Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- ASTVector.h - Vector that uses ASTContext for allocation ---*- C++ -*-=//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
//  This file provides ASTVector, a vector  ADT whose contents are
10
//  allocated using the allocator associated with an ASTContext..
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
// FIXME: Most of this is copy-and-paste from BumpVector.h and SmallVector.h.
15
// We can refactor this core logic into something common.
16
 
17
#ifndef LLVM_CLANG_AST_ASTVECTOR_H
18
#define LLVM_CLANG_AST_ASTVECTOR_H
19
 
20
#include "clang/AST/ASTContextAllocate.h"
21
#include "llvm/ADT/PointerIntPair.h"
22
#include <algorithm>
23
#include <cassert>
24
#include <cstddef>
25
#include <cstring>
26
#include <iterator>
27
#include <memory>
28
#include <type_traits>
29
#include <utility>
30
 
31
namespace clang {
32
 
33
class ASTContext;
34
 
35
template<typename T>
36
class ASTVector {
37
private:
38
  T *Begin = nullptr;
39
  T *End = nullptr;
40
  llvm::PointerIntPair<T *, 1, bool> Capacity;
41
 
42
  void setEnd(T *P) { this->End = P; }
43
 
44
protected:
45
  // Make a tag bit available to users of this class.
46
  // FIXME: This is a horrible hack.
47
  bool getTag() const { return Capacity.getInt(); }
48
  void setTag(bool B) { Capacity.setInt(B); }
49
 
50
public:
51
  // Default ctor - Initialize to empty.
52
  ASTVector() : Capacity(nullptr, false) {}
53
 
54
  ASTVector(ASTVector &&O) : Begin(O.Begin), End(O.End), Capacity(O.Capacity) {
55
    O.Begin = O.End = nullptr;
56
    O.Capacity.setPointer(nullptr);
57
    O.Capacity.setInt(false);
58
  }
59
 
60
  ASTVector(const ASTContext &C, unsigned N) : Capacity(nullptr, false) {
61
    reserve(C, N);
62
  }
63
 
64
  ASTVector &operator=(ASTVector &&RHS) {
65
    ASTVector O(std::move(RHS));
66
 
67
    using std::swap;
68
 
69
    swap(Begin, O.Begin);
70
    swap(End, O.End);
71
    swap(Capacity, O.Capacity);
72
    return *this;
73
  }
74
 
75
  ~ASTVector() {
76
    if (std::is_class<T>::value) {
77
      // Destroy the constructed elements in the vector.
78
      destroy_range(Begin, End);
79
    }
80
  }
81
 
82
  using size_type = size_t;
83
  using difference_type = ptrdiff_t;
84
  using value_type = T;
85
  using iterator = T *;
86
  using const_iterator = const T *;
87
 
88
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
89
  using reverse_iterator = std::reverse_iterator<iterator>;
90
 
91
  using reference = T &;
92
  using const_reference = const T &;
93
  using pointer = T *;
94
  using const_pointer = const T *;
95
 
96
  // forward iterator creation methods.
97
  iterator begin() { return Begin; }
98
  const_iterator begin() const { return Begin; }
99
  iterator end() { return End; }
100
  const_iterator end() const { return End; }
101
 
102
  // reverse iterator creation methods.
103
  reverse_iterator rbegin()            { return reverse_iterator(end()); }
104
  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
105
  reverse_iterator rend()              { return reverse_iterator(begin()); }
106
  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
107
 
108
  bool empty() const { return Begin == End; }
109
  size_type size() const { return End-Begin; }
110
 
111
  reference operator[](unsigned idx) {
112
    assert(Begin + idx < End);
113
    return Begin[idx];
114
  }
115
  const_reference operator[](unsigned idx) const {
116
    assert(Begin + idx < End);
117
    return Begin[idx];
118
  }
119
 
120
  reference front() {
121
    return begin()[0];
122
  }
123
  const_reference front() const {
124
    return begin()[0];
125
  }
126
 
127
  reference back() {
128
    return end()[-1];
129
  }
130
  const_reference back() const {
131
    return end()[-1];
132
  }
133
 
134
  void pop_back() {
135
    --End;
136
    End->~T();
137
  }
138
 
139
  T pop_back_val() {
140
    T Result = back();
141
    pop_back();
142
    return Result;
143
  }
144
 
145
  void clear() {
146
    if (std::is_class<T>::value) {
147
      destroy_range(Begin, End);
148
    }
149
    End = Begin;
150
  }
151
 
152
  /// data - Return a pointer to the vector's buffer, even if empty().
153
  pointer data() {
154
    return pointer(Begin);
155
  }
156
 
