Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- APFixedPoint.h - Fixed point constant handling -----------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// Defines the fixed point number interface.
11
/// This is a class for abstracting various operations performed on fixed point
12
/// types.
13
///
14
//===----------------------------------------------------------------------===//
15
 
16
#ifndef LLVM_ADT_APFIXEDPOINT_H
17
#define LLVM_ADT_APFIXEDPOINT_H
18
 
19
#include "llvm/ADT/APSInt.h"
20
#include "llvm/ADT/DenseMapInfo.h"
21
#include "llvm/ADT/Hashing.h"
22
#include "llvm/ADT/SmallString.h"
23
#include "llvm/Support/raw_ostream.h"
24
 
25
namespace llvm {
26
 
27
class APFloat;
28
struct fltSemantics;
29
 
30
/// The fixed point semantics work similarly to fltSemantics. The width
31
/// specifies the whole bit width of the underlying scaled integer (with padding
32
/// if any). The scale represents the number of fractional bits in this type.
33
/// When HasUnsignedPadding is true and this type is unsigned, the first bit
34
/// in the value this represents is treated as padding.
35
class FixedPointSemantics {
36
public:
37
  static constexpr unsigned WidthBitWidth = 16;
38
  static constexpr unsigned LsbWeightBitWidth = 13;
39
  /// Used to differentiate between constructors with Width and Lsb from the
40
  /// default Width and scale
41
  struct Lsb {
42
    int LsbWeight;
43
  };
44
  FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned,
45
                      bool IsSaturated, bool HasUnsignedPadding)
46
      : FixedPointSemantics(Width, Lsb{-static_cast<int>(Scale)}, IsSigned,
47
                            IsSaturated, HasUnsignedPadding) {}
48
  FixedPointSemantics(unsigned Width, Lsb Weight, bool IsSigned,
49
                      bool IsSaturated, bool HasUnsignedPadding)
50
      : Width(Width), LsbWeight(Weight.LsbWeight), IsSigned(IsSigned),
51
        IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) {
52
    assert(isUInt<WidthBitWidth>(Width) && isInt<LsbWeightBitWidth>(Weight.LsbWeight));
53
    assert(!(IsSigned && HasUnsignedPadding) &&
54
           "Cannot have unsigned padding on a signed type.");
55
  }
56
 
57
  /// Check if the Semantic follow the requirements of an older more limited
58
  /// version of this class
59
  bool isValidLegacySema() const {
60
    return LsbWeight <= 0 && static_cast<int>(Width) >= -LsbWeight;
61
  }
62
  unsigned getWidth() const { return Width; }
63
  unsigned getScale() const { assert(isValidLegacySema()); return -LsbWeight; }
64
  int getLsbWeight() const { return LsbWeight; }
65
  int getMsbWeight() const {
66
    return LsbWeight + Width - 1 /*Both lsb and msb are both part of width*/;
67
  }
68
  bool isSigned() const { return IsSigned; }
69
  bool isSaturated() const { return IsSaturated; }
70
  bool hasUnsignedPadding() const { return HasUnsignedPadding; }
71
 
72
  void setSaturated(bool Saturated) { IsSaturated = Saturated; }
73
 
74
  /// return true if the first bit doesn't have a strictly positive weight
75
  bool hasSignOrPaddingBit() const { return IsSigned || HasUnsignedPadding; }
76
 
77
  /// Return the number of integral bits represented by these semantics. These
78
  /// are separate from the fractional bits and do not include the sign or
79
  /// padding bit.
80
  unsigned getIntegralBits() const {
81
    return std::max(getMsbWeight() + 1 - hasSignOrPaddingBit(), 0);
82
  }
83
 
84
  /// Return the FixedPointSemantics that allows for calculating the full
85
  /// precision semantic that can precisely represent the precision and ranges
86
  /// of both input values. This does not compute the resulting semantics for a
87
  /// given binary operation.
88
  FixedPointSemantics
89
  getCommonSemantics(const FixedPointSemantics &Other) const;
90
 
91
  /// Print semantics for debug purposes
92
  void print(llvm::raw_ostream& OS) const;
93
 
94
  /// Returns true if this fixed-point semantic with its value bits interpreted
95
  /// as an integer can fit in the given floating point semantic without
96
  /// overflowing to infinity.
97
  /// For example, a signed 8-bit fixed-point semantic has a maximum and
98
  /// minimum integer representation of 127 and -128, respectively. If both of
99
  /// these values can be represented (possibly inexactly) in the floating
100
  /// point semantic without overflowing, this returns true.
101
  bool fitsInFloatSemantics(const fltSemantics &FloatSema) const;
102
 
103
  /// Return the FixedPointSemantics for an integer type.
104
  static FixedPointSemantics GetIntegerSemantics(unsigned Width,
105
                                                 bool IsSigned) {
106
    return FixedPointSemantics(Width, /*Scale=*/0, IsSigned,
107
                               /*IsSaturated=*/false,
108
                               /*HasUnsignedPadding=*/false);
109
  }
110
 
