Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- ThreadSafetyUtil.h ---------------------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines some basic utility classes for use by ThreadSafetyTIL.h |
||
10 | // |
||
11 | //===----------------------------------------------------------------------===// |
||
12 | |||
13 | #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H |
||
14 | #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H |
||
15 | |||
16 | #include "clang/AST/Decl.h" |
||
17 | #include "clang/Basic/LLVM.h" |
||
18 | #include "llvm/ADT/StringRef.h" |
||
19 | #include "llvm/ADT/iterator_range.h" |
||
20 | #include "llvm/Support/Allocator.h" |
||
21 | #include <cassert> |
||
22 | #include <cstddef> |
||
23 | #include <cstring> |
||
24 | #include <iterator> |
||
25 | #include <ostream> |
||
26 | #include <string> |
||
27 | #include <vector> |
||
28 | |||
29 | namespace clang { |
||
30 | |||
31 | class Expr; |
||
32 | |||
33 | namespace threadSafety { |
||
34 | namespace til { |
||
35 | |||
36 | // Simple wrapper class to abstract away from the details of memory management. |
||
37 | // SExprs are allocated in pools, and deallocated all at once. |
||
38 | class MemRegionRef { |
||
39 | private: |
||
40 | union AlignmentType { |
||
41 | double d; |
||
42 | void *p; |
||
43 | long double dd; |
||
44 | long long ii; |
||
45 | }; |
||
46 | |||
47 | public: |
||
48 | MemRegionRef() = default; |
||
49 | MemRegionRef(llvm::BumpPtrAllocator *A) : Allocator(A) {} |
||
50 | |||
51 | void *allocate(size_t Sz) { |
||
52 | return Allocator->Allocate(Sz, alignof(AlignmentType)); |
||
53 | } |
||
54 | |||
55 | template <typename T> T *allocateT() { return Allocator->Allocate<T>(); } |
||
56 | |||
57 | template <typename T> T *allocateT(size_t NumElems) { |
||
58 | return Allocator->Allocate<T>(NumElems); |
||
59 | } |
||
60 | |||
61 | private: |
||
62 | llvm::BumpPtrAllocator *Allocator = nullptr; |
||
63 | }; |
||
64 | |||
65 | } // namespace til |
||
66 | } // namespace threadSafety |
||
67 | |||
68 | } // namespace clang |
||
69 | |||
70 | inline void *operator new(size_t Sz, |
||
71 | clang::threadSafety::til::MemRegionRef &R) { |
||
72 | return R.allocate(Sz); |
||
73 | } |
||
74 | |||
75 | namespace clang { |
||
76 | namespace threadSafety { |
||
77 | |||
78 | std::string getSourceLiteralString(const Expr *CE); |
||
79 | |||
80 | namespace til { |
||
81 | |||
82 | // A simple fixed size array class that does not manage its own memory, |
||
83 | // suitable for use with bump pointer allocation. |
||
84 | template <class T> class SimpleArray { |
||
85 | public: |
||
86 | SimpleArray() = default; |
||
87 | SimpleArray(T *Dat, size_t Cp, size_t Sz = 0) |
||
88 | : Data(Dat), Size(Sz), Capacity(Cp) {} |
||
89 | SimpleArray(MemRegionRef A, size_t Cp) |
||
90 | : Data(Cp == 0 ? nullptr : A.allocateT<T>(Cp)), Capacity(Cp) {} |
||
91 | SimpleArray(const SimpleArray<T> &A) = delete; |
||
92 | |||
93 | SimpleArray(SimpleArray<T> &&A) |
||
94 | : Data(A.Data), Size(A.Size), Capacity(A.Capacity) { |
||
95 | A.Data = nullptr; |
||
96 | A.Size = 0; |
||
97 | A.Capacity = 0; |
||
98 | } |
||
99 | |||
100 | SimpleArray &operator=(SimpleArray &&RHS) { |
||
101 | if (this != &RHS) { |
||
102 | Data = RHS.Data; |
||
103 | Size = RHS.Size; |
||
104 | Capacity = RHS.Capacity; |
||
105 | |||
106 | RHS.Data = nullptr; |
||
107 | RHS.Size = RHS.Capacity = 0; |
||
108 | } |
||
109 | return *this; |
||
110 | } |
||
111 | |||
112 | // Reserve space for at least Ncp items, reallocating if necessary. |
||
113 | void reserve(size_t Ncp, MemRegionRef A) { |
||
114 | if (Ncp <= Capacity) |
||
115 | return; |
||
116 | T *Odata = Data; |
||
117 | Data = A.allocateT<T>(Ncp); |
||
118 | Capacity = Ncp; |
||
119 | memcpy(Data, Odata, sizeof(T) * Size); |
||
120 | } |
||
121 | |||
122 | // Reserve space for at least N more items. |
||
123 | void reserveCheck(size_t N, MemRegionRef A) { |
||
124 | if (Capacity == 0) |
||
125 | reserve(u_max(InitialCapacity, N), A); |
