_READONLY; |
||
| 1987 | |||
| 1988 | /// out-of-line slow case for countLeadingZeros |
||
| 1989 | unsigned countLeadingZerosSlowCase() const LLVM_READONLY; |
||
| 1990 | |||
| 1991 | /// out-of-line slow case for countLeadingOnes. |
||
| 1992 | unsigned countLeadingOnesSlowCase() const LLVM_READONLY; |
||
| 1993 | |||
| 1994 | /// out-of-line slow case for countTrailingZeros. |
||
| 1995 | unsigned countTrailingZerosSlowCase() const LLVM_READONLY; |
||
| 1996 | |||
| 1997 | /// out-of-line slow case for countTrailingOnes |
||
| 1998 | unsigned countTrailingOnesSlowCase() const LLVM_READONLY; |
||
| 1999 | |||
| 2000 | /// out-of-line slow case for countPopulation |
||
| 2001 | unsigned countPopulationSlowCase() const LLVM_READONLY; |
||
| 2002 | |||
| 2003 | /// out-of-line slow case for intersects. |
||
| 2004 | bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; |
||
| 2005 | |||
| 2006 | /// out-of-line slow case for isSubsetOf. |
||
| 2007 | bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; |
||
| 2008 | |||
| 2009 | /// out-of-line slow case for setBits. |
||
| 2010 | void setBitsSlowCase(unsigned loBit, unsigned hiBit); |
||
| 2011 | |||
| 2012 | /// out-of-line slow case for flipAllBits. |
||
| 2013 | void flipAllBitsSlowCase(); |
||
| 2014 | |||
| 2015 | /// out-of-line slow case for concat. |
||
| 2016 | APInt concatSlowCase(const APInt &NewLSB) const; |
||
| 2017 | |||
| 2018 | /// out-of-line slow case for operator&=. |
||
| 2019 | void andAssignSlowCase(const APInt &RHS); |
||
| 2020 | |||
| 2021 | /// out-of-line slow case for operator|=. |
||
| 2022 | void orAssignSlowCase(const APInt &RHS); |
||
| 2023 | |||
| 2024 | /// out-of-line slow case for operator^=. |
||
| 2025 | void xorAssignSlowCase(const APInt &RHS); |
||
| 2026 | |||
| 2027 | /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
||
| 2028 | /// to, or greater than RHS. |
||
| 2029 | int compare(const APInt &RHS) const LLVM_READONLY; |
||
| 2030 | |||
| 2031 | /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
||
| 2032 | /// to, or greater than RHS. |
||
| 2033 | int compareSigned(const APInt &RHS) const LLVM_READONLY; |
||
| 2034 | |||
| 2035 | /// @} |
||
| 2036 | }; |
||
| 2037 | |||
| 2038 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
||
| 2039 | |||
| 2040 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
||
| 2041 | |||
| 2042 | /// Unary bitwise complement operator. |
||
| 2043 | /// |
||
| 2044 | /// \returns an APInt that is the bitwise complement of \p v. |
||
| 2045 | inline APInt operator~(APInt v) { |
||
| 2046 | v.flipAllBits(); |
||
| 2047 | return v; |
||
| 2048 | } |
||
| 2049 | |||
| 2050 | inline APInt operator&(APInt a, const APInt &b) { |
||
| 2051 | a &= b; |
||
| 2052 | return a; |
||
| 2053 | } |
||
| 2054 | |||
| 2055 | inline APInt operator&(const APInt &a, APInt &&b) { |
||
| 2056 | b &= a; |
||
| 2057 | return std::move(b); |
||
| 2058 | } |
||
| 2059 | |||
| 2060 | inline APInt operator&(APInt a, uint64_t RHS) { |
||
| 2061 | a &= RHS; |
||
| 2062 | return a; |
||
| 2063 | } |
||
| 2064 | |||
| 2065 | inline APInt operator&(uint64_t LHS, APInt b) { |
||
| 2066 | b &= LHS; |
||
| 2067 | return b; |
||
| 2068 | } |
||
| 2069 | |||
| 2070 | inline APInt operator|(APInt a, const APInt &b) { |
||
| 2071 | a |= b; |
||
| 2072 | return a; |
||
| 2073 | } |
||
| 2074 | |||
| 2075 | inline APInt operator|(const APInt &a, APInt &&b) { |
||
| 2076 | b |= a; |
||
| 2077 | return std::move(b); |
||
| 2078 | } |
||
| 2079 | |||
| 2080 | inline APInt operator|(APInt a, uint64_t RHS) { |
