Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- APFixedPoint.h - Fixed point constant handling -----------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// |
||
9 | /// \file |
||
10 | /// Defines the fixed point number interface. |
||
11 | /// This is a class for abstracting various operations performed on fixed point |
||
12 | /// types. |
||
13 | /// |
||
14 | //===----------------------------------------------------------------------===// |
||
15 | |||
16 | #ifndef LLVM_ADT_APFIXEDPOINT_H |
||
17 | #define LLVM_ADT_APFIXEDPOINT_H |
||
18 | |||
19 | #include "llvm/ADT/APSInt.h" |
||
20 | #include "llvm/ADT/DenseMapInfo.h" |
||
21 | #include "llvm/ADT/Hashing.h" |
||
22 | #include "llvm/ADT/SmallString.h" |
||
23 | #include "llvm/Support/raw_ostream.h" |
||
24 | |||
25 | namespace llvm { |
||
26 | |||
27 | class APFloat; |
||
28 | struct fltSemantics; |
||
29 | |||
30 | /// The fixed point semantics work similarly to fltSemantics. The width |
||
31 | /// specifies the whole bit width of the underlying scaled integer (with padding |
||
32 | /// if any). The scale represents the number of fractional bits in this type. |
||
33 | /// When HasUnsignedPadding is true and this type is unsigned, the first bit |
||
34 | /// in the value this represents is treated as padding. |
||
35 | class FixedPointSemantics { |
||
36 | public: |
||
37 | static constexpr unsigned WidthBitWidth = 16; |
||
38 | static constexpr unsigned LsbWeightBitWidth = 13; |
||
39 | /// Used to differentiate between constructors with Width and Lsb from the |
||
40 | /// default Width and scale |
||
41 | struct Lsb { |
||
42 | int LsbWeight; |
||
43 | }; |
||
44 | FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned, |
||
45 | bool IsSaturated, bool HasUnsignedPadding) |
||
46 | : FixedPointSemantics(Width, Lsb{-static_cast<int>(Scale)}, IsSigned, |
||
47 | IsSaturated, HasUnsignedPadding) {} |
||
48 | FixedPointSemantics(unsigned Width, Lsb Weight, bool IsSigned, |
||
49 | bool IsSaturated, bool HasUnsignedPadding) |
||
50 | : Width(Width), LsbWeight(Weight.LsbWeight), IsSigned(IsSigned), |
||
51 | IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) { |
||
52 | assert(isUInt<WidthBitWidth>(Width) && isInt<LsbWeightBitWidth>(Weight.LsbWeight)); |
||
53 | assert(!(IsSigned && HasUnsignedPadding) && |
||
54 | "Cannot have unsigned padding on a signed type."); |
||
55 | } |
||
56 | |||
57 | /// Check if the Semantic follow the requirements of an older more limited |
||
58 | /// version of this class |
||
59 | bool isValidLegacySema() const { |
||
60 | return LsbWeight <= 0 && static_cast<int>(Width) >= -LsbWeight; |
||
61 | } |
||
62 | unsigned getWidth() const { return Width; } |
||
63 | unsigned getScale() const { assert(isValidLegacySema()); return -LsbWeight; } |
||
64 | int getLsbWeight() const { return LsbWeight; } |
||
65 | int getMsbWeight() const { |
||
66 | return LsbWeight + Width - 1 /*Both lsb and msb are both part of width*/; |
||
67 | } |
||
68 | bool isSigned() const { return IsSigned; } |
||
69 | bool isSaturated() const { return IsSaturated; } |
||
70 | bool hasUnsignedPadding() const { return HasUnsignedPadding; } |
||
71 | |||
72 | void setSaturated(bool Saturated) { IsSaturated = Saturated; } |
||
73 | |||
74 | /// return true if the first bit doesn't have a strictly positive weight |
||
75 | bool hasSignOrPaddingBit() const { return IsSigned || HasUnsignedPadding; } |
||
76 | |||
77 | /// Return the number of integral bits represented by these semantics. These |
||
78 | /// are separate from the fractional bits and do not include the sign or |
||
79 | /// padding bit. |
||
80 | unsigned getIntegralBits() const { |
||
81 | return std::max(getMsbWeight() + 1 - hasSignOrPaddingBit(), 0); |
||
82 | } |
||
83 | |||
84 | /// Return the FixedPointSemantics that allows for calculating the full |
