Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 14 | pmbaty | 1 | //===- ThreadSafetyTIL.h ----------------------------------------*- C++ -*-===// | 
| 2 | // | ||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| 6 | // | ||
| 7 | //===----------------------------------------------------------------------===// | ||
| 8 | // | ||
| 9 | // This file defines a simple Typed Intermediate Language, or TIL, that is used | ||
| 10 | // by the thread safety analysis (See ThreadSafety.cpp).  The TIL is intended | ||
| 11 | // to be largely independent of clang, in the hope that the analysis can be | ||
| 12 | // reused for other non-C++ languages.  All dependencies on clang/llvm should | ||
| 13 | // go in ThreadSafetyUtil.h. | ||
| 14 | // | ||
| 15 | // Thread safety analysis works by comparing mutex expressions, e.g. | ||
| 16 | // | ||
| 17 | // class A { Mutex mu; int dat GUARDED_BY(this->mu); } | ||
| 18 | // class B { A a; } | ||
| 19 | // | ||
| 20 | // void foo(B* b) { | ||
| 21 | //   (*b).a.mu.lock();     // locks (*b).a.mu | ||
| 22 | //   b->a.dat = 0;         // substitute &b->a for 'this'; | ||
| 23 | //                         // requires lock on (&b->a)->mu | ||
| 24 | //   (b->a.mu).unlock();   // unlocks (b->a.mu) | ||
| 25 | // } | ||
| 26 | // | ||
| 27 | // As illustrated by the above example, clang Exprs are not well-suited to | ||
| 28 | // represent mutex expressions directly, since there is no easy way to compare | ||
| 29 | // Exprs for equivalence.  The thread safety analysis thus lowers clang Exprs | ||
| 30 | // into a simple intermediate language (IL).  The IL supports: | ||
| 31 | // | ||
| 32 | // (1) comparisons for semantic equality of expressions | ||
| 33 | // (2) SSA renaming of variables | ||
| 34 | // (3) wildcards and pattern matching over expressions | ||
| 35 | // (4) hash-based expression lookup | ||
| 36 | // | ||
| 37 | // The TIL is currently very experimental, is intended only for use within | ||
| 38 | // the thread safety analysis, and is subject to change without notice. | ||
| 39 | // After the API stabilizes and matures, it may be appropriate to make this | ||
| 40 | // more generally available to other analyses. | ||
| 41 | // | ||
| 42 | // UNDER CONSTRUCTION.  USE AT YOUR OWN RISK. | ||
| 43 | // | ||
| 44 | //===----------------------------------------------------------------------===// | ||
| 45 | |||
| 46 | #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H | ||
| 47 | #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H | ||
| 48 | |||
| 49 | #include "clang/AST/Decl.h" | ||
| 50 | #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" | ||
| 51 | #include "clang/Basic/LLVM.h" | ||
| 52 | #include "llvm/ADT/ArrayRef.h" | ||
| 53 | #include "llvm/ADT/StringRef.h" | ||
| 54 | #include "llvm/Support/Casting.h" | ||
| 55 | #include "llvm/Support/raw_ostream.h" | ||
| 56 | #include <algorithm> | ||
| 57 | #include <cassert> | ||
| 58 | #include <cstddef> | ||
| 59 | #include <cstdint> | ||
| 60 | #include <iterator> | ||
| 61 | #include <optional> | ||
| 62 | #include <string> | ||
| 63 | #include <utility> | ||
| 64 | |||
| 65 | namespace clang { | ||
| 66 | |||
| 67 | class CallExpr; | ||
| 68 | class Expr; | ||
| 69 | class Stmt; | ||
| 70 | |||
| 71 | namespace threadSafety { | ||
| 72 | namespace til { | ||
| 73 | |||
| 74 | class BasicBlock; | ||
| 75 | |||
| 76 | /// Enum for the different distinct classes of SExpr | ||
| 77 | enum TIL_Opcode : unsigned char { | ||
| 78 | #define TIL_OPCODE_DEF(X) COP_##X, | ||
| 79 | #include "ThreadSafetyOps.def" | ||
| 80 | #undef TIL_OPCODE_DEF | ||
| 81 | }; | ||
| 82 | |||
| 83 | /// Opcode for unary arithmetic operations. | ||
| 84 | enum TIL_UnaryOpcode : unsigned char { | ||
| 85 |   UOP_Minus,        //  - | ||
| 86 |   UOP_BitNot,       //  ~ | ||
| 87 |   UOP_LogicNot      //  ! | ||
| 88 | }; | ||
| 89 | |||
| 90 | /// Opcode for binary arithmetic operations. | ||
| 91 | enum TIL_BinaryOpcode : unsigned char { | ||
| 92 |   BOP_Add,          //  + | ||
| 93 |   BOP_Sub,          //  - | ||
| 94 |   BOP_Mul,          //  * | ||
| 95 |   BOP_Div,          //  / | ||
| 96 |   BOP_Rem,          //  % | ||
| 97 |   BOP_Shl,          //  << | ||
| 98 |   BOP_Shr,          //  >> | ||
| 99 |   BOP_BitAnd,       //  & | ||
| 100 |   BOP_BitXor,       //  ^ | ||
| 101 |   BOP_BitOr,        //  | | ||
| 102 |   BOP_Eq,           //  == | ||
| 103 |   BOP_Neq,          //  != | ||
| 104 |   BOP_Lt,           //  < | ||
| 105 |   BOP_Leq,          //  <= | ||
| 106 |   BOP_Cmp,          //  <=> | ||
| 107 |   BOP_LogicAnd,     //  &&  (no short-circuit) | ||
| 108 |   BOP_LogicOr       //  ||  (no short-circuit) | ||
| 109 | }; | ||
| 110 | |||
| 111 | /// Opcode for cast operations. | ||
| 112 | enum TIL_CastOpcode : unsigned char { | ||
| 113 | CAST_none = 0, | ||
| 114 | |||
| 115 |   // Extend precision of numeric type | ||
| 116 | CAST_extendNum, | ||
| 117 | |||
| 118 |   // Truncate precision of numeric type | ||
| 119 | CAST_truncNum, | ||
| 120 | |||
| 121 |   // Convert to floating point type | ||
| 122 | CAST_toFloat, | ||
| 123 | |||
| 124 |   // Convert to integer type | ||
| 125 | CAST_toInt, | ||
| 126 | |||
| 127 |   // Convert smart pointer to pointer (C++ only) | ||
| 128 | CAST_objToPtr | ||
| 129 | }; | ||
| 130 | |||
| 131 | const TIL_Opcode COP_Min = COP_Future; | ||
| 132 | const TIL_Opcode COP_Max = COP_Branch; | ||
| 133 | const TIL_UnaryOpcode UOP_Min = UOP_Minus; | ||
| 134 | const TIL_UnaryOpcode UOP_Max = UOP_LogicNot; | ||
| 135 | const TIL_BinaryOpcode BOP_Min = BOP_Add; | ||
| 136 | const TIL_BinaryOpcode BOP_Max = BOP_LogicOr; | ||
| 137 | const TIL_CastOpcode CAST_Min = CAST_none; | ||
| 138 | const TIL_CastOpcode CAST_Max = CAST_toInt; | ||
| 139 | |||
| 140 | /// Return the name of a unary opcode. | ||
| 141 | StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op); | ||
| 142 | |||
| 143 | /// Return the name of a binary opcode. | ||
| 144 | StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op); | ||
| 145 | |||
| 146 | /// ValueTypes are data types that can actually be held in registers. | ||
| 147 | /// All variables and expressions must have a value type. | ||
| 148 | /// Pointer types are further subdivided into the various heap-allocated | ||
| 149 | /// types, such as functions, records, etc. | ||
| 150 | /// Structured types that are passed by value (e.g. complex numbers) | ||
| 151 | /// require special handling; they use BT_ValueRef, and size ST_0. | ||
| 152 | struct ValueType { | ||
| 153 | enum BaseType : unsigned char { | ||
| 154 | BT_Void = 0, | ||
| 155 | BT_Bool, | ||
| 156 | BT_Int, | ||
| 157 | BT_Float, | ||
| 158 |     BT_String,    // String literals | ||
| 159 | BT_Pointer, | ||
| 160 | BT_ValueRef | ||
| 161 | }; | ||
| 162 | |||
| 163 | enum SizeType : unsigned char { | ||
| 164 | ST_0 = 0, | ||
| 165 | ST_1, | ||
| 166 | ST_8, | ||
| 167 | ST_16, | ||
| 168 | ST_32, | ||
| 169 | ST_64, | ||
| 170 | ST_128 | ||
| 171 | }; | ||
| 172 | |||
| 173 | ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS) | ||
| 174 | : Base(B), Size(Sz), Signed(S), VectSize(VS) {} | ||
| 175 | |||
| 176 | inline static SizeType getSizeType(unsigned nbytes); | ||
| 177 | |||
| 178 | template <class T> | ||
| 179 | inline static ValueType getValueType(); | ||
| 180 | |||
| 181 |   BaseType Base; | ||
| 182 |   SizeType Size; | ||
| 183 | bool Signed; | ||
| 184 | |||
| 185 |   // 0 for scalar, otherwise num elements in vector | ||
| 186 | unsigned char VectSize; | ||
| 187 | }; | ||
| 188 | |||
| 189 | inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) { | ||
| 190 | switch (nbytes) { | ||
| 191 | case 1: return ST_8; | ||
| 192 | case 2: return ST_16; | ||
| 193 | case 4: return ST_32; | ||
| 194 | case 8: return ST_64; | ||
| 195 | case 16: return ST_128; | ||
| 196 | default: return ST_0; | ||
| 197 |   } | ||
| 198 | } | ||
| 199 | |||
| 200 | template<> | ||
| 201 | inline ValueType ValueType::getValueType<void>() { | ||
| 202 | return ValueType(BT_Void, ST_0, false, 0); | ||
| 203 | } | ||
| 204 | |||
| 205 | template<> | ||
| 206 | inline ValueType ValueType::getValueType<bool>() { | ||
| 207 | return ValueType(BT_Bool, ST_1, false, 0); | ||
| 208 | } | ||
| 209 | |||
| 210 | template<> | ||
| 211 | inline ValueType ValueType::getValueType<int8_t>() { | ||
| 212 | return ValueType(BT_Int, ST_8, true, 0); | ||
| 213 | } | ||
| 214 | |||
| 215 | template<> | ||
| 216 | inline ValueType ValueType::getValueType<uint8_t>() { | ||
| 217 | return ValueType(BT_Int, ST_8, false, 0); | ||
| 218 | } | ||
| 219 | |||
| 220 | template<> | ||
| 221 | inline ValueType ValueType::getValueType<int16_t>() { | ||
| 222 | return ValueType(BT_Int, ST_16, true, 0); | ||
| 223 | } | ||
| 224 | |||
| 225 | template<> | ||
| 226 | inline ValueType ValueType::getValueType<uint16_t>() { | ||
| 227 | return ValueType(BT_Int, ST_16, false, 0); | ||
| 228 | } | ||
| 229 | |||
| 230 | template<> | ||
| 231 | inline ValueType ValueType::getValueType<int32_t>() { | ||
| 232 | return ValueType(BT_Int, ST_32, true, 0); | ||
| 233 | } | ||
| 234 | |||
| 235 | template<> | ||
| 236 | inline ValueType ValueType::getValueType<uint32_t>() { | ||
| 237 | return ValueType(BT_Int, ST_32, false, 0); | ||
| 238 | } | ||
| 239 | |||
| 240 | template<> | ||
| 241 | inline ValueType ValueType::getValueType<int64_t>() { | ||
| 242 | return ValueType(BT_Int, ST_64, true, 0); | ||
| 243 | } | ||
| 244 | |||
| 245 | template<> | ||
| 246 | inline ValueType ValueType::getValueType<uint64_t>() { | ||
| 247 | return ValueType(BT_Int, ST_64, false, 0); | ||
| 248 | } | ||
| 249 | |||
| 250 | template<> | ||
| 251 | inline ValueType ValueType::getValueType<float>() { | ||