||
126 | else if (Size + N < Capacity) |
||
127 | reserve(u_max(Size + N, Capacity * 2), A); |
||
128 | } |
||
129 | |||
130 | using iterator = T *; |
||
131 | using const_iterator = const T *; |
||
132 | using reverse_iterator = std::reverse_iterator<iterator>; |
||
133 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
||
134 | |||
135 | size_t size() const { return Size; } |
||
136 | size_t capacity() const { return Capacity; } |
||
137 | |||
138 | T &operator[](unsigned i) { |
||
139 | assert(i < Size && "Array index out of bounds."); |
||
140 | return Data[i]; |
||
141 | } |
||
142 | |||
143 | const T &operator[](unsigned i) const { |
||
144 | assert(i < Size && "Array index out of bounds."); |
||
145 | return Data[i]; |
||
146 | } |
||
147 | |||
148 | T &back() { |
||
149 | assert(Size && "No elements in the array."); |
||
150 | return Data[Size - 1]; |
||
151 | } |
||
152 | |||
153 | const T &back() const { |
||
154 | assert(Size && "No elements in the array."); |
||
155 | return Data[Size - 1]; |
||
156 | } |
||
157 | |||
158 | iterator begin() { return Data; } |
||
159 | iterator end() { return Data + Size; } |
||
160 | |||
161 | const_iterator begin() const { return Data; } |
||
162 | const_iterator end() const { return Data + Size; } |
||
163 | |||
164 | const_iterator cbegin() const { return Data; } |
||
165 | const_iterator cend() const { return Data + Size; } |
||
166 | |||
167 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
||
168 | reverse_iterator rend() { return reverse_iterator(begin()); } |
||
169 | |||
170 | const_reverse_iterator rbegin() const { |
||
171 | return const_reverse_iterator(end()); |
||
172 | } |
||
173 | |||
174 | const_reverse_iterator rend() const { |
||
175 | return const_reverse_iterator(begin()); |
||
176 | } |
||
177 | |||
178 | void push_back(const T &Elem) { |
||
179 | assert(Size < Capacity); |
||
180 | Data[Size++] = Elem; |
||
181 | } |
||
182 | |||
183 | // drop last n elements from array |
||
184 | void drop(unsigned n = 0) { |
||
185 | assert(Size > n); |
||
186 | Size -= n; |
||
187 | } |
||
188 | |||
189 | void setValues(unsigned Sz, const T& C) { |
||
190 | assert(Sz <= Capacity); |
||
191 | Size = Sz; |
||
192 | for (unsigned i = 0; i < Sz; ++i) { |
||
193 | Data[i] = C; |
||
194 | } |
||
195 | } |
||
196 | |||
197 | template <class Iter> unsigned append(Iter I, Iter E) { |
||
198 | size_t Osz = Size; |
||
199 | size_t J = Osz; |
||
200 | for (; J < Capacity && I != E; ++J, ++I) |
||
201 | Data[J] = *I; |
||
202 | Size = J; |
||
203 | return J - Osz; |
||
204 | } |
||
205 | |||
206 | llvm::iterator_range<reverse_iterator> reverse() { |
||
207 | return llvm::reverse(*this); |
||
208 | } |
||
209 | |||
210 | llvm::iterator_range<const_reverse_iterator> reverse() const { |
||
211 | return llvm::reverse(*this); |
||
212 | } |
||
213 | |||
214 | private: |
||
215 | // std::max is annoying here, because it requires a reference, |
||
216 | // thus forcing InitialCapacity to be initialized outside the .h file. |
||
217 | size_t u_max(size_t i, size_t j) { return (i < j) ? j : i; } |
||
218 | |||
219 | static const size_t InitialCapacity = 4; |
||
220 | |||
221 | T *Data = nullptr; |
||
222 | size_t Size = 0; |
||
223 | size_t Capacity = 0; |
||
224 | }; |
||
225 | |||
226 | } // namespace til |
||
227 | |||
228 | // A copy on write vector. |
||
229 | // The vector can be in one of three states: |
||
230 | // * invalid -- no operations are permitted. |
||
231 | // * read-only -- read operations are permitted. |
||
232 | // * writable -- read and write operations are permitted. |
||
233 | // The init(), destroy(), and makeWritable() methods will change state. |
||
234 | template<typename T> |
||
235 | class CopyOnWriteVector { |
||
236 | class VectorData { |
||
237 | public: |
||
238 | unsigned NumRefs = 1; |
||
239 | std::vector<T> Vect; |
||
240 | |||
241 | VectorData() = default; |
||
242 | VectorData(const VectorData &VD) : Vect(VD.Vect) {} |
||
243 | }; |
||
244 | |||
245 | public: |