||
| 2081 | a |= RHS; |
||
| 2082 | return a; |
||
| 2083 | } |
||
| 2084 | |||
| 2085 | inline APInt operator|(uint64_t LHS, APInt b) { |
||
| 2086 | b |= LHS; |
||
| 2087 | return b; |
||
| 2088 | } |
||
| 2089 | |||
| 2090 | inline APInt operator^(APInt a, const APInt &b) { |
||
| 2091 | a ^= b; |
||
| 2092 | return a; |
||
| 2093 | } |
||
| 2094 | |||
| 2095 | inline APInt operator^(const APInt &a, APInt &&b) { |
||
| 2096 | b ^= a; |
||
| 2097 | return std::move(b); |
||
| 2098 | } |
||
| 2099 | |||
| 2100 | inline APInt operator^(APInt a, uint64_t RHS) { |
||
| 2101 | a ^= RHS; |
||
| 2102 | return a; |
||
| 2103 | } |
||
| 2104 | |||
| 2105 | inline APInt operator^(uint64_t LHS, APInt b) { |
||
| 2106 | b ^= LHS; |
||
| 2107 | return b; |
||
| 2108 | } |
||
| 2109 | |||
| 2110 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
||
| 2111 | I.print(OS, true); |
||
| 2112 | return OS; |
||
| 2113 | } |
||
| 2114 | |||
| 2115 | inline APInt operator-(APInt v) { |
||
| 2116 | v.negate(); |
||
| 2117 | return v; |
||
| 2118 | } |
||
| 2119 | |||
| 2120 | inline APInt operator+(APInt a, const APInt &b) { |
||
| 2121 | a += b; |
||
| 2122 | return a; |
||
| 2123 | } |
||
| 2124 | |||
| 2125 | inline APInt operator+(const APInt &a, APInt &&b) { |
||
| 2126 | b += a; |
||
| 2127 | return std::move(b); |
||
| 2128 | } |
||
| 2129 | |||
| 2130 | inline APInt operator+(APInt a, uint64_t RHS) { |
||
| 2131 | a += RHS; |
||
| 2132 | return a; |
||
| 2133 | } |
||
| 2134 | |||
| 2135 | inline APInt operator+(uint64_t LHS, APInt b) { |
||
| 2136 | b += LHS; |
||
| 2137 | return b; |
||
| 2138 | } |
||
| 2139 | |||
| 2140 | inline APInt operator-(APInt a, const APInt &b) { |
||
| 2141 | a -= b; |
||
| 2142 | return a; |
||
| 2143 | } |
||
| 2144 | |||
| 2145 | inline APInt operator-(const APInt &a, APInt &&b) { |
||
| 2146 | b.negate(); |
||
| 2147 | b += a; |
||
| 2148 | return std::move(b); |
||
| 2149 | } |
||
| 2150 | |||
| 2151 | inline APInt operator-(APInt a, uint64_t RHS) { |
||
| 2152 | a -= RHS; |
||
| 2153 | return a; |
||
| 2154 | } |
||
| 2155 | |||
| 2156 | inline APInt operator-(uint64_t LHS, APInt b) { |
||
| 2157 | b.negate(); |
||
| 2158 | b += LHS; |
||
| 2159 | return b; |
||
| 2160 | } |
||
| 2161 | |||
| 2162 | inline APInt operator*(APInt a, uint64_t RHS) { |
||
| 2163 | a *= RHS; |
||
| 2164 | return a; |
||
| 2165 | } |
||
| 2166 | |||
| 2167 | inline APInt operator*(uint64_t LHS, APInt b) { |
||
| 2168 | b *= LHS; |
||
| 2169 | return b; |
||
| 2170 | } |
||
| 2171 | |||
| 2172 | namespace APIntOps { |
||
| 2173 | |||
| 2174 | /// Determine the smaller of two APInts considered to be signed. |
||
| 2175 | inline const APInt &smin(const APInt &A, const APInt &B) { |
||
| 2176 | return A.slt(B) ? A : B; |
||
| 2177 | } |
||
| 2178 | |||
| 2179 | /// Determine the larger of two APInts considered to be signed. |
||
| 2180 | inline const APInt &smax(const APInt &A, const APInt &B) { |
||
| 2181 | return A.sgt(B) ? A : B; |
||
| 2182 | } |
||
| 2183 | |||
| 2184 | /// Determine the smaller of two APInts considered to be unsigned. |
||
| 2185 | inline const APInt &umin(const APInt &A, const APInt &B) { |
||
| 2186 | return A.ult(B) ? A : B; |
||
| 2187 | } |
||
| 2188 | |||
| 2189 | /// Determine the larger of two APInts considered to be unsigned. |
||
| 2190 | inline const APInt &umax(const APInt &A, const APInt &B) { |
||
| 2191 | return A.ugt(B) ? A : B; |
||
| 2192 | } |
||
| 2193 | |||
| 2194 | /// Compute GCD of two unsigned APInt values. |
||
| 2195 | /// |
||
