Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- ThreadSafetyUtil.h ---------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines some basic utility classes for use by ThreadSafetyTIL.h
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H
14
#define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H
15
 
16
#include "clang/AST/Decl.h"
17
#include "clang/Basic/LLVM.h"
18
#include "llvm/ADT/StringRef.h"
19
#include "llvm/ADT/iterator_range.h"
20
#include "llvm/Support/Allocator.h"
21
#include <cassert>
22
#include <cstddef>
23
#include <cstring>
24
#include <iterator>
25
#include <ostream>
26
#include <string>
27
#include <vector>
28
 
29
namespace clang {
30
 
31
class Expr;
32
 
33
namespace threadSafety {
34
namespace til {
35
 
36
// Simple wrapper class to abstract away from the details of memory management.
37
// SExprs are allocated in pools, and deallocated all at once.
38
class MemRegionRef {
39
private:
40
  union AlignmentType {
41
    double d;
42
    void *p;
43
    long double dd;
44
    long long ii;
45
  };
46
 
47
public:
48
  MemRegionRef() = default;
49
  MemRegionRef(llvm::BumpPtrAllocator *A) : Allocator(A) {}
50
 
51
  void *allocate(size_t Sz) {
52
    return Allocator->Allocate(Sz, alignof(AlignmentType));
53
  }
54
 
55
  template <typename T> T *allocateT() { return Allocator->Allocate<T>(); }
56
 
57
  template <typename T> T *allocateT(size_t NumElems) {
58
    return Allocator->Allocate<T>(NumElems);
59
  }
60
 
61
private:
62
  llvm::BumpPtrAllocator *Allocator = nullptr;
63
};
64
 
65
} // namespace til
66
} // namespace threadSafety
67
 
68
} // namespace clang
69
 
70
inline void *operator new(size_t Sz,
71
                          clang::threadSafety::til::MemRegionRef &R) {
72
  return R.allocate(Sz);
73
}
74
 
75
namespace clang {
76
namespace threadSafety {
77
 
78
std::string getSourceLiteralString(const Expr *CE);
79
 
80
namespace til {
81
 
82
// A simple fixed size array class that does not manage its own memory,
83
// suitable for use with bump pointer allocation.
84
template <class T> class SimpleArray {
85
public:
86
  SimpleArray() = default;
87
  SimpleArray(T *Dat, size_t Cp, size_t Sz = 0)
88
      : Data(Dat), Size(Sz), Capacity(Cp) {}
89
  SimpleArray(MemRegionRef A, size_t Cp)
90
      : Data(Cp == 0 ? nullptr : A.allocateT<T>(Cp)), Capacity(Cp) {}
91
  SimpleArray(const SimpleArray<T> &A) = delete;
92
 
93
  SimpleArray(SimpleArray<T> &&A)
94
      : Data(A.Data), Size(A.Size), Capacity(A.Capacity) {
95
    A.Data = nullptr;
96
    A.Size = 0;
97
    A.Capacity = 0;
98
  }
99
 
100
  SimpleArray &operator=(SimpleArray &&RHS) {
101
    if (this != &RHS) {
102
      Data = RHS.Data;
103
      Size = RHS.Size;
104
      Capacity = RHS.Capacity;
105
 
106
      RHS.Data = nullptr;
107
      RHS.Size = RHS.Capacity = 0;
108
    }
109
    return *this;
110
  }
111
 
112
  // Reserve space for at least Ncp items, reallocating if necessary.
113
  void reserve(size_t Ncp, MemRegionRef A) {
114
    if (Ncp <= Capacity)
115
      return;
116
    T *Odata = Data;
117
    Data = A.allocateT<T>(Ncp);
118
    Capacity = Ncp;
119
    memcpy(Data, Odata, sizeof(T) * Size);
120
  }
121
 