| 252 | return ValueType(BT_Float, ST_32, true, 0); | ||
| 253 | } | ||
| 254 | |||
| 255 | template<> | ||
| 256 | inline ValueType ValueType::getValueType<double>() { | ||
| 257 | return ValueType(BT_Float, ST_64, true, 0); | ||
| 258 | } | ||
| 259 | |||
| 260 | template<> | ||
| 261 | inline ValueType ValueType::getValueType<long double>() { | ||
| 262 | return ValueType(BT_Float, ST_128, true, 0); | ||
| 263 | } | ||
| 264 | |||
| 265 | template<> | ||
| 266 | inline ValueType ValueType::getValueType<StringRef>() { | ||
| 267 | return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0); | ||
| 268 | } | ||
| 269 | |||
| 270 | template<> | ||
| 271 | inline ValueType ValueType::getValueType<void*>() { | ||
| 272 | return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0); | ||
| 273 | } | ||
| 274 | |||
| 275 | /// Base class for AST nodes in the typed intermediate language. | ||
| 276 | class SExpr { | ||
| 277 | public: | ||
| 278 | SExpr() = delete; | ||
| 279 | |||
| 280 | TIL_Opcode opcode() const { return Opcode; } | ||
| 281 | |||
| 282 |   // Subclasses of SExpr must define the following: | ||
| 283 |   // | ||
| 284 |   // This(const This& E, ...) { | ||
| 285 |   //   copy constructor: construct copy of E, with some additional arguments. | ||
| 286 |   // } | ||
| 287 |   // | ||
| 288 |   // template <class V> | ||
| 289 |   // typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 290 |   //   traverse all subexpressions, following the traversal/rewriter interface. | ||
| 291 |   // } | ||
| 292 |   // | ||
| 293 |   // template <class C> typename C::CType compare(CType* E, C& Cmp) { | ||
| 294 |   //   compare all subexpressions, following the comparator interface | ||
| 295 |   // } | ||
| 296 | void *operator new(size_t S, MemRegionRef &R) { | ||
| 297 | return ::operator new(S, R); | ||
| 298 |   } | ||
| 299 | |||
| 300 |   /// SExpr objects must be created in an arena. | ||
| 301 | void *operator new(size_t) = delete; | ||
| 302 | |||
| 303 |   /// SExpr objects cannot be deleted. | ||
| 304 |   // This declaration is public to workaround a gcc bug that breaks building | ||
| 305 |   // with REQUIRES_EH=1. | ||
| 306 | void operator delete(void *) = delete; | ||
| 307 | |||
| 308 |   /// Returns the instruction ID for this expression. | ||
| 309 |   /// All basic block instructions have a unique ID (i.e. virtual register). | ||
| 310 | unsigned id() const { return SExprID; } | ||
| 311 | |||
| 312 |   /// Returns the block, if this is an instruction in a basic block, | ||
| 313 |   /// otherwise returns null. | ||
| 314 | BasicBlock *block() const { return Block; } | ||
| 315 | |||
| 316 |   /// Set the basic block and instruction ID for this expression. | ||
| 317 | void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; } | ||
| 318 | |||
| 319 | protected: | ||
| 320 | SExpr(TIL_Opcode Op) : Opcode(Op) {} | ||
| 321 | SExpr(const SExpr &E) : Opcode(E.Opcode), Flags(E.Flags) {} | ||
| 322 | |||
| 323 | const TIL_Opcode Opcode; | ||
| 324 | unsigned char Reserved = 0; | ||
| 325 | unsigned short Flags = 0; | ||
| 326 | unsigned SExprID = 0; | ||
| 327 | BasicBlock *Block = nullptr; | ||
| 328 | }; | ||
| 329 | |||
| 330 | // Contains various helper functions for SExprs. | ||
| 331 | namespace ThreadSafetyTIL { | ||
| 332 | |||
| 333 | inline bool isTrivial(const SExpr *E) { | ||
| 334 | TIL_Opcode Op = E->opcode(); | ||
| 335 | return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr; | ||
| 336 | } | ||
| 337 | |||
| 338 | } // namespace ThreadSafetyTIL | ||
| 339 | |||
| 340 | // Nodes which declare variables | ||
| 341 | |||
| 342 | /// A named variable, e.g. "x". | ||
| 343 | /// | ||
| 344 | /// There are two distinct places in which a Variable can appear in the AST. | ||
| 345 | /// A variable declaration introduces a new variable, and can occur in 3 places: | ||
| 346 | ///   Let-expressions:           (Let (x = t) u) | ||
| 347 | ///   Functions:                 (Function (x : t) u) | ||
| 348 | ///   Self-applicable functions  (SFunction (x) t) | ||
| 349 | /// | ||
| 350 | /// If a variable occurs in any other location, it is a reference to an existing | ||
| 351 | /// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't | ||
| 352 | /// allocate a separate AST node for variable references; a reference is just a | ||
| 353 | /// pointer to the original declaration. | ||
| 354 | class Variable : public SExpr { | ||
| 355 | public: | ||
| 356 | enum VariableKind { | ||
| 357 |     /// Let-variable | ||
| 358 | VK_Let, | ||
| 359 | |||
| 360 |     /// Function parameter | ||
| 361 | VK_Fun, | ||
| 362 | |||
| 363 |     /// SFunction (self) parameter | ||
| 364 | VK_SFun | ||
| 365 | }; | ||
| 366 | |||
| 367 | Variable(StringRef s, SExpr *D = nullptr) | ||
| 368 | : SExpr(COP_Variable), Name(s), Definition(D) { | ||
| 369 | Flags = VK_Let; | ||
| 370 |   } | ||
| 371 | |||
| 372 | Variable(SExpr *D, const ValueDecl *Cvd = nullptr) | ||
| 373 | : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"), | ||
| 374 | Definition(D), Cvdecl(Cvd) { | ||
| 375 | Flags = VK_Let; | ||
| 376 |   } | ||
| 377 | |||
| 378 | Variable(const Variable &Vd, SExpr *D) // rewrite constructor | ||
| 379 | : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) { | ||
| 380 | Flags = Vd.kind(); | ||
| 381 |   } | ||
| 382 | |||
| 383 | static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; } | ||
| 384 | |||
| 385 |   /// Return the kind of variable (let, function param, or self) | ||
| 386 | VariableKind kind() const { return static_cast<VariableKind>(Flags); } | ||
| 387 | |||
| 388 |   /// Return the name of the variable, if any. | ||
| 389 | StringRef name() const { return Name; } | ||
| 390 | |||
| 391 |   /// Return the clang declaration for this variable, if any. | ||
| 392 | const ValueDecl *clangDecl() const { return Cvdecl; } | ||
| 393 | |||
| 394 |   /// Return the definition of the variable. | ||
| 395 |   /// For let-vars, this is the setting expression. | ||
| 396 |   /// For function and self parameters, it is the type of the variable. | ||
| 397 | SExpr *definition() { return Definition; } | ||
| 398 | const SExpr *definition() const { return Definition; } | ||
| 399 | |||
| 400 | void setName(StringRef S) { Name = S; } | ||
| 401 | void setKind(VariableKind K) { Flags = K; } | ||
| 402 | void setDefinition(SExpr *E) { Definition = E; } | ||
| 403 | void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; } | ||
| 404 | |||
| 405 | template <class V> | ||
| 406 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 407 |     // This routine is only called for variable references. | ||
| 408 | return Vs.reduceVariableRef(this); | ||
| 409 |   } | ||
| 410 | |||
| 411 | template <class C> | ||
| 412 | typename C::CType compare(const Variable* E, C& Cmp) const { | ||
| 413 | return Cmp.compareVariableRefs(this, E); | ||
| 414 |   } | ||
| 415 | |||
| 416 | private: | ||
| 417 | friend class BasicBlock; | ||
| 418 | friend class Function; | ||
| 419 | friend class Let; | ||
| 420 | friend class SFunction; | ||
| 421 | |||
| 422 |   // The name of the variable. | ||
| 423 |   StringRef Name; | ||
| 424 | |||
| 425 |   // The TIL type or definition. | ||
| 426 | SExpr *Definition; | ||
| 427 | |||
| 428 |   // The clang declaration for this variable. | ||
| 429 | const ValueDecl *Cvdecl = nullptr; | ||
| 430 | }; | ||
| 431 | |||
| 432 | /// Placeholder for an expression that has not yet been created. | ||
| 433 | /// Used to implement lazy copy and rewriting strategies. | ||
| 434 | class Future : public SExpr { | ||
| 435 | public: | ||
| 436 | enum FutureStatus { | ||
| 437 | FS_pending, | ||
| 438 | FS_evaluating, | ||
| 439 | FS_done | ||
| 440 | }; | ||
| 441 | |||
| 442 | Future() : SExpr(COP_Future) {} | ||
| 443 | virtual ~Future() = delete; | ||
| 444 | |||
| 445 | static bool classof(const SExpr *E) { return E->opcode() == COP_Future; } | ||
| 446 | |||
| 447 |   // A lazy rewriting strategy should subclass Future and override this method. | ||
| 448 | virtual SExpr *compute() { return nullptr; } | ||
| 449 | |||
| 450 |   // Return the result of this future if it exists, otherwise return null. | ||
| 451 | SExpr *maybeGetResult() const { return Result; } | ||
| 452 | |||
| 453 |   // Return the result of this future; forcing it if necessary. | ||
| 454 | SExpr *result() { | ||
| 455 | switch (Status) { | ||
| 456 | case FS_pending: | ||
| 457 | return force(); | ||
| 458 | case FS_evaluating: | ||
| 459 | return nullptr; // infinite loop; illegal recursion. | ||
| 460 | case FS_done: | ||
| 461 | return Result; | ||
| 462 |     } | ||
| 463 |   } | ||
| 464 | |||
| 465 | template <class V> | ||
| 466 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 467 | assert(Result && "Cannot traverse Future that has not been forced."); | ||
| 468 | return Vs.traverse(Result, Ctx); | ||
| 469 |   } | ||
| 470 | |||
| 471 | template <class C> | ||
| 472 | typename C::CType compare(const Future* E, C& Cmp) const { | ||
| 473 | if (!Result || !E->Result) | ||
| 474 | return Cmp.comparePointers(this, E); | ||
| 475 | return Cmp.compare(Result, E->Result); | ||
| 476 |   } | ||
| 477 | |||
| 478 | private: | ||
| 479 | SExpr* force(); | ||
| 480 | |||
| 481 | FutureStatus Status = FS_pending; | ||
| 482 | SExpr *Result = nullptr; | ||
| 483 | }; | ||
| 484 | |||
| 485 | /// Placeholder for expressions that cannot be represented in the TIL. | ||
| 486 | class Undefined : public SExpr { | ||
| 487 | public: | ||
| 488 | Undefined(const Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {} | ||
| 489 | Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {} | ||
| 490 | |||
| 491 | static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; } | ||
| 492 | |||
