Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | /// |
||
| 9 | /// \file |
||
| 10 | /// This file declares a class to represent arbitrary precision floating point |
||
| 11 | /// values and provide a variety of arithmetic operations on them. |
||
| 12 | /// |
||
| 13 | //===----------------------------------------------------------------------===// |
||
| 14 | |||
| 15 | #ifndef LLVM_ADT_APFLOAT_H |
||
| 16 | #define LLVM_ADT_APFLOAT_H |
||
| 17 | |||
| 18 | #include "llvm/ADT/APInt.h" |
||
| 19 | #include "llvm/ADT/ArrayRef.h" |
||
| 20 | #include "llvm/ADT/FloatingPointMode.h" |
||
| 21 | #include "llvm/Support/ErrorHandling.h" |
||
| 22 | #include <memory> |
||
| 23 | |||
| 24 | #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ |
||
| 25 | do { \ |
||
| 26 | if (usesLayout<IEEEFloat>(getSemantics())) \ |
||
| 27 | return U.IEEE.METHOD_CALL; \ |
||
| 28 | if (usesLayout<DoubleAPFloat>(getSemantics())) \ |
||
| 29 | return U.Double.METHOD_CALL; \ |
||
| 30 | llvm_unreachable("Unexpected semantics"); \ |
||
| 31 | } while (false) |
||
| 32 | |||
| 33 | namespace llvm { |
||
| 34 | |||
| 35 | struct fltSemantics; |
||
| 36 | class APSInt; |
||
| 37 | class StringRef; |
||
| 38 | class APFloat; |
||
| 39 | class raw_ostream; |
||
| 40 | |||
| 41 | template <typename T> class Expected; |
||
| 42 | template <typename T> class SmallVectorImpl; |
||
| 43 | |||
| 44 | /// Enum that represents what fraction of the LSB truncated bits of an fp number |
||
| 45 | /// represent. |
||
| 46 | /// |
||
| 47 | /// This essentially combines the roles of guard and sticky bits. |
||
| 48 | enum lostFraction { // Example of truncated bits: |
||
| 49 | lfExactlyZero, // 000000 |
||
| 50 | lfLessThanHalf, // 0xxxxx x's not all zero |
||
| 51 | lfExactlyHalf, // 100000 |
||
| 52 | lfMoreThanHalf // 1xxxxx x's not all zero |
||
| 53 | }; |
||
| 54 | |||
| 55 | /// A self-contained host- and target-independent arbitrary-precision |
||
| 56 | /// floating-point software implementation. |
||
| 57 | /// |
||
| 58 | /// APFloat uses bignum integer arithmetic as provided by static functions in |
||
| 59 | /// the APInt class. The library will work with bignum integers whose parts are |
||
| 60 | /// any unsigned type at least 16 bits wide, but 64 bits is recommended. |
||
| 61 | /// |
||
| 62 | /// Written for clarity rather than speed, in particular with a view to use in |
||
| 63 | /// the front-end of a cross compiler so that target arithmetic can be correctly |
||
| 64 | /// performed on the host. Performance should nonetheless be reasonable, |
||
| 65 | /// particularly for its intended use. It may be useful as a base |
||
| 66 | /// implementation for a run-time library during development of a faster |
||
| 67 | /// target-specific one. |
||
| 68 | /// |
||
| 69 | /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all |
||
| 70 | /// implemented operations. Currently implemented operations are add, subtract, |
||
| 71 | /// multiply, divide, fused-multiply-add, conversion-to-float, |
||
| 72 | /// conversion-to-integer and conversion-from-integer. New rounding modes |
||
| 73 | /// (e.g. away from zero) can be added with three or four lines of code. |
||
| 74 | /// |
||
| 75 | /// Four formats are built-in: IEEE single precision, double precision, |
||
| 76 | /// quadruple precision, and x87 80-bit extended double (when operating with |
||
| 77 | /// full extended precision). Adding a new format that obeys IEEE semantics |
||
| 78 | /// only requires adding two lines of code: a declaration and definition of the |
||
| 79 | /// format. |
||
| 80 | /// |
||
| 81 | /// All operations return the status of that operation as an exception bit-mask, |
||
| 82 | /// so multiple operations can be done consecutively with their results or-ed |
||
| 83 | /// together. The returned status can be useful for compiler diagnostics; e.g., |
||
| 84 | /// inexact, underflow and overflow can be easily diagnosed on constant folding, |
||
| 85 | /// and compiler optimizers can determine what exceptions would be raised by |
||
| 86 | /// folding operations and optimize, or perhaps not optimize, accordingly. |
||
| 87 | /// |
||
| 88 | /// At present, underflow tininess is detected after rounding; it should be |
||
| 89 | /// straight forward to add support for the before-rounding case too. |
||
| 90 | /// |
||
| 91 | /// The library reads hexadecimal floating point numbers as per C99, and |
||
| 92 | /// correctly rounds if necessary according to the specified rounding mode. |
||
| 93 | /// Syntax is required to have been validated by the caller. It also converts |
||
| 94 | /// floating point numbers to hexadecimal text as per the C99 %a and %A |
||
| 95 | /// conversions. The output precision (or alternatively the natural minimal |
||
| 96 | /// precision) can be specified; if the requested precision is less than the |
||
| 97 | /// natural precision the output is correctly rounded for the specified rounding |
||
| 98 | /// mode. |
||
| 99 | /// |
||
| 100 | /// It also reads decimal floating point numbers and correctly rounds according |
||
| 101 | /// to the specified rounding mode. |
||
| 102 | /// |
||
| 103 | /// Conversion to decimal text is not currently implemented. |
||
| 104 | /// |
||
| 105 | /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit |
||
| 106 | /// signed exponent, and the significand as an array of integer parts. After |
||
| 107 | /// normalization of a number of precision P the exponent is within the range of |
||
| 108 | /// the format, and if the number is not denormal the P-th bit of the |
||
| 109 | /// significand is set as an explicit integer bit. For denormals the most |
||
| 110 | /// significant bit is shifted right so that the exponent is maintained at the |
||
| 111 | /// format's minimum, so that the smallest denormal has just the least |
||
| 112 | /// significant bit of the significand set. The sign of zeroes and infinities |
||
| 113 | /// is significant; the exponent and significand of such numbers is not stored, |
||
| 114 | /// but has a known implicit (deterministic) value: 0 for the significands, 0 |
||
| 115 | /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and |
||
| 116 | /// significand are deterministic, although not really meaningful, and preserved |
||
| 117 | /// in non-conversion operations. The exponent is implicitly all 1 bits. |
||
| 118 | /// |
||
| 119 | /// APFloat does not provide any exception handling beyond default exception |
||
| 120 | /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause |
||
| 121 | /// by encoding Signaling NaNs with the first bit of its trailing significand as |
||
| 122 | /// 0. |
||
| 123 | /// |
||
| 124 | /// TODO |
||
| 125 | /// ==== |
||
| 126 | /// |
||
| 127 | /// Some features that may or may not be worth adding: |
||
| 128 | /// |
||
| 129 | /// Binary to decimal conversion (hard). |
||
| 130 | /// |
||
| 131 | /// Optional ability to detect underflow tininess before rounding. |
||
| 132 | /// |
||
| 133 | /// New formats: x87 in single and double precision mode (IEEE apart from |
||
| 134 | /// extended exponent range) (hard). |
||
| 135 | /// |
||
| 136 | /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward. |
||
| 137 | /// |
||
| 138 | |||
| 139 | // This is the common type definitions shared by APFloat and its internal |
||
| 140 | // implementation classes. This struct should not define any non-static data |
||
| 141 | // members. |
||
| 142 | struct APFloatBase { |
||
| 143 | typedef APInt::WordType integerPart; |
||
| 144 | static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD; |
||
| 145 | |||
| 146 | /// A signed type to represent a floating point numbers unbiased exponent. |
||
| 147 | typedef int32_t ExponentType; |
||
| 148 | |||
| 149 | /// \name Floating Point Semantics. |
