Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file
10
/// Defines the C++ Decl subclasses, other than those for templates
11
/// (found in DeclTemplate.h) and friends (in DeclFriend.h).
12
//
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_CLANG_AST_DECLCXX_H
16
#define LLVM_CLANG_AST_DECLCXX_H
17
 
18
#include "clang/AST/ASTUnresolvedSet.h"
19
#include "clang/AST/Decl.h"
20
#include "clang/AST/DeclBase.h"
21
#include "clang/AST/DeclarationName.h"
22
#include "clang/AST/Expr.h"
23
#include "clang/AST/ExternalASTSource.h"
24
#include "clang/AST/LambdaCapture.h"
25
#include "clang/AST/NestedNameSpecifier.h"
26
#include "clang/AST/Redeclarable.h"
27
#include "clang/AST/Stmt.h"
28
#include "clang/AST/Type.h"
29
#include "clang/AST/TypeLoc.h"
30
#include "clang/AST/UnresolvedSet.h"
31
#include "clang/Basic/LLVM.h"
32
#include "clang/Basic/Lambda.h"
33
#include "clang/Basic/LangOptions.h"
34
#include "clang/Basic/OperatorKinds.h"
35
#include "clang/Basic/SourceLocation.h"
36
#include "clang/Basic/Specifiers.h"
37
#include "llvm/ADT/ArrayRef.h"
38
#include "llvm/ADT/DenseMap.h"
39
#include "llvm/ADT/PointerIntPair.h"
40
#include "llvm/ADT/PointerUnion.h"
41
#include "llvm/ADT/STLExtras.h"
42
#include "llvm/ADT/TinyPtrVector.h"
43
#include "llvm/ADT/iterator_range.h"
44
#include "llvm/Support/Casting.h"
45
#include "llvm/Support/Compiler.h"
46
#include "llvm/Support/PointerLikeTypeTraits.h"
47
#include "llvm/Support/TrailingObjects.h"
48
#include <cassert>
49
#include <cstddef>
50
#include <iterator>
51
#include <memory>
52
#include <vector>
53
 
54
namespace clang {
55
 
56
class ASTContext;
57
class ClassTemplateDecl;
58
class ConstructorUsingShadowDecl;
59
class CXXBasePath;
60
class CXXBasePaths;
61
class CXXConstructorDecl;
62
class CXXDestructorDecl;
63
class CXXFinalOverriderMap;
64
class CXXIndirectPrimaryBaseSet;
65
class CXXMethodDecl;
66
class DecompositionDecl;
67
class FriendDecl;
68
class FunctionTemplateDecl;
69
class IdentifierInfo;
70
class MemberSpecializationInfo;
71
class BaseUsingDecl;
72
class TemplateDecl;
73
class TemplateParameterList;
74
class UsingDecl;
75
 
76
/// Represents an access specifier followed by colon ':'.
77
///
78
/// An objects of this class represents sugar for the syntactic occurrence
79
/// of an access specifier followed by a colon in the list of member
80
/// specifiers of a C++ class definition.
81
///
82
/// Note that they do not represent other uses of access specifiers,
83
/// such as those occurring in a list of base specifiers.
84
/// Also note that this class has nothing to do with so-called
85
/// "access declarations" (C++98 11.3 [class.access.dcl]).
86
class AccessSpecDecl : public Decl {
87
  /// The location of the ':'.
88
  SourceLocation ColonLoc;
89
 
90
  AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
91
                 SourceLocation ASLoc, SourceLocation ColonLoc)
92
    : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
93
    setAccess(AS);
94
  }
95
 
96
  AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
97
 
98
  virtual void anchor();
99
 
100
public:
101
  /// The location of the access specifier.
102
  SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
103
 
104
  /// Sets the location of the access specifier.
105
  void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
106
 
107
  /// The location of the colon following the access specifier.
108
  SourceLocation getColonLoc() const { return ColonLoc; }
109
 
110
  /// Sets the location of the colon.
111
  void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
112
 
113
  SourceRange getSourceRange() const override LLVM_READONLY {
114
    return SourceRange(getAccessSpecifierLoc(), getColonLoc());
115
  }
116
 
117
  static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
118
                                DeclContext *DC, SourceLocation ASLoc,
119
                                SourceLocation ColonLoc) {
120
    return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
121
  }
122
 
123
  static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
124
 
125
  // Implement isa/cast/dyncast/etc.
126
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
127
  static bool classofKind(Kind K) { return K == AccessSpec; }
128
};
129
 
130
/// Represents a base class of a C++ class.
131
///
132
/// Each CXXBaseSpecifier represents a single, direct base class (or
133
/// struct) of a C++ class (or struct). It specifies the type of that
134
/// base class, whether it is a virtual or non-virtual base, and what
135
/// level of access (public, protected, private) is used for the
136
/// derivation. For example:
137
///
138
/// \code
139
///   class A { };
140
///   class B { };
141
///   class C : public virtual A, protected B { };
142
/// \endcode
143
///
144
/// In this code, C will have two CXXBaseSpecifiers, one for "public
145
/// virtual A" and the other for "protected B".
146
class CXXBaseSpecifier {
147
  /// The source code range that covers the full base
148
  /// specifier, including the "virtual" (if present) and access
149
  /// specifier (if present).
150
  SourceRange Range;
151
 
152
  /// The source location of the ellipsis, if this is a pack
153
  /// expansion.
154
  SourceLocation EllipsisLoc;
155
 
156
  /// Whether this is a virtual base class or not.
157
  unsigned Virtual : 1;
158
 
159
  /// Whether this is the base of a class (true) or of a struct (false).
160
  ///
161
  /// This determines the mapping from the access specifier as written in the
162
  /// source code to the access specifier used for semantic analysis.
163
  unsigned BaseOfClass : 1;
164
 
165
  /// Access specifier as written in the source code (may be AS_none).
166
  ///
167
  /// The actual type of data stored here is an AccessSpecifier, but we use
168
  /// "unsigned" here to work around a VC++ bug.
169
  unsigned Access : 2;
170
 
171
  /// Whether the class contains a using declaration
172
  /// to inherit the named class's constructors.
173
  unsigned InheritConstructors : 1;
174
 
175
  /// The type of the base class.
176
  ///
177
  /// This will be a class or struct (or a typedef of such). The source code
178
  /// range does not include the \c virtual or the access specifier.
179
  TypeSourceInfo *BaseTypeInfo;
180
 
181
public:
182
  CXXBaseSpecifier() = default;
183
  CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
184
                   TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
185
    : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
186
      Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
187
 
188
  /// Retrieves the source range that contains the entire base specifier.
189
  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
190
  SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
191
  SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
192
 
193
  /// Get the location at which the base class type was written.
194
  SourceLocation getBaseTypeLoc() const LLVM_READONLY {
195
    return BaseTypeInfo->getTypeLoc().getBeginLoc();
196
  }
197
 
198
  /// Determines whether the base class is a virtual base class (or not).
199
  bool isVirtual() const { return Virtual; }
200
 
201
  /// Determine whether this base class is a base of a class declared
202
  /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
203
  bool isBaseOfClass() const { return BaseOfClass; }
204
 
205
  /// Determine whether this base specifier is a pack expansion.
206
  bool isPackExpansion() const { return EllipsisLoc.isValid(); }
207
 
208
  /// Determine whether this base class's constructors get inherited.
209
  bool getInheritConstructors() const { return InheritConstructors; }
210
 
211
  /// Set that this base class's constructors should be inherited.
212
  void setInheritConstructors(bool Inherit = true) {
213
    InheritConstructors = Inherit;
214
  }
215
 
216
  /// For a pack expansion, determine the location of the ellipsis.
217
  SourceLocation getEllipsisLoc() const {
218
    return EllipsisLoc;
219
  }
220
 
221
  /// Returns the access specifier for this base specifier.
222
  ///
223
  /// This is the actual base specifier as used for semantic analysis, so
224
  /// the result can never be AS_none. To retrieve the access specifier as
225
  /// written in the source code, use getAccessSpecifierAsWritten().
226
  AccessSpecifier getAccessSpecifier() const {
227
    if ((AccessSpecifier)Access == AS_none)
228
      return BaseOfClass? AS_private : AS_public;
229
    else
230
      return (AccessSpecifier)Access;
231
  }
232
 
233
  /// Retrieves the access specifier as written in the source code
234
  /// (which may mean that no access specifier was explicitly written).
235
  ///
236
  /// Use getAccessSpecifier() to retrieve the access specifier for use in
237
  /// semantic analysis.
238
  AccessSpecifier getAccessSpecifierAsWritten() const {
239
    return (AccessSpecifier)Access;
240
  }
241
 
242
  /// Retrieves the type of the base class.
243
  ///
244
  /// This type will always be an unqualified class type.
245
  QualType getType() const {
246
    return BaseTypeInfo->getType().getUnqualifiedType();
247
  }
248
 
249
  /// Retrieves the type and source location of the base class.
250
  TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
251
};
252
 
253
/// Represents a C++ struct/union/class.
254
class CXXRecordDecl : public RecordDecl {
255
  friend class ASTDeclReader;
256
  friend class ASTDeclWriter;
257
  friend class ASTNodeImporter;
258
  friend class ASTReader;
259
  friend class ASTRecordWriter;
260
  friend class ASTWriter;
261
  friend class DeclContext;
262
  friend class LambdaExpr;
263
  friend class ODRDiagsEmitter;
264
 
265
  friend void FunctionDecl::setPure(bool);
266
  friend void TagDecl::startDefinition();
267
 
268
  /// Values used in DefinitionData fields to represent special members.
269
  enum SpecialMemberFlags {
270
    SMF_DefaultConstructor = 0x1,
271
    SMF_CopyConstructor = 0x2,
272
    SMF_MoveConstructor = 0x4,
273
    SMF_CopyAssignment = 0x8,
274
    SMF_MoveAssignment = 0x10,
275
    SMF_Destructor = 0x20,
276
    SMF_All = 0x3f
277
  };
278
 
279
public:
280
  enum LambdaDependencyKind {
281
    LDK_Unknown = 0,
282
    LDK_AlwaysDependent,
283
    LDK_NeverDependent,
284
  };
285
 
286
private:
287
  struct DefinitionData {
288
    #define FIELD(Name, Width, Merge) \
289
    unsigned Name : Width;
290
    #include "CXXRecordDeclDefinitionBits.def"
291
 
292
    /// Whether this class describes a C++ lambda.
293
    unsigned IsLambda : 1;
294
 
295
    /// Whether we are currently parsing base specifiers.
296
    unsigned IsParsingBaseSpecifiers : 1;
297
 
298
    /// True when visible conversion functions are already computed
299
    /// and are available.
300
    unsigned ComputedVisibleConversions : 1;
301
 
302
    unsigned HasODRHash : 1;
303
 
304
    /// A hash of parts of the class to help in ODR checking.
305
    unsigned ODRHash = 0;
306
 
307
    /// The number of base class specifiers in Bases.
308
    unsigned NumBases = 0;
309
 
310
    /// The number of virtual base class specifiers in VBases.
311
    unsigned NumVBases = 0;
312
 
313
    /// Base classes of this class.
314
    ///
315
    /// FIXME: This is wasted space for a union.
316
    LazyCXXBaseSpecifiersPtr Bases;
317
 
318
    /// direct and indirect virtual base classes of this class.
319
    LazyCXXBaseSpecifiersPtr VBases;
320
 
321
    /// The conversion functions of this C++ class (but not its
322
    /// inherited conversion functions).
323
    ///
324
    /// Each of the entries in this overload set is a CXXConversionDecl.
325
    LazyASTUnresolvedSet Conversions;
326
 
327
    /// The conversion functions of this C++ class and all those
328
    /// inherited conversion functions that are visible in this class.
329
    ///
330
    /// Each of the entries in this overload set is a CXXConversionDecl or a
331
    /// FunctionTemplateDecl.
332
    LazyASTUnresolvedSet VisibleConversions;
333
 
334
    /// The declaration which defines this record.
335
    CXXRecordDecl *Definition;
336
 
337
    /// The first friend declaration in this class, or null if there
338
    /// aren't any.
339
    ///
340
    /// This is actually currently stored in reverse order.
341
    LazyDeclPtr FirstFriend;
342
 
343
    DefinitionData(CXXRecordDecl *D);
344
 
345
    /// Retrieve the set of direct base classes.
346
    CXXBaseSpecifier *getBases() const {
347
      if (!Bases.isOffset())
348
        return Bases.get(nullptr);
349
      return getBasesSlowCase();
350
    }
351
 
352
    /// Retrieve the set of virtual base classes.
353
    CXXBaseSpecifier *getVBases() const {
354
      if (!VBases.isOffset())
355
        return VBases.get(nullptr);
356
      return getVBasesSlowCase();
357
    }
358
 
359
    ArrayRef<CXXBaseSpecifier> bases() const {
360
      return llvm::ArrayRef(getBases(), NumBases);
361
    }
362
 
363
    ArrayRef<CXXBaseSpecifier> vbases() const {
364
      return llvm::ArrayRef(getVBases(), NumVBases);
365
    }
366
 
367
  private:
368
    CXXBaseSpecifier *getBasesSlowCase() const;
369
    CXXBaseSpecifier *getVBasesSlowCase() const;
370
  };
371
 
372
  struct DefinitionData *DefinitionData;
373
 
374
  /// Describes a C++ closure type (generated by a lambda expression).
375
  struct LambdaDefinitionData : public DefinitionData {
376
    using Capture = LambdaCapture;
377
 
378
    /// Whether this lambda is known to be dependent, even if its
379
    /// context isn't dependent.
380
    ///
381
    /// A lambda with a non-dependent context can be dependent if it occurs
382
    /// within the default argument of a function template, because the
383
    /// lambda will have been created with the enclosing context as its
384
    /// declaration context, rather than function. This is an unfortunate
385
    /// artifact of having to parse the default arguments before.
386
    unsigned DependencyKind : 2;
387
 
388
    /// Whether this lambda is a generic lambda.
389
    unsigned IsGenericLambda : 1;
390
 
391
    /// The Default Capture.
392
    unsigned CaptureDefault : 2;
393
 
394
    /// The number of captures in this lambda is limited 2^NumCaptures.
395
    unsigned NumCaptures : 15;
396
 
397
    /// The number of explicit captures in this lambda.
398
    unsigned NumExplicitCaptures : 13;
399
 
400
    /// Has known `internal` linkage.
401
    unsigned HasKnownInternalLinkage : 1;
402
 
403
    /// The number used to indicate this lambda expression for name
404
    /// mangling in the Itanium C++ ABI.
405
    unsigned ManglingNumber : 31;
406
 
407
    /// The declaration that provides context for this lambda, if the
408
    /// actual DeclContext does not suffice. This is used for lambdas that
409
    /// occur within default arguments of function parameters within the class
410
    /// or within a data member initializer.
411
    LazyDeclPtr ContextDecl;
412
 
413
    /// The lists of captures, both explicit and implicit, for this
414
    /// lambda. One list is provided for each merged copy of the lambda.
415
    /// The first list corresponds to the canonical definition.
416
    /// The destructor is registered by AddCaptureList when necessary.
417
    llvm::TinyPtrVector<Capture*> Captures;
418
 
419
    /// The type of the call method.
420
    TypeSourceInfo *MethodTyInfo;
421
 
422
    LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, unsigned DK,
423
                         bool IsGeneric, LambdaCaptureDefault CaptureDefault)
424
        : DefinitionData(D), DependencyKind(DK), IsGenericLambda(IsGeneric),
425
          CaptureDefault(CaptureDefault), NumCaptures(0),
426
          NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0),
427
          MethodTyInfo(Info) {
428
      IsLambda = true;
429
 
430
      // C++1z [expr.prim.lambda]p4:
431
      //   This class type is not an aggregate type.
432
      Aggregate = false;
433
      PlainOldData = false;
434
    }
435
 
436
    // Add a list of captures.
437
    void AddCaptureList(ASTContext &Ctx, Capture *CaptureList);
438
  };
439
 
440
  struct DefinitionData *dataPtr() const {
441
    // Complete the redecl chain (if necessary).
442
    getMostRecentDecl();
443
    return DefinitionData;
444
  }
445
 
446
  struct DefinitionData &data() const {
447
    auto *DD = dataPtr();
448
    assert(DD && "queried property of class with no definition");
449
    return *DD;
450
  }
451
 
452
  struct LambdaDefinitionData &getLambdaData() const {
453
    // No update required: a merged definition cannot change any lambda
454
    // properties.
455
    auto *DD = DefinitionData;
456
    assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
457
    return static_cast<LambdaDefinitionData&>(*DD);
458
  }
459
 
460
  /// The template or declaration that this declaration
461
  /// describes or was instantiated from, respectively.
462
  ///
463
  /// For non-templates, this value will be null. For record
464
  /// declarations that describe a class template, this will be a
465
  /// pointer to a ClassTemplateDecl. For member
466
  /// classes of class template specializations, this will be the
467
  /// MemberSpecializationInfo referring to the member class that was
468
  /// instantiated or specialized.
469
  llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
470
      TemplateOrInstantiation;
471
 
472
  /// Called from setBases and addedMember to notify the class that a
473
  /// direct or virtual base class or a member of class type has been added.
474
  void addedClassSubobject(CXXRecordDecl *Base);
475
 
476
  /// Notify the class that member has been added.
477
  ///
478
  /// This routine helps maintain information about the class based on which
479
  /// members have been added. It will be invoked by DeclContext::addDecl()
480
  /// whenever a member is added to this record.
481
  void addedMember(Decl *D);
482
 
483
  void markedVirtualFunctionPure();
484
 
485
  /// Get the head of our list of friend declarations, possibly
486
  /// deserializing the friends from an external AST source.
487
  FriendDecl *getFirstFriend() const;
488
 
489
  /// Determine whether this class has an empty base class subobject of type X
490
  /// or of one of the types that might be at offset 0 within X (per the C++
491
  /// "standard layout" rules).
492
  bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
493
                                               const CXXRecordDecl *X);
494
 
495
protected:
496
  CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
497
                SourceLocation StartLoc, SourceLocation IdLoc,
498
                IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
499
 
500
public:
501
  /// Iterator that traverses the base classes of a class.
502
  using base_class_iterator = CXXBaseSpecifier *;
503
 
504
  /// Iterator that traverses the base classes of a class.
505
  using base_class_const_iterator = const CXXBaseSpecifier *;
506
 
507
  CXXRecordDecl *getCanonicalDecl() override {
508
    return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
509
  }
510
 
511
  const CXXRecordDecl *getCanonicalDecl() const {
512
    return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
513
  }
514
 
515
  CXXRecordDecl *getPreviousDecl() {
516
    return cast_or_null<CXXRecordDecl>(
517
            static_cast<RecordDecl *>(this)->getPreviousDecl());
518
  }
519
 
520
  const CXXRecordDecl *getPreviousDecl() const {
521
    return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
522
  }
523
 
524
  CXXRecordDecl *getMostRecentDecl() {
525
    return cast<CXXRecordDecl>(
526
            static_cast<RecordDecl *>(this)->getMostRecentDecl());
527
  }
528
 
529
  const CXXRecordDecl *getMostRecentDecl() const {
530
    return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
531
  }
532
 
533
  CXXRecordDecl *getMostRecentNonInjectedDecl() {
534
    CXXRecordDecl *Recent =
535
        static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
536
    while (Recent->isInjectedClassName()) {
537
      // FIXME: Does injected class name need to be in the redeclarations chain?
538
      assert(Recent->getPreviousDecl());
539
      Recent = Recent->getPreviousDecl();
540
    }
541
    return Recent;
542
  }
543
 
544
  const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
545
    return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
546
  }
547
 
548
  CXXRecordDecl *getDefinition() const {
549
    // We only need an update if we don't already know which
550
    // declaration is the definition.
551
    auto *DD = DefinitionData ? DefinitionData : dataPtr();
552
    return DD ? DD->Definition : nullptr;
553
  }
554
 
555
  bool hasDefinition() const { return DefinitionData || dataPtr(); }
556
 
557
  static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
558
                               SourceLocation StartLoc, SourceLocation IdLoc,
559
                               IdentifierInfo *Id,
560
                               CXXRecordDecl *PrevDecl = nullptr,
561
                               bool DelayTypeCreation = false);
562
  static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
563
                                     TypeSourceInfo *Info, SourceLocation Loc,
564
                                     unsigned DependencyKind, bool IsGeneric,
565
                                     LambdaCaptureDefault CaptureDefault);
566
  static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
567
 
568
  bool isDynamicClass() const {
569
    return data().Polymorphic || data().NumVBases != 0;
570
  }
571
 
572
  /// @returns true if class is dynamic or might be dynamic because the
573
  /// definition is incomplete of dependent.
574
  bool mayBeDynamicClass() const {
575
    return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
576
  }
577
 