| 493 | template <class V> | ||
| 494 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 495 | return Vs.reduceUndefined(*this); | ||
| 496 |   } | ||
| 497 | |||
| 498 | template <class C> | ||
| 499 | typename C::CType compare(const Undefined* E, C& Cmp) const { | ||
| 500 | return Cmp.trueResult(); | ||
| 501 |   } | ||
| 502 | |||
| 503 | private: | ||
| 504 | const Stmt *Cstmt; | ||
| 505 | }; | ||
| 506 | |||
| 507 | /// Placeholder for a wildcard that matches any other expression. | ||
| 508 | class Wildcard : public SExpr { | ||
| 509 | public: | ||
| 510 | Wildcard() : SExpr(COP_Wildcard) {} | ||
| 511 | Wildcard(const Wildcard &) = default; | ||
| 512 | |||
| 513 | static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; } | ||
| 514 | |||
| 515 | template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 516 | return Vs.reduceWildcard(*this); | ||
| 517 |   } | ||
| 518 | |||
| 519 | template <class C> | ||
| 520 | typename C::CType compare(const Wildcard* E, C& Cmp) const { | ||
| 521 | return Cmp.trueResult(); | ||
| 522 |   } | ||
| 523 | }; | ||
| 524 | |||
| 525 | template <class T> class LiteralT; | ||
| 526 | |||
| 527 | // Base class for literal values. | ||
| 528 | class Literal : public SExpr { | ||
| 529 | public: | ||
| 530 | Literal(const Expr *C) | ||
| 531 | : SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C) {} | ||
| 532 | Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT) {} | ||
| 533 | Literal(const Literal &) = default; | ||
| 534 | |||
| 535 | static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; } | ||
| 536 | |||
| 537 |   // The clang expression for this literal. | ||
| 538 | const Expr *clangExpr() const { return Cexpr; } | ||
| 539 | |||
| 540 | ValueType valueType() const { return ValType; } | ||
| 541 | |||
| 542 | template<class T> const LiteralT<T>& as() const { | ||
| 543 | return *static_cast<const LiteralT<T>*>(this); | ||
| 544 |   } | ||
| 545 | template<class T> LiteralT<T>& as() { | ||
| 546 | return *static_cast<LiteralT<T>*>(this); | ||
| 547 |   } | ||
| 548 | |||
| 549 | template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx); | ||
| 550 | |||
| 551 | template <class C> | ||
| 552 | typename C::CType compare(const Literal* E, C& Cmp) const { | ||
| 553 |     // TODO: defer actual comparison to LiteralT | ||
| 554 | return Cmp.trueResult(); | ||
| 555 |   } | ||
| 556 | |||
| 557 | private: | ||
| 558 | const ValueType ValType; | ||
| 559 | const Expr *Cexpr = nullptr; | ||
| 560 | }; | ||
| 561 | |||
| 562 | // Derived class for literal values, which stores the actual value. | ||
| 563 | template<class T> | ||
| 564 | class LiteralT : public Literal { | ||
| 565 | public: | ||
| 566 | LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) {} | ||
| 567 | LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) {} | ||
| 568 | |||
| 569 | T value() const { return Val;} | ||
| 570 | T& value() { return Val; } | ||
| 571 | |||
| 572 | private: | ||
| 573 |   T Val; | ||
| 574 | }; | ||
| 575 | |||
| 576 | template <class V> | ||
| 577 | typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 578 | if (Cexpr) | ||
| 579 | return Vs.reduceLiteral(*this); | ||
| 580 | |||
| 581 | switch (ValType.Base) { | ||
| 582 | case ValueType::BT_Void: | ||
| 583 | break; | ||
| 584 | case ValueType::BT_Bool: | ||
| 585 | return Vs.reduceLiteralT(as<bool>()); | ||
| 586 | case ValueType::BT_Int: { | ||
| 587 | switch (ValType.Size) { | ||
| 588 | case ValueType::ST_8: | ||
| 589 | if (ValType.Signed) | ||
| 590 | return Vs.reduceLiteralT(as<int8_t>()); | ||
| 591 |       else | ||
| 592 | return Vs.reduceLiteralT(as<uint8_t>()); | ||
| 593 | case ValueType::ST_16: | ||
| 594 | if (ValType.Signed) | ||
| 595 | return Vs.reduceLiteralT(as<int16_t>()); | ||
| 596 |       else | ||
| 597 | return Vs.reduceLiteralT(as<uint16_t>()); | ||
| 598 | case ValueType::ST_32: | ||
| 599 | if (ValType.Signed) | ||
| 600 | return Vs.reduceLiteralT(as<int32_t>()); | ||
| 601 |       else | ||
| 602 | return Vs.reduceLiteralT(as<uint32_t>()); | ||
| 603 | case ValueType::ST_64: | ||
| 604 | if (ValType.Signed) | ||
| 605 | return Vs.reduceLiteralT(as<int64_t>()); | ||
| 606 |       else | ||
| 607 | return Vs.reduceLiteralT(as<uint64_t>()); | ||
| 608 | default: | ||
| 609 | break; | ||
| 610 |     } | ||
| 611 |   } | ||
| 612 | case ValueType::BT_Float: { | ||
| 613 | switch (ValType.Size) { | ||
| 614 | case ValueType::ST_32: | ||
| 615 | return Vs.reduceLiteralT(as<float>()); | ||
| 616 | case ValueType::ST_64: | ||
| 617 | return Vs.reduceLiteralT(as<double>()); | ||
| 618 | default: | ||
| 619 | break; | ||
| 620 |     } | ||
| 621 |   } | ||
| 622 | case ValueType::BT_String: | ||
| 623 | return Vs.reduceLiteralT(as<StringRef>()); | ||
| 624 | case ValueType::BT_Pointer: | ||
| 625 | return Vs.reduceLiteralT(as<void*>()); | ||
| 626 | case ValueType::BT_ValueRef: | ||
| 627 | break; | ||
| 628 |   } | ||
| 629 | return Vs.reduceLiteral(*this); | ||
| 630 | } | ||
| 631 | |||
| 632 | /// A Literal pointer to an object allocated in memory. | ||
| 633 | /// At compile time, pointer literals are represented by symbolic names. | ||
| 634 | class LiteralPtr : public SExpr { | ||
| 635 | public: | ||
| 636 | LiteralPtr(const ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {} | ||
| 637 | LiteralPtr(const LiteralPtr &) = default; | ||
| 638 | |||
| 639 | static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; } | ||
| 640 | |||
| 641 |   // The clang declaration for the value that this pointer points to. | ||
| 642 | const ValueDecl *clangDecl() const { return Cvdecl; } | ||
| 643 | void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; } | ||
| 644 | |||
| 645 | template <class V> | ||
| 646 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 647 | return Vs.reduceLiteralPtr(*this); | ||
| 648 |   } | ||
| 649 | |||
| 650 | template <class C> | ||
| 651 | typename C::CType compare(const LiteralPtr* E, C& Cmp) const { | ||
| 652 | if (!Cvdecl || !E->Cvdecl) | ||
| 653 | return Cmp.comparePointers(this, E); | ||
| 654 | return Cmp.comparePointers(Cvdecl, E->Cvdecl); | ||
| 655 |   } | ||
| 656 | |||
| 657 | private: | ||
| 658 | const ValueDecl *Cvdecl; | ||
| 659 | }; | ||
| 660 | |||
| 661 | /// A function -- a.k.a. lambda abstraction. | ||
| 662 | /// Functions with multiple arguments are created by currying, | ||
| 663 | /// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y }))) | ||
| 664 | class Function : public SExpr { | ||
| 665 | public: | ||
| 666 | Function(Variable *Vd, SExpr *Bd) | ||
| 667 | : SExpr(COP_Function), VarDecl(Vd), Body(Bd) { | ||
| 668 | Vd->setKind(Variable::VK_Fun); | ||
| 669 |   } | ||
| 670 | |||
| 671 | Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor | ||
| 672 | : SExpr(F), VarDecl(Vd), Body(Bd) { | ||
| 673 | Vd->setKind(Variable::VK_Fun); | ||
| 674 |   } | ||
| 675 | |||
| 676 | static bool classof(const SExpr *E) { return E->opcode() == COP_Function; } | ||
| 677 | |||
| 678 | Variable *variableDecl() { return VarDecl; } | ||
| 679 | const Variable *variableDecl() const { return VarDecl; } | ||
| 680 | |||
| 681 | SExpr *body() { return Body; } | ||
| 682 | const SExpr *body() const { return Body; } | ||
| 683 | |||
| 684 | template <class V> | ||
| 685 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 686 |     // This is a variable declaration, so traverse the definition. | ||
| 687 | auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx)); | ||
| 688 |     // Tell the rewriter to enter the scope of the function. | ||
| 689 | Variable *Nvd = Vs.enterScope(*VarDecl, E0); | ||
| 690 | auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx)); | ||
| 691 | Vs.exitScope(*VarDecl); | ||
| 692 | return Vs.reduceFunction(*this, Nvd, E1); | ||
| 693 |   } | ||
| 694 | |||
| 695 | template <class C> | ||
| 696 | typename C::CType compare(const Function* E, C& Cmp) const { | ||
| 697 | typename C::CType Ct = | ||
| 698 | Cmp.compare(VarDecl->definition(), E->VarDecl->definition()); | ||
| 699 | if (Cmp.notTrue(Ct)) | ||
| 700 | return Ct; | ||
| 701 | Cmp.enterScope(variableDecl(), E->variableDecl()); | ||
| 702 | Ct = Cmp.compare(body(), E->body()); | ||
| 703 | Cmp.leaveScope(); | ||
| 704 | return Ct; | ||
| 705 |   } | ||
| 706 | |||
| 707 | private: | ||
| 708 | Variable *VarDecl; | ||
| 709 | SExpr* Body; | ||
| 710 | }; | ||
| 711 | |||
| 712 | /// A self-applicable function. | ||
| 713 | /// A self-applicable function can be applied to itself.  It's useful for | ||
| 714 | /// implementing objects and late binding. | ||
| 715 | class SFunction : public SExpr { | ||
| 716 | public: | ||
| 717 | SFunction(Variable *Vd, SExpr *B) | ||
| 718 | : SExpr(COP_SFunction), VarDecl(Vd), Body(B) { | ||
| 719 | assert(Vd->Definition == nullptr); | ||
| 720 | Vd->setKind(Variable::VK_SFun); | ||
| 721 | Vd->Definition = this; | ||
| 722 |   } | ||
| 723 | |||
| 724 | SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor | ||
| 725 | : SExpr(F), VarDecl(Vd), Body(B) { | ||
| 726 | assert(Vd->Definition == nullptr); | ||
| 727 | Vd->setKind(Variable::VK_SFun); | ||
| 728 | Vd->Definition = this; | ||
| 729 |   } | ||
| 730 | |||
| 731 | static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; } | ||
| 732 | |||
| 733 | Variable *variableDecl() { return VarDecl; } | ||
| 734 | const Variable *variableDecl() const { return VarDecl; } | ||
| 735 | |||
| 736 | SExpr *body() { return Body; } | ||
| 737 | const SExpr *body() const { return Body; } | ||
| 738 | |||
| 739 | template <class V> | ||
| 740 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 741 |     // A self-variable points to the SFunction itself. | ||
| 742 |     // A rewrite must introduce the variable with a null definition, and update | ||