||
| 150 | /// @{ |
||
| 151 | enum Semantics { |
||
| 152 | S_IEEEhalf, |
||
| 153 | S_BFloat, |
||
| 154 | S_IEEEsingle, |
||
| 155 | S_IEEEdouble, |
||
| 156 | S_IEEEquad, |
||
| 157 | S_PPCDoubleDouble, |
||
| 158 | // 8-bit floating point number following IEEE-754 conventions with bit |
||
| 159 | // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433. |
||
| 160 | S_Float8E5M2, |
||
| 161 | // 8-bit floating point number mostly following IEEE-754 conventions with |
||
| 162 | // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433. |
||
| 163 | // Unlike IEEE-754 types, there are no infinity values, and NaN is |
||
| 164 | // represented with the exponent and mantissa bits set to all 1s. |
||
| 165 | S_Float8E4M3FN, |
||
| 166 | S_x87DoubleExtended, |
||
| 167 | S_MaxSemantics = S_x87DoubleExtended, |
||
| 168 | }; |
||
| 169 | |||
| 170 | static const llvm::fltSemantics &EnumToSemantics(Semantics S); |
||
| 171 | static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem); |
||
| 172 | |||
| 173 | static const fltSemantics &IEEEhalf() LLVM_READNONE; |
||
| 174 | static const fltSemantics &BFloat() LLVM_READNONE; |
||
| 175 | static const fltSemantics &IEEEsingle() LLVM_READNONE; |
||
| 176 | static const fltSemantics &IEEEdouble() LLVM_READNONE; |
||
| 177 | static const fltSemantics &IEEEquad() LLVM_READNONE; |
||
| 178 | static const fltSemantics &PPCDoubleDouble() LLVM_READNONE; |
||
| 179 | static const fltSemantics &Float8E5M2() LLVM_READNONE; |
||
| 180 | static const fltSemantics &Float8E4M3FN() LLVM_READNONE; |
||
| 181 | static const fltSemantics &x87DoubleExtended() LLVM_READNONE; |
||
| 182 | |||
| 183 | /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with |
||
| 184 | /// anything real. |
||
| 185 | static const fltSemantics &Bogus() LLVM_READNONE; |
||
| 186 | |||
| 187 | /// @} |
||
| 188 | |||
| 189 | /// IEEE-754R 5.11: Floating Point Comparison Relations. |
||
| 190 | enum cmpResult { |
||
| 191 | cmpLessThan, |
||
| 192 | cmpEqual, |
||
| 193 | cmpGreaterThan, |
||
| 194 | cmpUnordered |
||
| 195 | }; |
||
| 196 | |||
| 197 | /// IEEE-754R 4.3: Rounding-direction attributes. |
||
| 198 | using roundingMode = llvm::RoundingMode; |
||
| 199 | |||
| 200 | static constexpr roundingMode rmNearestTiesToEven = |
||
| 201 | RoundingMode::NearestTiesToEven; |
||
| 202 | static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive; |
||
| 203 | static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative; |
||
| 204 | static constexpr roundingMode rmTowardZero = RoundingMode::TowardZero; |
||
| 205 | static constexpr roundingMode rmNearestTiesToAway = |
||
| 206 | RoundingMode::NearestTiesToAway; |
||
| 207 | |||
| 208 | /// IEEE-754R 7: Default exception handling. |
||
| 209 | /// |
||
| 210 | /// opUnderflow or opOverflow are always returned or-ed with opInexact. |
||
| 211 | /// |
||
| 212 | /// APFloat models this behavior specified by IEEE-754: |
||
| 213 | /// "For operations producing results in floating-point format, the default |
||
| 214 | /// result of an operation that signals the invalid operation exception |
||
| 215 | /// shall be a quiet NaN." |
||
| 216 | enum opStatus { |
||
| 217 | opOK = 0x00, |
||
| 218 | opInvalidOp = 0x01, |
||
| 219 | opDivByZero = 0x02, |
||
| 220 | opOverflow = 0x04, |
||
| 221 | opUnderflow = 0x08, |
||
| 222 | opInexact = 0x10 |
||
| 223 | }; |
||
| 224 | |||
| 225 | /// Category of internally-represented number. |
||
| 226 | enum fltCategory { |
||
| 227 | fcInfinity, |
||
| 228 | fcNaN, |
||
| 229 | fcNormal, |
||
| 230 | fcZero |
||
| 231 | }; |
||
| 232 | |||
| 233 | /// Convenience enum used to construct an uninitialized APFloat. |
||
| 234 | enum uninitializedTag { |
||
| 235 | uninitialized |
||
| 236 | }; |
||
| 237 | |||
| 238 | /// Enumeration of \c ilogb error results. |
||
| 239 | enum IlogbErrorKinds { |
||
| 240 | IEK_Zero = INT_MIN + 1, |
||
| 241 | IEK_NaN = INT_MIN, |
||
| 242 | IEK_Inf = INT_MAX |
||
| 243 | }; |
||
| 244 | |||
| 245 | static unsigned int semanticsPrecision(const fltSemantics &); |
||
| 246 | static ExponentType semanticsMinExponent(const fltSemantics &); |
||
| 247 | static ExponentType semanticsMaxExponent(const fltSemantics &); |
||
| 248 | static unsigned int semanticsSizeInBits(const fltSemantics &); |
||
| 249 | |||
| 250 | /// Returns the size of the floating point number (in bits) in the given |
||
| 251 | /// semantics. |
||
| 252 | static unsigned getSizeInBits(const fltSemantics &Sem); |
||
| 253 | }; |
||
| 254 | |||
| 255 | namespace detail { |
||
| 256 | |||
| 257 | class IEEEFloat final : public APFloatBase { |
||
| 258 | public: |
||
| 259 | /// \name Constructors |
||
| 260 | /// @{ |
||
| 261 | |||
| 262 | IEEEFloat(const fltSemantics &); // Default construct to +0.0 |
||
| 263 | IEEEFloat(const fltSemantics &, integerPart); |
||
| 264 | IEEEFloat(const fltSemantics &, uninitializedTag); |
||
| 265 | IEEEFloat(const fltSemantics &, const APInt &); |
||
| 266 | explicit IEEEFloat(double d); |
||
| 267 | explicit IEEEFloat(float f); |
||
| 268 | IEEEFloat(const IEEEFloat &); |
||
| 269 | IEEEFloat(IEEEFloat &&); |
||
| 270 | ~IEEEFloat(); |
||
| 271 | |||
| 272 | /// @} |
||
| 273 | |||
| 274 | /// Returns whether this instance allocated memory. |
||
| 275 | bool needsCleanup() const { return partCount() > 1; } |
||
| 276 | |||
| 277 | /// \name Convenience "constructors" |
||
| 278 | /// @{ |
||
| 279 | |||
| 280 | /// @} |
||
| 281 | |||
| 282 | /// \name Arithmetic |
||
| 283 | /// @{ |
||
| 284 | |||
| 285 | opStatus add(const IEEEFloat &, roundingMode); |
||
| 286 | opStatus subtract(const IEEEFloat &, roundingMode); |
||
| 287 | opStatus multiply(const IEEEFloat &, roundingMode); |
||
| 288 | opStatus divide(const IEEEFloat &, roundingMode); |
||
| 289 | /// IEEE remainder. |
||
| 290 | opStatus remainder(const IEEEFloat &); |
||
| 291 | /// C fmod, or llvm frem. |
||
| 292 | opStatus mod(const IEEEFloat &); |
||
| 293 | opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode); |
||
| 294 | opStatus roundToIntegral(roundingMode); |
||
| 295 | /// IEEE-754R 5.3.1: nextUp/nextDown. |
||
| 296 | opStatus next(bool nextDown); |
||
| 297 | |||
| 298 | /// @} |
||
| 299 | |||
| 300 | /// \name Sign operations. |
||
| 301 | /// @{ |
||
| 302 | |||
| 303 | void changeSign(); |
||
| 304 | |||
| 305 | /// @} |
||
| 306 | |||
| 307 | /// \name Conversions |
||
| 308 | /// @{ |
||
| 309 | |||
| 310 | opStatus convert(const fltSemantics &, roundingMode, bool *); |
||
| 311 | opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool, |
||
| 312 | roundingMode, bool *) const; |
||
| 313 | opStatus convertFromAPInt(const APInt &, bool, roundingMode); |
||
| 314 | opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, |
||
| 315 | bool, roundingMode); |
||
| 316 | opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, |
||
| 317 | bool, roundingMode); |
||
| 318 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
||
| 319 | APInt bitcastToAPInt() const; |
||
| 320 | double convertToDouble() const; |
||
| 321 | float convertToFloat() const; |
||
| 322 | |||
| 323 | /// @} |
||
| 324 | |||
| 325 | /// The definition of equality is not straightforward for floating point, so |
||
| 326 | /// we won't use operator==. Use one of the following, or write whatever it |
||
| 327 | /// is you really mean. |
||
| 328 | bool operator==(const IEEEFloat &) const = delete; |
||
| 329 | |||
| 330 | /// IEEE comparison with another floating point number (NaNs compare |
||
| 331 | /// unordered, 0==-0). |
||
| 332 | cmpResult compare(const IEEEFloat &) const; |
||
| 333 | |||
| 334 | /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0). |
||
| 335 | bool bitwiseIsEqual(const IEEEFloat &) const; |
||
| 336 | |||
| 337 | /// Write out a hexadecimal representation of the floating point value to DST, |
