Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===-- DataflowAnalysisContext.h -------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
//  This file defines a DataflowAnalysisContext class that owns objects that
10
//  encompass the state of a program and stores context that is used during
11
//  dataflow analysis.
12
//
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWANALYSISCONTEXT_H
16
#define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWANALYSISCONTEXT_H
17
 
18
#include "clang/AST/Decl.h"
19
#include "clang/AST/Expr.h"
20
#include "clang/AST/TypeOrdering.h"
21
#include "clang/Analysis/FlowSensitive/ControlFlowContext.h"
22
#include "clang/Analysis/FlowSensitive/Solver.h"
23
#include "clang/Analysis/FlowSensitive/StorageLocation.h"
24
#include "clang/Analysis/FlowSensitive/Value.h"
25
#include "llvm/ADT/DenseMap.h"
26
#include "llvm/ADT/DenseSet.h"
27
#include "llvm/Support/Compiler.h"
28
#include <cassert>
29
#include <memory>
30
#include <optional>
31
#include <type_traits>
32
#include <utility>
33
#include <vector>
34
 
35
namespace clang {
36
namespace dataflow {
37
 
38
/// Skip past nodes that the CFG does not emit. These nodes are invisible to
39
/// flow-sensitive analysis, and should be ignored as they will effectively not
40
/// exist.
41
///
42
///   * `ParenExpr` - The CFG takes the operator precedence into account, but
43
///   otherwise omits the node afterwards.
44
///
45
///   * `ExprWithCleanups` - The CFG will generate the appropriate calls to
46
///   destructors and then omit the node.
47
///
48
const Expr &ignoreCFGOmittedNodes(const Expr &E);
49
const Stmt &ignoreCFGOmittedNodes(const Stmt &S);
50
 
51
/// Returns the set of all fields in the type.
52
llvm::DenseSet<const FieldDecl *> getObjectFields(QualType Type);
53
 
54
struct ContextSensitiveOptions {
55
  /// The maximum depth to analyze. A value of zero is equivalent to disabling
56
  /// context-sensitive analysis entirely.
57
  unsigned Depth = 2;
58
};
59
 
60
/// Owns objects that encompass the state of a program and stores context that
61
/// is used during dataflow analysis.
62
class DataflowAnalysisContext {
63
public:
64
  struct Options {
65
    /// Options for analyzing function bodies when present in the translation
66
    /// unit, or empty to disable context-sensitive analysis. Note that this is
67
    /// fundamentally limited: some constructs, such as recursion, are
68
    /// explicitly unsupported.
69
    std::optional<ContextSensitiveOptions> ContextSensitiveOpts;
70
  };
71
 
72
  /// Constructs a dataflow analysis context.
73
  ///
74
  /// Requirements:
75
  ///
76
  ///  `S` must not be null.
77
  DataflowAnalysisContext(std::unique_ptr<Solver> S,
78
                          Options Opts = Options{
79
                              /*ContextSensitiveOpts=*/std::nullopt})
80
      : S(std::move(S)), TrueVal(createAtomicBoolValue()),
81
        FalseVal(createAtomicBoolValue()), Opts(Opts) {
82
    assert(this->S != nullptr);
83
  }
84
 
85
  /// Takes ownership of `Loc` and returns a reference to it.
86
  ///
87
  /// Requirements:
88
  ///
89
  ///  `Loc` must not be null.
90
  template <typename T>
91
  std::enable_if_t<std::is_base_of<StorageLocation, T>::value, T &>
92
  takeOwnership(std::unique_ptr<T> Loc) {
93
    assert(Loc != nullptr);
94
    Locs.push_back(std::move(Loc));
95
    return *cast<T>(Locs.back().get());
96
  }
97
 
