Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- CXXInheritance.h - C++ Inheritance -----------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file provides routines that help analyzing C++ inheritance hierarchies.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_CLANG_AST_CXXINHERITANCE_H
14
#define LLVM_CLANG_AST_CXXINHERITANCE_H
15
 
16
#include "clang/AST/DeclBase.h"
17
#include "clang/AST/DeclCXX.h"
18
#include "clang/AST/DeclarationName.h"
19
#include "clang/AST/Type.h"
20
#include "clang/AST/TypeOrdering.h"
21
#include "clang/Basic/Specifiers.h"
22
#include "llvm/ADT/DenseMap.h"
23
#include "llvm/ADT/DenseSet.h"
24
#include "llvm/ADT/MapVector.h"
25
#include "llvm/ADT/SmallSet.h"
26
#include "llvm/ADT/SmallVector.h"
27
#include "llvm/ADT/iterator_range.h"
28
#include <list>
29
#include <memory>
30
#include <utility>
31
 
32
namespace clang {
33
 
34
class ASTContext;
35
class NamedDecl;
36
 
37
/// Represents an element in a path from a derived class to a
38
/// base class.
39
///
40
/// Each step in the path references the link from a
41
/// derived class to one of its direct base classes, along with a
42
/// base "number" that identifies which base subobject of the
43
/// original derived class we are referencing.
44
struct CXXBasePathElement {
45
  /// The base specifier that states the link from a derived
46
  /// class to a base class, which will be followed by this base
47
  /// path element.
48
  const CXXBaseSpecifier *Base;
49
 
50
  /// The record decl of the class that the base is a base of.
51
  const CXXRecordDecl *Class;
52
 
53
  /// Identifies which base class subobject (of type
54
  /// \c Base->getType()) this base path element refers to.
55
  ///
56
  /// This value is only valid if \c !Base->isVirtual(), because there
57
  /// is no base numbering for the zero or one virtual bases of a
58
  /// given type.
59
  int SubobjectNumber;
60
};
61
 
62
/// Represents a path from a specific derived class
63
/// (which is not represented as part of the path) to a particular
64
/// (direct or indirect) base class subobject.
65
///
66
/// Individual elements in the path are described by the \c CXXBasePathElement
67
/// structure, which captures both the link from a derived class to one of its
68
/// direct bases and identification describing which base class
69
/// subobject is being used.
70
class CXXBasePath : public SmallVector<CXXBasePathElement, 4> {
71
public:
72
  /// The access along this inheritance path.  This is only
73
  /// calculated when recording paths.  AS_none is a special value
74
  /// used to indicate a path which permits no legal access.
75
  AccessSpecifier Access = AS_public;
76
 
77
  CXXBasePath() = default;
78
 
79
  /// The declarations found inside this base class subobject.
80
  DeclContext::lookup_iterator Decls;
81
 
82
  void clear() {
83
    SmallVectorImpl<CXXBasePathElement>::clear();
84
    Access = AS_public;
85
  }
86
};
87
 
88
/// BasePaths - Represents the set of paths from a derived class to
89
/// one of its (direct or indirect) bases. For example, given the
90
/// following class hierarchy:
91
///
92
/// @code
93
/// class A { };
94
/// class B : public A { };
95
/// class C : public A { };
96
/// class D : public B, public C{ };
97
/// @endcode
98
///
99
/// There are two potential BasePaths to represent paths from D to a
100
/// base subobject of type A. One path is (D,0) -> (B,0) -> (A,0)
101
/// and another is (D,0)->(C,0)->(A,1). These two paths actually
102
/// refer to two different base class subobjects of the same type,
103
/// so the BasePaths object refers to an ambiguous path. On the
104
/// other hand, consider the following class hierarchy:
105
///
106
/// @code
107
/// class A { };
108
/// class B : public virtual A { };
109
/// class C : public virtual A { };
110
/// class D : public B, public C{ };
111
/// @endcode
112
///
113
/// Here, there are two potential BasePaths again, (D, 0) -> (B, 0)
114
/// -> (A,v) and (D, 0) -> (C, 0) -> (A, v), but since both of them
115
/// refer to the same base class subobject of type A (the virtual
116
/// one), there is no ambiguity.
117
class CXXBasePaths {
118
  friend class CXXRecordDecl;
119
 