||
| 338 | /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d. |
||
| 339 | /// Return the number of characters written, excluding the terminating NUL. |
||
| 340 | unsigned int convertToHexString(char *dst, unsigned int hexDigits, |
||
| 341 | bool upperCase, roundingMode) const; |
||
| 342 | |||
| 343 | /// \name IEEE-754R 5.7.2 General operations. |
||
| 344 | /// @{ |
||
| 345 | |||
| 346 | /// IEEE-754R isSignMinus: Returns true if and only if the current value is |
||
| 347 | /// negative. |
||
| 348 | /// |
||
| 349 | /// This applies to zeros and NaNs as well. |
||
| 350 | bool isNegative() const { return sign; } |
||
| 351 | |||
| 352 | /// IEEE-754R isNormal: Returns true if and only if the current value is normal. |
||
| 353 | /// |
||
| 354 | /// This implies that the current value of the float is not zero, subnormal, |
||
| 355 | /// infinite, or NaN following the definition of normality from IEEE-754R. |
||
| 356 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
||
| 357 | |||
| 358 | /// Returns true if and only if the current value is zero, subnormal, or |
||
| 359 | /// normal. |
||
| 360 | /// |
||
| 361 | /// This means that the value is not infinite or NaN. |
||
| 362 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
||
| 363 | |||
| 364 | /// Returns true if and only if the float is plus or minus zero. |
||
| 365 | bool isZero() const { return category == fcZero; } |
||
| 366 | |||
| 367 | /// IEEE-754R isSubnormal(): Returns true if and only if the float is a |
||
| 368 | /// denormal. |
||
| 369 | bool isDenormal() const; |
||
| 370 | |||
| 371 | /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity. |
||
| 372 | bool isInfinity() const { return category == fcInfinity; } |
||
| 373 | |||
| 374 | /// Returns true if and only if the float is a quiet or signaling NaN. |
||
| 375 | bool isNaN() const { return category == fcNaN; } |
||
| 376 | |||
| 377 | /// Returns true if and only if the float is a signaling NaN. |
||
| 378 | bool isSignaling() const; |
||
| 379 | |||
| 380 | /// @} |
||
| 381 | |||
| 382 | /// \name Simple Queries |
||
| 383 | /// @{ |
||
| 384 | |||
| 385 | fltCategory getCategory() const { return category; } |
||
| 386 | const fltSemantics &getSemantics() const { return *semantics; } |
||
| 387 | bool isNonZero() const { return category != fcZero; } |
||
| 388 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
||
| 389 | bool isPosZero() const { return isZero() && !isNegative(); } |
||
| 390 | bool isNegZero() const { return isZero() && isNegative(); } |
||
| 391 | |||
| 392 | /// Returns true if and only if the number has the smallest possible non-zero |
||
| 393 | /// magnitude in the current semantics. |
||
| 394 | bool isSmallest() const; |
||
| 395 | |||
| 396 | /// Returns true if this is the smallest (by magnitude) normalized finite |
||
| 397 | /// number in the given semantics. |
||
| 398 | bool isSmallestNormalized() const; |
||
| 399 | |||
| 400 | /// Returns true if and only if the number has the largest possible finite |
||
| 401 | /// magnitude in the current semantics. |
||
| 402 | bool isLargest() const; |
||
| 403 | |||
| 404 | /// Returns true if and only if the number is an exact integer. |
||
| 405 | bool isInteger() const; |
||
| 406 | |||
| 407 | /// @} |
||
| 408 | |||
| 409 | IEEEFloat &operator=(const IEEEFloat &); |
||
| 410 | IEEEFloat &operator=(IEEEFloat &&); |
||
| 411 | |||
| 412 | /// Overload to compute a hash code for an APFloat value. |
||
| 413 | /// |
||
| 414 | /// Note that the use of hash codes for floating point values is in general |
||
| 415 | /// frought with peril. Equality is hard to define for these values. For |
||
| 416 | /// example, should negative and positive zero hash to different codes? Are |
||
| 417 | /// they equal or not? This hash value implementation specifically |
||
| 418 | /// emphasizes producing different codes for different inputs in order to |
||
| 419 | /// be used in canonicalization and memoization. As such, equality is |
||
| 420 | /// bitwiseIsEqual, and 0 != -0. |
||
| 421 | friend hash_code hash_value(const IEEEFloat &Arg); |
||
| 422 | |||
| 423 | /// Converts this value into a decimal string. |
||
| 424 | /// |
||
| 425 | /// \param FormatPrecision The maximum number of digits of |
||
| 426 | /// precision to output. If there are fewer digits available, |
||
| 427 | /// zero padding will not be used unless the value is |
||
| 428 | /// integral and small enough to be expressed in |
||
| 429 | /// FormatPrecision digits. 0 means to use the natural |
||
| 430 | /// precision of the number. |
||
| 431 | /// \param FormatMaxPadding The maximum number of zeros to |
||
| 432 | /// consider inserting before falling back to scientific |
||
| 433 | /// notation. 0 means to always use scientific notation. |
||
| 434 | /// |
||
| 435 | /// \param TruncateZero Indicate whether to remove the trailing zero in |
||
| 436 | /// fraction part or not. Also setting this parameter to false forcing |
||
| 437 | /// producing of output more similar to default printf behavior. |
||
| 438 | /// Specifically the lower e is used as exponent delimiter and exponent |
||
| 439 | /// always contains no less than two digits. |
||
| 440 | /// |
||
| 441 | /// Number Precision MaxPadding Result |
||
| 442 | /// ------ --------- ---------- ------ |
||
| 443 | /// 1.01E+4 5 2 10100 |
||
| 444 | /// 1.01E+4 4 2 1.01E+4 |
||
| 445 | /// 1.01E+4 5 1 1.01E+4 |
||
| 446 | /// 1.01E-2 5 2 0.0101 |
||
| 447 | /// 1.01E-2 4 2 0.0101 |
||
| 448 | /// 1.01E-2 4 1 1.01E-2 |
||
| 449 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
||
| 450 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const; |
||
| 451 | |||
| 452 | /// If this value has an exact multiplicative inverse, store it in inv and |
||
| 453 | /// return true. |
||
| 454 | bool getExactInverse(APFloat *inv) const; |
||
| 455 | |||
| 456 | /// Returns the exponent of the internal representation of the APFloat. |
||
| 457 | /// |
||
| 458 | /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)). |
||
| 459 | /// For special APFloat values, this returns special error codes: |
||
| 460 | /// |
||
| 461 | /// NaN -> \c IEK_NaN |
||
| 462 | /// 0 -> \c IEK_Zero |
||
| 463 | /// Inf -> \c IEK_Inf |
||
| 464 | /// |
||
| 465 | friend int ilogb(const IEEEFloat &Arg); |
||
| 466 | |||
| 467 | /// Returns: X * 2^Exp for integral exponents. |
||
| 468 | friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode); |
||
| 469 | |||
| 470 | friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode); |
||
| 471 | |||
| 472 | /// \name Special value setters. |
||
| 473 | /// @{ |
||
| 474 | |||
| 475 | void makeLargest(bool Neg = false); |
||
| 476 | void makeSmallest(bool Neg = false); |
||
| 477 | void makeNaN(bool SNaN = false, bool Neg = false, |
||
| 478 | const APInt *fill = nullptr); |
||
| 479 | void makeInf(bool Neg = false); |
||
| 480 | void makeZero(bool Neg = false); |
||
| 481 | void makeQuiet(); |
||
| 482 | |||
| 483 | /// Returns the smallest (by magnitude) normalized finite number in the given |
||
| 484 | /// semantics. |
||
| 485 | /// |
||
| 486 | /// \param Negative - True iff the number should be negative |
||
| 487 | void makeSmallestNormalized(bool Negative = false); |
||
| 488 | |||
| 489 | /// @} |
||
| 490 | |||
| 491 | cmpResult compareAbsoluteValue(const IEEEFloat &) const; |
||
| 492 | |||
| 493 | private: |
||
| 494 | /// \name Simple Queries |
||
| 495 | /// @{ |
||
| 496 | |||
| 497 | integerPart *significandParts(); |
||
| 498 | const integerPart *significandParts() const; |
||
| 499 | unsigned int partCount() const; |
||
| 500 | |||
| 501 | /// @} |
||
| 502 | |||
| 503 | /// \name Significand operations. |
||
| 504 | /// @{ |
||
| 505 | |||