98
  /// Takes ownership of `Val` and returns a reference to it.
99
  ///
100
  /// Requirements:
101
  ///
102
  ///  `Val` must not be null.
103
  template <typename T>
104
  std::enable_if_t<std::is_base_of<Value, T>::value, T &>
105
  takeOwnership(std::unique_ptr<T> Val) {
106
    assert(Val != nullptr);
107
    Vals.push_back(std::move(Val));
108
    return *cast<T>(Vals.back().get());
109
  }
110
 
111
  /// Returns a new storage location appropriate for `Type`.
112
  ///
113
  /// A null `Type` is interpreted as the pointee type of `std::nullptr_t`.
114
  StorageLocation &createStorageLocation(QualType Type);
115
 
116
  /// Returns a stable storage location for `D`.
117
  StorageLocation &getStableStorageLocation(const VarDecl &D);
118
 
119
  /// Returns a stable storage location for `E`.
120
  StorageLocation &getStableStorageLocation(const Expr &E);
121
 
122
  /// Assigns `Loc` as the storage location of `D`.
123
  ///
124
  /// Requirements:
125
  ///
126
  ///  `D` must not be assigned a storage location.
127
  void setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
128
    assert(DeclToLoc.find(&D) == DeclToLoc.end());
129
    DeclToLoc[&D] = &Loc;
130
  }
131
 
132
  /// Returns the storage location assigned to `D` or null if `D` has no
133
  /// assigned storage location.
134
  StorageLocation *getStorageLocation(const ValueDecl &D) const {
135
    auto It = DeclToLoc.find(&D);
136
    return It == DeclToLoc.end() ? nullptr : It->second;
137
  }
138
 
139
  /// Assigns `Loc` as the storage location of `E`.
140
  ///
141
  /// Requirements:
142
  ///
143
  ///  `E` must not be assigned a storage location.
144
  void setStorageLocation(const Expr &E, StorageLocation &Loc) {
145
    const Expr &CanonE = ignoreCFGOmittedNodes(E);
146
    assert(ExprToLoc.find(&CanonE) == ExprToLoc.end());
147
    ExprToLoc[&CanonE] = &Loc;
148
  }
149
 
150
  /// Returns the storage location assigned to `E` or null if `E` has no
151
  /// assigned storage location.
152
  StorageLocation *getStorageLocation(const Expr &E) const {
153
    auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
154
    return It == ExprToLoc.end() ? nullptr : It->second;
155
  }
156
 
157
  /// Returns a pointer value that represents a null pointer. Calls with
158
  /// `PointeeType` that are canonically equivalent will return the same result.
159
  /// A null `PointeeType` can be used for the pointee of `std::nullptr_t`.
160
  PointerValue &getOrCreateNullPointerValue(QualType PointeeType);
161
 
162
  /// Returns a symbolic boolean value that models a boolean literal equal to
163
  /// `Value`.
164
  AtomicBoolValue &getBoolLiteralValue(bool Value) const {
165
    return Value ? TrueVal : FalseVal;
166
  }
167
 
168
  /// Creates an atomic boolean value.
169
  AtomicBoolValue &createAtomicBoolValue() {
170
    return takeOwnership(std::make_unique<AtomicBoolValue>());
171
  }
172
 
173
  /// Creates a Top value for booleans. Each instance is unique and can be
174
  /// assigned a distinct truth value during solving.
175
  ///
176
  /// FIXME: `Top iff Top` is true when both Tops are identical (by pointer
177
  /// equality), but not when they are distinct values. We should improve the
178
  /// implementation so that `Top iff Top` has a consistent meaning, regardless
179
  /// of the identity of `Top`. Moreover, I think the meaning should be
180
  /// `false`.
181
  TopBoolValue &createTopBoolValue() {
182
    return takeOwnership(std::make_unique<TopBoolValue>());
183
  }
184
 
185
  /// Returns a boolean value that represents the conjunction of `LHS` and
186
  /// `RHS`. Subsequent calls with the same arguments, regardless of their
187
  /// order, will return the same result. If the given boolean values represent
188
  /// the same value, the result will be the value itself.
189
  BoolValue &getOrCreateConjunction(BoolValue &LHS, BoolValue &RHS);
190
 