| 743 |     // it after 'this' has been rewritten. | ||
| 744 | Variable *Nvd = Vs.enterScope(*VarDecl, nullptr); | ||
| 745 | auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx)); | ||
| 746 | Vs.exitScope(*VarDecl); | ||
| 747 |     // A rewrite operation will call SFun constructor to set Vvd->Definition. | ||
| 748 | return Vs.reduceSFunction(*this, Nvd, E1); | ||
| 749 |   } | ||
| 750 | |||
| 751 | template <class C> | ||
| 752 | typename C::CType compare(const SFunction* E, C& Cmp) const { | ||
| 753 | Cmp.enterScope(variableDecl(), E->variableDecl()); | ||
| 754 | typename C::CType Ct = Cmp.compare(body(), E->body()); | ||
| 755 | Cmp.leaveScope(); | ||
| 756 | return Ct; | ||
| 757 |   } | ||
| 758 | |||
| 759 | private: | ||
| 760 | Variable *VarDecl; | ||
| 761 | SExpr* Body; | ||
| 762 | }; | ||
| 763 | |||
| 764 | /// A block of code -- e.g. the body of a function. | ||
| 765 | class Code : public SExpr { | ||
| 766 | public: | ||
| 767 | Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {} | ||
| 768 | Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor | ||
| 769 | : SExpr(C), ReturnType(T), Body(B) {} | ||
| 770 | |||
| 771 | static bool classof(const SExpr *E) { return E->opcode() == COP_Code; } | ||
| 772 | |||
| 773 | SExpr *returnType() { return ReturnType; } | ||
| 774 | const SExpr *returnType() const { return ReturnType; } | ||
| 775 | |||
| 776 | SExpr *body() { return Body; } | ||
| 777 | const SExpr *body() const { return Body; } | ||
| 778 | |||
| 779 | template <class V> | ||
| 780 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 781 | auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx)); | ||
| 782 | auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx)); | ||
| 783 | return Vs.reduceCode(*this, Nt, Nb); | ||
| 784 |   } | ||
| 785 | |||
| 786 | template <class C> | ||
| 787 | typename C::CType compare(const Code* E, C& Cmp) const { | ||
| 788 | typename C::CType Ct = Cmp.compare(returnType(), E->returnType()); | ||
| 789 | if (Cmp.notTrue(Ct)) | ||
| 790 | return Ct; | ||
| 791 | return Cmp.compare(body(), E->body()); | ||
| 792 |   } | ||
| 793 | |||
| 794 | private: | ||
| 795 | SExpr* ReturnType; | ||
| 796 | SExpr* Body; | ||
| 797 | }; | ||
| 798 | |||
| 799 | /// A typed, writable location in memory | ||
| 800 | class Field : public SExpr { | ||
| 801 | public: | ||
| 802 | Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {} | ||
| 803 | Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor | ||
| 804 | : SExpr(C), Range(R), Body(B) {} | ||
| 805 | |||
| 806 | static bool classof(const SExpr *E) { return E->opcode() == COP_Field; } | ||
| 807 | |||
| 808 | SExpr *range() { return Range; } | ||
| 809 | const SExpr *range() const { return Range; } | ||
| 810 | |||
| 811 | SExpr *body() { return Body; } | ||
| 812 | const SExpr *body() const { return Body; } | ||
| 813 | |||
| 814 | template <class V> | ||
| 815 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 816 | auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx)); | ||
| 817 | auto Nb = Vs.traverse(Body, Vs.lazyCtx(Ctx)); | ||
| 818 | return Vs.reduceField(*this, Nr, Nb); | ||
| 819 |   } | ||
| 820 | |||
| 821 | template <class C> | ||
| 822 | typename C::CType compare(const Field* E, C& Cmp) const { | ||
| 823 | typename C::CType Ct = Cmp.compare(range(), E->range()); | ||
| 824 | if (Cmp.notTrue(Ct)) | ||
| 825 | return Ct; | ||
| 826 | return Cmp.compare(body(), E->body()); | ||
| 827 |   } | ||
| 828 | |||
| 829 | private: | ||
| 830 | SExpr* Range; | ||
| 831 | SExpr* Body; | ||
| 832 | }; | ||
| 833 | |||
| 834 | /// Apply an argument to a function. | ||
| 835 | /// Note that this does not actually call the function.  Functions are curried, | ||
| 836 | /// so this returns a closure in which the first parameter has been applied. | ||
| 837 | /// Once all parameters have been applied, Call can be used to invoke the | ||
| 838 | /// function. | ||
| 839 | class Apply : public SExpr { | ||
| 840 | public: | ||
| 841 | Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {} | ||
| 842 | Apply(const Apply &A, SExpr *F, SExpr *Ar) // rewrite constructor | ||
| 843 | : SExpr(A), Fun(F), Arg(Ar) {} | ||
| 844 | |||
| 845 | static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; } | ||
| 846 | |||
| 847 | SExpr *fun() { return Fun; } | ||
| 848 | const SExpr *fun() const { return Fun; } | ||
| 849 | |||
| 850 | SExpr *arg() { return Arg; } | ||
| 851 | const SExpr *arg() const { return Arg; } | ||
| 852 | |||
| 853 | template <class V> | ||
| 854 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 855 | auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx)); | ||
| 856 | auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx)); | ||
| 857 | return Vs.reduceApply(*this, Nf, Na); | ||
| 858 |   } | ||
| 859 | |||
| 860 | template <class C> | ||
| 861 | typename C::CType compare(const Apply* E, C& Cmp) const { | ||
| 862 | typename C::CType Ct = Cmp.compare(fun(), E->fun()); | ||
| 863 | if (Cmp.notTrue(Ct)) | ||
| 864 | return Ct; | ||
| 865 | return Cmp.compare(arg(), E->arg()); | ||
| 866 |   } | ||
| 867 | |||
| 868 | private: | ||
| 869 | SExpr* Fun; | ||
| 870 | SExpr* Arg; | ||
| 871 | }; | ||
| 872 | |||
| 873 | /// Apply a self-argument to a self-applicable function. | ||
| 874 | class SApply : public SExpr { | ||
| 875 | public: | ||
| 876 | SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {} | ||
| 877 | SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor | ||
| 878 | : SExpr(A), Sfun(Sf), Arg(Ar) {} | ||
| 879 | |||
| 880 | static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; } | ||
| 881 | |||
| 882 | SExpr *sfun() { return Sfun; } | ||
| 883 | const SExpr *sfun() const { return Sfun; } | ||
| 884 | |||
| 885 | SExpr *arg() { return Arg ? Arg : Sfun; } | ||
| 886 | const SExpr *arg() const { return Arg ? Arg : Sfun; } | ||
| 887 | |||
| 888 | bool isDelegation() const { return Arg != nullptr; } | ||
| 889 | |||
| 890 | template <class V> | ||
| 891 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 892 | auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx)); | ||
| 893 | typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx)) | ||
| 894 | : nullptr; | ||
| 895 | return Vs.reduceSApply(*this, Nf, Na); | ||
| 896 |   } | ||
| 897 | |||
| 898 | template <class C> | ||
| 899 | typename C::CType compare(const SApply* E, C& Cmp) const { | ||
| 900 | typename C::CType Ct = Cmp.compare(sfun(), E->sfun()); | ||
| 901 | if (Cmp.notTrue(Ct) || (!arg() && !E->arg())) | ||
| 902 | return Ct; | ||
| 903 | return Cmp.compare(arg(), E->arg()); | ||
| 904 |   } | ||
| 905 | |||
| 906 | private: | ||
| 907 | SExpr* Sfun; | ||
| 908 | SExpr* Arg; | ||
| 909 | }; | ||
| 910 | |||
| 911 | /// Project a named slot from a C++ struct or class. | ||
| 912 | class Project : public SExpr { | ||
| 913 | public: | ||
| 914 | Project(SExpr *R, const ValueDecl *Cvd) | ||
| 915 | : SExpr(COP_Project), Rec(R), Cvdecl(Cvd) { | ||
| 916 | assert(Cvd && "ValueDecl must not be null"); | ||
| 917 |   } | ||
| 918 | |||
| 919 | static bool classof(const SExpr *E) { return E->opcode() == COP_Project; } | ||
| 920 | |||
| 921 | SExpr *record() { return Rec; } | ||
| 922 | const SExpr *record() const { return Rec; } | ||
| 923 | |||
| 924 | const ValueDecl *clangDecl() const { return Cvdecl; } | ||
| 925 | |||
| 926 | bool isArrow() const { return (Flags & 0x01) != 0; } | ||
| 927 | |||
| 928 | void setArrow(bool b) { | ||
| 929 | if (b) Flags |= 0x01; | ||
| 930 | else Flags &= 0xFFFE; | ||
| 931 |   } | ||
| 932 | |||
| 933 | StringRef slotName() const { | ||
| 934 | if (Cvdecl->getDeclName().isIdentifier()) | ||
| 935 | return Cvdecl->getName(); | ||
| 936 | if (!SlotName) { | ||
| 937 | SlotName = ""; | ||
| 938 | llvm::raw_string_ostream OS(*SlotName); | ||
| 939 | Cvdecl->printName(OS); | ||
| 940 |     } | ||
| 941 | return *SlotName; | ||
| 942 |   } | ||
| 943 | |||
| 944 | template <class V> | ||
| 945 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 946 | auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx)); | ||
| 947 | return Vs.reduceProject(*this, Nr); | ||
| 948 |   } | ||
| 949 | |||
| 950 | template <class C> | ||
| 951 | typename C::CType compare(const Project* E, C& Cmp) const { | ||
| 952 | typename C::CType Ct = Cmp.compare(record(), E->record()); | ||
| 953 | if (Cmp.notTrue(Ct)) | ||
| 954 | return Ct; | ||
| 955 | return Cmp.comparePointers(Cvdecl, E->Cvdecl); | ||
| 956 |   } | ||
| 957 | |||
| 958 | private: | ||
| 959 | SExpr* Rec; | ||
| 960 | mutable std::optional<std::string> SlotName; | ||
| 961 | const ValueDecl *Cvdecl; | ||
| 962 | }; | ||
| 963 | |||
| 964 | /// Call a function (after all arguments have been applied). | ||
| 965 | class Call : public SExpr { | ||
| 966 | public: | ||
| 967 | Call(SExpr *T, const CallExpr *Ce = nullptr) | ||
| 968 | : SExpr(COP_Call), Target(T), Cexpr(Ce) {} | ||
| 969 | Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {} | ||
| 970 | |||
| 971 | static bool classof(const SExpr *E) { return E->opcode() == COP_Call; } | ||
| 972 | |||
| 973 | SExpr *target() { return Target; } | ||
| 974 | const SExpr *target() const { return Target; } | ||
| 975 | |||
| 976 | const CallExpr *clangCallExpr() const { return Cexpr; } | ||
| 977 | |||
| 978 | template <class V> | ||
| 979 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 980 | auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx)); | ||
| 981 | return Vs.reduceCall(*this, Nt); | ||
| 982 |   } | ||
| 983 | |||
| 984 | template <class C> | ||
| 985 | typename C::CType compare(const Call* E, C& Cmp) const { | ||
| 986 | return Cmp.compare(target(), E->target()); | ||
| 987 |   } | ||