578
  /// @returns true if class is non dynamic or might be non dynamic because the
579
  /// definition is incomplete of dependent.
580
  bool mayBeNonDynamicClass() const {
581
    return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
582
  }
583
 
584
  void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
585
 
586
  bool isParsingBaseSpecifiers() const {
587
    return data().IsParsingBaseSpecifiers;
588
  }
589
 
590
  unsigned getODRHash() const;
591
 
592
  /// Sets the base classes of this struct or class.
593
  void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
594
 
595
  /// Retrieves the number of base classes of this class.
596
  unsigned getNumBases() const { return data().NumBases; }
597
 
598
  using base_class_range = llvm::iterator_range<base_class_iterator>;
599
  using base_class_const_range =
600
      llvm::iterator_range<base_class_const_iterator>;
601
 
602
  base_class_range bases() {
603
    return base_class_range(bases_begin(), bases_end());
604
  }
605
  base_class_const_range bases() const {
606
    return base_class_const_range(bases_begin(), bases_end());
607
  }
608
 
609
  base_class_iterator bases_begin() { return data().getBases(); }
610
  base_class_const_iterator bases_begin() const { return data().getBases(); }
611
  base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
612
  base_class_const_iterator bases_end() const {
613
    return bases_begin() + data().NumBases;
614
  }
615
 
616
  /// Retrieves the number of virtual base classes of this class.
617
  unsigned getNumVBases() const { return data().NumVBases; }
618
 
619
  base_class_range vbases() {
620
    return base_class_range(vbases_begin(), vbases_end());
621
  }
622
  base_class_const_range vbases() const {
623
    return base_class_const_range(vbases_begin(), vbases_end());
624
  }
625
 
626
  base_class_iterator vbases_begin() { return data().getVBases(); }
627
  base_class_const_iterator vbases_begin() const { return data().getVBases(); }
628
  base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
629
  base_class_const_iterator vbases_end() const {
630
    return vbases_begin() + data().NumVBases;
631
  }
632
 
633
  /// Determine whether this class has any dependent base classes which
634
  /// are not the current instantiation.
635
  bool hasAnyDependentBases() const;
636
 
637
  /// Iterator access to method members.  The method iterator visits
638
  /// all method members of the class, including non-instance methods,
639
  /// special methods, etc.
640
  using method_iterator = specific_decl_iterator<CXXMethodDecl>;
641
  using method_range =
642
      llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
643
 
644
  method_range methods() const {
645
    return method_range(method_begin(), method_end());
646
  }
647
 
648
  /// Method begin iterator.  Iterates in the order the methods
649
  /// were declared.
650
  method_iterator method_begin() const {
651
    return method_iterator(decls_begin());
652
  }
653
 
654
  /// Method past-the-end iterator.
655
  method_iterator method_end() const {
656
    return method_iterator(decls_end());
657
  }
658
 
659
  /// Iterator access to constructor members.
660
  using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
661
  using ctor_range =
662
      llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
663
 
664
  ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
665
 
666
  ctor_iterator ctor_begin() const {
667
    return ctor_iterator(decls_begin());
668
  }
669
 
670
  ctor_iterator ctor_end() const {
671
    return ctor_iterator(decls_end());
672
  }
673
 
674
  /// An iterator over friend declarations.  All of these are defined
675
  /// in DeclFriend.h.
676
  class friend_iterator;
677
  using friend_range = llvm::iterator_range<friend_iterator>;
678
 
679
  friend_range friends() const;
680
  friend_iterator friend_begin() const;
681
  friend_iterator friend_end() const;
682
  void pushFriendDecl(FriendDecl *FD);
683
 
684
  /// Determines whether this record has any friends.
685
  bool hasFriends() const {
686
    return data().FirstFriend.isValid();
687
  }
688
 
689
  /// \c true if a defaulted copy constructor for this class would be
690
  /// deleted.
691
  bool defaultedCopyConstructorIsDeleted() const {
692
    assert((!needsOverloadResolutionForCopyConstructor() ||
693
            (data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&
694
           "this property has not yet been computed by Sema");
695
    return data().DefaultedCopyConstructorIsDeleted;
696
  }
697
 
698
  /// \c true if a defaulted move constructor for this class would be
699
  /// deleted.
700
  bool defaultedMoveConstructorIsDeleted() const {
701
    assert((!needsOverloadResolutionForMoveConstructor() ||
702
            (data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&
703
           "this property has not yet been computed by Sema");
704
    return data().DefaultedMoveConstructorIsDeleted;
705
  }
706
 
707
  /// \c true if a defaulted destructor for this class would be deleted.
708
  bool defaultedDestructorIsDeleted() const {
709
    assert((!needsOverloadResolutionForDestructor() ||
710
            (data().DeclaredSpecialMembers & SMF_Destructor)) &&
711
           "this property has not yet been computed by Sema");
712
    return data().DefaultedDestructorIsDeleted;
713
  }
714
 
715
  /// \c true if we know for sure that this class has a single,
716
  /// accessible, unambiguous copy constructor that is not deleted.
717
  bool hasSimpleCopyConstructor() const {
718
    return !hasUserDeclaredCopyConstructor() &&
719
           !data().DefaultedCopyConstructorIsDeleted;
720
  }
721
 
722
  /// \c true if we know for sure that this class has a single,
723
  /// accessible, unambiguous move constructor that is not deleted.
724
  bool hasSimpleMoveConstructor() const {
725
    return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
726
           !data().DefaultedMoveConstructorIsDeleted;
727
  }
728
 
729
  /// \c true if we know for sure that this class has a single,
730
  /// accessible, unambiguous copy assignment operator that is not deleted.
731
  bool hasSimpleCopyAssignment() const {
732
    return !hasUserDeclaredCopyAssignment() &&
733
           !data().DefaultedCopyAssignmentIsDeleted;
734
  }
735
 
736
  /// \c true if we know for sure that this class has a single,
737
  /// accessible, unambiguous move assignment operator that is not deleted.
738
  bool hasSimpleMoveAssignment() const {
739
    return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
740
           !data().DefaultedMoveAssignmentIsDeleted;
741
  }
742
 
743
  /// \c true if we know for sure that this class has an accessible
744
  /// destructor that is not deleted.
745
  bool hasSimpleDestructor() const {
746
    return !hasUserDeclaredDestructor() &&
747
           !data().DefaultedDestructorIsDeleted;
748
  }
749
 
750
  /// Determine whether this class has any default constructors.
751
  bool hasDefaultConstructor() const {
752
    return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
753
           needsImplicitDefaultConstructor();
754
  }
755
 
756
  /// Determine if we need to declare a default constructor for
757
  /// this class.
758
  ///
759
  /// This value is used for lazy creation of default constructors.
760
  bool needsImplicitDefaultConstructor() const {
761
    return (!data().UserDeclaredConstructor &&
762
            !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
763
            (!isLambda() || lambdaIsDefaultConstructibleAndAssignable())) ||
764
           // FIXME: Proposed fix to core wording issue: if a class inherits
765
           // a default constructor and doesn't explicitly declare one, one
766
           // is declared implicitly.
767
           (data().HasInheritedDefaultConstructor &&
768
            !(data().DeclaredSpecialMembers & SMF_DefaultConstructor));
769
  }
770
 
771
  /// Determine whether this class has any user-declared constructors.
772
  ///
773
  /// When true, a default constructor will not be implicitly declared.
774
  bool hasUserDeclaredConstructor() const {
775
    return data().UserDeclaredConstructor;
776
  }
777
 
778
  /// Whether this class has a user-provided default constructor
779
  /// per C++11.
780
  bool hasUserProvidedDefaultConstructor() const {
781
    return data().UserProvidedDefaultConstructor;
782
  }
783
 
784
  /// Determine whether this class has a user-declared copy constructor.
785
  ///
786
  /// When false, a copy constructor will be implicitly declared.
787
  bool hasUserDeclaredCopyConstructor() const {
788
    return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
789
  }
790
 
791
  /// Determine whether this class needs an implicit copy
792
  /// constructor to be lazily declared.
793
  bool needsImplicitCopyConstructor() const {
794
    return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
795
  }
796
 
797
  /// Determine whether we need to eagerly declare a defaulted copy
798
  /// constructor for this class.
799
  bool needsOverloadResolutionForCopyConstructor() const {
800
    // C++17 [class.copy.ctor]p6:
801
    //   If the class definition declares a move constructor or move assignment
802
    //   operator, the implicitly declared copy constructor is defined as
803
    //   deleted.
804
    // In MSVC mode, sometimes a declared move assignment does not delete an
805
    // implicit copy constructor, so defer this choice to Sema.
806
    if (data().UserDeclaredSpecialMembers &
807
        (SMF_MoveConstructor | SMF_MoveAssignment))
808
      return true;
809
    return data().NeedOverloadResolutionForCopyConstructor;
810
  }
811
 
812
  /// Determine whether an implicit copy constructor for this type
813
  /// would have a parameter with a const-qualified reference type.
814
  bool implicitCopyConstructorHasConstParam() const {
815
    return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
816
           (isAbstract() ||
817
            data().ImplicitCopyConstructorCanHaveConstParamForVBase);
818
  }
819
 
820
  /// Determine whether this class has a copy constructor with
821
  /// a parameter type which is a reference to a const-qualified type.
822
  bool hasCopyConstructorWithConstParam() const {
823
    return data().HasDeclaredCopyConstructorWithConstParam ||
824
           (needsImplicitCopyConstructor() &&
825
            implicitCopyConstructorHasConstParam());
826
  }
827
 
828
  /// Whether this class has a user-declared move constructor or
829
  /// assignment operator.
830
  ///
831
  /// When false, a move constructor and assignment operator may be
832
  /// implicitly declared.
833
  bool hasUserDeclaredMoveOperation() const {
834
    return data().UserDeclaredSpecialMembers &
835
             (SMF_MoveConstructor | SMF_MoveAssignment);
836
  }
837
 
838
  /// Determine whether this class has had a move constructor
839
  /// declared by the user.
840
  bool hasUserDeclaredMoveConstructor() const {
841
    return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
842
  }
843
 
844
  /// Determine whether this class has a move constructor.
845
  bool hasMoveConstructor() const {
846
    return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
847
           needsImplicitMoveConstructor();
848
  }
849
 
850
  /// Set that we attempted to declare an implicit copy
851
  /// constructor, but overload resolution failed so we deleted it.
852
  void setImplicitCopyConstructorIsDeleted() {
853
    assert((data().DefaultedCopyConstructorIsDeleted ||
854
            needsOverloadResolutionForCopyConstructor()) &&
855
           "Copy constructor should not be deleted");
856
    data().DefaultedCopyConstructorIsDeleted = true;
857
  }
858
 
859
  /// Set that we attempted to declare an implicit move
860
  /// constructor, but overload resolution failed so we deleted it.
861
  void setImplicitMoveConstructorIsDeleted() {
862
    assert((data().DefaultedMoveConstructorIsDeleted ||
863
            needsOverloadResolutionForMoveConstructor()) &&
864
           "move constructor should not be deleted");
865
    data().DefaultedMoveConstructorIsDeleted = true;
866
  }
867
 
868
  /// Set that we attempted to declare an implicit destructor,
869
  /// but overload resolution failed so we deleted it.
870
  void setImplicitDestructorIsDeleted() {
871
    assert((data().DefaultedDestructorIsDeleted ||
872
            needsOverloadResolutionForDestructor()) &&
873
           "destructor should not be deleted");
874
    data().DefaultedDestructorIsDeleted = true;
875
  }
876
 
877
  /// Determine whether this class should get an implicit move
878
  /// constructor or if any existing special member function inhibits this.
879
  bool needsImplicitMoveConstructor() const {
880
    return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
881
           !hasUserDeclaredCopyConstructor() &&
882
           !hasUserDeclaredCopyAssignment() &&
883
           !hasUserDeclaredMoveAssignment() &&
884
           !hasUserDeclaredDestructor();
885
  }
886
 
887
  /// Determine whether we need to eagerly declare a defaulted move
888
  /// constructor for this class.
889
  bool needsOverloadResolutionForMoveConstructor() const {
890
    return data().NeedOverloadResolutionForMoveConstructor;
891
  }
892
 
893
  /// Determine whether this class has a user-declared copy assignment
894
  /// operator.
895
  ///
896
  /// When false, a copy assignment operator will be implicitly declared.
897
  bool hasUserDeclaredCopyAssignment() const {
898
    return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
899
  }
900
 
901
  /// Set that we attempted to declare an implicit copy assignment
902
  /// operator, but overload resolution failed so we deleted it.
903
  void setImplicitCopyAssignmentIsDeleted() {
904
    assert((data().DefaultedCopyAssignmentIsDeleted ||
905
            needsOverloadResolutionForCopyAssignment()) &&
906
           "copy assignment should not be deleted");
907
    data().DefaultedCopyAssignmentIsDeleted = true;
908
  }
909
 
910
  /// Determine whether this class needs an implicit copy
911
  /// assignment operator to be lazily declared.
912
  bool needsImplicitCopyAssignment() const {
913
    return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
914
  }
915
 
916
  /// Determine whether we need to eagerly declare a defaulted copy
917
  /// assignment operator for this class.
918
  bool needsOverloadResolutionForCopyAssignment() const {
919
    // C++20 [class.copy.assign]p2:
920
    //   If the class definition declares a move constructor or move assignment
921
    //   operator, the implicitly declared copy assignment operator is defined
922
    //   as deleted.
923
    // In MSVC mode, sometimes a declared move constructor does not delete an
924
    // implicit copy assignment, so defer this choice to Sema.
925
    if (data().UserDeclaredSpecialMembers &
926
        (SMF_MoveConstructor | SMF_MoveAssignment))
927
      return true;
928
    return data().NeedOverloadResolutionForCopyAssignment;
929
  }
930
 
931
  /// Determine whether an implicit copy assignment operator for this
932
  /// type would have a parameter with a const-qualified reference type.
933
  bool implicitCopyAssignmentHasConstParam() const {
934
    return data().ImplicitCopyAssignmentHasConstParam;
935
  }
936
 
937
  /// Determine whether this class has a copy assignment operator with
938
  /// a parameter type which is a reference to a const-qualified type or is not
939
  /// a reference.
940
  bool hasCopyAssignmentWithConstParam() const {
941
    return data().HasDeclaredCopyAssignmentWithConstParam ||
942
           (needsImplicitCopyAssignment() &&
943
            implicitCopyAssignmentHasConstParam());
944
  }
945
 
946
  /// Determine whether this class has had a move assignment
947
  /// declared by the user.
948
  bool hasUserDeclaredMoveAssignment() const {
949
    return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
950
  }
951
 
952
  /// Determine whether this class has a move assignment operator.
953
  bool hasMoveAssignment() const {
954
    return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
955
           needsImplicitMoveAssignment();
956
  }
957
 
958
  /// Set that we attempted to declare an implicit move assignment
959
  /// operator, but overload resolution failed so we deleted it.
960
  void setImplicitMoveAssignmentIsDeleted() {
961
    assert((data().DefaultedMoveAssignmentIsDeleted ||
962
            needsOverloadResolutionForMoveAssignment()) &&
963
           "move assignment should not be deleted");
964
    data().DefaultedMoveAssignmentIsDeleted = true;
965
  }
966
 
967
  /// Determine whether this class should get an implicit move
968
  /// assignment operator or if any existing special member function inhibits
969
  /// this.
970
  bool needsImplicitMoveAssignment() const {
971
    return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
972
           !hasUserDeclaredCopyConstructor() &&
973
           !hasUserDeclaredCopyAssignment() &&
974
           !hasUserDeclaredMoveConstructor() &&
975
           !hasUserDeclaredDestructor() &&
976
           (!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
977
  }
978
 
979
  /// Determine whether we need to eagerly declare a move assignment
980
  /// operator for this class.
981
  bool needsOverloadResolutionForMoveAssignment() const {
982
    return data().NeedOverloadResolutionForMoveAssignment;
983
  }
984
 
985
  /// Determine whether this class has a user-declared destructor.
986
  ///
987
  /// When false, a destructor will be implicitly declared.
988
  bool hasUserDeclaredDestructor() const {
989
    return data().UserDeclaredSpecialMembers & SMF_Destructor;
990
  }
991
 
992
  /// Determine whether this class needs an implicit destructor to
993
  /// be lazily declared.
994
  bool needsImplicitDestructor() const {
995
    return !(data().DeclaredSpecialMembers & SMF_Destructor);
996
  }
997
 
998
  /// Determine whether we need to eagerly declare a destructor for this
999
  /// class.
1000
  bool needsOverloadResolutionForDestructor() const {
1001
    return data().NeedOverloadResolutionForDestructor;
1002
  }
1003
 
1004
  /// Determine whether this class describes a lambda function object.
1005
  bool isLambda() const {
1006
    // An update record can't turn a non-lambda into a lambda.
1007
    auto *DD = DefinitionData;
1008
    return DD && DD->IsLambda;
1009
  }
1010
 
1011
  /// Determine whether this class describes a generic
1012
  /// lambda function object (i.e. function call operator is
1013
  /// a template).
1014
  bool isGenericLambda() const;
1015
 
1016
  /// Determine whether this lambda should have an implicit default constructor
1017
  /// and copy and move assignment operators.
1018
  bool lambdaIsDefaultConstructibleAndAssignable() const;
1019
 
1020
  /// Retrieve the lambda call operator of the closure type
1021
  /// if this is a closure type.
1022
  CXXMethodDecl *getLambdaCallOperator() const;
1023
 
1024
  /// Retrieve the dependent lambda call operator of the closure type
1025
  /// if this is a templated closure type.
1026
  FunctionTemplateDecl *getDependentLambdaCallOperator() const;
1027
 
1028
  /// Retrieve the lambda static invoker, the address of which
1029
  /// is returned by the conversion operator, and the body of which
1030
  /// is forwarded to the lambda call operator. The version that does not
1031
  /// take a calling convention uses the 'default' calling convention for free
1032
  /// functions if the Lambda's calling convention was not modified via
1033
  /// attribute. Otherwise, it will return the calling convention specified for
1034
  /// the lambda.
1035
  CXXMethodDecl *getLambdaStaticInvoker() const;
1036
  CXXMethodDecl *getLambdaStaticInvoker(CallingConv CC) const;
1037
 
1038
  /// Retrieve the generic lambda's template parameter list.
1039
  /// Returns null if the class does not represent a lambda or a generic
1040
  /// lambda.
1041
  TemplateParameterList *getGenericLambdaTemplateParameterList() const;
1042
 
1043
  /// Retrieve the lambda template parameters that were specified explicitly.
1044
  ArrayRef<NamedDecl *> getLambdaExplicitTemplateParameters() const;
1045
 
1046
  LambdaCaptureDefault getLambdaCaptureDefault() const {
1047
    assert(isLambda());
1048
    return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
1049
  }
1050
 
1051
  /// Set the captures for this lambda closure type.
1052
  void setCaptures(ASTContext &Context, ArrayRef<LambdaCapture> Captures);
1053
 
1054
  /// For a closure type, retrieve the mapping from captured
1055
  /// variables and \c this to the non-static data members that store the
1056
  /// values or references of the captures.
1057
  ///
1058
  /// \param Captures Will be populated with the mapping from captured
1059
  /// variables to the corresponding fields.
1060
  ///
1061
  /// \param ThisCapture Will be set to the field declaration for the
1062
  /// \c this capture.
1063
  ///
1064
  /// \note No entries will be added for init-captures, as they do not capture
1065
  /// variables.
1066
  ///
1067
  /// \note If multiple versions of the lambda are merged together, they may
1068
  /// have different variable declarations corresponding to the same capture.
1069
  /// In that case, all of those variable declarations will be added to the
1070
  /// Captures list, so it may have more than one variable listed per field.
1071
  void
1072
  getCaptureFields(llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures,
1073
                   FieldDecl *&ThisCapture) const;
1074
 
1075
  using capture_const_iterator = const LambdaCapture *;
1076
  using capture_const_range = llvm::iterator_range<capture_const_iterator>;
1077
 
1078
  capture_const_range captures() const {
1079
    return capture_const_range(captures_begin(), captures_end());
1080
  }
1081
 
1082
  capture_const_iterator captures_begin() const {
1083
    if (!isLambda()) return nullptr;
1084
    LambdaDefinitionData &LambdaData = getLambdaData();
1085
    return LambdaData.Captures.empty() ? nullptr : LambdaData.Captures.front();
1086
  }
1087
 
1088
  capture_const_iterator captures_end() const {
1089
    return isLambda() ? captures_begin() + getLambdaData().NumCaptures
1090
                      : nullptr;
1091
  }
1092
 
1093
  unsigned capture_size() const { return getLambdaData().NumCaptures; }
1094
 