111
  bool operator==(FixedPointSemantics Other) const {
112
    return Width == Other.Width && LsbWeight == Other.LsbWeight &&
113
           IsSigned == Other.IsSigned && IsSaturated == Other.IsSaturated &&
114
           HasUnsignedPadding == Other.HasUnsignedPadding;
115
  }
116
  bool operator!=(FixedPointSemantics Other) const { return !(*this == Other); }
117
 
118
private:
119
  unsigned Width          : WidthBitWidth;
120
  signed int LsbWeight    : LsbWeightBitWidth;
121
  unsigned IsSigned       : 1;
122
  unsigned IsSaturated    : 1;
123
  unsigned HasUnsignedPadding : 1;
124
};
125
 
126
static_assert(sizeof(FixedPointSemantics) == 4, "");
127
 
128
inline hash_code hash_value(const FixedPointSemantics &Val) {
129
  return hash_value(bit_cast<uint32_t>(Val));
130
}
131
 
132
template <> struct DenseMapInfo<FixedPointSemantics> {
133
  static inline FixedPointSemantics getEmptyKey() {
134
    return FixedPointSemantics(0, 0, false, false, false);
135
  }
136
 
137
  static inline FixedPointSemantics getTombstoneKey() {
138
    return FixedPointSemantics(0, 1, false, false, false);
139
  }
140
 
141
  static unsigned getHashValue(const FixedPointSemantics &Val) {
142
    return hash_value(Val);
143
  }
144
 
145
  static bool isEqual(const char &LHS, const char &RHS) { return LHS == RHS; }
146
};
147
 
148
/// The APFixedPoint class works similarly to APInt/APSInt in that it is a
149
/// functional replacement for a scaled integer. It supports a wide range of
150
/// semantics including the one used by fixed point types proposed in ISO/IEC
151
/// JTC1 SC22 WG14 N1169. The class carries the value and semantics of
152
/// a fixed point, and provides different operations that would normally be
153
/// performed on fixed point types.
154
class APFixedPoint {
155
public:
156
  APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema)
157
      : Val(Val, !Sema.isSigned()), Sema(Sema) {
158
    assert(Val.getBitWidth() == Sema.getWidth() &&
159
           "The value should have a bit width that matches the Sema width");
160
  }
161
 
162
  APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema)
163
      : APFixedPoint(APInt(Sema.getWidth(), Val, Sema.isSigned()), Sema) {}
164
 
165
  // Zero initialization.
166
  APFixedPoint(const FixedPointSemantics &Sema) : APFixedPoint(0, Sema) {}
167
 
168
  APSInt getValue() const { return APSInt(Val, !Sema.isSigned()); }
169
  inline unsigned getWidth() const { return Sema.getWidth(); }
170
  inline unsigned getScale() const { return Sema.getScale(); }
171
  int getLsbWeight() const { return Sema.getLsbWeight(); }
172
  int getMsbWeight() const { return Sema.getMsbWeight(); }
173
  inline bool isSaturated() const { return Sema.isSaturated(); }
174
  inline bool isSigned() const { return Sema.isSigned(); }
175
  inline bool hasPadding() const { return Sema.hasUnsignedPadding(); }
176
  FixedPointSemantics getSemantics() const { return Sema; }
177
 
178
  bool getBoolValue() const { return Val.getBoolValue(); }
179
 
180
  // Convert this number to match the semantics provided. If the overflow
181
  // parameter is provided, set this value to true or false to indicate if this
182
  // operation results in an overflow.
183
  APFixedPoint convert(const FixedPointSemantics &DstSema,
184
                       bool *Overflow = nullptr) const;
185
 
186
  // Perform binary operations on a fixed point type. The resulting fixed point
187
  // value will be in the common, full precision semantics that can represent
188
  // the precision and ranges of both input values. See convert() for an
189
  // explanation of the Overflow parameter.
190
  APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const;
191
  APFixedPoint sub(const APFixedPoint &Other, bool *Overflow = nullptr) const;
192
  APFixedPoint mul(const APFixedPoint &Other, bool *Overflow = nullptr) const;
193
  APFixedPoint div(const APFixedPoint &Other, bool *Overflow = nullptr) const;
194
 
195
  // Perform shift operations on a fixed point type. Unlike the other binary
196
  // operations, the resulting fixed point value will be in the original
197
  // semantic.
198
  APFixedPoint shl(unsigned Amt, bool *Overflow = nullptr) const;
199
  APFixedPoint shr(unsigned Amt, bool *Overflow = nullptr) const {
200
    // Right shift cannot overflow.
201
    if (Overflow)
202
      *Overflow = false;
203
    return APFixedPoint(Val >> Amt, Sema);
204
  }
205
 