| 988 | |||
| 989 | private: | ||
| 990 | SExpr* Target; | ||
| 991 | const CallExpr *Cexpr; | ||
| 992 | }; | ||
| 993 | |||
| 994 | /// Allocate memory for a new value on the heap or stack. | ||
| 995 | class Alloc : public SExpr { | ||
| 996 | public: | ||
| 997 | enum AllocKind { | ||
| 998 | AK_Stack, | ||
| 999 | AK_Heap | ||
| 1000 | }; | ||
| 1001 | |||
| 1002 | Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; } | ||
| 1003 | Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); } | ||
| 1004 | |||
| 1005 | static bool classof(const SExpr *E) { return E->opcode() == COP_Call; } | ||
| 1006 | |||
| 1007 | AllocKind kind() const { return static_cast<AllocKind>(Flags); } | ||
| 1008 | |||
| 1009 | SExpr *dataType() { return Dtype; } | ||
| 1010 | const SExpr *dataType() const { return Dtype; } | ||
| 1011 | |||
| 1012 | template <class V> | ||
| 1013 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1014 | auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx)); | ||
| 1015 | return Vs.reduceAlloc(*this, Nd); | ||
| 1016 |   } | ||
| 1017 | |||
| 1018 | template <class C> | ||
| 1019 | typename C::CType compare(const Alloc* E, C& Cmp) const { | ||
| 1020 | typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind()); | ||
| 1021 | if (Cmp.notTrue(Ct)) | ||
| 1022 | return Ct; | ||
| 1023 | return Cmp.compare(dataType(), E->dataType()); | ||
| 1024 |   } | ||
| 1025 | |||
| 1026 | private: | ||
| 1027 | SExpr* Dtype; | ||
| 1028 | }; | ||
| 1029 | |||
| 1030 | /// Load a value from memory. | ||
| 1031 | class Load : public SExpr { | ||
| 1032 | public: | ||
| 1033 | Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {} | ||
| 1034 | Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {} | ||
| 1035 | |||
| 1036 | static bool classof(const SExpr *E) { return E->opcode() == COP_Load; } | ||
| 1037 | |||
| 1038 | SExpr *pointer() { return Ptr; } | ||
| 1039 | const SExpr *pointer() const { return Ptr; } | ||
| 1040 | |||
| 1041 | template <class V> | ||
| 1042 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1043 | auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx)); | ||
| 1044 | return Vs.reduceLoad(*this, Np); | ||
| 1045 |   } | ||
| 1046 | |||
| 1047 | template <class C> | ||
| 1048 | typename C::CType compare(const Load* E, C& Cmp) const { | ||
| 1049 | return Cmp.compare(pointer(), E->pointer()); | ||
| 1050 |   } | ||
| 1051 | |||
| 1052 | private: | ||
| 1053 | SExpr* Ptr; | ||
| 1054 | }; | ||
| 1055 | |||
| 1056 | /// Store a value to memory. | ||
| 1057 | /// The destination is a pointer to a field, the source is the value to store. | ||
| 1058 | class Store : public SExpr { | ||
| 1059 | public: | ||
| 1060 | Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {} | ||
| 1061 | Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {} | ||
| 1062 | |||
| 1063 | static bool classof(const SExpr *E) { return E->opcode() == COP_Store; } | ||
| 1064 | |||
| 1065 | SExpr *destination() { return Dest; } // Address to store to | ||
| 1066 | const SExpr *destination() const { return Dest; } | ||
| 1067 | |||
| 1068 | SExpr *source() { return Source; } // Value to store | ||
| 1069 | const SExpr *source() const { return Source; } | ||
| 1070 | |||
| 1071 | template <class V> | ||
| 1072 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1073 | auto Np = Vs.traverse(Dest, Vs.subExprCtx(Ctx)); | ||
| 1074 | auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx)); | ||
| 1075 | return Vs.reduceStore(*this, Np, Nv); | ||
| 1076 |   } | ||
| 1077 | |||
| 1078 | template <class C> | ||
| 1079 | typename C::CType compare(const Store* E, C& Cmp) const { | ||
| 1080 | typename C::CType Ct = Cmp.compare(destination(), E->destination()); | ||
| 1081 | if (Cmp.notTrue(Ct)) | ||
| 1082 | return Ct; | ||
| 1083 | return Cmp.compare(source(), E->source()); | ||
| 1084 |   } | ||
| 1085 | |||
| 1086 | private: | ||
| 1087 | SExpr* Dest; | ||
| 1088 | SExpr* Source; | ||
| 1089 | }; | ||
| 1090 | |||
| 1091 | /// If p is a reference to an array, then p[i] is a reference to the i'th | ||
| 1092 | /// element of the array. | ||
| 1093 | class ArrayIndex : public SExpr { | ||
| 1094 | public: | ||
| 1095 | ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {} | ||
| 1096 | ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N) | ||
| 1097 | : SExpr(E), Array(A), Index(N) {} | ||
| 1098 | |||
| 1099 | static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; } | ||
| 1100 | |||
| 1101 | SExpr *array() { return Array; } | ||
| 1102 | const SExpr *array() const { return Array; } | ||
| 1103 | |||
| 1104 | SExpr *index() { return Index; } | ||
| 1105 | const SExpr *index() const { return Index; } | ||
| 1106 | |||
| 1107 | template <class V> | ||
| 1108 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1109 | auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx)); | ||
| 1110 | auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx)); | ||
| 1111 | return Vs.reduceArrayIndex(*this, Na, Ni); | ||
| 1112 |   } | ||
| 1113 | |||
| 1114 | template <class C> | ||
| 1115 | typename C::CType compare(const ArrayIndex* E, C& Cmp) const { | ||
| 1116 | typename C::CType Ct = Cmp.compare(array(), E->array()); | ||
| 1117 | if (Cmp.notTrue(Ct)) | ||
| 1118 | return Ct; | ||
| 1119 | return Cmp.compare(index(), E->index()); | ||
| 1120 |   } | ||
| 1121 | |||
| 1122 | private: | ||
| 1123 | SExpr* Array; | ||
| 1124 | SExpr* Index; | ||
| 1125 | }; | ||
| 1126 | |||
| 1127 | /// Pointer arithmetic, restricted to arrays only. | ||
| 1128 | /// If p is a reference to an array, then p + n, where n is an integer, is | ||
| 1129 | /// a reference to a subarray. | ||
| 1130 | class ArrayAdd : public SExpr { | ||
| 1131 | public: | ||
| 1132 | ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {} | ||
| 1133 | ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N) | ||
| 1134 | : SExpr(E), Array(A), Index(N) {} | ||
| 1135 | |||
| 1136 | static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; } | ||
| 1137 | |||
| 1138 | SExpr *array() { return Array; } | ||
| 1139 | const SExpr *array() const { return Array; } | ||
| 1140 | |||
| 1141 | SExpr *index() { return Index; } | ||
| 1142 | const SExpr *index() const { return Index; } | ||
| 1143 | |||
| 1144 | template <class V> | ||
| 1145 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1146 | auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx)); | ||
| 1147 | auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx)); | ||
| 1148 | return Vs.reduceArrayAdd(*this, Na, Ni); | ||
| 1149 |   } | ||
| 1150 | |||
| 1151 | template <class C> | ||
| 1152 | typename C::CType compare(const ArrayAdd* E, C& Cmp) const { | ||
| 1153 | typename C::CType Ct = Cmp.compare(array(), E->array()); | ||
| 1154 | if (Cmp.notTrue(Ct)) | ||
| 1155 | return Ct; | ||
| 1156 | return Cmp.compare(index(), E->index()); | ||
| 1157 |   } | ||
| 1158 | |||
| 1159 | private: | ||
| 1160 | SExpr* Array; | ||
| 1161 | SExpr* Index; | ||
| 1162 | }; | ||
| 1163 | |||
| 1164 | /// Simple arithmetic unary operations, e.g. negate and not. | ||
| 1165 | /// These operations have no side-effects. | ||
| 1166 | class UnaryOp : public SExpr { | ||
| 1167 | public: | ||
| 1168 | UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) { | ||
| 1169 | Flags = Op; | ||
| 1170 |   } | ||
| 1171 | |||
| 1172 | UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; } | ||
| 1173 | |||
| 1174 | static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; } | ||
| 1175 | |||
| 1176 | TIL_UnaryOpcode unaryOpcode() const { | ||
| 1177 | return static_cast<TIL_UnaryOpcode>(Flags); | ||
| 1178 |   } | ||
| 1179 | |||
| 1180 | SExpr *expr() { return Expr0; } | ||
| 1181 | const SExpr *expr() const { return Expr0; } | ||
| 1182 | |||
| 1183 | template <class V> | ||
| 1184 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1185 | auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx)); | ||
| 1186 | return Vs.reduceUnaryOp(*this, Ne); | ||
| 1187 |   } | ||
| 1188 | |||
| 1189 | template <class C> | ||
| 1190 | typename C::CType compare(const UnaryOp* E, C& Cmp) const { | ||
| 1191 | typename C::CType Ct = | ||
| 1192 | Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode()); | ||
| 1193 | if (Cmp.notTrue(Ct)) | ||
| 1194 | return Ct; | ||
| 1195 | return Cmp.compare(expr(), E->expr()); | ||
| 1196 |   } | ||
| 1197 | |||
| 1198 | private: | ||
| 1199 | SExpr* Expr0; | ||
| 1200 | }; | ||
| 1201 | |||
| 1202 | /// Simple arithmetic binary operations, e.g. +, -, etc. | ||
| 1203 | /// These operations have no side effects. | ||
| 1204 | class BinaryOp : public SExpr { | ||
| 1205 | public: | ||
| 1206 | BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1) | ||
| 1207 | : SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) { | ||
| 1208 | Flags = Op; | ||
| 1209 |   } | ||
| 1210 | |||
| 1211 | BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1) | ||
| 1212 | : SExpr(B), Expr0(E0), Expr1(E1) { | ||
| 1213 | Flags = B.Flags; | ||
| 1214 |   } | ||
| 1215 | |||
| 1216 | static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; } | ||
| 1217 | |||
| 1218 | TIL_BinaryOpcode binaryOpcode() const { | ||
| 1219 | return static_cast<TIL_BinaryOpcode>(Flags); | ||
| 1220 |   } | ||
| 1221 | |||
| 1222 | SExpr *expr0() { return Expr0; } | ||
| 1223 | const SExpr *expr0() const { return Expr0; } | ||
| 1224 | |||
| 1225 | SExpr *expr1() { return Expr1; } | ||
| 1226 | const SExpr *expr1() const { return Expr1; } | ||
| 1227 | |||
| 1228 | template <class V> | ||
| 1229 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1230 | auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx)); | ||
| 1231 | auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx)); | ||