1095
  using conversion_iterator = UnresolvedSetIterator;
1096
 
1097
  conversion_iterator conversion_begin() const {
1098
    return data().Conversions.get(getASTContext()).begin();
1099
  }
1100
 
1101
  conversion_iterator conversion_end() const {
1102
    return data().Conversions.get(getASTContext()).end();
1103
  }
1104
 
1105
  /// Removes a conversion function from this class.  The conversion
1106
  /// function must currently be a member of this class.  Furthermore,
1107
  /// this class must currently be in the process of being defined.
1108
  void removeConversion(const NamedDecl *Old);
1109
 
1110
  /// Get all conversion functions visible in current class,
1111
  /// including conversion function templates.
1112
  llvm::iterator_range<conversion_iterator>
1113
  getVisibleConversionFunctions() const;
1114
 
1115
  /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1116
  /// which is a class with no user-declared constructors, no private
1117
  /// or protected non-static data members, no base classes, and no virtual
1118
  /// functions (C++ [dcl.init.aggr]p1).
1119
  bool isAggregate() const { return data().Aggregate; }
1120
 
1121
  /// Whether this class has any in-class initializers
1122
  /// for non-static data members (including those in anonymous unions or
1123
  /// structs).
1124
  bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1125
 
1126
  /// Whether this class or any of its subobjects has any members of
1127
  /// reference type which would make value-initialization ill-formed.
1128
  ///
1129
  /// Per C++03 [dcl.init]p5:
1130
  ///  - if T is a non-union class type without a user-declared constructor,
1131
  ///    then every non-static data member and base-class component of T is
1132
  ///    value-initialized [...] A program that calls for [...]
1133
  ///    value-initialization of an entity of reference type is ill-formed.
1134
  bool hasUninitializedReferenceMember() const {
1135
    return !isUnion() && !hasUserDeclaredConstructor() &&
1136
           data().HasUninitializedReferenceMember;
1137
  }
1138
 
1139
  /// Whether this class is a POD-type (C++ [class]p4)
1140
  ///
1141
  /// For purposes of this function a class is POD if it is an aggregate
1142
  /// that has no non-static non-POD data members, no reference data
1143
  /// members, no user-defined copy assignment operator and no
1144
  /// user-defined destructor.
1145
  ///
1146
  /// Note that this is the C++ TR1 definition of POD.
1147
  bool isPOD() const { return data().PlainOldData; }
1148
 
1149
  /// True if this class is C-like, without C++-specific features, e.g.
1150
  /// it contains only public fields, no bases, tag kind is not 'class', etc.
1151
  bool isCLike() const;
1152
 
1153
  /// Determine whether this is an empty class in the sense of
1154
  /// (C++11 [meta.unary.prop]).
1155
  ///
1156
  /// The CXXRecordDecl is a class type, but not a union type,
1157
  /// with no non-static data members other than bit-fields of length 0,
1158
  /// no virtual member functions, no virtual base classes,
1159
  /// and no base class B for which is_empty<B>::value is false.
1160
  ///
1161
  /// \note This does NOT include a check for union-ness.
1162
  bool isEmpty() const { return data().Empty; }
1163
 
1164
  void setInitMethod(bool Val) { data().HasInitMethod = Val; }
1165
  bool hasInitMethod() const { return data().HasInitMethod; }
1166
 
1167
  bool hasPrivateFields() const {
1168
    return data().HasPrivateFields;
1169
  }
1170
 
1171
  bool hasProtectedFields() const {
1172
    return data().HasProtectedFields;
1173
  }
1174
 
1175
  /// Determine whether this class has direct non-static data members.
1176
  bool hasDirectFields() const {
1177
    auto &D = data();
1178
    return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
1179
  }
1180
 
1181
  /// Whether this class is polymorphic (C++ [class.virtual]),
1182
  /// which means that the class contains or inherits a virtual function.
1183
  bool isPolymorphic() const { return data().Polymorphic; }
1184
 
1185
  /// Determine whether this class has a pure virtual function.
1186
  ///
1187
  /// The class is abstract per (C++ [class.abstract]p2) if it declares
1188
  /// a pure virtual function or inherits a pure virtual function that is
1189
  /// not overridden.
1190
  bool isAbstract() const { return data().Abstract; }
1191
 
1192
  /// Determine whether this class is standard-layout per
1193
  /// C++ [class]p7.
1194
  bool isStandardLayout() const { return data().IsStandardLayout; }
1195
 
1196
  /// Determine whether this class was standard-layout per
1197
  /// C++11 [class]p7, specifically using the C++11 rules without any DRs.
1198
  bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
1199
 
1200
  /// Determine whether this class, or any of its class subobjects,
1201
  /// contains a mutable field.
1202
  bool hasMutableFields() const { return data().HasMutableFields; }
1203
 
1204
  /// Determine whether this class has any variant members.
1205
  bool hasVariantMembers() const { return data().HasVariantMembers; }
1206
 
1207
  /// Determine whether this class has a trivial default constructor
1208
  /// (C++11 [class.ctor]p5).
1209
  bool hasTrivialDefaultConstructor() const {
1210
    return hasDefaultConstructor() &&
1211
           (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1212
  }
1213
 
1214
  /// Determine whether this class has a non-trivial default constructor
1215
  /// (C++11 [class.ctor]p5).
1216
  bool hasNonTrivialDefaultConstructor() const {
1217
    return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1218
           (needsImplicitDefaultConstructor() &&
1219
            !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1220
  }
1221
 
1222
  /// Determine whether this class has at least one constexpr constructor
1223
  /// other than the copy or move constructors.
1224
  bool hasConstexprNonCopyMoveConstructor() const {
1225
    return data().HasConstexprNonCopyMoveConstructor ||
1226
           (needsImplicitDefaultConstructor() &&
1227
            defaultedDefaultConstructorIsConstexpr());
1228
  }
1229
 
1230
  /// Determine whether a defaulted default constructor for this class
1231
  /// would be constexpr.
1232
  bool defaultedDefaultConstructorIsConstexpr() const {
1233
    return data().DefaultedDefaultConstructorIsConstexpr &&
1234
           (!isUnion() || hasInClassInitializer() || !hasVariantMembers() ||
1235
            getLangOpts().CPlusPlus20);
1236
  }
1237
 
1238
  /// Determine whether this class has a constexpr default constructor.
1239
  bool hasConstexprDefaultConstructor() const {
1240
    return data().HasConstexprDefaultConstructor ||
1241
           (needsImplicitDefaultConstructor() &&
1242
            defaultedDefaultConstructorIsConstexpr());
1243
  }
1244
 
1245
  /// Determine whether this class has a trivial copy constructor
1246
  /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1247
  bool hasTrivialCopyConstructor() const {
1248
    return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1249
  }
1250
 
1251
  bool hasTrivialCopyConstructorForCall() const {
1252
    return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
1253
  }
1254
 
1255
  /// Determine whether this class has a non-trivial copy constructor
1256
  /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1257
  bool hasNonTrivialCopyConstructor() const {
1258
    return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1259
           !hasTrivialCopyConstructor();
1260
  }
1261
 
1262
  bool hasNonTrivialCopyConstructorForCall() const {
1263
    return (data().DeclaredNonTrivialSpecialMembersForCall &
1264
            SMF_CopyConstructor) ||
1265
           !hasTrivialCopyConstructorForCall();
1266
  }
1267
 
1268
  /// Determine whether this class has a trivial move constructor
1269
  /// (C++11 [class.copy]p12)
1270
  bool hasTrivialMoveConstructor() const {
1271
    return hasMoveConstructor() &&
1272
           (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1273
  }
1274
 
1275
  bool hasTrivialMoveConstructorForCall() const {
1276
    return hasMoveConstructor() &&
1277
           (data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
1278
  }
1279
 
1280
  /// Determine whether this class has a non-trivial move constructor
1281
  /// (C++11 [class.copy]p12)
1282
  bool hasNonTrivialMoveConstructor() const {
1283
    return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1284
           (needsImplicitMoveConstructor() &&
1285
            !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1286
  }
1287
 
1288
  bool hasNonTrivialMoveConstructorForCall() const {
1289
    return (data().DeclaredNonTrivialSpecialMembersForCall &
1290
            SMF_MoveConstructor) ||
1291
           (needsImplicitMoveConstructor() &&
1292
            !(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
1293
  }
1294
 
1295
  /// Determine whether this class has a trivial copy assignment operator
1296
  /// (C++ [class.copy]p11, C++11 [class.copy]p25)
1297
  bool hasTrivialCopyAssignment() const {
1298
    return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1299
  }
1300
 
1301
  /// Determine whether this class has a non-trivial copy assignment
1302
  /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
1303
  bool hasNonTrivialCopyAssignment() const {
1304
    return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1305
           !hasTrivialCopyAssignment();
1306
  }
1307
 
1308
  /// Determine whether this class has a trivial move assignment operator
1309
  /// (C++11 [class.copy]p25)
1310
  bool hasTrivialMoveAssignment() const {
1311
    return hasMoveAssignment() &&
1312
           (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1313
  }
1314
 
1315
  /// Determine whether this class has a non-trivial move assignment
1316
  /// operator (C++11 [class.copy]p25)
1317
  bool hasNonTrivialMoveAssignment() const {
1318
    return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1319
           (needsImplicitMoveAssignment() &&
1320
            !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1321
  }
1322
 
1323
  /// Determine whether a defaulted default constructor for this class
1324
  /// would be constexpr.
1325
  bool defaultedDestructorIsConstexpr() const {
1326
    return data().DefaultedDestructorIsConstexpr &&
1327
           getLangOpts().CPlusPlus20;
1328
  }
1329
 
1330
  /// Determine whether this class has a constexpr destructor.
1331
  bool hasConstexprDestructor() const;
1332
 
1333
  /// Determine whether this class has a trivial destructor
1334
  /// (C++ [class.dtor]p3)
1335
  bool hasTrivialDestructor() const {
1336
    return data().HasTrivialSpecialMembers & SMF_Destructor;
1337
  }
1338
 
1339
  bool hasTrivialDestructorForCall() const {
1340
    return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
1341
  }
1342
 
1343
  /// Determine whether this class has a non-trivial destructor
1344
  /// (C++ [class.dtor]p3)
1345
  bool hasNonTrivialDestructor() const {
1346
    return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1347
  }
1348
 
1349
  bool hasNonTrivialDestructorForCall() const {
1350
    return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
1351
  }
1352
 
1353
  void setHasTrivialSpecialMemberForCall() {
1354
    data().HasTrivialSpecialMembersForCall =
1355
        (SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
1356
  }
1357
 
1358
  /// Determine whether declaring a const variable with this type is ok
1359
  /// per core issue 253.
1360
  bool allowConstDefaultInit() const {
1361
    return !data().HasUninitializedFields ||
1362
           !(data().HasDefaultedDefaultConstructor ||
1363
             needsImplicitDefaultConstructor());
1364
  }
1365
 
1366
  /// Determine whether this class has a destructor which has no
1367
  /// semantic effect.
1368
  ///
1369
  /// Any such destructor will be trivial, public, defaulted and not deleted,
1370
  /// and will call only irrelevant destructors.
1371
  bool hasIrrelevantDestructor() const {
1372
    return data().HasIrrelevantDestructor;
1373
  }
1374
 
1375
  /// Determine whether this class has a non-literal or/ volatile type
1376
  /// non-static data member or base class.
1377
  bool hasNonLiteralTypeFieldsOrBases() const {
1378
    return data().HasNonLiteralTypeFieldsOrBases;
1379
  }
1380
 
1381
  /// Determine whether this class has a using-declaration that names
1382
  /// a user-declared base class constructor.
1383
  bool hasInheritedConstructor() const {
1384
    return data().HasInheritedConstructor;
1385
  }
1386
 
1387
  /// Determine whether this class has a using-declaration that names
1388
  /// a base class assignment operator.
1389
  bool hasInheritedAssignment() const {
1390
    return data().HasInheritedAssignment;
1391
  }
1392
 
1393
  /// Determine whether this class is considered trivially copyable per
1394
  /// (C++11 [class]p6).
1395
  bool isTriviallyCopyable() const;
1396
 
1397
  /// Determine whether this class is considered trivial.
1398
  ///
1399
  /// C++11 [class]p6:
1400
  ///    "A trivial class is a class that has a trivial default constructor and
1401
  ///    is trivially copyable."
1402
  bool isTrivial() const {
1403
    return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1404
  }
1405
 
1406
  /// Determine whether this class is a literal type.
1407
  ///
1408
  /// C++11 [basic.types]p10:
1409
  ///   A class type that has all the following properties:
1410
  ///     - it has a trivial destructor
1411
  ///     - every constructor call and full-expression in the
1412
  ///       brace-or-equal-intializers for non-static data members (if any) is
1413
  ///       a constant expression.
1414
  ///     - it is an aggregate type or has at least one constexpr constructor
1415
  ///       or constructor template that is not a copy or move constructor, and
1416
  ///     - all of its non-static data members and base classes are of literal
1417
  ///       types
1418
  ///
1419
  /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
1420
  /// treating types with trivial default constructors as literal types.
1421
  ///
1422
  /// Only in C++17 and beyond, are lambdas literal types.
1423
  bool isLiteral() const {
1424
    const LangOptions &LangOpts = getLangOpts();
1425
    return (LangOpts.CPlusPlus20 ? hasConstexprDestructor()
1426
                                          : hasTrivialDestructor()) &&
1427
           (!isLambda() || LangOpts.CPlusPlus17) &&
1428
           !hasNonLiteralTypeFieldsOrBases() &&
1429
           (isAggregate() || isLambda() ||
1430
            hasConstexprNonCopyMoveConstructor() ||
1431
            hasTrivialDefaultConstructor());
1432
  }
1433
 
1434
  /// Determine whether this is a structural type.
1435
  bool isStructural() const {
1436
    return isLiteral() && data().StructuralIfLiteral;
1437
  }
1438
 
1439
  /// Notify the class that this destructor is now selected.
1440
  /// 
1441
  /// Important properties of the class depend on destructor properties. Since
1442
  /// C++20, it is possible to have multiple destructor declarations in a class
1443
  /// out of which one will be selected at the end.
1444
  /// This is called separately from addedMember because it has to be deferred
1445
  /// to the completion of the class.
1446
  void addedSelectedDestructor(CXXDestructorDecl *DD);
1447
 
1448
  /// Notify the class that an eligible SMF has been added.
1449
  /// This updates triviality and destructor based properties of the class accordingly.
1450
  void addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD, unsigned SMKind);
1451
 
1452
  /// If this record is an instantiation of a member class,
1453
  /// retrieves the member class from which it was instantiated.
1454
  ///
1455
  /// This routine will return non-null for (non-templated) member
1456
  /// classes of class templates. For example, given:
1457
  ///
1458
  /// \code
1459
  /// template<typename T>
1460
  /// struct X {
1461
  ///   struct A { };
1462
  /// };
1463
  /// \endcode
1464
  ///
1465
  /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1466
  /// whose parent is the class template specialization X<int>. For
1467
  /// this declaration, getInstantiatedFromMemberClass() will return
1468
  /// the CXXRecordDecl X<T>::A. When a complete definition of
1469
  /// X<int>::A is required, it will be instantiated from the
1470
  /// declaration returned by getInstantiatedFromMemberClass().
1471
  CXXRecordDecl *getInstantiatedFromMemberClass() const;
1472
 
1473
  /// If this class is an instantiation of a member class of a
1474
  /// class template specialization, retrieves the member specialization
1475
  /// information.
1476
  MemberSpecializationInfo *getMemberSpecializationInfo() const;
1477
 
1478
  /// Specify that this record is an instantiation of the
1479
  /// member class \p RD.
1480
  void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1481
                                     TemplateSpecializationKind TSK);
1482
 
1483
  /// Retrieves the class template that is described by this
1484
  /// class declaration.
1485
  ///
1486
  /// Every class template is represented as a ClassTemplateDecl and a
1487
  /// CXXRecordDecl. The former contains template properties (such as
1488
  /// the template parameter lists) while the latter contains the
1489
  /// actual description of the template's
1490
  /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1491
  /// CXXRecordDecl that from a ClassTemplateDecl, while
1492
  /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1493
  /// a CXXRecordDecl.
1494
  ClassTemplateDecl *getDescribedClassTemplate() const;
1495
 
1496
  void setDescribedClassTemplate(ClassTemplateDecl *Template);
1497
 
1498
  /// Determine whether this particular class is a specialization or
1499
  /// instantiation of a class template or member class of a class template,
1500
  /// and how it was instantiated or specialized.
1501
  TemplateSpecializationKind getTemplateSpecializationKind() const;
1502
 
1503
  /// Set the kind of specialization or template instantiation this is.
1504
  void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1505
 
1506
  /// Retrieve the record declaration from which this record could be
1507
  /// instantiated. Returns null if this class is not a template instantiation.
1508
  const CXXRecordDecl *getTemplateInstantiationPattern() const;
1509
 
1510
  CXXRecordDecl *getTemplateInstantiationPattern() {
1511
    return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
1512
                                           ->getTemplateInstantiationPattern());
1513
  }
1514
 
1515
  /// Returns the destructor decl for this class.
1516
  CXXDestructorDecl *getDestructor() const;
1517
 
1518
  /// Returns true if the class destructor, or any implicitly invoked
1519
  /// destructors are marked noreturn.
1520
  bool isAnyDestructorNoReturn() const { return data().IsAnyDestructorNoReturn; }
1521
 
1522
  /// If the class is a local class [class.local], returns
1523
  /// the enclosing function declaration.
1524
  const FunctionDecl *isLocalClass() const {
1525
    if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1526
      return RD->isLocalClass();
1527
 
1528
    return dyn_cast<FunctionDecl>(getDeclContext());
1529
  }
1530
 
1531
  FunctionDecl *isLocalClass() {
1532
    return const_cast<FunctionDecl*>(
1533
        const_cast<const CXXRecordDecl*>(this)->isLocalClass());
1534
  }
1535
 
1536
  /// Determine whether this dependent class is a current instantiation,
1537
  /// when viewed from within the given context.
1538
  bool isCurrentInstantiation(const DeclContext *CurContext) const;
1539
 
1540
  /// Determine whether this class is derived from the class \p Base.
1541
  ///
1542
  /// This routine only determines whether this class is derived from \p Base,
1543
  /// but does not account for factors that may make a Derived -> Base class
1544
  /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1545
  /// base class subobjects.
1546
  ///
1547
  /// \param Base the base class we are searching for.
1548
  ///
1549
  /// \returns true if this class is derived from Base, false otherwise.
1550
  bool isDerivedFrom(const CXXRecordDecl *Base) const;
1551
 
1552
  /// Determine whether this class is derived from the type \p Base.
1553
  ///
1554
  /// This routine only determines whether this class is derived from \p Base,
1555
  /// but does not account for factors that may make a Derived -> Base class
1556
  /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1557
  /// base class subobjects.
1558
  ///
1559
  /// \param Base the base class we are searching for.
1560
  ///
1561
  /// \param Paths will contain the paths taken from the current class to the
1562
  /// given \p Base class.
1563
  ///
1564
  /// \returns true if this class is derived from \p Base, false otherwise.
1565
  ///
1566
  /// \todo add a separate parameter to configure IsDerivedFrom, rather than
1567
  /// tangling input and output in \p Paths
1568
  bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1569
 
1570
  /// Determine whether this class is virtually derived from
1571
  /// the class \p Base.
1572
  ///
1573
  /// This routine only determines whether this class is virtually
1574
  /// derived from \p Base, but does not account for factors that may
1575
  /// make a Derived -> Base class ill-formed, such as
1576
  /// private/protected inheritance or multiple, ambiguous base class
1577
  /// subobjects.
1578
  ///
1579
  /// \param Base the base class we are searching for.
1580
  ///
1581
  /// \returns true if this class is virtually derived from Base,
1582
  /// false otherwise.
1583
  bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1584
 
1585
  /// Determine whether this class is provably not derived from
1586
  /// the type \p Base.
1587
  bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1588
 
1589
  /// Function type used by forallBases() as a callback.
1590
  ///
1591
  /// \param BaseDefinition the definition of the base class
1592
  ///
1593
  /// \returns true if this base matched the search criteria
1594
  using ForallBasesCallback =
1595
      llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
1596
 
1597
  /// Determines if the given callback holds for all the direct
1598
  /// or indirect base classes of this type.
1599
  ///
1600
  /// The class itself does not count as a base class.  This routine
1601
  /// returns false if the class has non-computable base classes.
1602
  ///
1603
  /// \param BaseMatches Callback invoked for each (direct or indirect) base
1604
  /// class of this type until a call returns false.
1605
  bool forallBases(ForallBasesCallback BaseMatches) const;
1606
 