| 506 | integerPart addSignificand(const IEEEFloat &); |
||
| 507 | integerPart subtractSignificand(const IEEEFloat &, integerPart); |
||
| 508 | lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract); |
||
| 509 | lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat); |
||
| 510 | lostFraction multiplySignificand(const IEEEFloat&); |
||
| 511 | lostFraction divideSignificand(const IEEEFloat &); |
||
| 512 | void incrementSignificand(); |
||
| 513 | void initialize(const fltSemantics *); |
||
| 514 | void shiftSignificandLeft(unsigned int); |
||
| 515 | lostFraction shiftSignificandRight(unsigned int); |
||
| 516 | unsigned int significandLSB() const; |
||
| 517 | unsigned int significandMSB() const; |
||
| 518 | void zeroSignificand(); |
||
| 519 | /// Return true if the significand excluding the integral bit is all ones. |
||
| 520 | bool isSignificandAllOnes() const; |
||
| 521 | bool isSignificandAllOnesExceptLSB() const; |
||
| 522 | /// Return true if the significand excluding the integral bit is all zeros. |
||
| 523 | bool isSignificandAllZeros() const; |
||
| 524 | bool isSignificandAllZerosExceptMSB() const; |
||
| 525 | |||
| 526 | /// @} |
||
| 527 | |||
| 528 | /// \name Arithmetic on special values. |
||
| 529 | /// @{ |
||
| 530 | |||
| 531 | opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract); |
||
| 532 | opStatus divideSpecials(const IEEEFloat &); |
||
| 533 | opStatus multiplySpecials(const IEEEFloat &); |
||
| 534 | opStatus modSpecials(const IEEEFloat &); |
||
| 535 | opStatus remainderSpecials(const IEEEFloat&); |
||
| 536 | |||
| 537 | /// @} |
||
| 538 | |||
| 539 | /// \name Miscellany |
||
| 540 | /// @{ |
||
| 541 | |||
| 542 | bool convertFromStringSpecials(StringRef str); |
||
| 543 | opStatus normalize(roundingMode, lostFraction); |
||
| 544 | opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract); |
||
| 545 | opStatus handleOverflow(roundingMode); |
||
| 546 | bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const; |
||
| 547 | opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>, |
||
| 548 | unsigned int, bool, roundingMode, |
||
| 549 | bool *) const; |
||
| 550 | opStatus convertFromUnsignedParts(const integerPart *, unsigned int, |
||
| 551 | roundingMode); |
||
| 552 | Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode); |
||
| 553 | Expected<opStatus> convertFromDecimalString(StringRef, roundingMode); |
||
| 554 | char *convertNormalToHexString(char *, unsigned int, bool, |
||
| 555 | roundingMode) const; |
||
| 556 | opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int, |
||
| 557 | roundingMode); |
||
| 558 | ExponentType exponentNaN() const; |
||
| 559 | ExponentType exponentInf() const; |
||
| 560 | ExponentType exponentZero() const; |
||
| 561 | |||
| 562 | /// @} |
||
| 563 | |||
| 564 | APInt convertHalfAPFloatToAPInt() const; |
||
| 565 | APInt convertBFloatAPFloatToAPInt() const; |
||
| 566 | APInt convertFloatAPFloatToAPInt() const; |
||
| 567 | APInt convertDoubleAPFloatToAPInt() const; |
||
| 568 | APInt convertQuadrupleAPFloatToAPInt() const; |
||
| 569 | APInt convertF80LongDoubleAPFloatToAPInt() const; |
||
| 570 | APInt convertPPCDoubleDoubleAPFloatToAPInt() const; |
||
| 571 | APInt convertFloat8E5M2APFloatToAPInt() const; |
||
| 572 | APInt convertFloat8E4M3FNAPFloatToAPInt() const; |
||
| 573 | void initFromAPInt(const fltSemantics *Sem, const APInt &api); |
||
| 574 | void initFromHalfAPInt(const APInt &api); |
||
| 575 | void initFromBFloatAPInt(const APInt &api); |
||
| 576 | void initFromFloatAPInt(const APInt &api); |
||
| 577 | void initFromDoubleAPInt(const APInt &api); |
||
| 578 | void initFromQuadrupleAPInt(const APInt &api); |
||
| 579 | void initFromF80LongDoubleAPInt(const APInt &api); |
||
| 580 | void initFromPPCDoubleDoubleAPInt(const APInt &api); |
||
| 581 | void initFromFloat8E5M2APInt(const APInt &api); |
||
| 582 | void initFromFloat8E4M3FNAPInt(const APInt &api); |
||
| 583 | |||
| 584 | void assign(const IEEEFloat &); |
||
| 585 | void copySignificand(const IEEEFloat &); |
||
| 586 | void freeSignificand(); |
||
| 587 | |||
| 588 | /// Note: this must be the first data member. |
||
| 589 | /// The semantics that this value obeys. |
||
| 590 | const fltSemantics *semantics; |
||
| 591 | |||
| 592 | /// A binary fraction with an explicit integer bit. |
||
| 593 | /// |
||
| 594 | /// The significand must be at least one bit wider than the target precision. |
||
| 595 | union Significand { |
||
| 596 | integerPart part; |
||
| 597 | integerPart *parts; |
||
| 598 | } significand; |
||
| 599 | |||
| 600 | /// The signed unbiased exponent of the value. |
||
| 601 | ExponentType exponent; |
||
| 602 | |||
| 603 | /// What kind of floating point number this is. |
||
| 604 | /// |
||
| 605 | /// Only 2 bits are required, but VisualStudio incorrectly sign extends it. |
||
| 606 | /// Using the extra bit keeps it from failing under VisualStudio. |
||
| 607 | fltCategory category : 3; |
||
| 608 | |||
| 609 | /// Sign bit of the number. |
||
| 610 | unsigned int sign : 1; |
||
| 611 | }; |
||
| 612 | |||
| 613 | hash_code hash_value(const IEEEFloat &Arg); |
||
| 614 | int ilogb(const IEEEFloat &Arg); |
||
| 615 | IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode); |
||
| 616 | IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM); |
||
| 617 | |||
| 618 | // This mode implements more precise float in terms of two APFloats. |
||
| 619 | // The interface and layout is designed for arbitrary underlying semantics, |
||
| 620 | // though currently only PPCDoubleDouble semantics are supported, whose |
||
| 621 | // corresponding underlying semantics are IEEEdouble. |
||
| 622 | class DoubleAPFloat final : public APFloatBase { |
||
| 623 | // Note: this must be the first data member. |
||
| 624 | const fltSemantics *Semantics; |
||
| 625 | std::unique_ptr<APFloat[]> Floats; |
||
| 626 | |||
| 627 | opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c, |
||
| 628 | const APFloat &cc, roundingMode RM); |
||
| 629 | |||
| 630 | opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS, |
||
| 631 | DoubleAPFloat &Out, roundingMode RM); |
||
| 632 | |||
| 633 | public: |
||
| 634 | DoubleAPFloat(const fltSemantics &S); |
||
| 635 | DoubleAPFloat(const fltSemantics &S, uninitializedTag); |
||
| 636 | DoubleAPFloat(const fltSemantics &S, integerPart); |
||
| 637 | DoubleAPFloat(const fltSemantics &S, const APInt &I); |
||
| 638 | DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second); |
||
| 639 | DoubleAPFloat(const DoubleAPFloat &RHS); |
||
| 640 | DoubleAPFloat(DoubleAPFloat &&RHS); |
||
| 641 | |||
| 642 | DoubleAPFloat &operator=(const DoubleAPFloat &RHS); |
||
| 643 | |||
| 644 | DoubleAPFloat &operator=(DoubleAPFloat &&RHS) { |
||
| 645 | if (this != &RHS) { |
||
| 646 | this->~DoubleAPFloat(); |
||
| 647 | new (this) DoubleAPFloat(std::move(RHS)); |
||
| 648 | } |
||
| 649 | return *this; |
||
| 650 | } |
||
| 651 | |||
| 652 | bool needsCleanup() const { return Floats != nullptr; } |
||
| 653 | |||
| 654 | APFloat &getFirst() { return Floats[0]; } |
||
| 655 | const APFloat &getFirst() const { return Floats[0]; } |
||
| 656 | APFloat &getSecond() { return Floats[1]; } |
||
| 657 | const APFloat &getSecond() const { return Floats[1]; } |
||
| 658 | |||
| 659 | opStatus add(const DoubleAPFloat &RHS, roundingMode RM); |
||
| 660 | opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM); |
||
| 661 | opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM); |
||
| 662 | opStatus divide(const DoubleAPFloat &RHS, roundingMode RM); |
||
| 663 | opStatus remainder(const DoubleAPFloat &RHS); |
||
| 664 | opStatus mod(const DoubleAPFloat &RHS); |
||
| 665 | opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, |
||
| 666 | const DoubleAPFloat &Addend, roundingMode RM); |