191
  /// Returns a boolean value that represents the disjunction of `LHS` and
192
  /// `RHS`. Subsequent calls with the same arguments, regardless of their
193
  /// order, will return the same result. If the given boolean values represent
194
  /// the same value, the result will be the value itself.
195
  BoolValue &getOrCreateDisjunction(BoolValue &LHS, BoolValue &RHS);
196
 
197
  /// Returns a boolean value that represents the negation of `Val`. Subsequent
198
  /// calls with the same argument will return the same result.
199
  BoolValue &getOrCreateNegation(BoolValue &Val);
200
 
201
  /// Returns a boolean value that represents `LHS => RHS`. Subsequent calls
202
  /// with the same arguments, will return the same result. If the given boolean
203
  /// values represent the same value, the result will be a value that
204
  /// represents the true boolean literal.
205
  BoolValue &getOrCreateImplication(BoolValue &LHS, BoolValue &RHS);
206
 
207
  /// Returns a boolean value that represents `LHS <=> RHS`. Subsequent calls
208
  /// with the same arguments, regardless of their order, will return the same
209
  /// result. If the given boolean values represent the same value, the result
210
  /// will be a value that represents the true boolean literal.
211
  BoolValue &getOrCreateIff(BoolValue &LHS, BoolValue &RHS);
212
 
213
  /// Creates a fresh flow condition and returns a token that identifies it. The
214
  /// token can be used to perform various operations on the flow condition such
215
  /// as adding constraints to it, forking it, joining it with another flow
216
  /// condition, or checking implications.
217
  AtomicBoolValue &makeFlowConditionToken();
218
 
219
  /// Adds `Constraint` to the flow condition identified by `Token`.
220
  void addFlowConditionConstraint(AtomicBoolValue &Token,
221
                                  BoolValue &Constraint);
222
 
223
  /// Creates a new flow condition with the same constraints as the flow
224
  /// condition identified by `Token` and returns its token.
225
  AtomicBoolValue &forkFlowCondition(AtomicBoolValue &Token);
226
 
227
  /// Creates a new flow condition that represents the disjunction of the flow
228
  /// conditions identified by `FirstToken` and `SecondToken`, and returns its
229
  /// token.
230
  AtomicBoolValue &joinFlowConditions(AtomicBoolValue &FirstToken,
231
                                      AtomicBoolValue &SecondToken);
232
 
233
  // FIXME: This function returns the flow condition expressed directly as its
234
  // constraints: (C1 AND C2 AND ...). This differs from the general approach in
235
  // the framework where a flow condition is represented as a token (an atomic
236
  // boolean) with dependencies and constraints tracked in `FlowConditionDeps`
237
  // and `FlowConditionConstraints`: (FC <=> C1 AND C2 AND ...).
238
  // Consider if we should make the representation of flow condition consistent,
239
  // returning an atomic boolean token with separate constraints instead.
240
  //
241
  /// Builds and returns the logical formula defining the flow condition
242
  /// identified by `Token`. If a value in the formula is present as a key in
243
  /// `Substitutions`, it will be substituted with the value it maps to.
244
  /// As an example, say we have flow condition tokens FC1, FC2, FC3 and
245
  /// FlowConditionConstraints: { FC1: C1,
246
  ///                             FC2: C2,
247
  ///                             FC3: (FC1 v FC2) ^ C3 }
248
  /// buildAndSubstituteFlowCondition(FC3, {{C1 -> C1'}}) will return a value
249
  /// corresponding to (C1' v C2) ^ C3.
250
  BoolValue &buildAndSubstituteFlowCondition(
251
      AtomicBoolValue &Token,
252
      llvm::DenseMap<AtomicBoolValue *, BoolValue *> Substitutions);
253
 