120
  /// The type from which this search originated.
121
  const CXXRecordDecl *Origin = nullptr;
122
 
123
  /// Paths - The actual set of paths that can be taken from the
124
  /// derived class to the same base class.
125
  std::list<CXXBasePath> Paths;
126
 
127
  /// ClassSubobjects - Records the class subobjects for each class
128
  /// type that we've seen. The first element IsVirtBase says
129
  /// whether we found a path to a virtual base for that class type,
130
  /// while NumberOfNonVirtBases contains the number of non-virtual base
131
  /// class subobjects for that class type. The key of the map is
132
  /// the cv-unqualified canonical type of the base class subobject.
133
  struct IsVirtBaseAndNumberNonVirtBases {
134
    unsigned IsVirtBase : 1;
135
    unsigned NumberOfNonVirtBases : 31;
136
  };
137
  llvm::SmallDenseMap<QualType, IsVirtBaseAndNumberNonVirtBases, 8>
138
      ClassSubobjects;
139
 
140
  /// VisitedDependentRecords - Records the dependent records that have been
141
  /// already visited.
142
  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedDependentRecords;
143
 
144
  /// DetectedVirtual - The base class that is virtual.
145
  const RecordType *DetectedVirtual = nullptr;
146
 
147
  /// ScratchPath - A BasePath that is used by Sema::lookupInBases
148
  /// to help build the set of paths.
149
  CXXBasePath ScratchPath;
150
 
151
  /// FindAmbiguities - Whether Sema::IsDerivedFrom should try find
152
  /// ambiguous paths while it is looking for a path from a derived
153
  /// type to a base type.
154
  bool FindAmbiguities;
155
 
156
  /// RecordPaths - Whether Sema::IsDerivedFrom should record paths
157
  /// while it is determining whether there are paths from a derived
158
  /// type to a base type.
159
  bool RecordPaths;
160
 
161
  /// DetectVirtual - Whether Sema::IsDerivedFrom should abort the search
162
  /// if it finds a path that goes across a virtual base. The virtual class
163
  /// is also recorded.
164
  bool DetectVirtual;
165
 
166
  bool lookupInBases(ASTContext &Context, const CXXRecordDecl *Record,
167
                     CXXRecordDecl::BaseMatchesCallback BaseMatches,
168
                     bool LookupInDependent = false);
169
 
170
public:
171
  using paths_iterator = std::list<CXXBasePath>::iterator;
172
  using const_paths_iterator = std::list<CXXBasePath>::const_iterator;
173
  using decl_iterator = NamedDecl **;
174
 
175
  /// BasePaths - Construct a new BasePaths structure to record the
176
  /// paths for a derived-to-base search.
177
  explicit CXXBasePaths(bool FindAmbiguities = true, bool RecordPaths = true,
178
                        bool DetectVirtual = true)
179
      : FindAmbiguities(FindAmbiguities), RecordPaths(RecordPaths),
180
        DetectVirtual(DetectVirtual) {}
181
 
182
  paths_iterator begin() { return Paths.begin(); }
183
  paths_iterator end()   { return Paths.end(); }
184
  const_paths_iterator begin() const { return Paths.begin(); }
185
  const_paths_iterator end()   const { return Paths.end(); }
186
 
187
  CXXBasePath&       front()       { return Paths.front(); }
188
  const CXXBasePath& front() const { return Paths.front(); }
189
 
190
  using decl_range = llvm::iterator_range<decl_iterator>;
191
 
192
  /// Determine whether the path from the most-derived type to the
193
  /// given base type is ambiguous (i.e., it refers to multiple subobjects of
194
  /// the same base type).
195
  bool isAmbiguous(CanQualType BaseType);
196
 
197
  /// Whether we are finding multiple paths to detect ambiguities.
198
  bool isFindingAmbiguities() const { return FindAmbiguities; }
199
 
200
  /// Whether we are recording paths.
201
  bool isRecordingPaths() const { return RecordPaths; }
202
 