||
| 667 | opStatus roundToIntegral(roundingMode RM); |
||
| 668 | void changeSign(); |
||
| 669 | cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const; |
||
| 670 | |||
| 671 | fltCategory getCategory() const; |
||
| 672 | bool isNegative() const; |
||
| 673 | |||
| 674 | void makeInf(bool Neg); |
||
| 675 | void makeZero(bool Neg); |
||
| 676 | void makeLargest(bool Neg); |
||
| 677 | void makeSmallest(bool Neg); |
||
| 678 | void makeSmallestNormalized(bool Neg); |
||
| 679 | void makeNaN(bool SNaN, bool Neg, const APInt *fill); |
||
| 680 | |||
| 681 | cmpResult compare(const DoubleAPFloat &RHS) const; |
||
| 682 | bool bitwiseIsEqual(const DoubleAPFloat &RHS) const; |
||
| 683 | APInt bitcastToAPInt() const; |
||
| 684 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
||
| 685 | opStatus next(bool nextDown); |
||
| 686 | |||
| 687 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
||
| 688 | unsigned int Width, bool IsSigned, roundingMode RM, |
||
| 689 | bool *IsExact) const; |
||
| 690 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM); |
||
| 691 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
||
| 692 | unsigned int InputSize, bool IsSigned, |
||
| 693 | roundingMode RM); |
||
| 694 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
||
| 695 | unsigned int InputSize, bool IsSigned, |
||
| 696 | roundingMode RM); |
||
| 697 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
||
| 698 | bool UpperCase, roundingMode RM) const; |
||
| 699 | |||
| 700 | bool isDenormal() const; |
||
| 701 | bool isSmallest() const; |
||
| 702 | bool isSmallestNormalized() const; |
||
| 703 | bool isLargest() const; |
||
| 704 | bool isInteger() const; |
||
| 705 | |||
| 706 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, |
||
| 707 | unsigned FormatMaxPadding, bool TruncateZero = true) const; |
||
| 708 | |||
| 709 | bool getExactInverse(APFloat *inv) const; |
||
| 710 | |||
| 711 | friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode); |
||
| 712 | friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode); |
||
| 713 | friend hash_code hash_value(const DoubleAPFloat &Arg); |
||
| 714 | }; |
||
| 715 | |||
| 716 | hash_code hash_value(const DoubleAPFloat &Arg); |
||
| 717 | |||
| 718 | } // End detail namespace |
||
| 719 | |||
| 720 | // This is a interface class that is currently forwarding functionalities from |
||
| 721 | // detail::IEEEFloat. |
||
| 722 | class APFloat : public APFloatBase { |
||
| 723 | typedef detail::IEEEFloat IEEEFloat; |
||
| 724 | typedef detail::DoubleAPFloat DoubleAPFloat; |
||
| 725 | |||
| 726 | static_assert(std::is_standard_layout<IEEEFloat>::value); |
||
| 727 | |||
| 728 | union Storage { |
||
| 729 | const fltSemantics *semantics; |
||
| 730 | IEEEFloat IEEE; |
||
| 731 | DoubleAPFloat Double; |
||
| 732 | |||
| 733 | explicit Storage(IEEEFloat F, const fltSemantics &S); |
||
| 734 | explicit Storage(DoubleAPFloat F, const fltSemantics &S) |
||
| 735 | : Double(std::move(F)) { |
||
| 736 | assert(&S == &PPCDoubleDouble()); |
||
| 737 | } |
||
| 738 | |||
| 739 | template <typename... ArgTypes> |
||
| 740 | Storage(const fltSemantics &Semantics, ArgTypes &&... Args) { |
||
| 741 | if (usesLayout<IEEEFloat>(Semantics)) { |
||
| 742 | new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...); |
||
| 743 | return; |
||
| 744 | } |
||
| 745 | if (usesLayout<DoubleAPFloat>(Semantics)) { |
||
| 746 | new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...); |
||
| 747 | return; |
||
| 748 | } |
||
| 749 | llvm_unreachable("Unexpected semantics"); |
||
| 750 | } |
||
| 751 | |||
| 752 | ~Storage() { |
||
| 753 | if (usesLayout<IEEEFloat>(*semantics)) { |
||
| 754 | IEEE.~IEEEFloat(); |
||
| 755 | return; |
||
| 756 | } |
||
| 757 | if (usesLayout<DoubleAPFloat>(*semantics)) { |
||
| 758 | Double.~DoubleAPFloat(); |
||
| 759 | return; |
||
| 760 | } |
||
| 761 | llvm_unreachable("Unexpected semantics"); |
||
| 762 | } |
||
| 763 | |||
| 764 | Storage(const Storage &RHS) { |
||
| 765 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
||
| 766 | new (this) IEEEFloat(RHS.IEEE); |
||
| 767 | return; |
||
| 768 | } |
||
| 769 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
||
| 770 | new (this) DoubleAPFloat(RHS.Double); |
||
| 771 | return; |
||
| 772 | } |
||
| 773 | llvm_unreachable("Unexpected semantics"); |
||
| 774 | } |
||
| 775 | |||
| 776 | Storage(Storage &&RHS) { |
||
| 777 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
||
| 778 | new (this) IEEEFloat(std::move(RHS.IEEE)); |
||
| 779 | return; |
||
| 780 | } |
||
| 781 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
||
| 782 | new (this) DoubleAPFloat(std::move(RHS.Double)); |
||
| 783 | return; |
||
| 784 | } |
||
| 785 | llvm_unreachable("Unexpected semantics"); |
||
| 786 | } |
||
| 787 | |||
| 788 | Storage &operator=(const Storage &RHS) { |
||
| 789 | if (usesLayout<IEEEFloat>(*semantics) && |
||
| 790 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
||
| 791 | IEEE = RHS.IEEE; |
||
| 792 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
||
| 793 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
||
| 794 | Double = RHS.Double; |
||
| 795 | } else if (this != &RHS) { |
||
| 796 | this->~Storage(); |
||
| 797 | new (this) Storage(RHS); |
||
| 798 | } |
||
| 799 | return *this; |
||
| 800 | } |
||
| 801 | |||
| 802 | Storage &operator=(Storage &&RHS) { |
||
| 803 | if (usesLayout<IEEEFloat>(*semantics) && |
||
| 804 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
||
| 805 | IEEE = std::move(RHS.IEEE); |
||
| 806 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
||
| 807 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
||
| 808 | Double = std::move(RHS.Double); |
||
| 809 | } else if (this != &RHS) { |
||
| 810 | this->~Storage(); |
||
| 811 | new (this) Storage(std::move(RHS)); |
||
| 812 | } |
||
| 813 | return *this; |
||
| 814 | } |
||
| 815 | } U; |
||
| 816 | |||
| 817 | template <typename T> static bool usesLayout(const fltSemantics &Semantics) { |
||
| 818 | static_assert(std::is_same<T, IEEEFloat>::value || |
||
| 819 | std::is_same<T, DoubleAPFloat>::value); |
||
| 820 | if (std::is_same<T, DoubleAPFloat>::value) { |
||
| 821 | return &Semantics == &PPCDoubleDouble(); |
||
| 822 | } |
||
| 823 | return &Semantics != &PPCDoubleDouble(); |
||
| 824 | } |
||
| 825 | |||
| 826 | IEEEFloat &getIEEE() { |
||
| 827 | if (usesLayout<IEEEFloat>(*U.semantics)) |
||
| 828 | return U.IEEE; |
||
| 829 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
||
| 830 | return U.Double.getFirst().U.IEEE; |
||
| 831 | llvm_unreachable("Unexpected semantics"); |
||
| 832 | } |
||
| 833 | |||
| 834 | const IEEEFloat &getIEEE() const { |
||
| 835 | if (usesLayout<IEEEFloat>(*U.semantics)) |
||
| 836 | return U.IEEE; |
||
| 837 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
||
| 838 | return U.Double.getFirst().U.IEEE; |
||
| 839 | llvm_unreachable("Unexpected semantics"); |
||
| 840 | } |
||
| 841 | |||
| 842 | void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); } |
||
| 843 | |||
| 844 | void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); } |
||
| 845 | |||
| 846 | void makeNaN(bool SNaN, bool Neg, const APInt *fill) { |
||
| 847 | APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill)); |
||
| 848 | } |
||
| 849 | |||
| 850 | void makeLargest(bool Neg) { |
||
| 851 | APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg)); |
||
| 852 | } |
||
| 853 | |||
| 854 | void makeSmallest(bool Neg) { |
||
| 855 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg)); |
||
| 856 | } |
||
| 857 | |||
| 858 | void makeSmallestNormalized(bool Neg) { |
||
| 859 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg)); |
||
| 860 | } |
||
| 861 | |||
| 862 | explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {} |