122
  // Reserve space for at least N more items.
123
  void reserveCheck(size_t N, MemRegionRef A) {
124
    if (Capacity == 0)
125
      reserve(u_max(InitialCapacity, N), A);
126
    else if (Size + N < Capacity)
127
      reserve(u_max(Size + N, Capacity * 2), A);
128
  }
129
 
130
  using iterator = T *;
131
  using const_iterator = const T *;
132
  using reverse_iterator = std::reverse_iterator<iterator>;
133
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
134
 
135
  size_t size() const { return Size; }
136
  size_t capacity() const { return Capacity; }
137
 
138
  T &operator[](unsigned i) {
139
    assert(i < Size && "Array index out of bounds.");
140
    return Data[i];
141
  }
142
 
143
  const T &operator[](unsigned i) const {
144
    assert(i < Size && "Array index out of bounds.");
145
    return Data[i];
146
  }
147
 
148
  T &back() {
149
    assert(Size && "No elements in the array.");
150
    return Data[Size - 1];
151
  }
152
 
153
  const T &back() const {
154
    assert(Size && "No elements in the array.");
155
    return Data[Size - 1];
156
  }
157
 
158
  iterator begin() { return Data; }
159
  iterator end() { return Data + Size; }
160
 
161
  const_iterator begin() const { return Data; }
162
  const_iterator end() const { return Data + Size; }
163
 
164
  const_iterator cbegin() const { return Data; }
165
  const_iterator cend() const { return Data + Size; }
166
 
167
  reverse_iterator rbegin() { return reverse_iterator(end()); }
168
  reverse_iterator rend() { return reverse_iterator(begin()); }
169
 
170
  const_reverse_iterator rbegin() const {
171
    return const_reverse_iterator(end());
172
  }
173
 
174
  const_reverse_iterator rend() const {
175
    return const_reverse_iterator(begin());
176
  }
177
 
178
  void push_back(const T &Elem) {
179
    assert(Size < Capacity);
180
    Data[Size++] = Elem;
181
  }
182
 
183
  // drop last n elements from array
184
  void drop(unsigned n = 0) {
185
    assert(Size > n);
186
    Size -= n;
187
  }
188
 
189
  void setValues(unsigned Sz, const T& C) {
190
    assert(Sz <= Capacity);
191
    Size = Sz;
192
    for (unsigned i = 0; i < Sz; ++i) {
193
      Data[i] = C;
194
    }
195
  }
196
 
197
  template <class Iter> unsigned append(Iter I, Iter E) {
198
    size_t Osz = Size;
199
    size_t J = Osz;
200
    for (; J < Capacity && I != E; ++J, ++I)
201
      Data[J] = *I;
202
    Size = J;
203
    return J - Osz;
204
  }
205
 
206
  llvm::iterator_range<reverse_iterator> reverse() {
207
    return llvm::reverse(*this);
208
  }
209
 
210
  llvm::iterator_range<const_reverse_iterator> reverse() const {
211
    return llvm::reverse(*this);
212
  }
213
 
214
private:
215
  // std::max is annoying here, because it requires a reference,
216
  // thus forcing InitialCapacity to be initialized outside the .h file.
217
  size_t u_max(size_t i, size_t j) { return (i < j) ? j : i; }
218
 
219
  static const size_t InitialCapacity = 4;
220
 
221
  T *Data = nullptr;
222
  size_t Size = 0;
223
  size_t Capacity = 0;
224
};
225
 
226
}  // namespace til
227
 
228
// A copy on write vector.
229
// The vector can be in one of three states:
230
// * invalid -- no operations are permitted.
231
// * read-only -- read operations are permitted.
232
// * writable -- read and write operations are permitted.
233
// The init(), destroy(), and makeWritable() methods will change state.
234
template<typename T>
235
class CopyOnWriteVector {
236
  class VectorData {
237
  public:
238
    unsigned NumRefs = 1;
239
    std::vector<T> Vect;
240
 