||
246 | CopyOnWriteVector() = default; |
||
247 | CopyOnWriteVector(CopyOnWriteVector &&V) : Data(V.Data) { V.Data = nullptr; } |
||
248 | |||
249 | CopyOnWriteVector &operator=(CopyOnWriteVector &&V) { |
||
250 | destroy(); |
||
251 | Data = V.Data; |
||
252 | V.Data = nullptr; |
||
253 | return *this; |
||
254 | } |
||
255 | |||
256 | // No copy constructor or copy assignment. Use clone() with move assignment. |
||
257 | CopyOnWriteVector(const CopyOnWriteVector &) = delete; |
||
258 | CopyOnWriteVector &operator=(const CopyOnWriteVector &) = delete; |
||
259 | |||
260 | ~CopyOnWriteVector() { destroy(); } |
||
261 | |||
262 | // Returns true if this holds a valid vector. |
||
263 | bool valid() const { return Data; } |
||
264 | |||
265 | // Returns true if this vector is writable. |
||
266 | bool writable() const { return Data && Data->NumRefs == 1; } |
||
267 | |||
268 | // If this vector is not valid, initialize it to a valid vector. |
||
269 | void init() { |
||
270 | if (!Data) { |
||
271 | Data = new VectorData(); |
||
272 | } |
||
273 | } |
||
274 | |||
275 | // Destroy this vector; thus making it invalid. |
||
276 | void destroy() { |
||
277 | if (!Data) |
||
278 | return; |
||
279 | if (Data->NumRefs <= 1) |
||
280 | delete Data; |
||
281 | else |
||
282 | --Data->NumRefs; |
||
283 | Data = nullptr; |
||
284 | } |
||
285 | |||
286 | // Make this vector writable, creating a copy if needed. |
||
287 | void makeWritable() { |
||
288 | if (!Data) { |
||
289 | Data = new VectorData(); |
||
290 | return; |
||
291 | } |
||
292 | if (Data->NumRefs == 1) |
||
293 | return; // already writeable. |
||
294 | --Data->NumRefs; |
||
295 | Data = new VectorData(*Data); |
||
296 | } |
||
297 | |||
298 | // Create a lazy copy of this vector. |
||
299 | CopyOnWriteVector clone() { return CopyOnWriteVector(Data); } |
||
300 | |||
301 | using const_iterator = typename std::vector<T>::const_iterator; |
||
302 | |||
303 | const std::vector<T> &elements() const { return Data->Vect; } |
||
304 | |||
305 | const_iterator begin() const { return elements().cbegin(); } |
||
306 | const_iterator end() const { return elements().cend(); } |
||
307 | |||
308 | const T& operator[](unsigned i) const { return elements()[i]; } |
||
309 | |||
310 | unsigned size() const { return Data ? elements().size() : 0; } |
||
311 | |||
312 | // Return true if V and this vector refer to the same data. |
||
313 | bool sameAs(const CopyOnWriteVector &V) const { return Data == V.Data; } |
||
314 | |||
315 | // Clear vector. The vector must be writable. |
||
316 | void clear() { |
||
317 | assert(writable() && "Vector is not writable!"); |
||
318 | Data->Vect.clear(); |
||
319 | } |
||
320 | |||
321 | // Push a new element onto the end. The vector must be writable. |
||
322 | void push_back(const T &Elem) { |
||
323 | assert(writable() && "Vector is not writable!"); |
||
324 | Data->Vect.push_back(Elem); |
||
325 | } |
||
326 | |||
327 | // Gets a mutable reference to the element at index(i). |
||
328 | // The vector must be writable. |
||
329 | T& elem(unsigned i) { |
||
330 | assert(writable() && "Vector is not writable!"); |
||
331 | return Data->Vect[i]; |
||
332 | } |
||
333 | |||
334 | // Drops elements from the back until the vector has size i. |
||
335 | void downsize(unsigned i) { |
||
336 | assert(writable() && "Vector is not writable!"); |
||
337 | Data->Vect.erase(Data->Vect.begin() + i, Data->Vect.end()); |
||
338 | } |
||
339 | |||
340 | private: |
||
341 | CopyOnWriteVector(VectorData *D) : Data(D) { |
||
342 | if (!Data) |
||
343 | return; |
||
344 | ++Data->NumRefs; |
||
345 | } |
||
346 | |||
347 | VectorData *Data = nullptr; |
||
348 | }; |
||
349 | |||
350 | inline std::ostream& operator<<(std::ostream& ss, const StringRef str) { |
||
351 | return ss.write(str.data(), str.size()); |
||
352 | } |
||
353 | |||
354 | } // namespace threadSafety |
||
355 | } // namespace clang |
||
356 | |||
357 | #endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H |