157
  /// data - Return a pointer to the vector's buffer, even if empty().
158
  const_pointer data() const {
159
    return const_pointer(Begin);
160
  }
161
 
162
  void push_back(const_reference Elt, const ASTContext &C) {
163
    if (End < this->capacity_ptr()) {
164
    Retry:
165
      new (End) T(Elt);
166
      ++End;
167
      return;
168
    }
169
    grow(C);
170
    goto Retry;
171
  }
172
 
173
  void reserve(const ASTContext &C, unsigned N) {
174
    if (unsigned(this->capacity_ptr()-Begin) < N)
175
      grow(C, N);
176
  }
177
 
178
  /// capacity - Return the total number of elements in the currently allocated
179
  /// buffer.
180
  size_t capacity() const { return this->capacity_ptr() - Begin; }
181
 
182
  /// append - Add the specified range to the end of the SmallVector.
183
  template<typename in_iter>
184
  void append(const ASTContext &C, in_iter in_start, in_iter in_end) {
185
    size_type NumInputs = std::distance(in_start, in_end);
186
 
187
    if (NumInputs == 0)
188
      return;
189
 
190
    // Grow allocated space if needed.
191
    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
192
      this->grow(C, this->size()+NumInputs);
193
 
194
    // Copy the new elements over.
195
    // TODO: NEED To compile time dispatch on whether in_iter is a random access
196
    // iterator to use the fast uninitialized_copy.
197
    std::uninitialized_copy(in_start, in_end, this->end());
198
    this->setEnd(this->end() + NumInputs);
199
  }
200
 
201
  /// append - Add the specified range to the end of the SmallVector.
202
  void append(const ASTContext &C, size_type NumInputs, const T &Elt) {
203
    // Grow allocated space if needed.
204
    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
205
      this->grow(C, this->size()+NumInputs);
206
 
207
    // Copy the new elements over.
208
    std::uninitialized_fill_n(this->end(), NumInputs, Elt);
209
    this->setEnd(this->end() + NumInputs);
210
  }
211
 
212
  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
213
  /// starting with "Dest", constructing elements into it as needed.
214
  template<typename It1, typename It2>
215
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
216
    std::uninitialized_copy(I, E, Dest);
217
  }
218
 
219
  iterator insert(const ASTContext &C, iterator I, const T &Elt) {
220
    if (I == this->end()) {  // Important special case for empty vector.
221
      push_back(Elt, C);
222
      return this->end()-1;
223
    }
224
 
225
    if (this->End < this->capacity_ptr()) {
226
    Retry:
227
      new (this->end()) T(this->back());
228
      this->setEnd(this->end()+1);
229
      // Push everything else over.
230
      std::copy_backward(I, this->end()-1, this->end());
231
      *I = Elt;
232
      return I;
233
    }
234
    size_t EltNo = I-this->begin();
235
    this->grow(C);
236
    I = this->begin()+EltNo;
237
    goto Retry;
238
  }
239
 
240
  iterator insert(const ASTContext &C, iterator I, size_type NumToInsert,
241
                  const T &Elt) {
242
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
243
    size_t InsertElt = I - this->begin();
244
 
245
    if (I == this->end()) { // Important special case for empty vector.
246
      append(C, NumToInsert, Elt);
247
      return this->begin() + InsertElt;
248
    }
249
 
250
    // Ensure there is enough space.
251
    reserve(C, static_cast<unsigned>(this->size() + NumToInsert));
252
 
253
    // Uninvalidate the iterator.
254
    I = this->begin()+InsertElt;
255
 
256
    // If there are more elements between the insertion point and the end of the
257
    // range than there are being inserted, we can use a simple approach to
258
    // insertion.  Since we already reserved space, we know that this won't
259
    // reallocate the vector.
260
    if (size_t(this->end()-I) >= NumToInsert) {
261
      T *OldEnd = this->end();
262
      append(C, this->end()-NumToInsert, this->end());
263
 
264
      // Copy the existing elements that get replaced.
265
      std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
266
 
267
      std::fill_n(I, NumToInsert, Elt);
268
      return I;
269
    }
270
 
271
    // Otherwise, we're inserting more elements than exist already, and we're
272
    // not inserting at the end.
273
 
274
    // Copy over the elements that we're about to overwrite.
275
    T *OldEnd = this->end();
276
    this->setEnd(this->end() + NumToInsert);
277
    size_t NumOverwritten = OldEnd-I;
278
    this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
279
 