||
85 | /// precision semantic that can precisely represent the precision and ranges |
||
86 | /// of both input values. This does not compute the resulting semantics for a |
||
87 | /// given binary operation. |
||
88 | FixedPointSemantics |
||
89 | getCommonSemantics(const FixedPointSemantics &Other) const; |
||
90 | |||
91 | /// Print semantics for debug purposes |
||
92 | void print(llvm::raw_ostream& OS) const; |
||
93 | |||
94 | /// Returns true if this fixed-point semantic with its value bits interpreted |
||
95 | /// as an integer can fit in the given floating point semantic without |
||
96 | /// overflowing to infinity. |
||
97 | /// For example, a signed 8-bit fixed-point semantic has a maximum and |
||
98 | /// minimum integer representation of 127 and -128, respectively. If both of |
||
99 | /// these values can be represented (possibly inexactly) in the floating |
||
100 | /// point semantic without overflowing, this returns true. |
||
101 | bool fitsInFloatSemantics(const fltSemantics &FloatSema) const; |
||
102 | |||
103 | /// Return the FixedPointSemantics for an integer type. |
||
104 | static FixedPointSemantics GetIntegerSemantics(unsigned Width, |
||
105 | bool IsSigned) { |
||
106 | return FixedPointSemantics(Width, /*Scale=*/0, IsSigned, |
||
107 | /*IsSaturated=*/false, |
||
108 | /*HasUnsignedPadding=*/false); |
||
109 | } |
||
110 | |||
111 | bool operator==(FixedPointSemantics Other) const { |
||
112 | return Width == Other.Width && LsbWeight == Other.LsbWeight && |
||
113 | IsSigned == Other.IsSigned && IsSaturated == Other.IsSaturated && |
||
114 | HasUnsignedPadding == Other.HasUnsignedPadding; |
||
115 | } |
||
116 | bool operator!=(FixedPointSemantics Other) const { return !(*this == Other); } |
||
117 | |||
118 | private: |
||
119 | unsigned Width : WidthBitWidth; |
||
120 | signed int LsbWeight : LsbWeightBitWidth; |
||
121 | unsigned IsSigned : 1; |
||
122 | unsigned IsSaturated : 1; |
||
123 | unsigned HasUnsignedPadding : 1; |
||
124 | }; |
||
125 | |||
126 | static_assert(sizeof(FixedPointSemantics) == 4, ""); |
||
127 | |||
128 | inline hash_code hash_value(const FixedPointSemantics &Val) { |
||
129 | return hash_value(bit_cast<uint32_t>(Val)); |
||
130 | } |
||
131 | |||
132 | template <> struct DenseMapInfo<FixedPointSemantics> { |
||
133 | static inline FixedPointSemantics getEmptyKey() { |
||
134 | return FixedPointSemantics(0, 0, false, false, false); |
||
135 | } |
||
136 | |||
137 | static inline FixedPointSemantics getTombstoneKey() { |
||
138 | return FixedPointSemantics(0, 1, false, false, false); |
||
139 | } |
||
140 | |||
141 | static unsigned getHashValue(const FixedPointSemantics &Val) { |
||
142 | return hash_value(Val); |
||
143 | } |
||
144 | |||
145 | static bool isEqual(const char &LHS, const char &RHS) { return LHS == RHS; } |
||
146 | }; |
||
147 | |||
148 | /// The APFixedPoint class works similarly to APInt/APSInt in that it is a |
||
149 | /// functional replacement for a scaled integer. It supports a wide range of |
||
150 | /// semantics including the one used by fixed point types proposed in ISO/IEC |
||
151 | /// JTC1 SC22 WG14 N1169. The class carries the value and semantics of |
||
152 | /// a fixed point, and provides different operations that would normally be |
||
153 | /// performed on fixed point types. |
||
154 | class APFixedPoint { |
||
155 | public: |
||
156 | APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema) |
||
157 | : Val(Val, !Sema.isSigned()), Sema(Sema) { |
||
158 | assert(Val.getBitWidth() == Sema.getWidth() && |
||
159 | "The value should have a bit width that matches the Sema width"); |
||
160 | } |
||
161 | |||
162 | APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema) |
||
163 | : APFixedPoint(APInt(Sema.getWidth(), Val, Sema.isSigned()), Sema) {} |