1607
  /// Function type used by lookupInBases() to determine whether a
1608
  /// specific base class subobject matches the lookup criteria.
1609
  ///
1610
  /// \param Specifier the base-class specifier that describes the inheritance
1611
  /// from the base class we are trying to match.
1612
  ///
1613
  /// \param Path the current path, from the most-derived class down to the
1614
  /// base named by the \p Specifier.
1615
  ///
1616
  /// \returns true if this base matched the search criteria, false otherwise.
1617
  using BaseMatchesCallback =
1618
      llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
1619
                              CXXBasePath &Path)>;
1620
 
1621
  /// Look for entities within the base classes of this C++ class,
1622
  /// transitively searching all base class subobjects.
1623
  ///
1624
  /// This routine uses the callback function \p BaseMatches to find base
1625
  /// classes meeting some search criteria, walking all base class subobjects
1626
  /// and populating the given \p Paths structure with the paths through the
1627
  /// inheritance hierarchy that resulted in a match. On a successful search,
1628
  /// the \p Paths structure can be queried to retrieve the matching paths and
1629
  /// to determine if there were any ambiguities.
1630
  ///
1631
  /// \param BaseMatches callback function used to determine whether a given
1632
  /// base matches the user-defined search criteria.
1633
  ///
1634
  /// \param Paths used to record the paths from this class to its base class
1635
  /// subobjects that match the search criteria.
1636
  ///
1637
  /// \param LookupInDependent can be set to true to extend the search to
1638
  /// dependent base classes.
1639
  ///
1640
  /// \returns true if there exists any path from this class to a base class
1641
  /// subobject that matches the search criteria.
1642
  bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
1643
                     bool LookupInDependent = false) const;
1644
 
1645
  /// Base-class lookup callback that determines whether the given
1646
  /// base class specifier refers to a specific class declaration.
1647
  ///
1648
  /// This callback can be used with \c lookupInBases() to determine whether
1649
  /// a given derived class has is a base class subobject of a particular type.
1650
  /// The base record pointer should refer to the canonical CXXRecordDecl of the
1651
  /// base class that we are searching for.
1652
  static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1653
                            CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
1654
 
1655
  /// Base-class lookup callback that determines whether the
1656
  /// given base class specifier refers to a specific class
1657
  /// declaration and describes virtual derivation.
1658
  ///
1659
  /// This callback can be used with \c lookupInBases() to determine
1660
  /// whether a given derived class has is a virtual base class
1661
  /// subobject of a particular type.  The base record pointer should
1662
  /// refer to the canonical CXXRecordDecl of the base class that we
1663
  /// are searching for.
1664
  static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1665
                                   CXXBasePath &Path,
1666
                                   const CXXRecordDecl *BaseRecord);
1667
 
1668
  /// Retrieve the final overriders for each virtual member
1669
  /// function in the class hierarchy where this class is the
1670
  /// most-derived class in the class hierarchy.
1671
  void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1672
 
1673
  /// Get the indirect primary bases for this class.
1674
  void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1675
 
1676
  /// Determine whether this class has a member with the given name, possibly
1677
  /// in a non-dependent base class.
1678
  ///
1679
  /// No check for ambiguity is performed, so this should never be used when
1680
  /// implementing language semantics, but it may be appropriate for warnings,
1681
  /// static analysis, or similar.
1682
  bool hasMemberName(DeclarationName N) const;
1683
 
1684
  /// Performs an imprecise lookup of a dependent name in this class.
1685
  ///
1686
  /// This function does not follow strict semantic rules and should be used
1687
  /// only when lookup rules can be relaxed, e.g. indexing.
1688
  std::vector<const NamedDecl *>
1689
  lookupDependentName(DeclarationName Name,
1690
                      llvm::function_ref<bool(const NamedDecl *ND)> Filter);
1691
 
1692
  /// Renders and displays an inheritance diagram
1693
  /// for this C++ class and all of its base classes (transitively) using
1694
  /// GraphViz.
1695
  void viewInheritance(ASTContext& Context) const;
1696
 
1697
  /// Calculates the access of a decl that is reached
1698
  /// along a path.
1699
  static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1700
                                     AccessSpecifier DeclAccess) {
1701
    assert(DeclAccess != AS_none);
1702
    if (DeclAccess == AS_private) return AS_none;
1703
    return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1704
  }
1705
 
1706
  /// Indicates that the declaration of a defaulted or deleted special
1707
  /// member function is now complete.
1708
  void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1709
 
1710
  void setTrivialForCallFlags(CXXMethodDecl *MD);
1711
 
1712
  /// Indicates that the definition of this class is now complete.
1713
  void completeDefinition() override;
1714
 
1715
  /// Indicates that the definition of this class is now complete,
1716
  /// and provides a final overrider map to help determine
1717
  ///
1718
  /// \param FinalOverriders The final overrider map for this class, which can
1719
  /// be provided as an optimization for abstract-class checking. If NULL,
1720
  /// final overriders will be computed if they are needed to complete the
1721
  /// definition.
1722
  void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1723
 
1724
  /// Determine whether this class may end up being abstract, even though
1725
  /// it is not yet known to be abstract.
1726
  ///
1727
  /// \returns true if this class is not known to be abstract but has any
1728
  /// base classes that are abstract. In this case, \c completeDefinition()
1729
  /// will need to compute final overriders to determine whether the class is
1730
  /// actually abstract.
1731
  bool mayBeAbstract() const;
1732
 
1733
  /// Determine whether it's impossible for a class to be derived from this
1734
  /// class. This is best-effort, and may conservatively return false.
1735
  bool isEffectivelyFinal() const;
1736
 
1737
  /// If this is the closure type of a lambda expression, retrieve the
1738
  /// number to be used for name mangling in the Itanium C++ ABI.
1739
  ///
1740
  /// Zero indicates that this closure type has internal linkage, so the
1741
  /// mangling number does not matter, while a non-zero value indicates which
1742
  /// lambda expression this is in this particular context.
1743
  unsigned getLambdaManglingNumber() const {
1744
    assert(isLambda() && "Not a lambda closure type!");
1745
    return getLambdaData().ManglingNumber;
1746
  }
1747
 
1748
  /// The lambda is known to has internal linkage no matter whether it has name
1749
  /// mangling number.
1750
  bool hasKnownLambdaInternalLinkage() const {
1751
    assert(isLambda() && "Not a lambda closure type!");
1752
    return getLambdaData().HasKnownInternalLinkage;
1753
  }
1754
 
1755
  /// Retrieve the declaration that provides additional context for a
1756
  /// lambda, when the normal declaration context is not specific enough.
1757
  ///
1758
  /// Certain contexts (default arguments of in-class function parameters and
1759
  /// the initializers of data members) have separate name mangling rules for
1760
  /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1761
  /// the declaration in which the lambda occurs, e.g., the function parameter
1762
  /// or the non-static data member. Otherwise, it returns NULL to imply that
1763
  /// the declaration context suffices.
1764
  Decl *getLambdaContextDecl() const;
1765
 
1766
  /// Set the mangling number and context declaration for a lambda
1767
  /// class.
1768
  void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl,
1769
                         bool HasKnownInternalLinkage = false) {
1770
    assert(isLambda() && "Not a lambda closure type!");
1771
    getLambdaData().ManglingNumber = ManglingNumber;
1772
    getLambdaData().ContextDecl = ContextDecl;
1773
    getLambdaData().HasKnownInternalLinkage = HasKnownInternalLinkage;
1774
  }
1775
 
1776
  /// Set the device side mangling number.
1777
  void setDeviceLambdaManglingNumber(unsigned Num) const;
1778
 
1779
  /// Retrieve the device side mangling number.
1780
  unsigned getDeviceLambdaManglingNumber() const;
1781
 
1782
  /// Returns the inheritance model used for this record.
1783
  MSInheritanceModel getMSInheritanceModel() const;
1784
 
1785
  /// Calculate what the inheritance model would be for this class.
1786
  MSInheritanceModel calculateInheritanceModel() const;
1787
 
1788
  /// In the Microsoft C++ ABI, use zero for the field offset of a null data
1789
  /// member pointer if we can guarantee that zero is not a valid field offset,
1790
  /// or if the member pointer has multiple fields.  Polymorphic classes have a
1791
  /// vfptr at offset zero, so we can use zero for null.  If there are multiple
1792
  /// fields, we can use zero even if it is a valid field offset because
1793
  /// null-ness testing will check the other fields.
1794
  bool nullFieldOffsetIsZero() const;
1795
 
1796
  /// Controls when vtordisps will be emitted if this record is used as a
1797
  /// virtual base.
1798
  MSVtorDispMode getMSVtorDispMode() const;
1799
 
1800
  /// Determine whether this lambda expression was known to be dependent
1801
  /// at the time it was created, even if its context does not appear to be
1802
  /// dependent.
1803
  ///
1804
  /// This flag is a workaround for an issue with parsing, where default
1805
  /// arguments are parsed before their enclosing function declarations have
1806
  /// been created. This means that any lambda expressions within those
1807
  /// default arguments will have as their DeclContext the context enclosing
1808
  /// the function declaration, which may be non-dependent even when the
1809
  /// function declaration itself is dependent. This flag indicates when we
1810
  /// know that the lambda is dependent despite that.
1811
  bool isDependentLambda() const {
1812
    return isLambda() && getLambdaData().DependencyKind == LDK_AlwaysDependent;
1813
  }
1814
 
1815
  bool isNeverDependentLambda() const {
1816
    return isLambda() && getLambdaData().DependencyKind == LDK_NeverDependent;
1817
  }
1818
 
1819
  unsigned getLambdaDependencyKind() const {
1820
    if (!isLambda())
1821
      return LDK_Unknown;
1822
    return getLambdaData().DependencyKind;
1823
  }
1824
 
1825
  TypeSourceInfo *getLambdaTypeInfo() const {
1826
    return getLambdaData().MethodTyInfo;
1827
  }
1828
 
1829
  // Determine whether this type is an Interface Like type for
1830
  // __interface inheritance purposes.
1831
  bool isInterfaceLike() const;
1832
 
1833
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1834
  static bool classofKind(Kind K) {
1835
    return K >= firstCXXRecord && K <= lastCXXRecord;
1836
  }
1837
  void markAbstract() { data().Abstract = true; }
1838
};
1839
 
1840
/// Store information needed for an explicit specifier.
1841
/// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl.
1842
class ExplicitSpecifier {
1843
  llvm::PointerIntPair<Expr *, 2, ExplicitSpecKind> ExplicitSpec{
1844
      nullptr, ExplicitSpecKind::ResolvedFalse};
1845
 
1846
public:
1847
  ExplicitSpecifier() = default;
1848
  ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind)
1849
      : ExplicitSpec(Expression, Kind) {}
1850
  ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); }
1851
  const Expr *getExpr() const { return ExplicitSpec.getPointer(); }
1852
  Expr *getExpr() { return ExplicitSpec.getPointer(); }
1853
 
1854
  /// Determine if the declaration had an explicit specifier of any kind.
1855
  bool isSpecified() const {
1856
    return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse ||
1857
           ExplicitSpec.getPointer();
1858
  }
1859
 
1860
  /// Check for equivalence of explicit specifiers.
1861
  /// \return true if the explicit specifier are equivalent, false otherwise.
1862
  bool isEquivalent(const ExplicitSpecifier Other) const;
1863
  /// Determine whether this specifier is known to correspond to an explicit
1864
  /// declaration. Returns false if the specifier is absent or has an
1865
  /// expression that is value-dependent or evaluates to false.
1866
  bool isExplicit() const {
1867
    return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue;
1868
  }
1869
  /// Determine if the explicit specifier is invalid.
1870
  /// This state occurs after a substitution failures.
1871
  bool isInvalid() const {
1872
    return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved &&
1873
           !ExplicitSpec.getPointer();
1874
  }
1875
  void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); }
1876
  void setExpr(Expr *E) { ExplicitSpec.setPointer(E); }
1877
  // Retrieve the explicit specifier in the given declaration, if any.
1878
  static ExplicitSpecifier getFromDecl(FunctionDecl *Function);
1879
  static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) {
1880
    return getFromDecl(const_cast<FunctionDecl *>(Function));
1881
  }
1882
  static ExplicitSpecifier Invalid() {
1883
    return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved);
1884
  }
1885
};
1886
 
1887
/// Represents a C++ deduction guide declaration.
1888
///
1889
/// \code
1890
/// template<typename T> struct A { A(); A(T); };
1891
/// A() -> A<int>;
1892
/// \endcode
1893
///
1894
/// In this example, there will be an explicit deduction guide from the
1895
/// second line, and implicit deduction guide templates synthesized from
1896
/// the constructors of \c A.
1897
class CXXDeductionGuideDecl : public FunctionDecl {
1898
  void anchor() override;
1899
 
1900
private:
1901
  CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1902
                        ExplicitSpecifier ES,
1903
                        const DeclarationNameInfo &NameInfo, QualType T,
1904
                        TypeSourceInfo *TInfo, SourceLocation EndLocation,
1905
                        CXXConstructorDecl *Ctor)
1906
      : FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
1907
                     SC_None, false, false, ConstexprSpecKind::Unspecified),
1908
        Ctor(Ctor), ExplicitSpec(ES) {
1909
    if (EndLocation.isValid())
1910
      setRangeEnd(EndLocation);
1911
    setIsCopyDeductionCandidate(false);
1912
  }
1913
 
1914
  CXXConstructorDecl *Ctor;
1915
  ExplicitSpecifier ExplicitSpec;
1916
  void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
1917
 
1918
public:
1919
  friend class ASTDeclReader;
1920
  friend class ASTDeclWriter;
1921
 
1922
  static CXXDeductionGuideDecl *
1923
  Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1924
         ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
1925
         TypeSourceInfo *TInfo, SourceLocation EndLocation,
1926
         CXXConstructorDecl *Ctor = nullptr);
1927
 
1928
  static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1929
 
1930
  ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; }
1931
  const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; }
1932
 
1933
  /// Return true if the declaration is already resolved to be explicit.
1934
  bool isExplicit() const { return ExplicitSpec.isExplicit(); }
1935
 
1936
  /// Get the template for which this guide performs deduction.
1937
  TemplateDecl *getDeducedTemplate() const {
1938
    return getDeclName().getCXXDeductionGuideTemplate();
1939
  }
1940
 
1941
  /// Get the constructor from which this deduction guide was generated, if
1942
  /// this is an implicit deduction guide.
1943
  CXXConstructorDecl *getCorrespondingConstructor() const {
1944
    return Ctor;
1945
  }
1946
 
1947
  void setIsCopyDeductionCandidate(bool isCDC = true) {
1948
    FunctionDeclBits.IsCopyDeductionCandidate = isCDC;
1949
  }
1950
 
1951
  bool isCopyDeductionCandidate() const {
1952
    return FunctionDeclBits.IsCopyDeductionCandidate;
1953
  }
1954
 
1955
  // Implement isa/cast/dyncast/etc.
1956
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1957
  static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
1958
};
1959
 
1960
/// \brief Represents the body of a requires-expression.
1961
///
1962
/// This decl exists merely to serve as the DeclContext for the local
1963
/// parameters of the requires expression as well as other declarations inside
1964
/// it.
1965
///
1966
/// \code
1967
/// template<typename T> requires requires (T t) { {t++} -> regular; }
1968
/// \endcode
1969
///
1970
/// In this example, a RequiresExpr object will be generated for the expression,
1971
/// and a RequiresExprBodyDecl will be created to hold the parameter t and the
1972
/// template argument list imposed by the compound requirement.
1973
class RequiresExprBodyDecl : public Decl, public DeclContext {
1974
  RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc)
1975
      : Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {}
1976
 
1977
public:
1978
  friend class ASTDeclReader;
1979
  friend class ASTDeclWriter;
1980
 
1981
  static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC,
1982
                                      SourceLocation StartLoc);
1983
 
1984
  static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1985
 
1986
  // Implement isa/cast/dyncast/etc.
1987
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1988
  static bool classofKind(Kind K) { return K == RequiresExprBody; }
1989
};
1990
 
1991
/// Represents a static or instance method of a struct/union/class.
1992
///
1993
/// In the terminology of the C++ Standard, these are the (static and
1994
/// non-static) member functions, whether virtual or not.
1995
class CXXMethodDecl : public FunctionDecl {
1996
  void anchor() override;
1997
 
1998
protected:
1999
  CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
2000
                SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
2001
                QualType T, TypeSourceInfo *TInfo, StorageClass SC,
2002
                bool UsesFPIntrin, bool isInline,
2003
                ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2004
                Expr *TrailingRequiresClause = nullptr)
2005
      : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2006
                     isInline, ConstexprKind, TrailingRequiresClause) {
2007
    if (EndLocation.isValid())
2008
      setRangeEnd(EndLocation);
2009
  }
2010
 
2011
public:
2012
  static CXXMethodDecl *
2013
  Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2014
         const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2015
         StorageClass SC, bool UsesFPIntrin, bool isInline,
2016
         ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2017
         Expr *TrailingRequiresClause = nullptr);
2018
 
2019
  static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2020
 
2021
  bool isStatic() const;
2022
  bool isInstance() const { return !isStatic(); }
2023
 
2024
  /// Returns true if the given operator is implicitly static in a record
2025
  /// context.
2026
  static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
2027
    // [class.free]p1:
2028
    // Any allocation function for a class T is a static member
2029
    // (even if not explicitly declared static).
2030
    // [class.free]p6 Any deallocation function for a class X is a static member
2031
    // (even if not explicitly declared static).
2032
    return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
2033
           OOK == OO_Array_Delete;
2034
  }
2035
 
2036
  bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
2037
  bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
2038
 
2039
  bool isVirtual() const {
2040
    CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2041
 
2042
    // Member function is virtual if it is marked explicitly so, or if it is
2043
    // declared in __interface -- then it is automatically pure virtual.
2044
    if (CD->isVirtualAsWritten() || CD->isPure())
2045
      return true;
2046
 
2047
    return CD->size_overridden_methods() != 0;
2048
  }
2049
 
2050
  /// If it's possible to devirtualize a call to this method, return the called
2051
  /// function. Otherwise, return null.
2052
 
2053
  /// \param Base The object on which this virtual function is called.
2054
  /// \param IsAppleKext True if we are compiling for Apple kext.
2055
  CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
2056
 
2057
  const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
2058
                                              bool IsAppleKext) const {
2059
    return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
2060
        Base, IsAppleKext);
2061
  }
2062
 
2063
  /// Determine whether this is a usual deallocation function (C++
2064
  /// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
2065
  /// delete[] operator with a particular signature. Populates \p PreventedBy
2066
  /// with the declarations of the functions of the same kind if they were the
2067
  /// reason for this function returning false. This is used by
2068
  /// Sema::isUsualDeallocationFunction to reconsider the answer based on the
2069
  /// context.
2070
  bool isUsualDeallocationFunction(
2071
      SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
2072
 
2073
  /// Determine whether this is a copy-assignment operator, regardless
2074
  /// of whether it was declared implicitly or explicitly.
2075
  bool isCopyAssignmentOperator() const;
2076
 
2077
  /// Determine whether this is a move assignment operator.
2078
  bool isMoveAssignmentOperator() const;
2079
 
2080
  CXXMethodDecl *getCanonicalDecl() override {
2081
    return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
2082
  }
2083
  const CXXMethodDecl *getCanonicalDecl() const {
2084
    return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2085
  }
2086
 
2087
  CXXMethodDecl *getMostRecentDecl() {
2088
    return cast<CXXMethodDecl>(
2089
            static_cast<FunctionDecl *>(this)->getMostRecentDecl());
2090
  }
2091
  const CXXMethodDecl *getMostRecentDecl() const {
2092
    return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
2093
  }
2094
 
2095
  void addOverriddenMethod(const CXXMethodDecl *MD);
2096
 
2097
  using method_iterator = const CXXMethodDecl *const *;
2098
 
2099
  method_iterator begin_overridden_methods() const;
2100
  method_iterator end_overridden_methods() const;
2101
  unsigned size_overridden_methods() const;
2102
 
2103
  using overridden_method_range = llvm::iterator_range<
2104
      llvm::TinyPtrVector<const CXXMethodDecl *>::const_iterator>;
2105
 
2106
  overridden_method_range overridden_methods() const;
2107
 
2108
  /// Return the parent of this method declaration, which
2109
  /// is the class in which this method is defined.
2110
  const CXXRecordDecl *getParent() const {
2111
    return cast<CXXRecordDecl>(FunctionDecl::getParent());
2112
  }
2113
 
2114
  /// Return the parent of this method declaration, which
2115
  /// is the class in which this method is defined.
2116
  CXXRecordDecl *getParent() {
2117
    return const_cast<CXXRecordDecl *>(
2118
             cast<CXXRecordDecl>(FunctionDecl::getParent()));
2119
  }
2120
 