203
  /// Specify whether we should be recording paths or not.
204
  void setRecordingPaths(bool RP) { RecordPaths = RP; }
205
 
206
  /// Whether we are detecting virtual bases.
207
  bool isDetectingVirtual() const { return DetectVirtual; }
208
 
209
  /// The virtual base discovered on the path (if we are merely
210
  /// detecting virtuals).
211
  const RecordType* getDetectedVirtual() const {
212
    return DetectedVirtual;
213
  }
214
 
215
  /// Retrieve the type from which this base-paths search
216
  /// began
217
  const CXXRecordDecl *getOrigin() const { return Origin; }
218
  void setOrigin(const CXXRecordDecl *Rec) { Origin = Rec; }
219
 
220
  /// Clear the base-paths results.
221
  void clear();
222
 
223
  /// Swap this data structure's contents with another CXXBasePaths
224
  /// object.
225
  void swap(CXXBasePaths &Other);
226
};
227
 
228
/// Uniquely identifies a virtual method within a class
229
/// hierarchy by the method itself and a class subobject number.
230
struct UniqueVirtualMethod {
231
  /// The overriding virtual method.
232
  CXXMethodDecl *Method = nullptr;
233
 
234
  /// The subobject in which the overriding virtual method
235
  /// resides.
236
  unsigned Subobject = 0;
237
 
238
  /// The virtual base class subobject of which this overridden
239
  /// virtual method is a part. Note that this records the closest
240
  /// derived virtual base class subobject.
241
  const CXXRecordDecl *InVirtualSubobject = nullptr;
242
 
243
  UniqueVirtualMethod() = default;
244
 
245
  UniqueVirtualMethod(CXXMethodDecl *Method, unsigned Subobject,
246
                      const CXXRecordDecl *InVirtualSubobject)
247
      : Method(Method), Subobject(Subobject),
248
        InVirtualSubobject(InVirtualSubobject) {}
249
 
250
  friend bool operator==(const UniqueVirtualMethod &X,
251
                         const UniqueVirtualMethod &Y) {
252
    return X.Method == Y.Method && X.Subobject == Y.Subobject &&
253
      X.InVirtualSubobject == Y.InVirtualSubobject;
254
  }
255
 
256
  friend bool operator!=(const UniqueVirtualMethod &X,
257
                         const UniqueVirtualMethod &Y) {
258
    return !(X == Y);
259
  }
260
};
261
 
262
/// The set of methods that override a given virtual method in
263
/// each subobject where it occurs.
264
///
265
/// The first part of the pair is the subobject in which the
266
/// overridden virtual function occurs, while the second part of the
267
/// pair is the virtual method that overrides it (including the
268
/// subobject in which that virtual function occurs).
269
class OverridingMethods {
270
  using ValuesT = SmallVector<UniqueVirtualMethod, 4>;
271
  using MapType = llvm::MapVector<unsigned, ValuesT>;
272
 
273
  MapType Overrides;
274
 
275
public:
276
  // Iterate over the set of subobjects that have overriding methods.
277
  using iterator = MapType::iterator;
278
  using const_iterator = MapType::const_iterator;
279
 
280
  iterator begin() { return Overrides.begin(); }
281
  const_iterator begin() const { return Overrides.begin(); }
282
  iterator end() { return Overrides.end(); }
283
  const_iterator end() const { return Overrides.end(); }
284
  unsigned size() const { return Overrides.size(); }
285
 
286
  // Iterate over the set of overriding virtual methods in a given
287
  // subobject.
288
  using overriding_iterator =
289
      SmallVectorImpl<UniqueVirtualMethod>::iterator;
290
  using overriding_const_iterator =
291
      SmallVectorImpl<UniqueVirtualMethod>::const_iterator;
292
 
293
  // Add a new overriding method for a particular subobject.
294
  void add(unsigned OverriddenSubobject, UniqueVirtualMethod Overriding);
295
 
296
  // Add all of the overriding methods from "other" into overrides for
297
  // this method. Used when merging the overrides from multiple base
298
  // class subobjects.
299
  void add(const OverridingMethods &Other);
300
 