||
164 | |||
165 | // Zero initialization. |
||
166 | APFixedPoint(const FixedPointSemantics &Sema) : APFixedPoint(0, Sema) {} |
||
167 | |||
168 | APSInt getValue() const { return APSInt(Val, !Sema.isSigned()); } |
||
169 | inline unsigned getWidth() const { return Sema.getWidth(); } |
||
170 | inline unsigned getScale() const { return Sema.getScale(); } |
||
171 | int getLsbWeight() const { return Sema.getLsbWeight(); } |
||
172 | int getMsbWeight() const { return Sema.getMsbWeight(); } |
||
173 | inline bool isSaturated() const { return Sema.isSaturated(); } |
||
174 | inline bool isSigned() const { return Sema.isSigned(); } |
||
175 | inline bool hasPadding() const { return Sema.hasUnsignedPadding(); } |
||
176 | FixedPointSemantics getSemantics() const { return Sema; } |
||
177 | |||
178 | bool getBoolValue() const { return Val.getBoolValue(); } |
||
179 | |||
180 | // Convert this number to match the semantics provided. If the overflow |
||
181 | // parameter is provided, set this value to true or false to indicate if this |
||
182 | // operation results in an overflow. |
||
183 | APFixedPoint convert(const FixedPointSemantics &DstSema, |
||
184 | bool *Overflow = nullptr) const; |
||
185 | |||
186 | // Perform binary operations on a fixed point type. The resulting fixed point |
||
187 | // value will be in the common, full precision semantics that can represent |
||
188 | // the precision and ranges of both input values. See convert() for an |
||
189 | // explanation of the Overflow parameter. |
||
190 | APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
||
191 | APFixedPoint sub(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
||
192 | APFixedPoint mul(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
||
193 | APFixedPoint div(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
||
194 | |||
195 | // Perform shift operations on a fixed point type. Unlike the other binary |
||
196 | // operations, the resulting fixed point value will be in the original |
||
197 | // semantic. |
||
198 | APFixedPoint shl(unsigned Amt, bool *Overflow = nullptr) const; |
||
199 | APFixedPoint shr(unsigned Amt, bool *Overflow = nullptr) const { |
||
200 | // Right shift cannot overflow. |
||
201 | if (Overflow) |
||
202 | *Overflow = false; |
||
203 | return APFixedPoint(Val >> Amt, Sema); |
||
204 | } |
||
205 | |||
206 | /// Perform a unary negation (-X) on this fixed point type, taking into |
||
207 | /// account saturation if applicable. |
||
208 | APFixedPoint negate(bool *Overflow = nullptr) const; |
||
209 | |||
210 | /// Return the integral part of this fixed point number, rounded towards |
||
211 | /// zero. (-2.5k -> -2) |
||
212 | APSInt getIntPart() const { |
||
213 | if (getMsbWeight() < 0) |
||
214 | return APSInt(APInt::getZero(getWidth()), Val.isUnsigned()); |
||
215 | APSInt ExtVal = |
||
216 | (getLsbWeight() > 0) ? Val.extend(getWidth() + getLsbWeight()) : Val; |
||
217 | if (Val < 0 && Val != -Val) // Cover the case when we have the min val |
||
218 | return -((-ExtVal).relativeShl(getLsbWeight())); |
||
219 | return ExtVal.relativeShl(getLsbWeight()); |
||
220 | } |
||
221 | |||
222 | /// Return the integral part of this fixed point number, rounded towards |
||
223 | /// zero. The value is stored into an APSInt with the provided width and sign. |
||
224 | /// If the overflow parameter is provided, and the integral value is not able |
||
225 | /// to be fully stored in the provided width and sign, the overflow parameter |
||
226 | /// is set to true. |
||
227 | APSInt convertToInt(unsigned DstWidth, bool DstSign, |
||
228 | bool *Overflow = nullptr) const; |
||
229 | |||
230 | /// Convert this fixed point number to a floating point value with the |
||
231 | /// provided semantics. |
||
232 | APFloat convertToFloat(const fltSemantics &FloatSema) const; |