2121
  /// Return the type of the \c this pointer.
2122
  ///
2123
  /// Should only be called for instance (i.e., non-static) methods. Note
2124
  /// that for the call operator of a lambda closure type, this returns the
2125
  /// desugared 'this' type (a pointer to the closure type), not the captured
2126
  /// 'this' type.
2127
  QualType getThisType() const;
2128
 
2129
  /// Return the type of the object pointed by \c this.
2130
  ///
2131
  /// See getThisType() for usage restriction.
2132
  QualType getThisObjectType() const;
2133
 
2134
  static QualType getThisType(const FunctionProtoType *FPT,
2135
                              const CXXRecordDecl *Decl);
2136
 
2137
  static QualType getThisObjectType(const FunctionProtoType *FPT,
2138
                                    const CXXRecordDecl *Decl);
2139
 
2140
  Qualifiers getMethodQualifiers() const {
2141
    return getType()->castAs<FunctionProtoType>()->getMethodQuals();
2142
  }
2143
 
2144
  /// Retrieve the ref-qualifier associated with this method.
2145
  ///
2146
  /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
2147
  /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
2148
  /// @code
2149
  /// struct X {
2150
  ///   void f() &;
2151
  ///   void g() &&;
2152
  ///   void h();
2153
  /// };
2154
  /// @endcode
2155
  RefQualifierKind getRefQualifier() const {
2156
    return getType()->castAs<FunctionProtoType>()->getRefQualifier();
2157
  }
2158
 
2159
  bool hasInlineBody() const;
2160
 
2161
  /// Determine whether this is a lambda closure type's static member
2162
  /// function that is used for the result of the lambda's conversion to
2163
  /// function pointer (for a lambda with no captures).
2164
  ///
2165
  /// The function itself, if used, will have a placeholder body that will be
2166
  /// supplied by IR generation to either forward to the function call operator
2167
  /// or clone the function call operator.
2168
  bool isLambdaStaticInvoker() const;
2169
 
2170
  /// Find the method in \p RD that corresponds to this one.
2171
  ///
2172
  /// Find if \p RD or one of the classes it inherits from override this method.
2173
  /// If so, return it. \p RD is assumed to be a subclass of the class defining
2174
  /// this method (or be the class itself), unless \p MayBeBase is set to true.
2175
  CXXMethodDecl *
2176
  getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2177
                                bool MayBeBase = false);
2178
 
2179
  const CXXMethodDecl *
2180
  getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2181
                                bool MayBeBase = false) const {
2182
    return const_cast<CXXMethodDecl *>(this)
2183
              ->getCorrespondingMethodInClass(RD, MayBeBase);
2184
  }
2185
 
2186
  /// Find if \p RD declares a function that overrides this function, and if so,
2187
  /// return it. Does not search base classes.
2188
  CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2189
                                                       bool MayBeBase = false);
2190
  const CXXMethodDecl *
2191
  getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2192
                                        bool MayBeBase = false) const {
2193
    return const_cast<CXXMethodDecl *>(this)
2194
        ->getCorrespondingMethodDeclaredInClass(RD, MayBeBase);
2195
  }
2196
 
2197
  // Implement isa/cast/dyncast/etc.
2198
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2199
  static bool classofKind(Kind K) {
2200
    return K >= firstCXXMethod && K <= lastCXXMethod;
2201
  }
2202
};
2203
 
2204
/// Represents a C++ base or member initializer.
2205
///
2206
/// This is part of a constructor initializer that
2207
/// initializes one non-static member variable or one base class. For
2208
/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
2209
/// initializers:
2210
///
2211
/// \code
2212
/// class A { };
2213
/// class B : public A {
2214
///   float f;
2215
/// public:
2216
///   B(A& a) : A(a), f(3.14159) { }
2217
/// };
2218
/// \endcode
2219
class CXXCtorInitializer final {
2220
  /// Either the base class name/delegating constructor type (stored as
2221
  /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
2222
  /// (IndirectFieldDecl*) being initialized.
2223
  llvm::PointerUnion<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
2224
      Initializee;
2225
 
2226
  /// The argument used to initialize the base or member, which may
2227
  /// end up constructing an object (when multiple arguments are involved).
2228
  Stmt *Init;
2229
 
2230
  /// The source location for the field name or, for a base initializer
2231
  /// pack expansion, the location of the ellipsis.
2232
  ///
2233
  /// In the case of a delegating
2234
  /// constructor, it will still include the type's source location as the
2235
  /// Initializee points to the CXXConstructorDecl (to allow loop detection).
2236
  SourceLocation MemberOrEllipsisLocation;
2237
 
2238
  /// Location of the left paren of the ctor-initializer.
2239
  SourceLocation LParenLoc;
2240
 
2241
  /// Location of the right paren of the ctor-initializer.
2242
  SourceLocation RParenLoc;
2243
 
2244
  /// If the initializee is a type, whether that type makes this
2245
  /// a delegating initialization.
2246
  unsigned IsDelegating : 1;
2247
 
2248
  /// If the initializer is a base initializer, this keeps track
2249
  /// of whether the base is virtual or not.
2250
  unsigned IsVirtual : 1;
2251
 
2252
  /// Whether or not the initializer is explicitly written
2253
  /// in the sources.
2254
  unsigned IsWritten : 1;
2255
 
2256
  /// If IsWritten is true, then this number keeps track of the textual order
2257
  /// of this initializer in the original sources, counting from 0.
2258
  unsigned SourceOrder : 13;
2259
 
2260
public:
2261
  /// Creates a new base-class initializer.
2262
  explicit
2263
  CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
2264
                     SourceLocation L, Expr *Init, SourceLocation R,
2265
                     SourceLocation EllipsisLoc);
2266
 
2267
  /// Creates a new member initializer.
2268
  explicit
2269
  CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2270
                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2271
                     SourceLocation R);
2272
 
2273
  /// Creates a new anonymous field initializer.
2274
  explicit
2275
  CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
2276
                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2277
                     SourceLocation R);
2278
 
2279
  /// Creates a new delegating initializer.
2280
  explicit
2281
  CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
2282
                     SourceLocation L, Expr *Init, SourceLocation R);
2283
 
2284
  /// \return Unique reproducible object identifier.
2285
  int64_t getID(const ASTContext &Context) const;
2286
 
2287
  /// Determine whether this initializer is initializing a base class.
2288
  bool isBaseInitializer() const {
2289
    return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
2290
  }
2291
 
2292
  /// Determine whether this initializer is initializing a non-static
2293
  /// data member.
2294
  bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
2295
 
2296
  bool isAnyMemberInitializer() const {
2297
    return isMemberInitializer() || isIndirectMemberInitializer();
2298
  }
2299
 
2300
  bool isIndirectMemberInitializer() const {
2301
    return Initializee.is<IndirectFieldDecl*>();
2302
  }
2303
 
2304
  /// Determine whether this initializer is an implicit initializer
2305
  /// generated for a field with an initializer defined on the member
2306
  /// declaration.
2307
  ///
2308
  /// In-class member initializers (also known as "non-static data member
2309
  /// initializations", NSDMIs) were introduced in C++11.
2310
  bool isInClassMemberInitializer() const {
2311
    return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
2312
  }
2313
 
2314
  /// Determine whether this initializer is creating a delegating
2315
  /// constructor.
2316
  bool isDelegatingInitializer() const {
2317
    return Initializee.is<TypeSourceInfo*>() && IsDelegating;
2318
  }
2319
 
2320
  /// Determine whether this initializer is a pack expansion.
2321
  bool isPackExpansion() const {
2322
    return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
2323
  }
2324
 
2325
  // For a pack expansion, returns the location of the ellipsis.
2326
  SourceLocation getEllipsisLoc() const {
2327
    if (!isPackExpansion())
2328
      return {};
2329
    return MemberOrEllipsisLocation;
2330
  }
2331
 
2332
  /// If this is a base class initializer, returns the type of the
2333
  /// base class with location information. Otherwise, returns an NULL
2334
  /// type location.
2335
  TypeLoc getBaseClassLoc() const;
2336
 
2337
  /// If this is a base class initializer, returns the type of the base class.
2338
  /// Otherwise, returns null.
2339
  const Type *getBaseClass() const;
2340
 
2341
  /// Returns whether the base is virtual or not.
2342
  bool isBaseVirtual() const {
2343
    assert(isBaseInitializer() && "Must call this on base initializer!");
2344
 
2345
    return IsVirtual;
2346
  }
2347
 
2348
  /// Returns the declarator information for a base class or delegating
2349
  /// initializer.
2350
  TypeSourceInfo *getTypeSourceInfo() const {
2351
    return Initializee.dyn_cast<TypeSourceInfo *>();
2352
  }
2353
 
2354
  /// If this is a member initializer, returns the declaration of the
2355
  /// non-static data member being initialized. Otherwise, returns null.
2356
  FieldDecl *getMember() const {
2357
    if (isMemberInitializer())
2358
      return Initializee.get<FieldDecl*>();
2359
    return nullptr;
2360
  }
2361
 
2362
  FieldDecl *getAnyMember() const {
2363
    if (isMemberInitializer())
2364
      return Initializee.get<FieldDecl*>();
2365
    if (isIndirectMemberInitializer())
2366
      return Initializee.get<IndirectFieldDecl*>()->getAnonField();
2367
    return nullptr;
2368
  }
2369
 
2370
  IndirectFieldDecl *getIndirectMember() const {
2371
    if (isIndirectMemberInitializer())
2372
      return Initializee.get<IndirectFieldDecl*>();
2373
    return nullptr;
2374
  }
2375
 
2376
  SourceLocation getMemberLocation() const {
2377
    return MemberOrEllipsisLocation;
2378
  }
2379
 
2380
  /// Determine the source location of the initializer.
2381
  SourceLocation getSourceLocation() const;
2382
 
2383
  /// Determine the source range covering the entire initializer.
2384
  SourceRange getSourceRange() const LLVM_READONLY;
2385
 
2386
  /// Determine whether this initializer is explicitly written
2387
  /// in the source code.
2388
  bool isWritten() const { return IsWritten; }
2389
 
2390
  /// Return the source position of the initializer, counting from 0.
2391
  /// If the initializer was implicit, -1 is returned.
2392
  int getSourceOrder() const {
2393
    return IsWritten ? static_cast<int>(SourceOrder) : -1;
2394
  }
2395
 
2396
  /// Set the source order of this initializer.
2397
  ///
2398
  /// This can only be called once for each initializer; it cannot be called
2399
  /// on an initializer having a positive number of (implicit) array indices.
2400
  ///
2401
  /// This assumes that the initializer was written in the source code, and
2402
  /// ensures that isWritten() returns true.
2403
  void setSourceOrder(int Pos) {
2404
    assert(!IsWritten &&
2405
           "setSourceOrder() used on implicit initializer");
2406
    assert(SourceOrder == 0 &&
2407
           "calling twice setSourceOrder() on the same initializer");
2408
    assert(Pos >= 0 &&
2409
           "setSourceOrder() used to make an initializer implicit");
2410
    IsWritten = true;
2411
    SourceOrder = static_cast<unsigned>(Pos);
2412
  }
2413
 
2414
  SourceLocation getLParenLoc() const { return LParenLoc; }
2415
  SourceLocation getRParenLoc() const { return RParenLoc; }
2416
 
2417
  /// Get the initializer.
2418
  Expr *getInit() const { return static_cast<Expr *>(Init); }
2419
};
2420
 
2421
/// Description of a constructor that was inherited from a base class.
2422
class InheritedConstructor {
2423
  ConstructorUsingShadowDecl *Shadow = nullptr;
2424
  CXXConstructorDecl *BaseCtor = nullptr;
2425
 
2426
public:
2427
  InheritedConstructor() = default;
2428
  InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
2429
                       CXXConstructorDecl *BaseCtor)
2430
      : Shadow(Shadow), BaseCtor(BaseCtor) {}
2431
 
2432
  explicit operator bool() const { return Shadow; }
2433
 
2434
  ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
2435
  CXXConstructorDecl *getConstructor() const { return BaseCtor; }
2436
};
2437
 
2438
/// Represents a C++ constructor within a class.
2439
///
2440
/// For example:
2441
///
2442
/// \code
2443
/// class X {
2444
/// public:
2445
///   explicit X(int); // represented by a CXXConstructorDecl.
2446
/// };
2447
/// \endcode
2448
class CXXConstructorDecl final
2449
    : public CXXMethodDecl,
2450
      private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor,
2451
                                    ExplicitSpecifier> {
2452
  // This class stores some data in DeclContext::CXXConstructorDeclBits
2453
  // to save some space. Use the provided accessors to access it.
2454
 
2455
  /// \name Support for base and member initializers.
2456
  /// \{
2457
  /// The arguments used to initialize the base or member.
2458
  LazyCXXCtorInitializersPtr CtorInitializers;
2459
 
2460
  CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2461
                     const DeclarationNameInfo &NameInfo, QualType T,
2462
                     TypeSourceInfo *TInfo, ExplicitSpecifier ES,
2463
                     bool UsesFPIntrin, bool isInline,
2464
                     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2465
                     InheritedConstructor Inherited,
2466
                     Expr *TrailingRequiresClause);
2467
 
2468
  void anchor() override;
2469
 
2470
  size_t numTrailingObjects(OverloadToken<InheritedConstructor>) const {
2471
    return CXXConstructorDeclBits.IsInheritingConstructor;
2472
  }
2473
  size_t numTrailingObjects(OverloadToken<ExplicitSpecifier>) const {
2474
    return CXXConstructorDeclBits.HasTrailingExplicitSpecifier;
2475
  }
2476
 
2477
  ExplicitSpecifier getExplicitSpecifierInternal() const {
2478
    if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier)
2479
      return *getTrailingObjects<ExplicitSpecifier>();
2480
    return ExplicitSpecifier(
2481
        nullptr, CXXConstructorDeclBits.IsSimpleExplicit
2482
                     ? ExplicitSpecKind::ResolvedTrue
2483
                     : ExplicitSpecKind::ResolvedFalse);
2484
  }
2485
 
2486
  enum TrailingAllocKind {
2487
    TAKInheritsConstructor = 1,
2488
    TAKHasTailExplicit = 1 << 1,
2489
  };
2490
 
2491
  uint64_t getTrailingAllocKind() const {
2492
    return numTrailingObjects(OverloadToken<InheritedConstructor>()) |
2493
           (numTrailingObjects(OverloadToken<ExplicitSpecifier>()) << 1);
2494
  }
2495
 
2496
public:
2497
  friend class ASTDeclReader;
2498
  friend class ASTDeclWriter;
2499
  friend TrailingObjects;
2500
 
2501
  static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
2502
                                                uint64_t AllocKind);
2503
  static CXXConstructorDecl *
2504
  Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2505
         const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2506
         ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2507
         bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2508
         InheritedConstructor Inherited = InheritedConstructor(),
2509
         Expr *TrailingRequiresClause = nullptr);
2510
 
2511
  void setExplicitSpecifier(ExplicitSpecifier ES) {
2512
    assert((!ES.getExpr() ||
2513
            CXXConstructorDeclBits.HasTrailingExplicitSpecifier) &&
2514
           "cannot set this explicit specifier. no trail-allocated space for "
2515
           "explicit");
2516
    if (ES.getExpr())
2517
      *getCanonicalDecl()->getTrailingObjects<ExplicitSpecifier>() = ES;
2518
    else
2519
      CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit();
2520
  }
2521
 
2522
  ExplicitSpecifier getExplicitSpecifier() {
2523
    return getCanonicalDecl()->getExplicitSpecifierInternal();
2524
  }
2525
  const ExplicitSpecifier getExplicitSpecifier() const {
2526
    return getCanonicalDecl()->getExplicitSpecifierInternal();
2527
  }
2528
 
2529
  /// Return true if the declaration is already resolved to be explicit.
2530
  bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2531
 
2532
  /// Iterates through the member/base initializer list.
2533
  using init_iterator = CXXCtorInitializer **;
2534
 
2535
  /// Iterates through the member/base initializer list.
2536
  using init_const_iterator = CXXCtorInitializer *const *;
2537
 
2538
  using init_range = llvm::iterator_range<init_iterator>;
2539
  using init_const_range = llvm::iterator_range<init_const_iterator>;
2540
 
2541
  init_range inits() { return init_range(init_begin(), init_end()); }
2542
  init_const_range inits() const {
2543
    return init_const_range(init_begin(), init_end());
2544
  }
2545
 
2546
  /// Retrieve an iterator to the first initializer.
2547
  init_iterator init_begin() {
2548
    const auto *ConstThis = this;
2549
    return const_cast<init_iterator>(ConstThis->init_begin());
2550
  }
2551
 
2552
  /// Retrieve an iterator to the first initializer.
2553
  init_const_iterator init_begin() const;
2554
 
2555
  /// Retrieve an iterator past the last initializer.
2556
  init_iterator       init_end()       {
2557
    return init_begin() + getNumCtorInitializers();
2558
  }
2559
 
2560
  /// Retrieve an iterator past the last initializer.
2561
  init_const_iterator init_end() const {
2562
    return init_begin() + getNumCtorInitializers();
2563
  }
2564
 
2565
  using init_reverse_iterator = std::reverse_iterator<init_iterator>;
2566
  using init_const_reverse_iterator =
2567
      std::reverse_iterator<init_const_iterator>;
2568
 
2569
  init_reverse_iterator init_rbegin() {
2570
    return init_reverse_iterator(init_end());
2571
  }
2572
  init_const_reverse_iterator init_rbegin() const {
2573
    return init_const_reverse_iterator(init_end());
2574
  }
2575
 
2576
  init_reverse_iterator init_rend() {
2577
    return init_reverse_iterator(init_begin());
2578
  }
2579
  init_const_reverse_iterator init_rend() const {
2580
    return init_const_reverse_iterator(init_begin());
2581
  }
2582
 
2583
  /// Determine the number of arguments used to initialize the member
2584
  /// or base.
2585
  unsigned getNumCtorInitializers() const {
2586
      return CXXConstructorDeclBits.NumCtorInitializers;
2587
  }
2588
 
2589
  void setNumCtorInitializers(unsigned numCtorInitializers) {
2590
    CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
2591
    // This assert added because NumCtorInitializers is stored
2592
    // in CXXConstructorDeclBits as a bitfield and its width has
2593
    // been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
2594
    assert(CXXConstructorDeclBits.NumCtorInitializers ==
2595
           numCtorInitializers && "NumCtorInitializers overflow!");
2596
  }
2597
 
2598
  void setCtorInitializers(CXXCtorInitializer **Initializers) {
2599
    CtorInitializers = Initializers;
2600
  }
2601
 
2602
  /// Determine whether this constructor is a delegating constructor.
2603
  bool isDelegatingConstructor() const {
2604
    return (getNumCtorInitializers() == 1) &&
2605
           init_begin()[0]->isDelegatingInitializer();
2606
  }
2607
 
2608
  /// When this constructor delegates to another, retrieve the target.
2609
  CXXConstructorDecl *getTargetConstructor() const;
2610
 
2611
  /// Whether this constructor is a default
2612
  /// constructor (C++ [class.ctor]p5), which can be used to
2613
  /// default-initialize a class of this type.
2614
  bool isDefaultConstructor() const;
2615
 
2616
  /// Whether this constructor is a copy constructor (C++ [class.copy]p2,
2617
  /// which can be used to copy the class.
2618
  ///
2619
  /// \p TypeQuals will be set to the qualifiers on the
2620
  /// argument type. For example, \p TypeQuals would be set to \c
2621
  /// Qualifiers::Const for the following copy constructor:
2622
  ///
2623
  /// \code
2624
  /// class X {
2625
  /// public:
2626
  ///   X(const X&);
2627
  /// };
2628
  /// \endcode
2629
  bool isCopyConstructor(unsigned &TypeQuals) const;
2630
 
2631
  /// Whether this constructor is a copy
2632
  /// constructor (C++ [class.copy]p2, which can be used to copy the
2633
  /// class.
2634
  bool isCopyConstructor() const {
2635
    unsigned TypeQuals = 0;
2636
    return isCopyConstructor(TypeQuals);
2637
  }
2638
 
2639
  /// Determine whether this constructor is a move constructor
2640
  /// (C++11 [class.copy]p3), which can be used to move values of the class.
2641
  ///
2642
  /// \param TypeQuals If this constructor is a move constructor, will be set
2643
  /// to the type qualifiers on the referent of the first parameter's type.
2644
  bool isMoveConstructor(unsigned &TypeQuals) const;
2645
 
2646
  /// Determine whether this constructor is a move constructor
2647
  /// (C++11 [class.copy]p3), which can be used to move values of the class.
2648
  bool isMoveConstructor() const {
2649
    unsigned TypeQuals = 0;
2650
    return isMoveConstructor(TypeQuals);
2651
  }
2652
 