301
  // Replace all overriding virtual methods in all subobjects with the
302
  // given virtual method.
303
  void replaceAll(UniqueVirtualMethod Overriding);
304
};
305
 
306
/// A mapping from each virtual member function to its set of
307
/// final overriders.
308
///
309
/// Within a class hierarchy for a given derived class, each virtual
310
/// member function in that hierarchy has one or more "final
311
/// overriders" (C++ [class.virtual]p2). A final overrider for a
312
/// virtual function "f" is the virtual function that will actually be
313
/// invoked when dispatching a call to "f" through the
314
/// vtable. Well-formed classes have a single final overrider for each
315
/// virtual function; in abstract classes, the final overrider for at
316
/// least one virtual function is a pure virtual function. Due to
317
/// multiple, virtual inheritance, it is possible for a class to have
318
/// more than one final overrider. Athough this is an error (per C++
319
/// [class.virtual]p2), it is not considered an error here: the final
320
/// overrider map can represent multiple final overriders for a
321
/// method, and it is up to the client to determine whether they are
322
/// problem. For example, the following class \c D has two final
323
/// overriders for the virtual function \c A::f(), one in \c C and one
324
/// in \c D:
325
///
326
/// \code
327
///   struct A { virtual void f(); };
328
///   struct B : virtual A { virtual void f(); };
329
///   struct C : virtual A { virtual void f(); };
330
///   struct D : B, C { };
331
/// \endcode
332
///
333
/// This data structure contains a mapping from every virtual
334
/// function *that does not override an existing virtual function* and
335
/// in every subobject where that virtual function occurs to the set
336
/// of virtual functions that override it. Thus, the same virtual
337
/// function \c A::f can actually occur in multiple subobjects of type
338
/// \c A due to multiple inheritance, and may be overridden by
339
/// different virtual functions in each, as in the following example:
340
///
341
/// \code
342
///   struct A { virtual void f(); };
343
///   struct B : A { virtual void f(); };
344
///   struct C : A { virtual void f(); };
345
///   struct D : B, C { };
346
/// \endcode
347
///
348
/// Unlike in the previous example, where the virtual functions \c
349
/// B::f and \c C::f both overrode \c A::f in the same subobject of
350
/// type \c A, in this example the two virtual functions both override
351
/// \c A::f but in *different* subobjects of type A. This is
352
/// represented by numbering the subobjects in which the overridden
353
/// and the overriding virtual member functions are located. Subobject
354
/// 0 represents the virtual base class subobject of that type, while
355
/// subobject numbers greater than 0 refer to non-virtual base class
356
/// subobjects of that type.
357
class CXXFinalOverriderMap
358
  : public llvm::MapVector<const CXXMethodDecl *, OverridingMethods> {};
359
 
360
/// A set of all the primary bases for a class.
361
class CXXIndirectPrimaryBaseSet
362
  : public llvm::SmallSet<const CXXRecordDecl*, 32> {};
363
 
364
inline bool
365
inheritanceModelHasVBPtrOffsetField(MSInheritanceModel Inheritance) {
366
  return Inheritance == MSInheritanceModel::Unspecified;
367
}
368
 
369
// Only member pointers to functions need a this adjustment, since it can be
370
// combined with the field offset for data pointers.
371
inline bool inheritanceModelHasNVOffsetField(bool IsMemberFunction,
372
                                             MSInheritanceModel Inheritance) {
373
  return IsMemberFunction && Inheritance >= MSInheritanceModel::Multiple;
374
}
375
 
376
inline bool
377
inheritanceModelHasVBTableOffsetField(MSInheritanceModel Inheritance) {
378
  return Inheritance >= MSInheritanceModel::Virtual;
379
}
380
 
381
inline bool inheritanceModelHasOnlyOneField(bool IsMemberFunction,
382
                                            MSInheritanceModel Inheritance) {
383
  if (IsMemberFunction)
384
    return Inheritance <= MSInheritanceModel::Single;
385
  return Inheritance <= MSInheritanceModel::Multiple;
386
}
387
 
388
} // namespace clang
389
 
390
#endif // LLVM_CLANG_AST_CXXINHERITANCE_H