254
  /// Returns true if and only if the constraints of the flow condition
255
  /// identified by `Token` imply that `Val` is true.
256
  bool flowConditionImplies(AtomicBoolValue &Token, BoolValue &Val);
257
 
258
  /// Returns true if and only if the constraints of the flow condition
259
  /// identified by `Token` are always true.
260
  bool flowConditionIsTautology(AtomicBoolValue &Token);
261
 
262
  /// Returns true if `Val1` is equivalent to `Val2`.
263
  /// Note: This function doesn't take into account constraints on `Val1` and
264
  /// `Val2` imposed by the flow condition.
265
  bool equivalentBoolValues(BoolValue &Val1, BoolValue &Val2);
266
 
267
  LLVM_DUMP_METHOD void dumpFlowCondition(AtomicBoolValue &Token);
268
 
269
  /// Returns the `ControlFlowContext` registered for `F`, if any. Otherwise,
270
  /// returns null.
271
  const ControlFlowContext *getControlFlowContext(const FunctionDecl *F);
272
 
273
  const Options &getOptions() { return Opts; }
274
 
275
private:
276
  friend class Environment;
277
 
278
  struct NullableQualTypeDenseMapInfo : private llvm::DenseMapInfo<QualType> {
279
    static QualType getEmptyKey() {
280
      // Allow a NULL `QualType` by using a different value as the empty key.
281
      return QualType::getFromOpaquePtr(reinterpret_cast<Type *>(1));
282
    }
283
 
284
    using DenseMapInfo::getHashValue;
285
    using DenseMapInfo::getTombstoneKey;
286
    using DenseMapInfo::isEqual;
287
  };
288
 
289
  // Extends the set of modeled field declarations.
290
  void addModeledFields(const llvm::DenseSet<const FieldDecl *> &Fields);
291
 
292
  /// Returns the fields of `Type`, limited to the set of fields modeled by this
293
  /// context.
294
  llvm::DenseSet<const FieldDecl *> getReferencedFields(QualType Type);
295
 
296
  /// Adds all constraints of the flow condition identified by `Token` and all
297
  /// of its transitive dependencies to `Constraints`. `VisitedTokens` is used
298
  /// to track tokens of flow conditions that were already visited by recursive
299
  /// calls.
300
  void addTransitiveFlowConditionConstraints(
301
      AtomicBoolValue &Token, llvm::DenseSet<BoolValue *> &Constraints,
302
      llvm::DenseSet<AtomicBoolValue *> &VisitedTokens);
303
 
304
  /// Returns the outcome of satisfiability checking on `Constraints`.
305
  /// Possible outcomes are:
306
  /// - `Satisfiable`: A satisfying assignment exists and is returned.
307
  /// - `Unsatisfiable`: A satisfying assignment does not exist.
308
  /// - `TimedOut`: The search for a satisfying assignment was not completed.
309
  Solver::Result querySolver(llvm::DenseSet<BoolValue *> Constraints);
310
 
311
  /// Returns true if the solver is able to prove that there is no satisfying
312
  /// assignment for `Constraints`
313
  bool isUnsatisfiable(llvm::DenseSet<BoolValue *> Constraints) {
314
    return querySolver(std::move(Constraints)).getStatus() ==
315
           Solver::Result::Status::Unsatisfiable;
316
  }
317
 
318
  /// Returns a boolean value as a result of substituting `Val` and its sub
319
  /// values based on entries in `SubstitutionsCache`. Intermediate results are
320
  /// stored in `SubstitutionsCache` to avoid reprocessing values that have
321
  /// already been visited.
322
  BoolValue &substituteBoolValue(
323
      BoolValue &Val,
324
      llvm::DenseMap<BoolValue *, BoolValue *> &SubstitutionsCache);
325
 