||
233 | |||
234 | void toString(SmallVectorImpl<char> &Str) const; |
||
235 | std::string toString() const { |
||
236 | SmallString<40> S; |
||
237 | toString(S); |
||
238 | return std::string(S.str()); |
||
239 | } |
||
240 | |||
241 | void print(raw_ostream &) const; |
||
242 | void dump() const; |
||
243 | |||
244 | // If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1. |
||
245 | int compare(const APFixedPoint &Other) const; |
||
246 | bool operator==(const APFixedPoint &Other) const { |
||
247 | return compare(Other) == 0; |
||
248 | } |
||
249 | bool operator!=(const APFixedPoint &Other) const { |
||
250 | return compare(Other) != 0; |
||
251 | } |
||
252 | bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; } |
||
253 | bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; } |
||
254 | bool operator>=(const APFixedPoint &Other) const { |
||
255 | return compare(Other) >= 0; |
||
256 | } |
||
257 | bool operator<=(const APFixedPoint &Other) const { |
||
258 | return compare(Other) <= 0; |
||
259 | } |
||
260 | |||
261 | static APFixedPoint getMax(const FixedPointSemantics &Sema); |
||
262 | static APFixedPoint getMin(const FixedPointSemantics &Sema); |
||
263 | |||
264 | /// Given a floating point semantic, return the next floating point semantic |
||
265 | /// with a larger exponent and larger or equal mantissa. |
||
266 | static const fltSemantics *promoteFloatSemantics(const fltSemantics *S); |
||
267 | |||
268 | /// Create an APFixedPoint with a value equal to that of the provided integer, |
||
269 | /// and in the same semantics as the provided target semantics. If the value |
||
270 | /// is not able to fit in the specified fixed point semantics, and the |
||
271 | /// overflow parameter is provided, it is set to true. |
||
272 | static APFixedPoint getFromIntValue(const APSInt &Value, |
||
273 | const FixedPointSemantics &DstFXSema, |
||
274 | bool *Overflow = nullptr); |
||
275 | |||
276 | /// Create an APFixedPoint with a value equal to that of the provided |
||
277 | /// floating point value, in the provided target semantics. If the value is |
||
278 | /// not able to fit in the specified fixed point semantics and the overflow |
||
279 | /// parameter is specified, it is set to true. |
||
280 | /// For NaN, the Overflow flag is always set. For +inf and -inf, if the |
||
281 | /// semantic is saturating, the value saturates. Otherwise, the Overflow flag |
||
282 | /// is set. |
||
283 | static APFixedPoint getFromFloatValue(const APFloat &Value, |
||
284 | const FixedPointSemantics &DstFXSema, |
||
285 | bool *Overflow = nullptr); |
||
286 | |||
287 | private: |
||
288 | APSInt Val; |
||
289 | FixedPointSemantics Sema; |
||
290 | }; |
||
291 | |||
292 | inline raw_ostream &operator<<(raw_ostream &OS, const APFixedPoint &FX) { |
||
293 | OS << FX.toString(); |
||
294 | return OS; |
||
295 | } |
||
296 | |||
297 | inline hash_code hash_value(const APFixedPoint &Val) { |
||
298 | return hash_combine(Val.getSemantics(), Val.getValue()); |
||
299 | } |
||
300 | |||
301 | template <> struct DenseMapInfo<APFixedPoint> { |
||
302 | static inline APFixedPoint getEmptyKey() { |
||
303 | return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getEmptyKey()); |
||
304 | } |
||
305 | |||
306 | static inline APFixedPoint getTombstoneKey() { |
||
307 | return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getTombstoneKey()); |
||
308 | } |
||
309 | |||
310 | static unsigned getHashValue(const APFixedPoint &Val) { |
||
311 | return hash_value(Val); |
||
312 | } |
||
313 | |||
314 | static bool isEqual(const APFixedPoint &LHS, const APFixedPoint &RHS) { |
||
315 | return LHS.getSemantics() == RHS.getSemantics() && |
||
316 | LHS.getValue() == RHS.getValue(); |
||
317 | } |
||
318 | }; |
||
319 | |||
320 | } // namespace llvm |
||
321 | |||
322 | #endif |