2653
  /// Determine whether this is a copy or move constructor.
2654
  ///
2655
  /// \param TypeQuals Will be set to the type qualifiers on the reference
2656
  /// parameter, if in fact this is a copy or move constructor.
2657
  bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2658
 
2659
  /// Determine whether this a copy or move constructor.
2660
  bool isCopyOrMoveConstructor() const {
2661
    unsigned Quals;
2662
    return isCopyOrMoveConstructor(Quals);
2663
  }
2664
 
2665
  /// Whether this constructor is a
2666
  /// converting constructor (C++ [class.conv.ctor]), which can be
2667
  /// used for user-defined conversions.
2668
  bool isConvertingConstructor(bool AllowExplicit) const;
2669
 
2670
  /// Determine whether this is a member template specialization that
2671
  /// would copy the object to itself. Such constructors are never used to copy
2672
  /// an object.
2673
  bool isSpecializationCopyingObject() const;
2674
 
2675
  /// Determine whether this is an implicit constructor synthesized to
2676
  /// model a call to a constructor inherited from a base class.
2677
  bool isInheritingConstructor() const {
2678
    return CXXConstructorDeclBits.IsInheritingConstructor;
2679
  }
2680
 
2681
  /// State that this is an implicit constructor synthesized to
2682
  /// model a call to a constructor inherited from a base class.
2683
  void setInheritingConstructor(bool isIC = true) {
2684
    CXXConstructorDeclBits.IsInheritingConstructor = isIC;
2685
  }
2686
 
2687
  /// Get the constructor that this inheriting constructor is based on.
2688
  InheritedConstructor getInheritedConstructor() const {
2689
    return isInheritingConstructor() ?
2690
      *getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
2691
  }
2692
 
2693
  CXXConstructorDecl *getCanonicalDecl() override {
2694
    return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2695
  }
2696
  const CXXConstructorDecl *getCanonicalDecl() const {
2697
    return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
2698
  }
2699
 
2700
  // Implement isa/cast/dyncast/etc.
2701
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2702
  static bool classofKind(Kind K) { return K == CXXConstructor; }
2703
};
2704
 
2705
/// Represents a C++ destructor within a class.
2706
///
2707
/// For example:
2708
///
2709
/// \code
2710
/// class X {
2711
/// public:
2712
///   ~X(); // represented by a CXXDestructorDecl.
2713
/// };
2714
/// \endcode
2715
class CXXDestructorDecl : public CXXMethodDecl {
2716
  friend class ASTDeclReader;
2717
  friend class ASTDeclWriter;
2718
 
2719
  // FIXME: Don't allocate storage for these except in the first declaration
2720
  // of a virtual destructor.
2721
  FunctionDecl *OperatorDelete = nullptr;
2722
  Expr *OperatorDeleteThisArg = nullptr;
2723
 
2724
  CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2725
                    const DeclarationNameInfo &NameInfo, QualType T,
2726
                    TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2727
                    bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2728
                    Expr *TrailingRequiresClause = nullptr)
2729
      : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
2730
                      SC_None, UsesFPIntrin, isInline, ConstexprKind,
2731
                      SourceLocation(), TrailingRequiresClause) {
2732
    setImplicit(isImplicitlyDeclared);
2733
  }
2734
 
2735
  void anchor() override;
2736
 
2737
public:
2738
  static CXXDestructorDecl *
2739
  Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2740
         const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2741
         bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2742
         ConstexprSpecKind ConstexprKind,
2743
         Expr *TrailingRequiresClause = nullptr);
2744
  static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2745
 
2746
  void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
2747
 
2748
  const FunctionDecl *getOperatorDelete() const {
2749
    return getCanonicalDecl()->OperatorDelete;
2750
  }
2751
 
2752
  Expr *getOperatorDeleteThisArg() const {
2753
    return getCanonicalDecl()->OperatorDeleteThisArg;
2754
  }
2755
 
2756
  CXXDestructorDecl *getCanonicalDecl() override {
2757
    return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
2758
  }
2759
  const CXXDestructorDecl *getCanonicalDecl() const {
2760
    return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
2761
  }
2762
 
2763
  // Implement isa/cast/dyncast/etc.
2764
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2765
  static bool classofKind(Kind K) { return K == CXXDestructor; }
2766
};
2767
 
2768
/// Represents a C++ conversion function within a class.
2769
///
2770
/// For example:
2771
///
2772
/// \code
2773
/// class X {
2774
/// public:
2775
///   operator bool();
2776
/// };
2777
/// \endcode
2778
class CXXConversionDecl : public CXXMethodDecl {
2779
  CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2780
                    const DeclarationNameInfo &NameInfo, QualType T,
2781
                    TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2782
                    ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2783
                    SourceLocation EndLocation,
2784
                    Expr *TrailingRequiresClause = nullptr)
2785
      : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
2786
                      SC_None, UsesFPIntrin, isInline, ConstexprKind,
2787
                      EndLocation, TrailingRequiresClause),
2788
        ExplicitSpec(ES) {}
2789
  void anchor() override;
2790
 
2791
  ExplicitSpecifier ExplicitSpec;
2792
 
2793
public:
2794
  friend class ASTDeclReader;
2795
  friend class ASTDeclWriter;
2796
 
2797
  static CXXConversionDecl *
2798
  Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2799
         const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2800
         bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2801
         ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2802
         Expr *TrailingRequiresClause = nullptr);
2803
  static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2804
 
2805
  ExplicitSpecifier getExplicitSpecifier() {
2806
    return getCanonicalDecl()->ExplicitSpec;
2807
  }
2808
 
2809
  const ExplicitSpecifier getExplicitSpecifier() const {
2810
    return getCanonicalDecl()->ExplicitSpec;
2811
  }
2812
 
2813
  /// Return true if the declaration is already resolved to be explicit.
2814
  bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2815
  void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
2816
 
2817
  /// Returns the type that this conversion function is converting to.
2818
  QualType getConversionType() const {
2819
    return getType()->castAs<FunctionType>()->getReturnType();
2820
  }
2821
 
2822
  /// Determine whether this conversion function is a conversion from
2823
  /// a lambda closure type to a block pointer.
2824
  bool isLambdaToBlockPointerConversion() const;
2825
 
2826
  CXXConversionDecl *getCanonicalDecl() override {
2827
    return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
2828
  }
2829
  const CXXConversionDecl *getCanonicalDecl() const {
2830
    return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
2831
  }
2832
 
2833
  // Implement isa/cast/dyncast/etc.
2834
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2835
  static bool classofKind(Kind K) { return K == CXXConversion; }
2836
};
2837
 
2838
/// Represents a linkage specification.
2839
///
2840
/// For example:
2841
/// \code
2842
///   extern "C" void foo();
2843
/// \endcode
2844
class LinkageSpecDecl : public Decl, public DeclContext {
2845
  virtual void anchor();
2846
  // This class stores some data in DeclContext::LinkageSpecDeclBits to save
2847
  // some space. Use the provided accessors to access it.
2848
public:
2849
  /// Represents the language in a linkage specification.
2850
  ///
2851
  /// The values are part of the serialization ABI for
2852
  /// ASTs and cannot be changed without altering that ABI.
2853
  enum LanguageIDs { lang_c = 1, lang_cxx = 2 };
2854
 
2855
private:
2856
  /// The source location for the extern keyword.
2857
  SourceLocation ExternLoc;
2858
 
2859
  /// The source location for the right brace (if valid).
2860
  SourceLocation RBraceLoc;
2861
 
2862
  LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2863
                  SourceLocation LangLoc, LanguageIDs lang, bool HasBraces);
2864
 
2865
public:
2866
  static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2867
                                 SourceLocation ExternLoc,
2868
                                 SourceLocation LangLoc, LanguageIDs Lang,
2869
                                 bool HasBraces);
2870
  static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2871
 
2872
  /// Return the language specified by this linkage specification.
2873
  LanguageIDs getLanguage() const {
2874
    return static_cast<LanguageIDs>(LinkageSpecDeclBits.Language);
2875
  }
2876
 
2877
  /// Set the language specified by this linkage specification.
2878
  void setLanguage(LanguageIDs L) { LinkageSpecDeclBits.Language = L; }
2879
 
2880
  /// Determines whether this linkage specification had braces in
2881
  /// its syntactic form.
2882
  bool hasBraces() const {
2883
    assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces);
2884
    return LinkageSpecDeclBits.HasBraces;
2885
  }
2886
 
2887
  SourceLocation getExternLoc() const { return ExternLoc; }
2888
  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2889
  void setExternLoc(SourceLocation L) { ExternLoc = L; }
2890
  void setRBraceLoc(SourceLocation L) {
2891
    RBraceLoc = L;
2892
    LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
2893
  }
2894
 
2895
  SourceLocation getEndLoc() const LLVM_READONLY {
2896
    if (hasBraces())
2897
      return getRBraceLoc();
2898
    // No braces: get the end location of the (only) declaration in context
2899
    // (if present).
2900
    return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
2901
  }
2902
 
2903
  SourceRange getSourceRange() const override LLVM_READONLY {
2904
    return SourceRange(ExternLoc, getEndLoc());
2905
  }
2906
 
2907
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2908
  static bool classofKind(Kind K) { return K == LinkageSpec; }
2909
 
2910
  static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2911
    return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2912
  }
2913
 
2914
  static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2915
    return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2916
  }
2917
};
2918
 
2919
/// Represents C++ using-directive.
2920
///
2921
/// For example:
2922
/// \code
2923
///    using namespace std;
2924
/// \endcode
2925
///
2926
/// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
2927
/// artificial names for all using-directives in order to store
2928
/// them in DeclContext effectively.
2929
class UsingDirectiveDecl : public NamedDecl {
2930
  /// The location of the \c using keyword.
2931
  SourceLocation UsingLoc;
2932
 
2933
  /// The location of the \c namespace keyword.
2934
  SourceLocation NamespaceLoc;
2935
 
2936
  /// The nested-name-specifier that precedes the namespace.
2937
  NestedNameSpecifierLoc QualifierLoc;
2938
 
2939
  /// The namespace nominated by this using-directive.
2940
  NamedDecl *NominatedNamespace;
2941
 
2942
  /// Enclosing context containing both using-directive and nominated
2943
  /// namespace.
2944
  DeclContext *CommonAncestor;
2945
 
2946
  UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
2947
                     SourceLocation NamespcLoc,
2948
                     NestedNameSpecifierLoc QualifierLoc,
2949
                     SourceLocation IdentLoc,
2950
                     NamedDecl *Nominated,
2951
                     DeclContext *CommonAncestor)
2952
      : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
2953
        NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
2954
        NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
2955
 
2956
  /// Returns special DeclarationName used by using-directives.
2957
  ///
2958
  /// This is only used by DeclContext for storing UsingDirectiveDecls in
2959
  /// its lookup structure.
2960
  static DeclarationName getName() {
2961
    return DeclarationName::getUsingDirectiveName();
2962
  }
2963
 
2964
  void anchor() override;
2965
 
2966
public:
2967
  friend class ASTDeclReader;
2968
 
2969
  // Friend for getUsingDirectiveName.
2970
  friend class DeclContext;
2971
 
2972
  /// Retrieve the nested-name-specifier that qualifies the
2973
  /// name of the namespace, with source-location information.
2974
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2975
 
2976
  /// Retrieve the nested-name-specifier that qualifies the
2977
  /// name of the namespace.
2978
  NestedNameSpecifier *getQualifier() const {
2979
    return QualifierLoc.getNestedNameSpecifier();
2980
  }
2981
 
2982
  NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
2983
  const NamedDecl *getNominatedNamespaceAsWritten() const {
2984
    return NominatedNamespace;
2985
  }
2986
 
2987
  /// Returns the namespace nominated by this using-directive.
2988
  NamespaceDecl *getNominatedNamespace();
2989
 
2990
  const NamespaceDecl *getNominatedNamespace() const {
2991
    return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
2992
  }
2993
 
2994
  /// Returns the common ancestor context of this using-directive and
2995
  /// its nominated namespace.
2996
  DeclContext *getCommonAncestor() { return CommonAncestor; }
2997
  const DeclContext *getCommonAncestor() const { return CommonAncestor; }
2998
 
2999
  /// Return the location of the \c using keyword.
3000
  SourceLocation getUsingLoc() const { return UsingLoc; }
3001
 
3002
  // FIXME: Could omit 'Key' in name.
3003
  /// Returns the location of the \c namespace keyword.
3004
  SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
3005
 
3006
  /// Returns the location of this using declaration's identifier.
3007
  SourceLocation getIdentLocation() const { return getLocation(); }
3008
 
3009
  static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
3010
                                    SourceLocation UsingLoc,
3011
                                    SourceLocation NamespaceLoc,
3012
                                    NestedNameSpecifierLoc QualifierLoc,
3013
                                    SourceLocation IdentLoc,
3014
                                    NamedDecl *Nominated,
3015
                                    DeclContext *CommonAncestor);
3016
  static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3017
 
3018
  SourceRange getSourceRange() const override LLVM_READONLY {
3019
    return SourceRange(UsingLoc, getLocation());
3020
  }
3021
 
3022
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3023
  static bool classofKind(Kind K) { return K == UsingDirective; }
3024
};
3025
 
3026
/// Represents a C++ namespace alias.
3027
///
3028
/// For example:
3029
///
3030
/// \code
3031
/// namespace Foo = Bar;
3032
/// \endcode
3033
class NamespaceAliasDecl : public NamedDecl,
3034
                           public Redeclarable<NamespaceAliasDecl> {
3035
  friend class ASTDeclReader;
3036
 
3037
  /// The location of the \c namespace keyword.
3038
  SourceLocation NamespaceLoc;
3039
 
3040
  /// The location of the namespace's identifier.
3041
  ///
3042
  /// This is accessed by TargetNameLoc.
3043
  SourceLocation IdentLoc;
3044
 
3045
  /// The nested-name-specifier that precedes the namespace.
3046
  NestedNameSpecifierLoc QualifierLoc;
3047
 
3048
  /// The Decl that this alias points to, either a NamespaceDecl or
3049
  /// a NamespaceAliasDecl.
3050
  NamedDecl *Namespace;
3051
 
3052
  NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
3053
                     SourceLocation NamespaceLoc, SourceLocation AliasLoc,
3054
                     IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
3055
                     SourceLocation IdentLoc, NamedDecl *Namespace)
3056
      : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
3057
        NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
3058
        QualifierLoc(QualifierLoc), Namespace(Namespace) {}
3059
 
3060
  void anchor() override;
3061
 
3062
  using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
3063
 
3064
  NamespaceAliasDecl *getNextRedeclarationImpl() override;
3065
  NamespaceAliasDecl *getPreviousDeclImpl() override;
3066
  NamespaceAliasDecl *getMostRecentDeclImpl() override;
3067
 
3068
public:
3069
  static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
3070
                                    SourceLocation NamespaceLoc,
3071
                                    SourceLocation AliasLoc,
3072
                                    IdentifierInfo *Alias,
3073
                                    NestedNameSpecifierLoc QualifierLoc,
3074
                                    SourceLocation IdentLoc,
3075
                                    NamedDecl *Namespace);
3076
 
3077
  static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3078
 
3079
  using redecl_range = redeclarable_base::redecl_range;
3080
  using redecl_iterator = redeclarable_base::redecl_iterator;
3081
 
3082
  using redeclarable_base::redecls_begin;
3083
  using redeclarable_base::redecls_end;
3084
  using redeclarable_base::redecls;
3085
  using redeclarable_base::getPreviousDecl;
3086
  using redeclarable_base::getMostRecentDecl;
3087
 
3088
  NamespaceAliasDecl *getCanonicalDecl() override {
3089
    return getFirstDecl();
3090
  }
3091
  const NamespaceAliasDecl *getCanonicalDecl() const {
3092
    return getFirstDecl();
3093
  }
3094
 
3095
  /// Retrieve the nested-name-specifier that qualifies the
3096
  /// name of the namespace, with source-location information.
3097
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3098
 
3099
  /// Retrieve the nested-name-specifier that qualifies the
3100
  /// name of the namespace.
3101
  NestedNameSpecifier *getQualifier() const {
3102
    return QualifierLoc.getNestedNameSpecifier();
3103
  }
3104
 
3105
  /// Retrieve the namespace declaration aliased by this directive.
3106
  NamespaceDecl *getNamespace() {
3107
    if (auto *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
3108
      return AD->getNamespace();
3109
 
3110
    return cast<NamespaceDecl>(Namespace);
3111
  }
3112
 
3113
  const NamespaceDecl *getNamespace() const {
3114
    return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
3115
  }
3116
 
3117
  /// Returns the location of the alias name, i.e. 'foo' in
3118
  /// "namespace foo = ns::bar;".
3119
  SourceLocation getAliasLoc() const { return getLocation(); }
3120
 
3121
  /// Returns the location of the \c namespace keyword.
3122
  SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
3123
 
3124
  /// Returns the location of the identifier in the named namespace.
3125
  SourceLocation getTargetNameLoc() const { return IdentLoc; }
3126
 
3127
  /// Retrieve the namespace that this alias refers to, which
3128
  /// may either be a NamespaceDecl or a NamespaceAliasDecl.
3129
  NamedDecl *getAliasedNamespace() const { return Namespace; }
3130
 
3131
  SourceRange getSourceRange() const override LLVM_READONLY {
3132
    return SourceRange(NamespaceLoc, IdentLoc);
3133
  }
3134
 
3135
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3136
  static bool classofKind(Kind K) { return K == NamespaceAlias; }
3137
};
3138
 
3139
/// Implicit declaration of a temporary that was materialized by
3140
/// a MaterializeTemporaryExpr and lifetime-extended by a declaration
3141
class LifetimeExtendedTemporaryDecl final
3142
    : public Decl,
3143
      public Mergeable<LifetimeExtendedTemporaryDecl> {
3144
  friend class MaterializeTemporaryExpr;
3145
  friend class ASTDeclReader;
3146
 
3147
  Stmt *ExprWithTemporary = nullptr;
3148
 
3149
  /// The declaration which lifetime-extended this reference, if any.
3150
  /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3151
  ValueDecl *ExtendingDecl = nullptr;
3152
  unsigned ManglingNumber;
3153
 
3154
  mutable APValue *Value = nullptr;
3155
 
3156
  virtual void anchor();
3157
 
3158
  LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling)
3159
      : Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(),
3160
             EDecl->getLocation()),
3161
        ExprWithTemporary(Temp), ExtendingDecl(EDecl),
3162
        ManglingNumber(Mangling) {}
3163
 
3164
  LifetimeExtendedTemporaryDecl(EmptyShell)
3165
      : Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {}
3166
 
3167
public:
3168
  static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec,
3169
                                               unsigned Mangling) {
3170
    return new (EDec->getASTContext(), EDec->getDeclContext())
3171
        LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling);
3172
  }
3173
  static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C,
3174
                                                           unsigned ID) {
3175
    return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{});
3176
  }
3177
 
3178
  ValueDecl *getExtendingDecl() { return ExtendingDecl; }
3179
  const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3180
 
3181
  /// Retrieve the storage duration for the materialized temporary.
3182
  StorageDuration getStorageDuration() const;
3183
 
3184
  /// Retrieve the expression to which the temporary materialization conversion
3185
  /// was applied. This isn't necessarily the initializer of the temporary due
3186
  /// to the C++98 delayed materialization rules, but
3187
  /// skipRValueSubobjectAdjustments can be used to find said initializer within
3188
  /// the subexpression.
3189
  Expr *getTemporaryExpr() { return cast<Expr>(ExprWithTemporary); }
3190
  const Expr *getTemporaryExpr() const { return cast<Expr>(ExprWithTemporary); }
3191
 
3192
  unsigned getManglingNumber() const { return ManglingNumber; }
3193
 
3194
  /// Get the storage for the constant value of a materialized temporary
3195
  /// of static storage duration.
3196
  APValue *getOrCreateValue(bool MayCreate) const;
3197
 
3198
  APValue *getValue() const { return Value; }
3199
 
3200
  // Iterators
3201
  Stmt::child_range childrenExpr() {
3202
    return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3203
  }
3204
 
3205
  Stmt::const_child_range childrenExpr() const {
3206
    return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3207
  }
3208
 
3209
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3210
  static bool classofKind(Kind K) {
3211
    return K == Decl::LifetimeExtendedTemporary;
3212
  }
3213
};
3214
 
3215
/// Represents a shadow declaration implicitly introduced into a scope by a
3216
/// (resolved) using-declaration or using-enum-declaration to achieve
3217
/// the desired lookup semantics.
3218
///
3219
/// For example:
3220
/// \code
3221
/// namespace A {
3222
///   void foo();
3223
///   void foo(int);
3224
///   struct foo {};
3225
///   enum bar { bar1, bar2 };
3226
/// }
3227
/// namespace B {
3228
///   // add a UsingDecl and three UsingShadowDecls (named foo) to B.
3229
///   using A::foo;
3230
///   // adds UsingEnumDecl and two UsingShadowDecls (named bar1 and bar2) to B.
3231
///   using enum A::bar;
3232
/// }
3233
/// \endcode
3234
class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
3235
  friend class BaseUsingDecl;
3236
 