| 1232 | return Vs.reduceBinaryOp(*this, Ne0, Ne1); | ||
| 1233 |   } | ||
| 1234 | |||
| 1235 | template <class C> | ||
| 1236 | typename C::CType compare(const BinaryOp* E, C& Cmp) const { | ||
| 1237 | typename C::CType Ct = | ||
| 1238 | Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode()); | ||
| 1239 | if (Cmp.notTrue(Ct)) | ||
| 1240 | return Ct; | ||
| 1241 | Ct = Cmp.compare(expr0(), E->expr0()); | ||
| 1242 | if (Cmp.notTrue(Ct)) | ||
| 1243 | return Ct; | ||
| 1244 | return Cmp.compare(expr1(), E->expr1()); | ||
| 1245 |   } | ||
| 1246 | |||
| 1247 | private: | ||
| 1248 | SExpr* Expr0; | ||
| 1249 | SExpr* Expr1; | ||
| 1250 | }; | ||
| 1251 | |||
| 1252 | /// Cast expressions. | ||
| 1253 | /// Cast expressions are essentially unary operations, but we treat them | ||
| 1254 | /// as a distinct AST node because they only change the type of the result. | ||
| 1255 | class Cast : public SExpr { | ||
| 1256 | public: | ||
| 1257 | Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; } | ||
| 1258 | Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; } | ||
| 1259 | |||
| 1260 | static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; } | ||
| 1261 | |||
| 1262 | TIL_CastOpcode castOpcode() const { | ||
| 1263 | return static_cast<TIL_CastOpcode>(Flags); | ||
| 1264 |   } | ||
| 1265 | |||
| 1266 | SExpr *expr() { return Expr0; } | ||
| 1267 | const SExpr *expr() const { return Expr0; } | ||
| 1268 | |||
| 1269 | template <class V> | ||
| 1270 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1271 | auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx)); | ||
| 1272 | return Vs.reduceCast(*this, Ne); | ||
| 1273 |   } | ||
| 1274 | |||
| 1275 | template <class C> | ||
| 1276 | typename C::CType compare(const Cast* E, C& Cmp) const { | ||
| 1277 | typename C::CType Ct = | ||
| 1278 | Cmp.compareIntegers(castOpcode(), E->castOpcode()); | ||
| 1279 | if (Cmp.notTrue(Ct)) | ||
| 1280 | return Ct; | ||
| 1281 | return Cmp.compare(expr(), E->expr()); | ||
| 1282 |   } | ||
| 1283 | |||
| 1284 | private: | ||
| 1285 | SExpr* Expr0; | ||
| 1286 | }; | ||
| 1287 | |||
| 1288 | class SCFG; | ||
| 1289 | |||
| 1290 | /// Phi Node, for code in SSA form. | ||
| 1291 | /// Each Phi node has an array of possible values that it can take, | ||
| 1292 | /// depending on where control flow comes from. | ||
| 1293 | class Phi : public SExpr { | ||
| 1294 | public: | ||
| 1295 | using ValArray = SimpleArray<SExpr *>; | ||
| 1296 | |||
| 1297 |   // In minimal SSA form, all Phi nodes are MultiVal. | ||
| 1298 |   // During conversion to SSA, incomplete Phi nodes may be introduced, which | ||
| 1299 |   // are later determined to be SingleVal, and are thus redundant. | ||
| 1300 | enum Status { | ||
| 1301 | PH_MultiVal = 0, // Phi node has multiple distinct values. (Normal) | ||
| 1302 |     PH_SingleVal,    // Phi node has one distinct value, and can be eliminated | ||
| 1303 |     PH_Incomplete    // Phi node is incomplete | ||
| 1304 | }; | ||
| 1305 | |||
| 1306 | Phi() : SExpr(COP_Phi) {} | ||
| 1307 | Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {} | ||
| 1308 | Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {} | ||
| 1309 | |||
| 1310 | static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; } | ||
| 1311 | |||
| 1312 | const ValArray &values() const { return Values; } | ||
| 1313 | ValArray &values() { return Values; } | ||
| 1314 | |||
| 1315 | Status status() const { return static_cast<Status>(Flags); } | ||
| 1316 | void setStatus(Status s) { Flags = s; } | ||
| 1317 | |||
| 1318 |   /// Return the clang declaration of the variable for this Phi node, if any. | ||
| 1319 | const ValueDecl *clangDecl() const { return Cvdecl; } | ||
| 1320 | |||
| 1321 |   /// Set the clang variable associated with this Phi node. | ||
| 1322 | void setClangDecl(const ValueDecl *Cvd) { Cvdecl = Cvd; } | ||
| 1323 | |||
| 1324 | template <class V> | ||
| 1325 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1326 | typename V::template Container<typename V::R_SExpr> | ||
| 1327 | Nvs(Vs, Values.size()); | ||
| 1328 | |||
| 1329 | for (const auto *Val : Values) | ||
| 1330 | Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) ); | ||
| 1331 | return Vs.reducePhi(*this, Nvs); | ||
| 1332 |   } | ||
| 1333 | |||
| 1334 | template <class C> | ||
| 1335 | typename C::CType compare(const Phi *E, C &Cmp) const { | ||
| 1336 |     // TODO: implement CFG comparisons | ||
| 1337 | return Cmp.comparePointers(this, E); | ||
| 1338 |   } | ||
| 1339 | |||
| 1340 | private: | ||
| 1341 |   ValArray Values; | ||
| 1342 | const ValueDecl* Cvdecl = nullptr; | ||
| 1343 | }; | ||
| 1344 | |||
| 1345 | /// Base class for basic block terminators:  Branch, Goto, and Return. | ||
| 1346 | class Terminator : public SExpr { | ||
| 1347 | protected: | ||
| 1348 | Terminator(TIL_Opcode Op) : SExpr(Op) {} | ||
| 1349 | Terminator(const SExpr &E) : SExpr(E) {} | ||
| 1350 | |||
| 1351 | public: | ||
| 1352 | static bool classof(const SExpr *E) { | ||
| 1353 | return E->opcode() >= COP_Goto && E->opcode() <= COP_Return; | ||
| 1354 |   } | ||
| 1355 | |||
| 1356 |   /// Return the list of basic blocks that this terminator can branch to. | ||
| 1357 | ArrayRef<BasicBlock *> successors(); | ||
| 1358 | |||
| 1359 | ArrayRef<BasicBlock *> successors() const { | ||
| 1360 | return const_cast<Terminator*>(this)->successors(); | ||
| 1361 |   } | ||
| 1362 | }; | ||
| 1363 | |||
| 1364 | /// Jump to another basic block. | ||
| 1365 | /// A goto instruction is essentially a tail-recursive call into another | ||
| 1366 | /// block.  In addition to the block pointer, it specifies an index into the | ||
| 1367 | /// phi nodes of that block.  The index can be used to retrieve the "arguments" | ||
| 1368 | /// of the call. | ||
| 1369 | class Goto : public Terminator { | ||
| 1370 | public: | ||
| 1371 | Goto(BasicBlock *B, unsigned I) | ||
| 1372 | : Terminator(COP_Goto), TargetBlock(B), Index(I) {} | ||
| 1373 | Goto(const Goto &G, BasicBlock *B, unsigned I) | ||
| 1374 | : Terminator(COP_Goto), TargetBlock(B), Index(I) {} | ||
| 1375 | |||
| 1376 | static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; } | ||
| 1377 | |||
| 1378 | const BasicBlock *targetBlock() const { return TargetBlock; } | ||
| 1379 | BasicBlock *targetBlock() { return TargetBlock; } | ||
| 1380 | |||
| 1381 |   /// Returns the index into the | ||
| 1382 | unsigned index() const { return Index; } | ||
| 1383 | |||
| 1384 |   /// Return the list of basic blocks that this terminator can branch to. | ||
| 1385 | ArrayRef<BasicBlock *> successors() { return TargetBlock; } | ||
| 1386 | |||
| 1387 | template <class V> | ||
| 1388 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1389 | BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock); | ||
| 1390 | return Vs.reduceGoto(*this, Ntb); | ||
| 1391 |   } | ||
| 1392 | |||
| 1393 | template <class C> | ||
| 1394 | typename C::CType compare(const Goto *E, C &Cmp) const { | ||
| 1395 |     // TODO: implement CFG comparisons | ||
| 1396 | return Cmp.comparePointers(this, E); | ||
| 1397 |   } | ||
| 1398 | |||
| 1399 | private: | ||
| 1400 | BasicBlock *TargetBlock; | ||
| 1401 | unsigned Index; | ||
| 1402 | }; | ||
| 1403 | |||
| 1404 | /// A conditional branch to two other blocks. | ||
| 1405 | /// Note that unlike Goto, Branch does not have an index.  The target blocks | ||
| 1406 | /// must be child-blocks, and cannot have Phi nodes. | ||
| 1407 | class Branch : public Terminator { | ||
| 1408 | public: | ||
| 1409 | Branch(SExpr *C, BasicBlock *T, BasicBlock *E) | ||
| 1410 | : Terminator(COP_Branch), Condition(C) { | ||
| 1411 | Branches[0] = T; | ||
| 1412 | Branches[1] = E; | ||
| 1413 |   } | ||
| 1414 | |||
| 1415 | Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E) | ||
| 1416 | : Terminator(Br), Condition(C) { | ||
| 1417 | Branches[0] = T; | ||
| 1418 | Branches[1] = E; | ||
| 1419 |   } | ||
| 1420 | |||
| 1421 | static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; } | ||
| 1422 | |||
| 1423 | const SExpr *condition() const { return Condition; } | ||
| 1424 | SExpr *condition() { return Condition; } | ||
| 1425 | |||
| 1426 | const BasicBlock *thenBlock() const { return Branches[0]; } | ||
| 1427 | BasicBlock *thenBlock() { return Branches[0]; } | ||
| 1428 | |||
| 1429 | const BasicBlock *elseBlock() const { return Branches[1]; } | ||
| 1430 | BasicBlock *elseBlock() { return Branches[1]; } | ||
| 1431 | |||
| 1432 |   /// Return the list of basic blocks that this terminator can branch to. | ||
| 1433 | ArrayRef<BasicBlock *> successors() { return llvm::ArrayRef(Branches); } | ||
| 1434 | |||
| 1435 | template <class V> | ||
| 1436 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1437 | auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx)); | ||
| 1438 | BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]); | ||
| 1439 | BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]); | ||
| 1440 | return Vs.reduceBranch(*this, Nc, Ntb, Nte); | ||
| 1441 |   } | ||
| 1442 | |||
| 1443 | template <class C> | ||
| 1444 | typename C::CType compare(const Branch *E, C &Cmp) const { | ||
| 1445 |     // TODO: implement CFG comparisons | ||
| 1446 | return Cmp.comparePointers(this, E); | ||
| 1447 |   } | ||
| 1448 | |||
| 1449 | private: | ||
| 1450 | SExpr *Condition; | ||
| 1451 | BasicBlock *Branches[2]; | ||
| 1452 | }; | ||
| 1453 | |||
| 1454 | /// Return from the enclosing function, passing the return value to the caller. | ||
| 1455 | /// Only the exit block should end with a return statement. | ||
| 1456 | class Return : public Terminator { | ||
| 1457 | public: | ||
| 1458 | Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {} | ||