||
| 863 | explicit APFloat(DoubleAPFloat F, const fltSemantics &S) |
||
| 864 | : U(std::move(F), S) {} |
||
| 865 | |||
| 866 | cmpResult compareAbsoluteValue(const APFloat &RHS) const { |
||
| 867 | assert(&getSemantics() == &RHS.getSemantics() && |
||
| 868 | "Should only compare APFloats with the same semantics"); |
||
| 869 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
| 870 | return U.IEEE.compareAbsoluteValue(RHS.U.IEEE); |
||
| 871 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
| 872 | return U.Double.compareAbsoluteValue(RHS.U.Double); |
||
| 873 | llvm_unreachable("Unexpected semantics"); |
||
| 874 | } |
||
| 875 | |||
| 876 | public: |
||
| 877 | APFloat(const fltSemantics &Semantics) : U(Semantics) {} |
||
| 878 | APFloat(const fltSemantics &Semantics, StringRef S); |
||
| 879 | APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {} |
||
| 880 | template <typename T, |
||
| 881 | typename = std::enable_if_t<std::is_floating_point<T>::value>> |
||
| 882 | APFloat(const fltSemantics &Semantics, T V) = delete; |
||
| 883 | // TODO: Remove this constructor. This isn't faster than the first one. |
||
| 884 | APFloat(const fltSemantics &Semantics, uninitializedTag) |
||
| 885 | : U(Semantics, uninitialized) {} |
||
| 886 | APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {} |
||
| 887 | explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {} |
||
| 888 | explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {} |
||
| 889 | APFloat(const APFloat &RHS) = default; |
||
| 890 | APFloat(APFloat &&RHS) = default; |
||
| 891 | |||
| 892 | ~APFloat() = default; |
||
| 893 | |||
| 894 | bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); } |
||
| 895 | |||
| 896 | /// Factory for Positive and Negative Zero. |
||
| 897 | /// |
||
| 898 | /// \param Negative True iff the number should be negative. |
||
| 899 | static APFloat getZero(const fltSemantics &Sem, bool Negative = false) { |
||
| 900 | APFloat Val(Sem, uninitialized); |
||
| 901 | Val.makeZero(Negative); |
||
| 902 | return Val; |
||
| 903 | } |
||
| 904 | |||
| 905 | /// Factory for Positive and Negative Infinity. |
||
| 906 | /// |
||
| 907 | /// \param Negative True iff the number should be negative. |
||
| 908 | static APFloat getInf(const fltSemantics &Sem, bool Negative = false) { |
||
| 909 | APFloat Val(Sem, uninitialized); |
||
| 910 | Val.makeInf(Negative); |
||
| 911 | return Val; |
||
| 912 | } |
||
| 913 | |||
| 914 | /// Factory for NaN values. |
||
| 915 | /// |
||
| 916 | /// \param Negative - True iff the NaN generated should be negative. |
||
| 917 | /// \param payload - The unspecified fill bits for creating the NaN, 0 by |
||
| 918 | /// default. The value is truncated as necessary. |
||
| 919 | static APFloat getNaN(const fltSemantics &Sem, bool Negative = false, |
||
| 920 | uint64_t payload = 0) { |
||
| 921 | if (payload) { |
||
| 922 | APInt intPayload(64, payload); |
||
| 923 | return getQNaN(Sem, Negative, &intPayload); |
||
| 924 | } else { |
||
| 925 | return getQNaN(Sem, Negative, nullptr); |
||
| 926 | } |
||
| 927 | } |
||
| 928 | |||
| 929 | /// Factory for QNaN values. |
||
| 930 | static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false, |
||
| 931 | const APInt *payload = nullptr) { |
||
| 932 | APFloat Val(Sem, uninitialized); |
||
| 933 | Val.makeNaN(false, Negative, payload); |
||
| 934 | return Val; |
||
| 935 | } |
||
| 936 | |||
| 937 | /// Factory for SNaN values. |
||
| 938 | static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false, |
||
| 939 | const APInt *payload = nullptr) { |
||
| 940 | APFloat Val(Sem, uninitialized); |
||
| 941 | Val.makeNaN(true, Negative, payload); |
||
| 942 | return Val; |
||
| 943 | } |
||
| 944 | |||
| 945 | /// Returns the largest finite number in the given semantics. |
||
| 946 | /// |
||
| 947 | /// \param Negative - True iff the number should be negative |
||
| 948 | static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) { |
||
| 949 | APFloat Val(Sem, uninitialized); |
||
| 950 | Val.makeLargest(Negative); |
||
| 951 | return Val; |
||
| 952 | } |
||
| 953 | |||
| 954 | /// Returns the smallest (by magnitude) finite number in the given semantics. |
||
| 955 | /// Might be denormalized, which implies a relative loss of precision. |
||
| 956 | /// |
||
| 957 | /// \param Negative - True iff the number should be negative |
||
| 958 | static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) { |
||
| 959 | APFloat Val(Sem, uninitialized); |
||
| 960 | Val.makeSmallest(Negative); |
||
| 961 | return Val; |
||
| 962 | } |
||
| 963 | |||
| 964 | /// Returns the smallest (by magnitude) normalized finite number in the given |
||
| 965 | /// semantics. |
||
| 966 | /// |
||
| 967 | /// \param Negative - True iff the number should be negative |
||
| 968 | static APFloat getSmallestNormalized(const fltSemantics &Sem, |
||
| 969 | bool Negative = false) { |
||
| 970 | APFloat Val(Sem, uninitialized); |
||
| 971 | Val.makeSmallestNormalized(Negative); |
||
| 972 | return Val; |
||
| 973 | } |
||
| 974 | |||
| 975 | /// Returns a float which is bitcasted from an all one value int. |
||
| 976 | /// |
||
| 977 | /// \param Semantics - type float semantics |
||
| 978 | static APFloat getAllOnesValue(const fltSemantics &Semantics); |
||
| 979 | |||
| 980 | /// Used to insert APFloat objects, or objects that contain APFloat objects, |
||
| 981 | /// into FoldingSets. |
||
| 982 | void Profile(FoldingSetNodeID &NID) const; |
||
| 983 | |||
| 984 | opStatus add(const APFloat &RHS, roundingMode RM) { |
||
| 985 | assert(&getSemantics() == &RHS.getSemantics() && |
||
| 986 | "Should only call on two APFloats with the same semantics"); |
||
| 987 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
| 988 | return U.IEEE.add(RHS.U.IEEE, RM); |
||
| 989 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
| 990 | return U.Double.add(RHS.U.Double, RM); |
||
| 991 | llvm_unreachable("Unexpected semantics"); |
||
| 992 | } |
||
| 993 | opStatus subtract(const APFloat &RHS, roundingMode RM) { |
||
| 994 | assert(&getSemantics() == &RHS.getSemantics() && |
||
| 995 | "Should only call on two APFloats with the same semantics"); |
||
| 996 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
| 997 | return U.IEEE.subtract(RHS.U.IEEE, RM); |
||
| 998 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
| 999 | return U.Double.subtract(RHS.U.Double, RM); |
||
| 1000 | llvm_unreachable("Unexpected semantics"); |
||
| 1001 | } |
||
| 1002 | opStatus multiply(const APFloat &RHS, roundingMode RM) { |
||
| 1003 | assert(&getSemantics() == &RHS.getSemantics() && |
||
| 1004 | "Should only call on two APFloats with the same semantics"); |
||
| 1005 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
| 1006 | return U.IEEE.multiply(RHS.U.IEEE, RM); |
||
| 1007 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
| 1008 | return U.Double.multiply(RHS.U.Double, RM); |
||
| 1009 | llvm_unreachable("Unexpected semantics"); |
||
| 1010 | } |
||
| 1011 | opStatus divide(const APFloat &RHS, roundingMode RM) { |
||
| 1012 | assert(&getSemantics() == &RHS.getSemantics() && |
||
| 1013 | "Should only call on two APFloats with the same semantics"); |
||
| 1014 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
| 1015 | return U.IEEE.divide(RHS.U.IEEE, RM); |
||
| 1016 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
| 1017 | return U.Double.divide(RHS.U.Double, RM); |
||
| 1018 | llvm_unreachable("Unexpected semantics"); |
||
| 1019 | } |
||
| 1020 | opStatus remainder(const APFloat &RHS) { |
||
| 1021 | assert(&getSemantics() == &RHS.getSemantics() && |
||
| 1022 | "Should only call on two APFloats with the same semantics"); |
||
| 1023 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