3237
  /// The referenced declaration.
3238
  NamedDecl *Underlying = nullptr;
3239
 
3240
  /// The using declaration which introduced this decl or the next using
3241
  /// shadow declaration contained in the aforementioned using declaration.
3242
  NamedDecl *UsingOrNextShadow = nullptr;
3243
 
3244
  void anchor() override;
3245
 
3246
  using redeclarable_base = Redeclarable<UsingShadowDecl>;
3247
 
3248
  UsingShadowDecl *getNextRedeclarationImpl() override {
3249
    return getNextRedeclaration();
3250
  }
3251
 
3252
  UsingShadowDecl *getPreviousDeclImpl() override {
3253
    return getPreviousDecl();
3254
  }
3255
 
3256
  UsingShadowDecl *getMostRecentDeclImpl() override {
3257
    return getMostRecentDecl();
3258
  }
3259
 
3260
protected:
3261
  UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
3262
                  DeclarationName Name, BaseUsingDecl *Introducer,
3263
                  NamedDecl *Target);
3264
  UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
3265
 
3266
public:
3267
  friend class ASTDeclReader;
3268
  friend class ASTDeclWriter;
3269
 
3270
  static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3271
                                 SourceLocation Loc, DeclarationName Name,
3272
                                 BaseUsingDecl *Introducer, NamedDecl *Target) {
3273
    return new (C, DC)
3274
        UsingShadowDecl(UsingShadow, C, DC, Loc, Name, Introducer, Target);
3275
  }
3276
 
3277
  static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3278
 
3279
  using redecl_range = redeclarable_base::redecl_range;
3280
  using redecl_iterator = redeclarable_base::redecl_iterator;
3281
 
3282
  using redeclarable_base::redecls_begin;
3283
  using redeclarable_base::redecls_end;
3284
  using redeclarable_base::redecls;
3285
  using redeclarable_base::getPreviousDecl;
3286
  using redeclarable_base::getMostRecentDecl;
3287
  using redeclarable_base::isFirstDecl;
3288
 
3289
  UsingShadowDecl *getCanonicalDecl() override {
3290
    return getFirstDecl();
3291
  }
3292
  const UsingShadowDecl *getCanonicalDecl() const {
3293
    return getFirstDecl();
3294
  }
3295
 
3296
  /// Gets the underlying declaration which has been brought into the
3297
  /// local scope.
3298
  NamedDecl *getTargetDecl() const { return Underlying; }
3299
 
3300
  /// Sets the underlying declaration which has been brought into the
3301
  /// local scope.
3302
  void setTargetDecl(NamedDecl *ND) {
3303
    assert(ND && "Target decl is null!");
3304
    Underlying = ND;
3305
    // A UsingShadowDecl is never a friend or local extern declaration, even
3306
    // if it is a shadow declaration for one.
3307
    IdentifierNamespace =
3308
        ND->getIdentifierNamespace() &
3309
        ~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
3310
  }
3311
 
3312
  /// Gets the (written or instantiated) using declaration that introduced this
3313
  /// declaration.
3314
  BaseUsingDecl *getIntroducer() const;
3315
 
3316
  /// The next using shadow declaration contained in the shadow decl
3317
  /// chain of the using declaration which introduced this decl.
3318
  UsingShadowDecl *getNextUsingShadowDecl() const {
3319
    return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
3320
  }
3321
 
3322
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3323
  static bool classofKind(Kind K) {
3324
    return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
3325
  }
3326
};
3327
 
3328
/// Represents a C++ declaration that introduces decls from somewhere else. It
3329
/// provides a set of the shadow decls so introduced.
3330
 
3331
class BaseUsingDecl : public NamedDecl {
3332
  /// The first shadow declaration of the shadow decl chain associated
3333
  /// with this using declaration.
3334
  ///
3335
  /// The bool member of the pair is a bool flag a derived type may use
3336
  /// (UsingDecl makes use of it).
3337
  llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
3338
 
3339
protected:
3340
  BaseUsingDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
3341
      : NamedDecl(DK, DC, L, N), FirstUsingShadow(nullptr, false) {}
3342
 
3343
private:
3344
  void anchor() override;
3345
 
3346
protected:
3347
  /// A bool flag for use by a derived type
3348
  bool getShadowFlag() const { return FirstUsingShadow.getInt(); }
3349
 
3350
  /// A bool flag a derived type may set
3351
  void setShadowFlag(bool V) { FirstUsingShadow.setInt(V); }
3352
 
3353
public:
3354
  friend class ASTDeclReader;
3355
  friend class ASTDeclWriter;
3356
 
3357
  /// Iterates through the using shadow declarations associated with
3358
  /// this using declaration.
3359
  class shadow_iterator {
3360
    /// The current using shadow declaration.
3361
    UsingShadowDecl *Current = nullptr;
3362
 
3363
  public:
3364
    using value_type = UsingShadowDecl *;
3365
    using reference = UsingShadowDecl *;
3366
    using pointer = UsingShadowDecl *;
3367
    using iterator_category = std::forward_iterator_tag;
3368
    using difference_type = std::ptrdiff_t;
3369
 
3370
    shadow_iterator() = default;
3371
    explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
3372
 
3373
    reference operator*() const { return Current; }
3374
    pointer operator->() const { return Current; }
3375
 
3376
    shadow_iterator &operator++() {
3377
      Current = Current->getNextUsingShadowDecl();
3378
      return *this;
3379
    }
3380
 
3381
    shadow_iterator operator++(int) {
3382
      shadow_iterator tmp(*this);
3383
      ++(*this);
3384
      return tmp;
3385
    }
3386
 
3387
    friend bool operator==(shadow_iterator x, shadow_iterator y) {
3388
      return x.Current == y.Current;
3389
    }
3390
    friend bool operator!=(shadow_iterator x, shadow_iterator y) {
3391
      return x.Current != y.Current;
3392
    }
3393
  };
3394
 
3395
  using shadow_range = llvm::iterator_range<shadow_iterator>;
3396
 
3397
  shadow_range shadows() const {
3398
    return shadow_range(shadow_begin(), shadow_end());
3399
  }
3400
 
3401
  shadow_iterator shadow_begin() const {
3402
    return shadow_iterator(FirstUsingShadow.getPointer());
3403
  }
3404
 
3405
  shadow_iterator shadow_end() const { return shadow_iterator(); }
3406
 
3407
  /// Return the number of shadowed declarations associated with this
3408
  /// using declaration.
3409
  unsigned shadow_size() const {
3410
    return std::distance(shadow_begin(), shadow_end());
3411
  }
3412
 
3413
  void addShadowDecl(UsingShadowDecl *S);
3414
  void removeShadowDecl(UsingShadowDecl *S);
3415
 
3416
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3417
  static bool classofKind(Kind K) { return K == Using || K == UsingEnum; }
3418
};
3419
 
3420
/// Represents a C++ using-declaration.
3421
///
3422
/// For example:
3423
/// \code
3424
///    using someNameSpace::someIdentifier;
3425
/// \endcode
3426
class UsingDecl : public BaseUsingDecl, public Mergeable<UsingDecl> {
3427
  /// The source location of the 'using' keyword itself.
3428
  SourceLocation UsingLocation;
3429
 
3430
  /// The nested-name-specifier that precedes the name.
3431
  NestedNameSpecifierLoc QualifierLoc;
3432
 
3433
  /// Provides source/type location info for the declaration name
3434
  /// embedded in the ValueDecl base class.
3435
  DeclarationNameLoc DNLoc;
3436
 
3437
  UsingDecl(DeclContext *DC, SourceLocation UL,
3438
            NestedNameSpecifierLoc QualifierLoc,
3439
            const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
3440
      : BaseUsingDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
3441
        UsingLocation(UL), QualifierLoc(QualifierLoc),
3442
        DNLoc(NameInfo.getInfo()) {
3443
    setShadowFlag(HasTypenameKeyword);
3444
  }
3445
 
3446
  void anchor() override;
3447
 
3448
public:
3449
  friend class ASTDeclReader;
3450
  friend class ASTDeclWriter;
3451
 
3452
  /// Return the source location of the 'using' keyword.
3453
  SourceLocation getUsingLoc() const { return UsingLocation; }
3454
 
3455
  /// Set the source location of the 'using' keyword.
3456
  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3457
 
3458
  /// Retrieve the nested-name-specifier that qualifies the name,
3459
  /// with source-location information.
3460
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3461
 
3462
  /// Retrieve the nested-name-specifier that qualifies the name.
3463
  NestedNameSpecifier *getQualifier() const {
3464
    return QualifierLoc.getNestedNameSpecifier();
3465
  }
3466
 
3467
  DeclarationNameInfo getNameInfo() const {
3468
    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3469
  }
3470
 
3471
  /// Return true if it is a C++03 access declaration (no 'using').
3472
  bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3473
 
3474
  /// Return true if the using declaration has 'typename'.
3475
  bool hasTypename() const { return getShadowFlag(); }
3476
 
3477
  /// Sets whether the using declaration has 'typename'.
3478
  void setTypename(bool TN) { setShadowFlag(TN); }
3479
 
3480
  static UsingDecl *Create(ASTContext &C, DeclContext *DC,
3481
                           SourceLocation UsingL,
3482
                           NestedNameSpecifierLoc QualifierLoc,
3483
                           const DeclarationNameInfo &NameInfo,
3484
                           bool HasTypenameKeyword);
3485
 
3486
  static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3487
 
3488
  SourceRange getSourceRange() const override LLVM_READONLY;
3489
 
3490
  /// Retrieves the canonical declaration of this declaration.
3491
  UsingDecl *getCanonicalDecl() override {
3492
    return cast<UsingDecl>(getFirstDecl());
3493
  }
3494
  const UsingDecl *getCanonicalDecl() const {
3495
    return cast<UsingDecl>(getFirstDecl());
3496
  }
3497
 
3498
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3499
  static bool classofKind(Kind K) { return K == Using; }
3500
};
3501
 
3502
/// Represents a shadow constructor declaration introduced into a
3503
/// class by a C++11 using-declaration that names a constructor.
3504
///
3505
/// For example:
3506
/// \code
3507
/// struct Base { Base(int); };
3508
/// struct Derived {
3509
///    using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
3510
/// };
3511
/// \endcode
3512
class ConstructorUsingShadowDecl final : public UsingShadowDecl {
3513
  /// If this constructor using declaration inherted the constructor
3514
  /// from an indirect base class, this is the ConstructorUsingShadowDecl
3515
  /// in the named direct base class from which the declaration was inherited.
3516
  ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
3517
 
3518
  /// If this constructor using declaration inherted the constructor
3519
  /// from an indirect base class, this is the ConstructorUsingShadowDecl
3520
  /// that will be used to construct the unique direct or virtual base class
3521
  /// that receives the constructor arguments.
3522
  ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
3523
 
3524
  /// \c true if the constructor ultimately named by this using shadow
3525
  /// declaration is within a virtual base class subobject of the class that
3526
  /// contains this declaration.
3527
  unsigned IsVirtual : 1;
3528
 
3529
  ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
3530
                             UsingDecl *Using, NamedDecl *Target,
3531
                             bool TargetInVirtualBase)
3532
      : UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc,
3533
                        Using->getDeclName(), Using,
3534
                        Target->getUnderlyingDecl()),
3535
        NominatedBaseClassShadowDecl(
3536
            dyn_cast<ConstructorUsingShadowDecl>(Target)),
3537
        ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
3538
        IsVirtual(TargetInVirtualBase) {
3539
    // If we found a constructor that chains to a constructor for a virtual
3540
    // base, we should directly call that virtual base constructor instead.
3541
    // FIXME: This logic belongs in Sema.
3542
    if (NominatedBaseClassShadowDecl &&
3543
        NominatedBaseClassShadowDecl->constructsVirtualBase()) {
3544
      ConstructedBaseClassShadowDecl =
3545
          NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
3546
      IsVirtual = true;
3547
    }
3548
  }
3549
 
3550
  ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
3551
      : UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
3552
 
3553
  void anchor() override;
3554
 
3555
public:
3556
  friend class ASTDeclReader;
3557
  friend class ASTDeclWriter;
3558
 
3559
  static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3560
                                            SourceLocation Loc,
3561
                                            UsingDecl *Using, NamedDecl *Target,
3562
                                            bool IsVirtual);
3563
  static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
3564
                                                        unsigned ID);
3565
 
3566
  /// Override the UsingShadowDecl's getIntroducer, returning the UsingDecl that
3567
  /// introduced this.
3568
  UsingDecl *getIntroducer() const {
3569
    return cast<UsingDecl>(UsingShadowDecl::getIntroducer());
3570
  }
3571
 
3572
  /// Returns the parent of this using shadow declaration, which
3573
  /// is the class in which this is declared.
3574
  //@{
3575
  const CXXRecordDecl *getParent() const {
3576
    return cast<CXXRecordDecl>(getDeclContext());
3577
  }
3578
  CXXRecordDecl *getParent() {
3579
    return cast<CXXRecordDecl>(getDeclContext());
3580
  }
3581
  //@}
3582
 
3583
  /// Get the inheriting constructor declaration for the direct base
3584
  /// class from which this using shadow declaration was inherited, if there is
3585
  /// one. This can be different for each redeclaration of the same shadow decl.
3586
  ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
3587
    return NominatedBaseClassShadowDecl;
3588
  }
3589
 
3590
  /// Get the inheriting constructor declaration for the base class
3591
  /// for which we don't have an explicit initializer, if there is one.
3592
  ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
3593
    return ConstructedBaseClassShadowDecl;
3594
  }
3595
 
3596
  /// Get the base class that was named in the using declaration. This
3597
  /// can be different for each redeclaration of this same shadow decl.
3598
  CXXRecordDecl *getNominatedBaseClass() const;
3599
 
3600
  /// Get the base class whose constructor or constructor shadow
3601
  /// declaration is passed the constructor arguments.
3602
  CXXRecordDecl *getConstructedBaseClass() const {
3603
    return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
3604
                                    ? ConstructedBaseClassShadowDecl
3605
                                    : getTargetDecl())
3606
                                   ->getDeclContext());
3607
  }
3608
 
3609
  /// Returns \c true if the constructed base class is a virtual base
3610
  /// class subobject of this declaration's class.
3611
  bool constructsVirtualBase() const {
3612
    return IsVirtual;
3613
  }
3614
 
3615
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3616
  static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
3617
};
3618
 
3619
/// Represents a C++ using-enum-declaration.
3620
///
3621
/// For example:
3622
/// \code
3623
///    using enum SomeEnumTag ;
3624
/// \endcode
3625
 
3626
class UsingEnumDecl : public BaseUsingDecl, public Mergeable<UsingEnumDecl> {
3627
  /// The source location of the 'using' keyword itself.
3628
  SourceLocation UsingLocation;
3629
  /// The source location of the 'enum' keyword.
3630
  SourceLocation EnumLocation;
3631
  /// 'qual::SomeEnum' as an EnumType, possibly with Elaborated/Typedef sugar.
3632
  TypeSourceInfo *EnumType;
3633
 
3634
  UsingEnumDecl(DeclContext *DC, DeclarationName DN, SourceLocation UL,
3635
                SourceLocation EL, SourceLocation NL, TypeSourceInfo *EnumType)
3636
      : BaseUsingDecl(UsingEnum, DC, NL, DN), UsingLocation(UL), EnumLocation(EL),
3637
        EnumType(EnumType){}
3638
 
3639
  void anchor() override;
3640
 
3641
public:
3642
  friend class ASTDeclReader;
3643
  friend class ASTDeclWriter;
3644
 
3645
  /// The source location of the 'using' keyword.
3646
  SourceLocation getUsingLoc() const { return UsingLocation; }
3647
  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3648
 
3649
  /// The source location of the 'enum' keyword.
3650
  SourceLocation getEnumLoc() const { return EnumLocation; }
3651
  void setEnumLoc(SourceLocation L) { EnumLocation = L; }
3652
  NestedNameSpecifier *getQualifier() const {
3653
    return getQualifierLoc().getNestedNameSpecifier();
3654
  }
3655
  NestedNameSpecifierLoc getQualifierLoc() const {
3656
    if (auto ETL = EnumType->getTypeLoc().getAs<ElaboratedTypeLoc>())
3657
      return ETL.getQualifierLoc();
3658
    return NestedNameSpecifierLoc();
3659
  }
3660
  // Returns the "qualifier::Name" part as a TypeLoc.
3661
  TypeLoc getEnumTypeLoc() const {
3662
    return EnumType->getTypeLoc();
3663
  }
3664
  TypeSourceInfo *getEnumType() const {
3665
    return EnumType;
3666
  }
3667
  void setEnumType(TypeSourceInfo *TSI) { EnumType = TSI; }
3668
 
3669
public:
3670
  EnumDecl *getEnumDecl() const { return cast<EnumDecl>(EnumType->getType()->getAsTagDecl()); }
3671
 
3672
  static UsingEnumDecl *Create(ASTContext &C, DeclContext *DC,
3673
                               SourceLocation UsingL, SourceLocation EnumL,
3674
                               SourceLocation NameL, TypeSourceInfo *EnumType);
3675
 
3676
  static UsingEnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3677
 
3678
  SourceRange getSourceRange() const override LLVM_READONLY;
3679
 
3680
  /// Retrieves the canonical declaration of this declaration.
3681
  UsingEnumDecl *getCanonicalDecl() override {
3682
    return cast<UsingEnumDecl>(getFirstDecl());
3683
  }
3684
  const UsingEnumDecl *getCanonicalDecl() const {
3685
    return cast<UsingEnumDecl>(getFirstDecl());
3686
  }
3687
 
3688
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3689
  static bool classofKind(Kind K) { return K == UsingEnum; }
3690
};
3691
 
3692
/// Represents a pack of using declarations that a single
3693
/// using-declarator pack-expanded into.
3694
///
3695
/// \code
3696
/// template<typename ...T> struct X : T... {
3697
///   using T::operator()...;
3698
///   using T::operator T...;
3699
/// };
3700
/// \endcode
3701
///
3702
/// In the second case above, the UsingPackDecl will have the name
3703
/// 'operator T' (which contains an unexpanded pack), but the individual
3704
/// UsingDecls and UsingShadowDecls will have more reasonable names.
3705
class UsingPackDecl final
3706
    : public NamedDecl, public Mergeable<UsingPackDecl>,
3707
      private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
3708
  /// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
3709
  /// which this waas instantiated.
3710
  NamedDecl *InstantiatedFrom;
3711
 
3712
  /// The number of using-declarations created by this pack expansion.
3713
  unsigned NumExpansions;
3714
 
3715
  UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
3716
                ArrayRef<NamedDecl *> UsingDecls)
3717
      : NamedDecl(UsingPack, DC,
3718
                  InstantiatedFrom ? InstantiatedFrom->getLocation()
3719
                                   : SourceLocation(),
3720
                  InstantiatedFrom ? InstantiatedFrom->getDeclName()
3721
                                   : DeclarationName()),
3722
        InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
3723
    std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
3724
                            getTrailingObjects<NamedDecl *>());
3725
  }
3726
 
3727
  void anchor() override;
3728
 
3729
public:
3730
  friend class ASTDeclReader;
3731
  friend class ASTDeclWriter;
3732
  friend TrailingObjects;
3733
 
3734
  /// Get the using declaration from which this was instantiated. This will
3735
  /// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
3736
  /// that is a pack expansion.
3737
  NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
3738
 
3739
  /// Get the set of using declarations that this pack expanded into. Note that
3740
  /// some of these may still be unresolved.
3741
  ArrayRef<NamedDecl *> expansions() const {
3742
    return llvm::ArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
3743
  }
3744
 
3745
  static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
3746
                               NamedDecl *InstantiatedFrom,
3747
                               ArrayRef<NamedDecl *> UsingDecls);
3748
 
3749
  static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
3750
                                           unsigned NumExpansions);
3751
 
3752
  SourceRange getSourceRange() const override LLVM_READONLY {
3753
    return InstantiatedFrom->getSourceRange();
3754
  }
3755
 
3756
  UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
3757
  const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
3758
 
3759
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3760
  static bool classofKind(Kind K) { return K == UsingPack; }
3761
};
3762
 
3763
/// Represents a dependent using declaration which was not marked with
3764
/// \c typename.
3765
///
3766
/// Unlike non-dependent using declarations, these *only* bring through
3767
/// non-types; otherwise they would break two-phase lookup.
3768
///
3769
/// \code
3770
/// template \<class T> class A : public Base<T> {
3771
///   using Base<T>::foo;
3772
/// };
3773
/// \endcode
3774
class UnresolvedUsingValueDecl : public ValueDecl,
3775
                                 public Mergeable<UnresolvedUsingValueDecl> {
3776
  /// The source location of the 'using' keyword
3777
  SourceLocation UsingLocation;
3778
 