| 2196 | /// This function returns the greatest common divisor of the two APInt values |
||
| 2197 | /// using Stein's algorithm. |
||
| 2198 | /// |
||
| 2199 | /// \returns the greatest common divisor of A and B. |
||
| 2200 | APInt GreatestCommonDivisor(APInt A, APInt B); |
||
| 2201 | |||
| 2202 | /// Converts the given APInt to a double value. |
||
| 2203 | /// |
||
| 2204 | /// Treats the APInt as an unsigned value for conversion purposes. |
||
| 2205 | inline double RoundAPIntToDouble(const APInt &APIVal) { |
||
| 2206 | return APIVal.roundToDouble(); |
||
| 2207 | } |
||
| 2208 | |||
| 2209 | /// Converts the given APInt to a double value. |
||
| 2210 | /// |
||
| 2211 | /// Treats the APInt as a signed value for conversion purposes. |
||
| 2212 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
||
| 2213 | return APIVal.signedRoundToDouble(); |
||
| 2214 | } |
||
| 2215 | |||
| 2216 | /// Converts the given APInt to a float value. |
||
| 2217 | inline float RoundAPIntToFloat(const APInt &APIVal) { |
||
| 2218 | return float(RoundAPIntToDouble(APIVal)); |
||
| 2219 | } |
||
| 2220 | |||
| 2221 | /// Converts the given APInt to a float value. |
||
| 2222 | /// |
||
| 2223 | /// Treats the APInt as a signed value for conversion purposes. |
||
| 2224 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
||
| 2225 | return float(APIVal.signedRoundToDouble()); |
||
| 2226 | } |
||
| 2227 | |||
| 2228 | /// Converts the given double value into a APInt. |
||
| 2229 | /// |
||
| 2230 | /// This function convert a double value to an APInt value. |
||
| 2231 | APInt RoundDoubleToAPInt(double Double, unsigned width); |
||
| 2232 | |||
| 2233 | /// Converts a float value into a APInt. |
||
| 2234 | /// |
||
| 2235 | /// Converts a float value into an APInt value. |
||
| 2236 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
||
| 2237 | return RoundDoubleToAPInt(double(Float), width); |
||
| 2238 | } |
||
| 2239 | |||
| 2240 | /// Return A unsign-divided by B, rounded by the given rounding mode. |
||
| 2241 | APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
||
| 2242 | |||
| 2243 | /// Return A sign-divided by B, rounded by the given rounding mode. |
||
| 2244 | APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
||
| 2245 | |||
| 2246 | /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range |
||
| 2247 | /// (e.g. 32 for i32). |
||
| 2248 | /// This function finds the smallest number n, such that |
||
| 2249 | /// (a) n >= 0 and q(n) = 0, or |
||
| 2250 | /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all |
||
| 2251 | /// integers, belong to two different intervals [Rk, Rk+R), |
||
| 2252 | /// where R = 2^BW, and k is an integer. |
||
| 2253 | /// The idea here is to find when q(n) "overflows" 2^BW, while at the |
||
| 2254 | /// same time "allowing" subtraction. In unsigned modulo arithmetic a |
||
| 2255 | /// subtraction (treated as addition of negated numbers) would always |
||
| 2256 | /// count as an overflow, but here we want to allow values to decrease |
||
| 2257 | /// and increase as long as they are within the same interval. |
||
| 2258 | /// Specifically, adding of two negative numbers should not cause an |
||
| 2259 | /// overflow (as long as the magnitude does not exceed the bit width). |
||
| 2260 | /// On the other hand, given a positive number, adding a negative |
||
| 2261 | /// number to it can give a negative result, which would cause the |
||
| 2262 | /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is |
||
| 2263 | /// treated as a special case of an overflow. |
||
| 2264 | /// |