280
    // Replace the overwritten part.
281
    std::fill_n(I, NumOverwritten, Elt);
282
 
283
    // Insert the non-overwritten middle part.
284
    std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
285
    return I;
286
  }
287
 
288
  template<typename ItTy>
289
  iterator insert(const ASTContext &C, iterator I, ItTy From, ItTy To) {
290
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
291
    size_t InsertElt = I - this->begin();
292
 
293
    if (I == this->end()) { // Important special case for empty vector.
294
      append(C, From, To);
295
      return this->begin() + InsertElt;
296
    }
297
 
298
    size_t NumToInsert = std::distance(From, To);
299
 
300
    // Ensure there is enough space.
301
    reserve(C, static_cast<unsigned>(this->size() + NumToInsert));
302
 
303
    // Uninvalidate the iterator.
304
    I = this->begin()+InsertElt;
305
 
306
    // If there are more elements between the insertion point and the end of the
307
    // range than there are being inserted, we can use a simple approach to
308
    // insertion.  Since we already reserved space, we know that this won't
309
    // reallocate the vector.
310
    if (size_t(this->end()-I) >= NumToInsert) {
311
      T *OldEnd = this->end();
312
      append(C, this->end()-NumToInsert, this->end());
313
 
314
      // Copy the existing elements that get replaced.
315
      std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
316
 
317
      std::copy(From, To, I);
318
      return I;
319
    }
320
 
321
    // Otherwise, we're inserting more elements than exist already, and we're
322
    // not inserting at the end.
323
 
324
    // Copy over the elements that we're about to overwrite.
325
    T *OldEnd = this->end();
326
    this->setEnd(this->end() + NumToInsert);
327
    size_t NumOverwritten = OldEnd-I;
328
    this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
329
 
330
    // Replace the overwritten part.
331
    for (; NumOverwritten > 0; --NumOverwritten) {
332
      *I = *From;
333
      ++I; ++From;
334
    }
335
 
336
    // Insert the non-overwritten middle part.
337
    this->uninitialized_copy(From, To, OldEnd);
338
    return I;
339
  }
340
 
341
  void resize(const ASTContext &C, unsigned N, const T &NV) {
342
    if (N < this->size()) {
343
      this->destroy_range(this->begin()+N, this->end());
344
      this->setEnd(this->begin()+N);
345
    } else if (N > this->size()) {
346
      if (this->capacity() < N)
347
        this->grow(C, N);
348
      construct_range(this->end(), this->begin()+N, NV);
349
      this->setEnd(this->begin()+N);
350
    }
351
  }
352
 
353
private:
354
  /// grow - double the size of the allocated memory, guaranteeing space for at
355
  /// least one more element or MinSize if specified.
356
  void grow(const ASTContext &C, size_type MinSize = 1);
357
 
358
  void construct_range(T *S, T *E, const T &Elt) {
359
    for (; S != E; ++S)
360
      new (S) T(Elt);
361
  }
362
 
363
  void destroy_range(T *S, T *E) {
364
    while (S != E) {
365
      --E;
366
      E->~T();
367
    }
368
  }
369
 
370
protected:
371
  const_iterator capacity_ptr() const {
372
    return (iterator) Capacity.getPointer();
373
  }
374
 
375
  iterator capacity_ptr() { return (iterator)Capacity.getPointer(); }
376
};
377
 
378
// Define this out-of-line to dissuade the C++ compiler from inlining it.
379
template <typename T>
380
void ASTVector<T>::grow(const ASTContext &C, size_t MinSize) {
381
  size_t CurCapacity = this->capacity();
382
  size_t CurSize = size();
383
  size_t NewCapacity = 2*CurCapacity;
384
  if (NewCapacity < MinSize)
385
    NewCapacity = MinSize;
386
 
387
  // Allocate the memory from the ASTContext.
388
  T *NewElts = new (C, alignof(T)) T[NewCapacity];
389
 
390
  // Copy the elements over.
391
  if (Begin != End) {
392
    if (std::is_class<T>::value) {
393
      std::uninitialized_copy(Begin, End, NewElts);
394
      // Destroy the original elements.
395
      destroy_range(Begin, End);
396
    } else {
397
      // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove).
398
      memcpy(NewElts, Begin, CurSize * sizeof(T));
399
    }
400
  }
401
 
402
  // ASTContext never frees any memory.
403
  Begin = NewElts;
404
  End = NewElts+CurSize;
405
  Capacity.setPointer(Begin+NewCapacity);
406
}
407
 
408
} // namespace clang
409
 
410
#endif // LLVM_CLANG_AST_ASTVECTOR_H