206
  /// Perform a unary negation (-X) on this fixed point type, taking into
207
  /// account saturation if applicable.
208
  APFixedPoint negate(bool *Overflow = nullptr) const;
209
 
210
  /// Return the integral part of this fixed point number, rounded towards
211
  /// zero. (-2.5k -> -2)
212
  APSInt getIntPart() const {
213
    if (getMsbWeight() < 0)
214
      return APSInt(APInt::getZero(getWidth()), Val.isUnsigned());
215
    APSInt ExtVal =
216
        (getLsbWeight() > 0) ? Val.extend(getWidth() + getLsbWeight()) : Val;
217
    if (Val < 0 && Val != -Val) // Cover the case when we have the min val
218
      return -((-ExtVal).relativeShl(getLsbWeight()));
219
    return ExtVal.relativeShl(getLsbWeight());
220
  }
221
 
222
  /// Return the integral part of this fixed point number, rounded towards
223
  /// zero. The value is stored into an APSInt with the provided width and sign.
224
  /// If the overflow parameter is provided, and the integral value is not able
225
  /// to be fully stored in the provided width and sign, the overflow parameter
226
  /// is set to true.
227
  APSInt convertToInt(unsigned DstWidth, bool DstSign,
228
                      bool *Overflow = nullptr) const;
229
 
230
  /// Convert this fixed point number to a floating point value with the
231
  /// provided semantics.
232
  APFloat convertToFloat(const fltSemantics &FloatSema) const;
233
 
234
  void toString(SmallVectorImpl<char> &Str) const;
235
  std::string toString() const {
236
    SmallString<40> S;
237
    toString(S);
238
    return std::string(S.str());
239
  }
240
 
241
  void print(raw_ostream &) const;
242
  void dump() const;
243
 
244
  // If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1.
245
  int compare(const APFixedPoint &Other) const;
246
  bool operator==(const APFixedPoint &Other) const {
247
    return compare(Other) == 0;
248
  }
249
  bool operator!=(const APFixedPoint &Other) const {
250
    return compare(Other) != 0;
251
  }
252
  bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; }
253
  bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; }
254
  bool operator>=(const APFixedPoint &Other) const {
255
    return compare(Other) >= 0;
256
  }
257
  bool operator<=(const APFixedPoint &Other) const {
258
    return compare(Other) <= 0;
259
  }
260
 
261
  static APFixedPoint getMax(const FixedPointSemantics &Sema);
262
  static APFixedPoint getMin(const FixedPointSemantics &Sema);
263
 
264
  /// Given a floating point semantic, return the next floating point semantic
265
  /// with a larger exponent and larger or equal mantissa.
266
  static const fltSemantics *promoteFloatSemantics(const fltSemantics *S);
267
 
268
  /// Create an APFixedPoint with a value equal to that of the provided integer,
269
  /// and in the same semantics as the provided target semantics. If the value
270
  /// is not able to fit in the specified fixed point semantics, and the
271
  /// overflow parameter is provided, it is set to true.
272
  static APFixedPoint getFromIntValue(const APSInt &Value,
273
                                      const FixedPointSemantics &DstFXSema,
274
                                      bool *Overflow = nullptr);
275
 
276
  /// Create an APFixedPoint with a value equal to that of the provided
277
  /// floating point value, in the provided target semantics. If the value is
278
  /// not able to fit in the specified fixed point semantics and the overflow
279
  /// parameter is specified, it is set to true.
280
  /// For NaN, the Overflow flag is always set. For +inf and -inf, if the
281
  /// semantic is saturating, the value saturates. Otherwise, the Overflow flag
282
  /// is set.
283
  static APFixedPoint getFromFloatValue(const APFloat &Value,
284
                                        const FixedPointSemantics &DstFXSema,
285
                                        bool *Overflow = nullptr);
286
 
287
private:
288
  APSInt Val;
289
  FixedPointSemantics Sema;
290
};
291
 
292
inline raw_ostream &operator<<(raw_ostream &OS, const APFixedPoint &FX) {
293
  OS << FX.toString();
294
  return OS;
295
}
296
 
297
inline hash_code hash_value(const APFixedPoint &Val) {
298
  return hash_combine(Val.getSemantics(), Val.getValue());
299
}
300
 
301
template <> struct DenseMapInfo<APFixedPoint> {
302
  static inline APFixedPoint getEmptyKey() {
303
    return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getEmptyKey());
304
  }
305
 
306
  static inline APFixedPoint getTombstoneKey() {
307
    return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getTombstoneKey());
308
  }
309
 
310
  static unsigned getHashValue(const APFixedPoint &Val) {
311
    return hash_value(Val);
312
  }
313
 
314
  static bool isEqual(const APFixedPoint &LHS, const APFixedPoint &RHS) {
315
    return LHS.getSemantics() == RHS.getSemantics() &&
316
           LHS.getValue() == RHS.getValue();
317
  }
318
};
319
 
320
} // namespace llvm
321
 
322
#endif