| 1024 | return U.IEEE.remainder(RHS.U.IEEE); |
||
| 1025 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
| 1026 | return U.Double.remainder(RHS.U.Double); |
||
| 1027 | llvm_unreachable("Unexpected semantics"); |
||
| 1028 | } |
||
| 1029 | opStatus mod(const APFloat &RHS) { |
||
| 1030 | assert(&getSemantics() == &RHS.getSemantics() && |
||
| 1031 | "Should only call on two APFloats with the same semantics"); |
||
| 1032 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
| 1033 | return U.IEEE.mod(RHS.U.IEEE); |
||
| 1034 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
| 1035 | return U.Double.mod(RHS.U.Double); |
||
| 1036 | llvm_unreachable("Unexpected semantics"); |
||
| 1037 | } |
||
| 1038 | opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, |
||
| 1039 | roundingMode RM) { |
||
| 1040 | assert(&getSemantics() == &Multiplicand.getSemantics() && |
||
| 1041 | "Should only call on APFloats with the same semantics"); |
||
| 1042 | assert(&getSemantics() == &Addend.getSemantics() && |
||
| 1043 | "Should only call on APFloats with the same semantics"); |
||
| 1044 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
| 1045 | return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM); |
||
| 1046 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
| 1047 | return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double, |
||
| 1048 | RM); |
||
| 1049 | llvm_unreachable("Unexpected semantics"); |
||
| 1050 | } |
||
| 1051 | opStatus roundToIntegral(roundingMode RM) { |
||
| 1052 | APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM)); |
||
| 1053 | } |
||
| 1054 | |||
| 1055 | // TODO: bool parameters are not readable and a source of bugs. |
||
| 1056 | // Do something. |
||
| 1057 | opStatus next(bool nextDown) { |
||
| 1058 | APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown)); |
||
| 1059 | } |
||
| 1060 | |||
| 1061 | /// Negate an APFloat. |
||
| 1062 | APFloat operator-() const { |
||
| 1063 | APFloat Result(*this); |
||
| 1064 | Result.changeSign(); |
||
| 1065 | return Result; |
||
| 1066 | } |
||
| 1067 | |||
| 1068 | /// Add two APFloats, rounding ties to the nearest even. |
||
| 1069 | /// No error checking. |
||
| 1070 | APFloat operator+(const APFloat &RHS) const { |
||
| 1071 | APFloat Result(*this); |
||
| 1072 | (void)Result.add(RHS, rmNearestTiesToEven); |
||
| 1073 | return Result; |
||
| 1074 | } |
||
| 1075 | |||
| 1076 | /// Subtract two APFloats, rounding ties to the nearest even. |
||
| 1077 | /// No error checking. |
||
| 1078 | APFloat operator-(const APFloat &RHS) const { |
||
| 1079 | APFloat Result(*this); |
||
| 1080 | (void)Result.subtract(RHS, rmNearestTiesToEven); |
||
| 1081 | return Result; |
||
| 1082 | } |
||
| 1083 | |||
| 1084 | /// Multiply two APFloats, rounding ties to the nearest even. |
||
| 1085 | /// No error checking. |
||
| 1086 | APFloat operator*(const APFloat &RHS) const { |
||
| 1087 | APFloat Result(*this); |
||
| 1088 | (void)Result.multiply(RHS, rmNearestTiesToEven); |
||
| 1089 | return Result; |
||
| 1090 | } |
||
| 1091 | |||
| 1092 | /// Divide the first APFloat by the second, rounding ties to the nearest even. |
||
| 1093 | /// No error checking. |
||
| 1094 | APFloat operator/(const APFloat &RHS) const { |
||
| 1095 | APFloat Result(*this); |
||
| 1096 | (void)Result.divide(RHS, rmNearestTiesToEven); |
||
| 1097 | return Result; |
||
| 1098 | } |
||
| 1099 | |||
| 1100 | void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); } |
||
| 1101 | void clearSign() { |
||
| 1102 | if (isNegative()) |
||
| 1103 | changeSign(); |
||
| 1104 | } |
||
| 1105 | void copySign(const APFloat &RHS) { |
||
| 1106 | if (isNegative() != RHS.isNegative()) |
||
| 1107 | changeSign(); |
||
| 1108 | } |
||
| 1109 | |||
| 1110 | /// A static helper to produce a copy of an APFloat value with its sign |
||
| 1111 | /// copied from some other APFloat. |
||
| 1112 | static APFloat copySign(APFloat Value, const APFloat &Sign) { |
||
| 1113 | Value.copySign(Sign); |
||
| 1114 | return Value; |
||
| 1115 | } |
||
| 1116 | |||
| 1117 | opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, |
||
| 1118 | bool *losesInfo); |
||
| 1119 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
||
| 1120 | unsigned int Width, bool IsSigned, roundingMode RM, |
||
| 1121 | bool *IsExact) const { |
||
| 1122 | APFLOAT_DISPATCH_ON_SEMANTICS( |
||
| 1123 | convertToInteger(Input, Width, IsSigned, RM, IsExact)); |
||
| 1124 | } |
||
| 1125 | opStatus convertToInteger(APSInt &Result, roundingMode RM, |
||
| 1126 | bool *IsExact) const; |
||
| 1127 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, |
||
| 1128 | roundingMode RM) { |
||
| 1129 | APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM)); |
||
| 1130 | } |
||
| 1131 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
||
| 1132 | unsigned int InputSize, bool IsSigned, |
||
| 1133 | roundingMode RM) { |
||
| 1134 | APFLOAT_DISPATCH_ON_SEMANTICS( |
||
| 1135 | convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM)); |
||
| 1136 | } |
||
| 1137 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
||
| 1138 | unsigned int InputSize, bool IsSigned, |
||
| 1139 | roundingMode RM) { |
||
| 1140 | APFLOAT_DISPATCH_ON_SEMANTICS( |
||
| 1141 | convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM)); |
||
| 1142 | } |
||
| 1143 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
||
| 1144 | APInt bitcastToAPInt() const { |
||
| 1145 | APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt()); |
||
| 1146 | } |
||
| 1147 | |||
| 1148 | /// Converts this APFloat to host double value. |
||
| 1149 | /// |
||
| 1150 | /// \pre The APFloat must be built using semantics, that can be represented by |
||
| 1151 | /// the host double type without loss of precision. It can be IEEEdouble and |
||
| 1152 | /// shorter semantics, like IEEEsingle and others. |
||
| 1153 | double convertToDouble() const; |
||
| 1154 | |||
| 1155 | /// Converts this APFloat to host float value. |
||
| 1156 | /// |
||
| 1157 | /// \pre The APFloat must be built using semantics, that can be represented by |
||
| 1158 | /// the host float type without loss of precision. It can be IEEEsingle and |
||
| 1159 | /// shorter semantics, like IEEEhalf. |
||
| 1160 | float convertToFloat() const; |
||
| 1161 | |||
| 1162 | bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; } |
||
| 1163 | |||
| 1164 | bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; } |
||
| 1165 | |||
| 1166 | bool operator<(const APFloat &RHS) const { |
||
| 1167 | return compare(RHS) == cmpLessThan; |
||
| 1168 | } |
||
| 1169 | |||
| 1170 | bool operator>(const APFloat &RHS) const { |
||
| 1171 | return compare(RHS) == cmpGreaterThan; |
||
| 1172 | } |
||
| 1173 | |||
| 1174 | bool operator<=(const APFloat &RHS) const { |
||
| 1175 | cmpResult Res = compare(RHS); |
||
| 1176 | return Res == cmpLessThan || Res == cmpEqual; |
||
| 1177 | } |
||
| 1178 | |||
| 1179 | bool operator>=(const APFloat &RHS) const { |
||
| 1180 | cmpResult Res = compare(RHS); |
||
| 1181 | return Res == cmpGreaterThan || Res == cmpEqual; |
||
| 1182 | } |
||
| 1183 | |||
| 1184 | cmpResult compare(const APFloat &RHS) const { |
||
| 1185 | assert(&getSemantics() == &RHS.getSemantics() && |
||
| 1186 | "Should only compare APFloats with the same semantics"); |
||
| 1187 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
| 1188 | return U.IEEE.compare(RHS.U.IEEE); |
||
| 1189 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
| 1190 | return U.Double.compare(RHS.U.Double); |
||
| 1191 | llvm_unreachable("Unexpected semantics"); |
||
| 1192 | } |
||
| 1193 | |||
| 1194 | bool bitwiseIsEqual(const APFloat &RHS) const { |
||
| 1195 | if (&getSemantics() != &RHS.getSemantics()) |
||
| 1196 | return false; |
||
| 1197 | if (usesLayout<IEEEFloat>(getSemantics())) |