241
    VectorData() = default;
242
    VectorData(const VectorData &VD) : Vect(VD.Vect) {}
243
  };
244
 
245
public:
246
  CopyOnWriteVector() = default;
247
  CopyOnWriteVector(CopyOnWriteVector &&V) : Data(V.Data) { V.Data = nullptr; }
248
 
249
  CopyOnWriteVector &operator=(CopyOnWriteVector &&V) {
250
    destroy();
251
    Data = V.Data;
252
    V.Data = nullptr;
253
    return *this;
254
  }
255
 
256
  // No copy constructor or copy assignment.  Use clone() with move assignment.
257
  CopyOnWriteVector(const CopyOnWriteVector &) = delete;
258
  CopyOnWriteVector &operator=(const CopyOnWriteVector &) = delete;
259
 
260
  ~CopyOnWriteVector() { destroy(); }
261
 
262
  // Returns true if this holds a valid vector.
263
  bool valid() const  { return Data; }
264
 
265
  // Returns true if this vector is writable.
266
  bool writable() const { return Data && Data->NumRefs == 1; }
267
 
268
  // If this vector is not valid, initialize it to a valid vector.
269
  void init() {
270
    if (!Data) {
271
      Data = new VectorData();
272
    }
273
  }
274
 
275
  // Destroy this vector; thus making it invalid.
276
  void destroy() {
277
    if (!Data)
278
      return;
279
    if (Data->NumRefs <= 1)
280
      delete Data;
281
    else
282
      --Data->NumRefs;
283
    Data = nullptr;
284
  }
285
 
286
  // Make this vector writable, creating a copy if needed.
287
  void makeWritable() {
288
    if (!Data) {
289
      Data = new VectorData();
290
      return;
291
    }
292
    if (Data->NumRefs == 1)
293
      return;   // already writeable.
294
    --Data->NumRefs;
295
    Data = new VectorData(*Data);
296
  }
297
 
298
  // Create a lazy copy of this vector.
299
  CopyOnWriteVector clone() { return CopyOnWriteVector(Data); }
300
 
301
  using const_iterator = typename std::vector<T>::const_iterator;
302
 
303
  const std::vector<T> &elements() const { return Data->Vect; }
304
 
305
  const_iterator begin() const { return elements().cbegin(); }
306
  const_iterator end() const { return elements().cend(); }
307
 
308
  const T& operator[](unsigned i) const { return elements()[i]; }
309
 
310
  unsigned size() const { return Data ? elements().size() : 0; }
311
 
312
  // Return true if V and this vector refer to the same data.
313
  bool sameAs(const CopyOnWriteVector &V) const { return Data == V.Data; }
314
 
315
  // Clear vector.  The vector must be writable.
316
  void clear() {
317
    assert(writable() && "Vector is not writable!");
318
    Data->Vect.clear();
319
  }
320
 
321
  // Push a new element onto the end.  The vector must be writable.
322
  void push_back(const T &Elem) {
323
    assert(writable() && "Vector is not writable!");
324
    Data->Vect.push_back(Elem);
325
  }
326
 
327
  // Gets a mutable reference to the element at index(i).
328
  // The vector must be writable.
329
  T& elem(unsigned i) {
330
    assert(writable() && "Vector is not writable!");
331
    return Data->Vect[i];
332
  }
333
 
334
  // Drops elements from the back until the vector has size i.
335
  void downsize(unsigned i) {
336
    assert(writable() && "Vector is not writable!");
337
    Data->Vect.erase(Data->Vect.begin() + i, Data->Vect.end());
338
  }
339
 
340
private:
341
  CopyOnWriteVector(VectorData *D) : Data(D) {
342
    if (!Data)
343
      return;
344
    ++Data->NumRefs;
345
  }
346
 
347
  VectorData *Data = nullptr;
348
};
349
 
350
inline std::ostream& operator<<(std::ostream& ss, const StringRef str) {
351
  return ss.write(str.data(), str.size());
352
}
353
 
354
} // namespace threadSafety
355
} // namespace clang
356
 
357
#endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYUTIL_H