||
| 2265 | /// This function returns std::nullopt if after finding k that minimizes the |
||
| 2266 | /// positive solution to q(n) = kR, both solutions are contained between |
||
| 2267 | /// two consecutive integers. |
||
| 2268 | /// |
||
| 2269 | /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation |
||
| 2270 | /// in arithmetic modulo 2^BW, and treating the values as signed) by the |
||
| 2271 | /// virtue of *signed* overflow. This function will *not* find such an n, |
||
| 2272 | /// however it may find a value of n satisfying the inequalities due to |
||
| 2273 | /// an *unsigned* overflow (if the values are treated as unsigned). |
||
| 2274 | /// To find a solution for a signed overflow, treat it as a problem of |
||
| 2275 | /// finding an unsigned overflow with a range with of BW-1. |
||
| 2276 | /// |
||
| 2277 | /// The returned value may have a different bit width from the input |
||
| 2278 | /// coefficients. |
||
| 2279 | std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, |
||
| 2280 | unsigned RangeWidth); |
||
| 2281 | |||
| 2282 | /// Compare two values, and if they are different, return the position of the |
||
| 2283 | /// most significant bit that is different in the values. |
||
| 2284 | std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, |
||
| 2285 | const APInt &B); |
||
| 2286 | |||
| 2287 | /// Splat/Merge neighboring bits to widen/narrow the bitmask represented |
||
| 2288 | /// by \param A to \param NewBitWidth bits. |
||
| 2289 | /// |
||
| 2290 | /// MatchAnyBits: (Default) |
||
| 2291 | /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 |
||
| 2292 | /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111 |
||
| 2293 | /// |
||
| 2294 | /// MatchAllBits: |
||
| 2295 | /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 |
||
| 2296 | /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001 |
||
| 2297 | /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other. |
||
| 2298 | APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, |
||
| 2299 | bool MatchAllBits = false); |
||
| 2300 | } // namespace APIntOps |
||
| 2301 | |||
| 2302 | // See friend declaration above. This additional declaration is required in |
||
| 2303 | // order to compile LLVM with IBM xlC compiler. |
||
| 2304 | hash_code hash_value(const APInt &Arg); |
||
| 2305 | |||
| 2306 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst |
||
| 2307 | /// with the integer held in IntVal. |
||
| 2308 | void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); |
||
| 2309 | |||
| 2310 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting |
||
| 2311 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. |
||
| 2312 | void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes); |
||
| 2313 | |||
| 2314 | /// Provide DenseMapInfo for APInt. |
||
| 2315 | template <> struct DenseMapInfo<APInt, void> { |
||
| 2316 | static inline APInt getEmptyKey() { |
||
| 2317 | APInt V(nullptr, 0); |
||
| 2318 | V.U.VAL = ~0ULL; |
||
| 2319 | return V; |
||
| 2320 | } |
||
| 2321 | |||
| 2322 | static inline APInt getTombstoneKey() { |
||
| 2323 | APInt V(nullptr, 0); |
||
| 2324 | V.U.VAL = ~1ULL; |
||
| 2325 | return V; |
||
| 2326 | } |
||
| 2327 | |||
| 2328 | static unsigned getHashValue(const APInt &Key); |
||
| 2329 | |||
| 2330 | static bool isEqual(const APInt &LHS, const APInt &RHS) { |
||
| 2331 | return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; |
||
| 2332 | } |
||
| 2333 | }; |
||
| 2334 | |||
| 2335 | } // namespace llvm |
||
| 2336 | |||
| 2337 | #endif |