||
| 1198 | return U.IEEE.bitwiseIsEqual(RHS.U.IEEE); |
||
| 1199 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
||
| 1200 | return U.Double.bitwiseIsEqual(RHS.U.Double); |
||
| 1201 | llvm_unreachable("Unexpected semantics"); |
||
| 1202 | } |
||
| 1203 | |||
| 1204 | /// We don't rely on operator== working on double values, as |
||
| 1205 | /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
||
| 1206 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
||
| 1207 | /// two floating point values. |
||
| 1208 | /// |
||
| 1209 | /// We leave the version with the double argument here because it's just so |
||
| 1210 | /// convenient to write "2.0" and the like. Without this function we'd |
||
| 1211 | /// have to duplicate its logic everywhere it's called. |
||
| 1212 | bool isExactlyValue(double V) const { |
||
| 1213 | bool ignored; |
||
| 1214 | APFloat Tmp(V); |
||
| 1215 | Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored); |
||
| 1216 | return bitwiseIsEqual(Tmp); |
||
| 1217 | } |
||
| 1218 | |||
| 1219 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
||
| 1220 | bool UpperCase, roundingMode RM) const { |
||
| 1221 | APFLOAT_DISPATCH_ON_SEMANTICS( |
||
| 1222 | convertToHexString(DST, HexDigits, UpperCase, RM)); |
||
| 1223 | } |
||
| 1224 | |||
| 1225 | bool isZero() const { return getCategory() == fcZero; } |
||
| 1226 | bool isInfinity() const { return getCategory() == fcInfinity; } |
||
| 1227 | bool isNaN() const { return getCategory() == fcNaN; } |
||
| 1228 | |||
| 1229 | bool isNegative() const { return getIEEE().isNegative(); } |
||
| 1230 | bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); } |
||
| 1231 | bool isSignaling() const { return getIEEE().isSignaling(); } |
||
| 1232 | |||
| 1233 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
||
| 1234 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
||
| 1235 | |||
| 1236 | fltCategory getCategory() const { return getIEEE().getCategory(); } |
||
| 1237 | const fltSemantics &getSemantics() const { return *U.semantics; } |
||
| 1238 | bool isNonZero() const { return !isZero(); } |
||
| 1239 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
||
| 1240 | bool isPosZero() const { return isZero() && !isNegative(); } |
||
| 1241 | bool isNegZero() const { return isZero() && isNegative(); } |
||
| 1242 | bool isPosInfinity() const { return isInfinity() && !isNegative(); } |
||
| 1243 | bool isNegInfinity() const { return isInfinity() && isNegative(); } |
||
| 1244 | bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); } |
||
| 1245 | bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); } |
||
| 1246 | bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); } |
||
| 1247 | bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); } |
||
| 1248 | |||
| 1249 | bool isSmallestNormalized() const { |
||
| 1250 | APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized()); |
||
| 1251 | } |
||
| 1252 | |||
| 1253 | APFloat &operator=(const APFloat &RHS) = default; |
||
| 1254 | APFloat &operator=(APFloat &&RHS) = default; |
||
| 1255 | |||
| 1256 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
||
| 1257 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const { |
||
| 1258 | APFLOAT_DISPATCH_ON_SEMANTICS( |
||
| 1259 | toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero)); |
||
| 1260 | } |
||
| 1261 | |||
| 1262 | void print(raw_ostream &) const; |
||
| 1263 | void dump() const; |
||
| 1264 | |||
| 1265 | bool getExactInverse(APFloat *inv) const { |
||
| 1266 | APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv)); |
||
| 1267 | } |
||
| 1268 | |||
| 1269 | friend hash_code hash_value(const APFloat &Arg); |
||
| 1270 | friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); } |
||
| 1271 | friend APFloat scalbn(APFloat X, int Exp, roundingMode RM); |
||
| 1272 | friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM); |
||
| 1273 | friend IEEEFloat; |
||
| 1274 | friend DoubleAPFloat; |
||
| 1275 | }; |
||
| 1276 | |||
| 1277 | /// See friend declarations above. |
||
| 1278 | /// |
||
| 1279 | /// These additional declarations are required in order to compile LLVM with IBM |
||
| 1280 | /// xlC compiler. |
||
| 1281 | hash_code hash_value(const APFloat &Arg); |
||
| 1282 | inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) { |
||
| 1283 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
||
| 1284 | return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics()); |
||
| 1285 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
||
| 1286 | return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics()); |
||
| 1287 | llvm_unreachable("Unexpected semantics"); |
||
| 1288 | } |
||
| 1289 | |||
| 1290 | /// Equivalent of C standard library function. |
||
| 1291 | /// |
||
| 1292 | /// While the C standard says Exp is an unspecified value for infinity and nan, |
||
| 1293 | /// this returns INT_MAX for infinities, and INT_MIN for NaNs. |
||
| 1294 | inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) { |
||
| 1295 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
||
| 1296 | return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics()); |
||
| 1297 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
||
| 1298 | return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics()); |
||
| 1299 | llvm_unreachable("Unexpected semantics"); |
||
| 1300 | } |
||
| 1301 | /// Returns the absolute value of the argument. |
||
| 1302 | inline APFloat abs(APFloat X) { |
||
| 1303 | X.clearSign(); |
||
| 1304 | return X; |
||
| 1305 | } |
||
| 1306 | |||
| 1307 | /// Returns the negated value of the argument. |
||
| 1308 | inline APFloat neg(APFloat X) { |
||
| 1309 | X.changeSign(); |
||
| 1310 | return X; |
||
| 1311 | } |
||
| 1312 | |||
| 1313 | /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if |
||
| 1314 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
||
| 1315 | LLVM_READONLY |
||
| 1316 | inline APFloat minnum(const APFloat &A, const APFloat &B) { |
||
| 1317 | if (A.isNaN()) |
||
| 1318 | return B; |
||
| 1319 | if (B.isNaN()) |
||
| 1320 | return A; |
||
| 1321 | return B < A ? B : A; |
||
| 1322 | } |
||
| 1323 | |||
| 1324 | /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if |
||
| 1325 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
||
| 1326 | LLVM_READONLY |
||
| 1327 | inline APFloat maxnum(const APFloat &A, const APFloat &B) { |
||
| 1328 | if (A.isNaN()) |
||
| 1329 | return B; |
||
| 1330 | if (B.isNaN()) |
||
| 1331 | return A; |
||
| 1332 | return A < B ? B : A; |
||
| 1333 | } |
||
| 1334 | |||
| 1335 | /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2 |
||
| 1336 | /// arguments, propagating NaNs and treating -0 as less than +0. |
||
| 1337 | LLVM_READONLY |
||
| 1338 | inline APFloat minimum(const APFloat &A, const APFloat &B) { |
||
| 1339 | if (A.isNaN()) |
||
| 1340 | return A; |
||
| 1341 | if (B.isNaN()) |
||
| 1342 | return B; |
||
| 1343 | if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) |
||
| 1344 | return A.isNegative() ? A : B; |
||
| 1345 | return B < A ? B : A; |
||
| 1346 | } |
||
| 1347 | |||
| 1348 | /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2 |
||
| 1349 | /// arguments, propagating NaNs and treating -0 as less than +0. |
||
| 1350 | LLVM_READONLY |
||
| 1351 | inline APFloat maximum(const APFloat &A, const APFloat &B) { |
||
| 1352 | if (A.isNaN()) |
||
| 1353 | return A; |
||
| 1354 | if (B.isNaN()) |
||
| 1355 | return B; |
||
| 1356 | if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) |
||
| 1357 | return A.isNegative() ? B : A; |
||
| 1358 | return A < B ? B : A; |
||
| 1359 | } |
||
| 1360 | |||
| 1361 | } // namespace llvm |
||
| 1362 | |||
| 1363 | #undef APFLOAT_DISPATCH_ON_SEMANTICS |
||
| 1364 | #endif // LLVM_ADT_APFLOAT_H |