| 1459 | Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {} | ||
| 1460 | |||
| 1461 | static bool classof(const SExpr *E) { return E->opcode() == COP_Return; } | ||
| 1462 | |||
| 1463 |   /// Return an empty list. | ||
| 1464 | ArrayRef<BasicBlock *> successors() { return std::nullopt; } | ||
| 1465 | |||
| 1466 | SExpr *returnValue() { return Retval; } | ||
| 1467 | const SExpr *returnValue() const { return Retval; } | ||
| 1468 | |||
| 1469 | template <class V> | ||
| 1470 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1471 | auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx)); | ||
| 1472 | return Vs.reduceReturn(*this, Ne); | ||
| 1473 |   } | ||
| 1474 | |||
| 1475 | template <class C> | ||
| 1476 | typename C::CType compare(const Return *E, C &Cmp) const { | ||
| 1477 | return Cmp.compare(Retval, E->Retval); | ||
| 1478 |   } | ||
| 1479 | |||
| 1480 | private: | ||
| 1481 | SExpr* Retval; | ||
| 1482 | }; | ||
| 1483 | |||
| 1484 | inline ArrayRef<BasicBlock*> Terminator::successors() { | ||
| 1485 | switch (opcode()) { | ||
| 1486 | case COP_Goto: return cast<Goto>(this)->successors(); | ||
| 1487 | case COP_Branch: return cast<Branch>(this)->successors(); | ||
| 1488 | case COP_Return: return cast<Return>(this)->successors(); | ||
| 1489 | default: | ||
| 1490 | return std::nullopt; | ||
| 1491 |   } | ||
| 1492 | } | ||
| 1493 | |||
| 1494 | /// A basic block is part of an SCFG.  It can be treated as a function in | ||
| 1495 | /// continuation passing style.  A block consists of a sequence of phi nodes, | ||
| 1496 | /// which are "arguments" to the function, followed by a sequence of | ||
| 1497 | /// instructions.  It ends with a Terminator, which is a Branch or Goto to | ||
| 1498 | /// another basic block in the same SCFG. | ||
| 1499 | class BasicBlock : public SExpr { | ||
| 1500 | public: | ||
| 1501 | using InstrArray = SimpleArray<SExpr *>; | ||
| 1502 | using BlockArray = SimpleArray<BasicBlock *>; | ||
| 1503 | |||
| 1504 |   // TopologyNodes are used to overlay tree structures on top of the CFG, | ||
| 1505 |   // such as dominator and postdominator trees.  Each block is assigned an | ||
| 1506 |   // ID in the tree according to a depth-first search.  Tree traversals are | ||
| 1507 |   // always up, towards the parents. | ||
| 1508 | struct TopologyNode { | ||
| 1509 | int NodeID = 0; | ||
| 1510 | |||
| 1511 |     // Includes this node, so must be > 1. | ||
| 1512 | int SizeOfSubTree = 0; | ||
| 1513 | |||
| 1514 |     // Pointer to parent. | ||
| 1515 | BasicBlock *Parent = nullptr; | ||
| 1516 | |||
| 1517 | TopologyNode() = default; | ||
| 1518 | |||
| 1519 | bool isParentOf(const TopologyNode& OtherNode) { | ||
| 1520 | return OtherNode.NodeID > NodeID && | ||
| 1521 | OtherNode.NodeID < NodeID + SizeOfSubTree; | ||
| 1522 |     } | ||
| 1523 | |||
| 1524 | bool isParentOfOrEqual(const TopologyNode& OtherNode) { | ||
| 1525 | return OtherNode.NodeID >= NodeID && | ||
| 1526 | OtherNode.NodeID < NodeID + SizeOfSubTree; | ||
| 1527 |     } | ||
| 1528 | }; | ||
| 1529 | |||
| 1530 | explicit BasicBlock(MemRegionRef A) | ||
| 1531 | : SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false) {} | ||
| 1532 | BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is, | ||
| 1533 | Terminator *T) | ||
| 1534 | : SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false), | ||
| 1535 | Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {} | ||
| 1536 | |||
| 1537 | static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; } | ||
| 1538 | |||
| 1539 |   /// Returns the block ID.  Every block has a unique ID in the CFG. | ||
| 1540 | int blockID() const { return BlockID; } | ||
| 1541 | |||
| 1542 |   /// Returns the number of predecessors. | ||
| 1543 | size_t numPredecessors() const { return Predecessors.size(); } | ||
| 1544 | size_t numSuccessors() const { return successors().size(); } | ||
| 1545 | |||
| 1546 | const SCFG* cfg() const { return CFGPtr; } | ||
| 1547 | SCFG* cfg() { return CFGPtr; } | ||
| 1548 | |||
| 1549 | const BasicBlock *parent() const { return DominatorNode.Parent; } | ||
| 1550 | BasicBlock *parent() { return DominatorNode.Parent; } | ||
| 1551 | |||
| 1552 | const InstrArray &arguments() const { return Args; } | ||
| 1553 | InstrArray &arguments() { return Args; } | ||
| 1554 | |||
| 1555 | InstrArray &instructions() { return Instrs; } | ||
| 1556 | const InstrArray &instructions() const { return Instrs; } | ||
| 1557 | |||
| 1558 |   /// Returns a list of predecessors. | ||
| 1559 |   /// The order of predecessors in the list is important; each phi node has | ||
| 1560 |   /// exactly one argument for each precessor, in the same order. | ||
| 1561 | BlockArray &predecessors() { return Predecessors; } | ||
| 1562 | const BlockArray &predecessors() const { return Predecessors; } | ||
| 1563 | |||
| 1564 | ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); } | ||
| 1565 | ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); } | ||
| 1566 | |||
| 1567 | const Terminator *terminator() const { return TermInstr; } | ||
| 1568 | Terminator *terminator() { return TermInstr; } | ||
| 1569 | |||
| 1570 | void setTerminator(Terminator *E) { TermInstr = E; } | ||
| 1571 | |||
| 1572 | bool Dominates(const BasicBlock &Other) { | ||
| 1573 | return DominatorNode.isParentOfOrEqual(Other.DominatorNode); | ||
| 1574 |   } | ||
| 1575 | |||
| 1576 | bool PostDominates(const BasicBlock &Other) { | ||
| 1577 | return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode); | ||
| 1578 |   } | ||
| 1579 | |||
| 1580 |   /// Add a new argument. | ||
| 1581 | void addArgument(Phi *V) { | ||
| 1582 | Args.reserveCheck(1, Arena); | ||
| 1583 | Args.push_back(V); | ||
| 1584 |   } | ||
| 1585 | |||
| 1586 |   /// Add a new instruction. | ||
| 1587 | void addInstruction(SExpr *V) { | ||
| 1588 | Instrs.reserveCheck(1, Arena); | ||
| 1589 | Instrs.push_back(V); | ||
| 1590 |   } | ||
| 1591 | |||
| 1592 |   // Add a new predecessor, and return the phi-node index for it. | ||
| 1593 |   // Will add an argument to all phi-nodes, initialized to nullptr. | ||
| 1594 | unsigned addPredecessor(BasicBlock *Pred); | ||
| 1595 | |||
| 1596 |   // Reserve space for Nargs arguments. | ||
| 1597 | void reserveArguments(unsigned Nargs) { Args.reserve(Nargs, Arena); } | ||
| 1598 | |||
| 1599 |   // Reserve space for Nins instructions. | ||
| 1600 | void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); } | ||
| 1601 | |||
| 1602 |   // Reserve space for NumPreds predecessors, including space in phi nodes. | ||
| 1603 | void reservePredecessors(unsigned NumPreds); | ||
| 1604 | |||
| 1605 |   /// Return the index of BB, or Predecessors.size if BB is not a predecessor. | ||
| 1606 | unsigned findPredecessorIndex(const BasicBlock *BB) const { | ||
| 1607 | auto I = llvm::find(Predecessors, BB); | ||
| 1608 | return std::distance(Predecessors.cbegin(), I); | ||
| 1609 |   } | ||
| 1610 | |||
| 1611 | template <class V> | ||
| 1612 | typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1613 | typename V::template Container<SExpr*> Nas(Vs, Args.size()); | ||
| 1614 | typename V::template Container<SExpr*> Nis(Vs, Instrs.size()); | ||
| 1615 | |||
| 1616 |     // Entering the basic block should do any scope initialization. | ||
| 1617 | Vs.enterBasicBlock(*this); | ||
| 1618 | |||
| 1619 | for (const auto *E : Args) { | ||
| 1620 | auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx)); | ||
| 1621 | Nas.push_back(Ne); | ||
| 1622 |     } | ||
| 1623 | for (const auto *E : Instrs) { | ||
| 1624 | auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx)); | ||
| 1625 | Nis.push_back(Ne); | ||
| 1626 |     } | ||
| 1627 | auto Nt = Vs.traverse(TermInstr, Ctx); | ||
| 1628 | |||
| 1629 |     // Exiting the basic block should handle any scope cleanup. | ||
| 1630 | Vs.exitBasicBlock(*this); | ||
| 1631 | |||
| 1632 | return Vs.reduceBasicBlock(*this, Nas, Nis, Nt); | ||
| 1633 |   } | ||
| 1634 | |||
| 1635 | template <class C> | ||
| 1636 | typename C::CType compare(const BasicBlock *E, C &Cmp) const { | ||
| 1637 |     // TODO: implement CFG comparisons | ||
| 1638 | return Cmp.comparePointers(this, E); | ||
| 1639 |   } | ||
| 1640 | |||
| 1641 | private: | ||
| 1642 | friend class SCFG; | ||
| 1643 | |||
| 1644 |   // assign unique ids to all instructions | ||
| 1645 | unsigned renumberInstrs(unsigned id); | ||
| 1646 | |||
| 1647 | unsigned topologicalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID); | ||
| 1648 | unsigned topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID); | ||
| 1649 | void computeDominator(); | ||
| 1650 | void computePostDominator(); | ||
| 1651 | |||
| 1652 |   // The arena used to allocate this block. | ||
| 1653 |   MemRegionRef Arena; | ||
| 1654 | |||
| 1655 |   // The CFG that contains this block. | ||
| 1656 | SCFG *CFGPtr = nullptr; | ||
| 1657 | |||
| 1658 |   // Unique ID for this BB in the containing CFG. IDs are in topological order. | ||
| 1659 | unsigned BlockID : 31; | ||
| 1660 | |||
| 1661 |   // Bit to determine if a block has been visited during a traversal. | ||
| 1662 | bool Visited : 1; | ||
| 1663 | |||
| 1664 |   // Predecessor blocks in the CFG. | ||
| 1665 |   BlockArray Predecessors; | ||
| 1666 | |||
| 1667 |   // Phi nodes. One argument per predecessor. | ||
| 1668 |   InstrArray Args; | ||
| 1669 | |||
| 1670 |   // Instructions. | ||
| 1671 |   InstrArray Instrs; | ||
| 1672 | |||
| 1673 |   // Terminating instruction. | ||
| 1674 | Terminator *TermInstr = nullptr; | ||
| 1675 | |||
| 1676 |   // The dominator tree. | ||
| 1677 |   TopologyNode DominatorNode; | ||
| 1678 | |||
| 1679 |   // The post-dominator tree. | ||
| 1680 |   TopologyNode PostDominatorNode; | ||
| 1681 | }; | ||