326
  /// Builds and returns the logical formula defining the flow condition
327
  /// identified by `Token`, sub values may be substituted based on entries in
328
  /// `SubstitutionsCache`. Intermediate results are stored in
329
  /// `SubstitutionsCache` to avoid reprocessing values that have already been
330
  /// visited.
331
  BoolValue &buildAndSubstituteFlowConditionWithCache(
332
      AtomicBoolValue &Token,
333
      llvm::DenseMap<BoolValue *, BoolValue *> &SubstitutionsCache);
334
 
335
  std::unique_ptr<Solver> S;
336
 
337
  // Storage for the state of a program.
338
  std::vector<std::unique_ptr<StorageLocation>> Locs;
339
  std::vector<std::unique_ptr<Value>> Vals;
340
 
341
  // Maps from program declarations and statements to storage locations that are
342
  // assigned to them. These assignments are global (aggregated across all basic
343
  // blocks) and are used to produce stable storage locations when the same
344
  // basic blocks are evaluated multiple times. The storage locations that are
345
  // in scope for a particular basic block are stored in `Environment`.
346
  llvm::DenseMap<const ValueDecl *, StorageLocation *> DeclToLoc;
347
  llvm::DenseMap<const Expr *, StorageLocation *> ExprToLoc;
348
 
349
  // Null pointer values, keyed by the canonical pointee type.
350
  //
351
  // FIXME: The pointer values are indexed by the pointee types which are
352
  // required to initialize the `PointeeLoc` field in `PointerValue`. Consider
353
  // creating a type-independent `NullPointerValue` without a `PointeeLoc`
354
  // field.
355
  llvm::DenseMap<QualType, PointerValue *, NullableQualTypeDenseMapInfo>
356
      NullPointerVals;
357
 
358
  AtomicBoolValue &TrueVal;
359
  AtomicBoolValue &FalseVal;
360
 
361
  Options Opts;
362
 
363
  // Indices that are used to avoid recreating the same composite boolean
364
  // values.
365
  llvm::DenseMap<std::pair<BoolValue *, BoolValue *>, ConjunctionValue *>
366
      ConjunctionVals;
367
  llvm::DenseMap<std::pair<BoolValue *, BoolValue *>, DisjunctionValue *>
368
      DisjunctionVals;
369
  llvm::DenseMap<BoolValue *, NegationValue *> NegationVals;
370
  llvm::DenseMap<std::pair<BoolValue *, BoolValue *>, ImplicationValue *>
371
      ImplicationVals;
372
  llvm::DenseMap<std::pair<BoolValue *, BoolValue *>, BiconditionalValue *>
373
      BiconditionalVals;
374
 
375
  // Flow conditions are tracked symbolically: each unique flow condition is
376
  // associated with a fresh symbolic variable (token), bound to the clause that
377
  // defines the flow condition. Conceptually, each binding corresponds to an
378
  // "iff" of the form `FC <=> (C1 ^ C2 ^ ...)` where `FC` is a flow condition
379
  // token (an atomic boolean) and `Ci`s are the set of constraints in the flow
380
  // flow condition clause. The set of constraints (C1 ^ C2 ^ ...) are stored in
381
  // the `FlowConditionConstraints` map, keyed by the token of the flow
382
  // condition.
383
  //
384
  // Flow conditions depend on other flow conditions if they are created using
385
  // `forkFlowCondition` or `joinFlowConditions`. The graph of flow condition
386
  // dependencies is stored in the `FlowConditionDeps` map.
387
  llvm::DenseMap<AtomicBoolValue *, llvm::DenseSet<AtomicBoolValue *>>
388
      FlowConditionDeps;
389
  llvm::DenseMap<AtomicBoolValue *, BoolValue *> FlowConditionConstraints;
390
 
391
  llvm::DenseMap<const FunctionDecl *, ControlFlowContext> FunctionContexts;
392
 
393
  // Fields modeled by environments covered by this context.
394
  llvm::DenseSet<const FieldDecl *> ModeledFields;
395
};
396
 
397
} // namespace dataflow
398
} // namespace clang
399
 
400
#endif // LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWANALYSISCONTEXT_H