3779
  /// If this is a pack expansion, the location of the '...'.
3780
  SourceLocation EllipsisLoc;
3781
 
3782
  /// The nested-name-specifier that precedes the name.
3783
  NestedNameSpecifierLoc QualifierLoc;
3784
 
3785
  /// Provides source/type location info for the declaration name
3786
  /// embedded in the ValueDecl base class.
3787
  DeclarationNameLoc DNLoc;
3788
 
3789
  UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
3790
                           SourceLocation UsingLoc,
3791
                           NestedNameSpecifierLoc QualifierLoc,
3792
                           const DeclarationNameInfo &NameInfo,
3793
                           SourceLocation EllipsisLoc)
3794
      : ValueDecl(UnresolvedUsingValue, DC,
3795
                  NameInfo.getLoc(), NameInfo.getName(), Ty),
3796
        UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
3797
        QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
3798
 
3799
  void anchor() override;
3800
 
3801
public:
3802
  friend class ASTDeclReader;
3803
  friend class ASTDeclWriter;
3804
 
3805
  /// Returns the source location of the 'using' keyword.
3806
  SourceLocation getUsingLoc() const { return UsingLocation; }
3807
 
3808
  /// Set the source location of the 'using' keyword.
3809
  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3810
 
3811
  /// Return true if it is a C++03 access declaration (no 'using').
3812
  bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3813
 
3814
  /// Retrieve the nested-name-specifier that qualifies the name,
3815
  /// with source-location information.
3816
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3817
 
3818
  /// Retrieve the nested-name-specifier that qualifies the name.
3819
  NestedNameSpecifier *getQualifier() const {
3820
    return QualifierLoc.getNestedNameSpecifier();
3821
  }
3822
 
3823
  DeclarationNameInfo getNameInfo() const {
3824
    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3825
  }
3826
 
3827
  /// Determine whether this is a pack expansion.
3828
  bool isPackExpansion() const {
3829
    return EllipsisLoc.isValid();
3830
  }
3831
 
3832
  /// Get the location of the ellipsis if this is a pack expansion.
3833
  SourceLocation getEllipsisLoc() const {
3834
    return EllipsisLoc;
3835
  }
3836
 
3837
  static UnresolvedUsingValueDecl *
3838
    Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3839
           NestedNameSpecifierLoc QualifierLoc,
3840
           const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
3841
 
3842
  static UnresolvedUsingValueDecl *
3843
  CreateDeserialized(ASTContext &C, unsigned ID);
3844
 
3845
  SourceRange getSourceRange() const override LLVM_READONLY;
3846
 
3847
  /// Retrieves the canonical declaration of this declaration.
3848
  UnresolvedUsingValueDecl *getCanonicalDecl() override {
3849
    return getFirstDecl();
3850
  }
3851
  const UnresolvedUsingValueDecl *getCanonicalDecl() const {
3852
    return getFirstDecl();
3853
  }
3854
 
3855
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3856
  static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
3857
};
3858
 
3859
/// Represents a dependent using declaration which was marked with
3860
/// \c typename.
3861
///
3862
/// \code
3863
/// template \<class T> class A : public Base<T> {
3864
///   using typename Base<T>::foo;
3865
/// };
3866
/// \endcode
3867
///
3868
/// The type associated with an unresolved using typename decl is
3869
/// currently always a typename type.
3870
class UnresolvedUsingTypenameDecl
3871
    : public TypeDecl,
3872
      public Mergeable<UnresolvedUsingTypenameDecl> {
3873
  friend class ASTDeclReader;
3874
 
3875
  /// The source location of the 'typename' keyword
3876
  SourceLocation TypenameLocation;
3877
 
3878
  /// If this is a pack expansion, the location of the '...'.
3879
  SourceLocation EllipsisLoc;
3880
 
3881
  /// The nested-name-specifier that precedes the name.
3882
  NestedNameSpecifierLoc QualifierLoc;
3883
 
3884
  UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
3885
                              SourceLocation TypenameLoc,
3886
                              NestedNameSpecifierLoc QualifierLoc,
3887
                              SourceLocation TargetNameLoc,
3888
                              IdentifierInfo *TargetName,
3889
                              SourceLocation EllipsisLoc)
3890
    : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
3891
               UsingLoc),
3892
      TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
3893
      QualifierLoc(QualifierLoc) {}
3894
 
3895
  void anchor() override;
3896
 
3897
public:
3898
  /// Returns the source location of the 'using' keyword.
3899
  SourceLocation getUsingLoc() const { return getBeginLoc(); }
3900
 
3901
  /// Returns the source location of the 'typename' keyword.
3902
  SourceLocation getTypenameLoc() const { return TypenameLocation; }
3903
 
3904
  /// Retrieve the nested-name-specifier that qualifies the name,
3905
  /// with source-location information.
3906
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3907
 
3908
  /// Retrieve the nested-name-specifier that qualifies the name.
3909
  NestedNameSpecifier *getQualifier() const {
3910
    return QualifierLoc.getNestedNameSpecifier();
3911
  }
3912
 
3913
  DeclarationNameInfo getNameInfo() const {
3914
    return DeclarationNameInfo(getDeclName(), getLocation());
3915
  }
3916
 
3917
  /// Determine whether this is a pack expansion.
3918
  bool isPackExpansion() const {
3919
    return EllipsisLoc.isValid();
3920
  }
3921
 
3922
  /// Get the location of the ellipsis if this is a pack expansion.
3923
  SourceLocation getEllipsisLoc() const {
3924
    return EllipsisLoc;
3925
  }
3926
 
3927
  static UnresolvedUsingTypenameDecl *
3928
    Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3929
           SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
3930
           SourceLocation TargetNameLoc, DeclarationName TargetName,
3931
           SourceLocation EllipsisLoc);
3932
 
3933
  static UnresolvedUsingTypenameDecl *
3934
  CreateDeserialized(ASTContext &C, unsigned ID);
3935
 
3936
  /// Retrieves the canonical declaration of this declaration.
3937
  UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
3938
    return getFirstDecl();
3939
  }
3940
  const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
3941
    return getFirstDecl();
3942
  }
3943
 
3944
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3945
  static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
3946
};
3947
 
3948
/// This node is generated when a using-declaration that was annotated with
3949
/// __attribute__((using_if_exists)) failed to resolve to a known declaration.
3950
/// In that case, Sema builds a UsingShadowDecl whose target is an instance of
3951
/// this declaration, adding it to the current scope. Referring to this
3952
/// declaration in any way is an error.
3953
class UnresolvedUsingIfExistsDecl final : public NamedDecl {
3954
  UnresolvedUsingIfExistsDecl(DeclContext *DC, SourceLocation Loc,
3955
                              DeclarationName Name);
3956
 
3957
  void anchor() override;
3958
 
3959
public:
3960
  static UnresolvedUsingIfExistsDecl *Create(ASTContext &Ctx, DeclContext *DC,
3961
                                             SourceLocation Loc,
3962
                                             DeclarationName Name);
3963
  static UnresolvedUsingIfExistsDecl *CreateDeserialized(ASTContext &Ctx,
3964
                                                         unsigned ID);
3965
 
3966
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3967
  static bool classofKind(Kind K) { return K == Decl::UnresolvedUsingIfExists; }
3968
};
3969
 
3970
/// Represents a C++11 static_assert declaration.
3971
class StaticAssertDecl : public Decl {
3972
  llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
3973
  StringLiteral *Message;
3974
  SourceLocation RParenLoc;
3975
 
3976
  StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
3977
                   Expr *AssertExpr, StringLiteral *Message,
3978
                   SourceLocation RParenLoc, bool Failed)
3979
      : Decl(StaticAssert, DC, StaticAssertLoc),
3980
        AssertExprAndFailed(AssertExpr, Failed), Message(Message),
3981
        RParenLoc(RParenLoc) {}
3982
 
3983
  virtual void anchor();
3984
 
3985
public:
3986
  friend class ASTDeclReader;
3987
 
3988
  static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
3989
                                  SourceLocation StaticAssertLoc,
3990
                                  Expr *AssertExpr, StringLiteral *Message,
3991
                                  SourceLocation RParenLoc, bool Failed);
3992
  static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3993
 
3994
  Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
3995
  const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
3996
 
3997
  StringLiteral *getMessage() { return Message; }
3998
  const StringLiteral *getMessage() const { return Message; }
3999
 
4000
  bool isFailed() const { return AssertExprAndFailed.getInt(); }
4001
 
4002
  SourceLocation getRParenLoc() const { return RParenLoc; }
4003
 
4004
  SourceRange getSourceRange() const override LLVM_READONLY {
4005
    return SourceRange(getLocation(), getRParenLoc());
4006
  }
4007
 
4008
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4009
  static bool classofKind(Kind K) { return K == StaticAssert; }
4010
};
4011
 
4012
/// A binding in a decomposition declaration. For instance, given:
4013
///
4014
///   int n[3];
4015
///   auto &[a, b, c] = n;
4016
///
4017
/// a, b, and c are BindingDecls, whose bindings are the expressions
4018
/// x[0], x[1], and x[2] respectively, where x is the implicit
4019
/// DecompositionDecl of type 'int (&)[3]'.
4020
class BindingDecl : public ValueDecl {
4021
  /// The declaration that this binding binds to part of.
4022
  ValueDecl *Decomp;
4023
  /// The binding represented by this declaration. References to this
4024
  /// declaration are effectively equivalent to this expression (except
4025
  /// that it is only evaluated once at the point of declaration of the
4026
  /// binding).
4027
  Expr *Binding = nullptr;
4028
 
4029
  BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
4030
      : ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {}
4031
 
4032
  void anchor() override;
4033
 
4034
public:
4035
  friend class ASTDeclReader;
4036
 
4037
  static BindingDecl *Create(ASTContext &C, DeclContext *DC,
4038
                             SourceLocation IdLoc, IdentifierInfo *Id);
4039
  static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4040
 
4041
  /// Get the expression to which this declaration is bound. This may be null
4042
  /// in two different cases: while parsing the initializer for the
4043
  /// decomposition declaration, and when the initializer is type-dependent.
4044
  Expr *getBinding() const { return Binding; }
4045
 
4046
  /// Get the decomposition declaration that this binding represents a
4047
  /// decomposition of.
4048
  ValueDecl *getDecomposedDecl() const { return Decomp; }
4049
 
4050
  /// Get the variable (if any) that holds the value of evaluating the binding.
4051
  /// Only present for user-defined bindings for tuple-like types.
4052
  VarDecl *getHoldingVar() const;
4053
 
4054
  /// Set the binding for this BindingDecl, along with its declared type (which
4055
  /// should be a possibly-cv-qualified form of the type of the binding, or a
4056
  /// reference to such a type).
4057
  void setBinding(QualType DeclaredType, Expr *Binding) {
4058
    setType(DeclaredType);
4059
    this->Binding = Binding;
4060
  }
4061
 
4062
  /// Set the decomposed variable for this BindingDecl.
4063
  void setDecomposedDecl(ValueDecl *Decomposed) { Decomp = Decomposed; }
4064
 
4065
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4066
  static bool classofKind(Kind K) { return K == Decl::Binding; }
4067
};
4068
 
4069
/// A decomposition declaration. For instance, given:
4070
///
4071
///   int n[3];
4072
///   auto &[a, b, c] = n;
4073
///
4074
/// the second line declares a DecompositionDecl of type 'int (&)[3]', and
4075
/// three BindingDecls (named a, b, and c). An instance of this class is always
4076
/// unnamed, but behaves in almost all other respects like a VarDecl.
4077
class DecompositionDecl final
4078
    : public VarDecl,
4079
      private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
4080
  /// The number of BindingDecl*s following this object.
4081
  unsigned NumBindings;
4082
 
4083
  DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4084
                    SourceLocation LSquareLoc, QualType T,
4085
                    TypeSourceInfo *TInfo, StorageClass SC,
4086
                    ArrayRef<BindingDecl *> Bindings)
4087
      : VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
4088
                SC),
4089
        NumBindings(Bindings.size()) {
4090
    std::uninitialized_copy(Bindings.begin(), Bindings.end(),
4091
                            getTrailingObjects<BindingDecl *>());
4092
    for (auto *B : Bindings)
4093
      B->setDecomposedDecl(this);
4094
  }
4095
 
4096
  void anchor() override;
4097
 
4098
public:
4099
  friend class ASTDeclReader;
4100
  friend TrailingObjects;
4101
 
4102
  static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
4103
                                   SourceLocation StartLoc,
4104
                                   SourceLocation LSquareLoc,
4105
                                   QualType T, TypeSourceInfo *TInfo,
4106
                                   StorageClass S,
4107
                                   ArrayRef<BindingDecl *> Bindings);
4108
  static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4109
                                               unsigned NumBindings);
4110
 
4111
  ArrayRef<BindingDecl *> bindings() const {
4112
    return llvm::ArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
4113
  }
4114
 
4115
  void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override;
4116
 
4117
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4118
  static bool classofKind(Kind K) { return K == Decomposition; }
4119
};
4120
 
4121
/// An instance of this class represents the declaration of a property
4122
/// member.  This is a Microsoft extension to C++, first introduced in
4123
/// Visual Studio .NET 2003 as a parallel to similar features in C#
4124
/// and Managed C++.
4125
///
4126
/// A property must always be a non-static class member.
4127
///
4128
/// A property member superficially resembles a non-static data
4129
/// member, except preceded by a property attribute:
4130
///   __declspec(property(get=GetX, put=PutX)) int x;
4131
/// Either (but not both) of the 'get' and 'put' names may be omitted.
4132
///
4133
/// A reference to a property is always an lvalue.  If the lvalue
4134
/// undergoes lvalue-to-rvalue conversion, then a getter name is
4135
/// required, and that member is called with no arguments.
4136
/// If the lvalue is assigned into, then a setter name is required,
4137
/// and that member is called with one argument, the value assigned.
4138
/// Both operations are potentially overloaded.  Compound assignments
4139
/// are permitted, as are the increment and decrement operators.
4140
///
4141
/// The getter and putter methods are permitted to be overloaded,
4142
/// although their return and parameter types are subject to certain
4143
/// restrictions according to the type of the property.
4144
///
4145
/// A property declared using an incomplete array type may
4146
/// additionally be subscripted, adding extra parameters to the getter
4147
/// and putter methods.
4148
class MSPropertyDecl : public DeclaratorDecl {
4149
  IdentifierInfo *GetterId, *SetterId;
4150
 
4151
  MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
4152
                 QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
4153
                 IdentifierInfo *Getter, IdentifierInfo *Setter)
4154
      : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
4155
        GetterId(Getter), SetterId(Setter) {}
4156
 
4157
  void anchor() override;
4158
public:
4159
  friend class ASTDeclReader;
4160
 
4161
  static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
4162
                                SourceLocation L, DeclarationName N, QualType T,
4163
                                TypeSourceInfo *TInfo, SourceLocation StartL,
4164
                                IdentifierInfo *Getter, IdentifierInfo *Setter);
4165
  static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4166
 
4167
  static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
4168
 
4169
  bool hasGetter() const { return GetterId != nullptr; }
4170
  IdentifierInfo* getGetterId() const { return GetterId; }
4171
  bool hasSetter() const { return SetterId != nullptr; }
4172
  IdentifierInfo* getSetterId() const { return SetterId; }
4173
};
4174
 
4175
/// Parts of a decomposed MSGuidDecl. Factored out to avoid unnecessary
4176
/// dependencies on DeclCXX.h.
4177
struct MSGuidDeclParts {
4178
  /// {01234567-...
4179
  uint32_t Part1;
4180
  /// ...-89ab-...
4181
  uint16_t Part2;
4182
  /// ...-cdef-...
4183
  uint16_t Part3;
4184
  /// ...-0123-456789abcdef}
4185
  uint8_t Part4And5[8];
4186
 
4187
  uint64_t getPart4And5AsUint64() const {
4188
    uint64_t Val;
4189
    memcpy(&Val, &Part4And5, sizeof(Part4And5));
4190
    return Val;
4191
  }
4192
};
4193
 
4194
/// A global _GUID constant. These are implicitly created by UuidAttrs.
4195
///
4196
///   struct _declspec(uuid("01234567-89ab-cdef-0123-456789abcdef")) X{};
4197
///
4198
/// X is a CXXRecordDecl that contains a UuidAttr that references the (unique)
4199
/// MSGuidDecl for the specified UUID.
4200
class MSGuidDecl : public ValueDecl,
4201
                   public Mergeable<MSGuidDecl>,
4202
                   public llvm::FoldingSetNode {
4203
public:
4204
  using Parts = MSGuidDeclParts;
4205
 
4206
private:
4207
  /// The decomposed form of the UUID.
4208
  Parts PartVal;
4209
 
4210
  /// The resolved value of the UUID as an APValue. Computed on demand and
4211
  /// cached.
4212
  mutable APValue APVal;
4213
 
4214
  void anchor() override;
4215
 
4216
  MSGuidDecl(DeclContext *DC, QualType T, Parts P);
4217
 
4218
  static MSGuidDecl *Create(const ASTContext &C, QualType T, Parts P);
4219
  static MSGuidDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4220
 
4221
  // Only ASTContext::getMSGuidDecl and deserialization create these.
4222
  friend class ASTContext;
4223
  friend class ASTReader;
4224
  friend class ASTDeclReader;
4225
 
4226
public:
4227
  /// Print this UUID in a human-readable format.
4228
  void printName(llvm::raw_ostream &OS,
4229
                 const PrintingPolicy &Policy) const override;
4230
 
4231
  /// Get the decomposed parts of this declaration.
4232
  Parts getParts() const { return PartVal; }
4233
 
4234
  /// Get the value of this MSGuidDecl as an APValue. This may fail and return
4235
  /// an absent APValue if the type of the declaration is not of the expected
4236
  /// shape.
4237
  APValue &getAsAPValue() const;
4238
 
4239
  static void Profile(llvm::FoldingSetNodeID &ID, Parts P) {
4240
    ID.AddInteger(P.Part1);
4241
    ID.AddInteger(P.Part2);
4242
    ID.AddInteger(P.Part3);
4243
    ID.AddInteger(P.getPart4And5AsUint64());
4244
  }
4245
  void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, PartVal); }
4246
 
4247
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4248
  static bool classofKind(Kind K) { return K == Decl::MSGuid; }
4249
};
4250
 
4251
/// An artificial decl, representing a global anonymous constant value which is
4252
/// uniquified by value within a translation unit.
4253
///
4254
/// These is currently only used to back the LValue returned by
4255
/// __builtin_source_location, but could potentially be used for other similar
4256
/// situations in the future.
4257
class UnnamedGlobalConstantDecl : public ValueDecl,
4258
                                  public Mergeable<UnnamedGlobalConstantDecl>,
4259
                                  public llvm::FoldingSetNode {
4260
 
4261
  // The constant value of this global.
4262
  APValue Value;
4263
 
4264
  void anchor() override;
4265
 
4266
  UnnamedGlobalConstantDecl(const ASTContext &C, DeclContext *DC, QualType T,
4267
                            const APValue &Val);
4268
 
4269
  static UnnamedGlobalConstantDecl *Create(const ASTContext &C, QualType T,
4270
                                           const APValue &APVal);
4271
  static UnnamedGlobalConstantDecl *CreateDeserialized(ASTContext &C,
4272
                                                       unsigned ID);
4273
 
4274
  // Only ASTContext::getUnnamedGlobalConstantDecl and deserialization create
4275
  // these.
4276
  friend class ASTContext;
4277
  friend class ASTReader;
4278
  friend class ASTDeclReader;
4279
 
4280
public:
4281
  /// Print this in a human-readable format.
4282
  void printName(llvm::raw_ostream &OS,
4283
                 const PrintingPolicy &Policy) const override;
4284
 
4285
  const APValue &getValue() const { return Value; }
4286
 
4287
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Ty,
4288
                      const APValue &APVal) {
4289
    Ty.Profile(ID);
4290
    APVal.Profile(ID);
4291
  }
4292
  void Profile(llvm::FoldingSetNodeID &ID) {
4293
    Profile(ID, getType(), getValue());
4294
  }
4295
 
4296
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4297
  static bool classofKind(Kind K) { return K == Decl::UnnamedGlobalConstant; }
4298
};
4299
 
4300
/// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
4301
/// into a diagnostic with <<.
4302
const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
4303
                                      AccessSpecifier AS);
4304
 
4305
} // namespace clang
4306
 
4307
#endif // LLVM_CLANG_AST_DECLCXX_H