| 1682 | |||
| 1683 | /// An SCFG is a control-flow graph.  It consists of a set of basic blocks, | ||
| 1684 | /// each of which terminates in a branch to another basic block.  There is one | ||
| 1685 | /// entry point, and one exit point. | ||
| 1686 | class SCFG : public SExpr { | ||
| 1687 | public: | ||
| 1688 | using BlockArray = SimpleArray<BasicBlock *>; | ||
| 1689 | using iterator = BlockArray::iterator; | ||
| 1690 | using const_iterator = BlockArray::const_iterator; | ||
| 1691 | |||
| 1692 | SCFG(MemRegionRef A, unsigned Nblocks) | ||
| 1693 | : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks) { | ||
| 1694 | Entry = new (A) BasicBlock(A); | ||
| 1695 | Exit = new (A) BasicBlock(A); | ||
| 1696 | auto *V = new (A) Phi(); | ||
| 1697 | Exit->addArgument(V); | ||
| 1698 | Exit->setTerminator(new (A) Return(V)); | ||
| 1699 | add(Entry); | ||
| 1700 | add(Exit); | ||
| 1701 |   } | ||
| 1702 | |||
| 1703 | SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba | ||
| 1704 | : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)) { | ||
| 1705 |     // TODO: set entry and exit! | ||
| 1706 |   } | ||
| 1707 | |||
| 1708 | static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; } | ||
| 1709 | |||
| 1710 |   /// Return true if this CFG is valid. | ||
| 1711 | bool valid() const { return Entry && Exit && Blocks.size() > 0; } | ||
| 1712 | |||
| 1713 |   /// Return true if this CFG has been normalized. | ||
| 1714 |   /// After normalization, blocks are in topological order, and block and | ||
| 1715 |   /// instruction IDs have been assigned. | ||
| 1716 | bool normal() const { return Normal; } | ||
| 1717 | |||
| 1718 | iterator begin() { return Blocks.begin(); } | ||
| 1719 | iterator end() { return Blocks.end(); } | ||
| 1720 | |||
| 1721 | const_iterator begin() const { return cbegin(); } | ||
| 1722 | const_iterator end() const { return cend(); } | ||
| 1723 | |||
| 1724 | const_iterator cbegin() const { return Blocks.cbegin(); } | ||
| 1725 | const_iterator cend() const { return Blocks.cend(); } | ||
| 1726 | |||
| 1727 | const BasicBlock *entry() const { return Entry; } | ||
| 1728 | BasicBlock *entry() { return Entry; } | ||
| 1729 | const BasicBlock *exit() const { return Exit; } | ||
| 1730 | BasicBlock *exit() { return Exit; } | ||
| 1731 | |||
| 1732 |   /// Return the number of blocks in the CFG. | ||
| 1733 |   /// Block::blockID() will return a number less than numBlocks(); | ||
| 1734 | size_t numBlocks() const { return Blocks.size(); } | ||
| 1735 | |||
| 1736 |   /// Return the total number of instructions in the CFG. | ||
| 1737 |   /// This is useful for building instruction side-tables; | ||
| 1738 |   /// A call to SExpr::id() will return a number less than numInstructions(). | ||
| 1739 | unsigned numInstructions() { return NumInstructions; } | ||
| 1740 | |||
| 1741 | inline void add(BasicBlock *BB) { | ||
| 1742 | assert(BB->CFGPtr == nullptr); | ||
| 1743 | BB->CFGPtr = this; | ||
| 1744 | Blocks.reserveCheck(1, Arena); | ||
| 1745 | Blocks.push_back(BB); | ||
| 1746 |   } | ||
| 1747 | |||
| 1748 | void setEntry(BasicBlock *BB) { Entry = BB; } | ||
| 1749 | void setExit(BasicBlock *BB) { Exit = BB; } | ||
| 1750 | |||
| 1751 | void computeNormalForm(); | ||
| 1752 | |||
| 1753 | template <class V> | ||
| 1754 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1755 | Vs.enterCFG(*this); | ||
| 1756 | typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size()); | ||
| 1757 | |||
| 1758 | for (const auto *B : Blocks) { | ||
| 1759 | Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) ); | ||
| 1760 |     } | ||
| 1761 | Vs.exitCFG(*this); | ||
| 1762 | return Vs.reduceSCFG(*this, Bbs); | ||
| 1763 |   } | ||
| 1764 | |||
| 1765 | template <class C> | ||
| 1766 | typename C::CType compare(const SCFG *E, C &Cmp) const { | ||
| 1767 |     // TODO: implement CFG comparisons | ||
| 1768 | return Cmp.comparePointers(this, E); | ||
| 1769 |   } | ||
| 1770 | |||
| 1771 | private: | ||
| 1772 |   // assign unique ids to all instructions | ||
| 1773 | void renumberInstrs(); | ||
| 1774 | |||
| 1775 |   MemRegionRef Arena; | ||
| 1776 |   BlockArray Blocks; | ||
| 1777 | BasicBlock *Entry = nullptr; | ||
| 1778 | BasicBlock *Exit = nullptr; | ||
| 1779 | unsigned NumInstructions = 0; | ||
| 1780 | bool Normal = false; | ||
| 1781 | }; | ||
| 1782 | |||
| 1783 | /// An identifier, e.g. 'foo' or 'x'. | ||
| 1784 | /// This is a pseduo-term; it will be lowered to a variable or projection. | ||
| 1785 | class Identifier : public SExpr { | ||
| 1786 | public: | ||
| 1787 | Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) {} | ||
| 1788 | Identifier(const Identifier &) = default; | ||
| 1789 | |||
| 1790 | static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; } | ||
| 1791 | |||
| 1792 | StringRef name() const { return Name; } | ||
| 1793 | |||
| 1794 | template <class V> | ||
| 1795 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1796 | return Vs.reduceIdentifier(*this); | ||
| 1797 |   } | ||
| 1798 | |||
| 1799 | template <class C> | ||
| 1800 | typename C::CType compare(const Identifier* E, C& Cmp) const { | ||
| 1801 | return Cmp.compareStrings(name(), E->name()); | ||
| 1802 |   } | ||
| 1803 | |||
| 1804 | private: | ||
| 1805 |   StringRef Name; | ||
| 1806 | }; | ||
| 1807 | |||
| 1808 | /// An if-then-else expression. | ||
| 1809 | /// This is a pseduo-term; it will be lowered to a branch in a CFG. | ||
| 1810 | class IfThenElse : public SExpr { | ||
| 1811 | public: | ||
| 1812 | IfThenElse(SExpr *C, SExpr *T, SExpr *E) | ||
| 1813 | : SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E) {} | ||
| 1814 | IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E) | ||
| 1815 | : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E) {} | ||
| 1816 | |||
| 1817 | static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; } | ||
| 1818 | |||
| 1819 | SExpr *condition() { return Condition; } // Address to store to | ||
| 1820 | const SExpr *condition() const { return Condition; } | ||
| 1821 | |||
| 1822 | SExpr *thenExpr() { return ThenExpr; } // Value to store | ||
| 1823 | const SExpr *thenExpr() const { return ThenExpr; } | ||
| 1824 | |||
| 1825 | SExpr *elseExpr() { return ElseExpr; } // Value to store | ||
| 1826 | const SExpr *elseExpr() const { return ElseExpr; } | ||
| 1827 | |||
| 1828 | template <class V> | ||
| 1829 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1830 | auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx)); | ||
| 1831 | auto Nt = Vs.traverse(ThenExpr, Vs.subExprCtx(Ctx)); | ||
| 1832 | auto Ne = Vs.traverse(ElseExpr, Vs.subExprCtx(Ctx)); | ||
| 1833 | return Vs.reduceIfThenElse(*this, Nc, Nt, Ne); | ||
| 1834 |   } | ||
| 1835 | |||
| 1836 | template <class C> | ||
| 1837 | typename C::CType compare(const IfThenElse* E, C& Cmp) const { | ||
| 1838 | typename C::CType Ct = Cmp.compare(condition(), E->condition()); | ||
| 1839 | if (Cmp.notTrue(Ct)) | ||
| 1840 | return Ct; | ||
| 1841 | Ct = Cmp.compare(thenExpr(), E->thenExpr()); | ||
| 1842 | if (Cmp.notTrue(Ct)) | ||
| 1843 | return Ct; | ||
| 1844 | return Cmp.compare(elseExpr(), E->elseExpr()); | ||
| 1845 |   } | ||
| 1846 | |||
| 1847 | private: | ||
| 1848 | SExpr* Condition; | ||
| 1849 | SExpr* ThenExpr; | ||
| 1850 | SExpr* ElseExpr; | ||
| 1851 | }; | ||
| 1852 | |||
| 1853 | /// A let-expression,  e.g.  let x=t; u. | ||
| 1854 | /// This is a pseduo-term; it will be lowered to instructions in a CFG. | ||
| 1855 | class Let : public SExpr { | ||
| 1856 | public: | ||
| 1857 | Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) { | ||
| 1858 | Vd->setKind(Variable::VK_Let); | ||
| 1859 |   } | ||
| 1860 | |||
| 1861 | Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) { | ||
| 1862 | Vd->setKind(Variable::VK_Let); | ||
| 1863 |   } | ||
| 1864 | |||
| 1865 | static bool classof(const SExpr *E) { return E->opcode() == COP_Let; } | ||
| 1866 | |||
| 1867 | Variable *variableDecl() { return VarDecl; } | ||
| 1868 | const Variable *variableDecl() const { return VarDecl; } | ||
| 1869 | |||
| 1870 | SExpr *body() { return Body; } | ||
| 1871 | const SExpr *body() const { return Body; } | ||
| 1872 | |||
| 1873 | template <class V> | ||
| 1874 | typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { | ||
| 1875 |     // This is a variable declaration, so traverse the definition. | ||
| 1876 | auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx)); | ||
| 1877 |     // Tell the rewriter to enter the scope of the let variable. | ||
| 1878 | Variable *Nvd = Vs.enterScope(*VarDecl, E0); | ||
| 1879 | auto E1 = Vs.traverse(Body, Ctx); | ||
| 1880 | Vs.exitScope(*VarDecl); | ||
| 1881 | return Vs.reduceLet(*this, Nvd, E1); | ||
| 1882 |   } | ||
| 1883 | |||
| 1884 | template <class C> | ||
| 1885 | typename C::CType compare(const Let* E, C& Cmp) const { | ||
| 1886 | typename C::CType Ct = | ||
| 1887 | Cmp.compare(VarDecl->definition(), E->VarDecl->definition()); | ||
| 1888 | if (Cmp.notTrue(Ct)) | ||
| 1889 | return Ct; | ||
| 1890 | Cmp.enterScope(variableDecl(), E->variableDecl()); | ||
| 1891 | Ct = Cmp.compare(body(), E->body()); | ||
| 1892 | Cmp.leaveScope(); | ||
| 1893 | return Ct; | ||
| 1894 |   } | ||
| 1895 | |||
| 1896 | private: | ||
| 1897 | Variable *VarDecl; | ||
| 1898 | SExpr* Body; | ||
| 1899 | }; | ||
| 1900 | |||
| 1901 | const SExpr *getCanonicalVal(const SExpr *E); | ||
| 1902 | SExpr* simplifyToCanonicalVal(SExpr *E); | ||
| 1903 | void simplifyIncompleteArg(til::Phi *Ph); | ||
| 1904 | |||
| 1905 | } // namespace til | ||
| 1906 | } // namespace threadSafety | ||
| 1907 | |||
| 1908 | } // namespace clang | ||
| 1909 | |||
| 1910 | #endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H |