Rev 169 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 96 | pmbaty | 1 | /* |
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
| 185 | pmbaty | 5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
| 96 | pmbaty | 6 | |
| 7 | Stockfish is free software: you can redistribute it and/or modify |
||
| 8 | it under the terms of the GNU General Public License as published by |
||
| 9 | the Free Software Foundation, either version 3 of the License, or |
||
| 10 | (at your option) any later version. |
||
| 11 | |||
| 12 | Stockfish is distributed in the hope that it will be useful, |
||
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
| 15 | GNU General Public License for more details. |
||
| 16 | |||
| 17 | You should have received a copy of the GNU General Public License |
||
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
| 19 | */ |
||
| 20 | |||
| 21 | #include <algorithm> |
||
| 22 | #include <cfloat> |
||
| 23 | #include <cmath> |
||
| 24 | |||
| 25 | #include "search.h" |
||
| 26 | #include "timeman.h" |
||
| 27 | #include "uci.h" |
||
| 28 | |||
| 29 | TimeManagement Time; // Our global time management object |
||
| 30 | |||
| 31 | namespace { |
||
| 32 | |||
| 33 | enum TimeType { OptimumTime, MaxTime }; |
||
| 34 | |||
| 185 | pmbaty | 35 | constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead |
| 36 | constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio |
||
| 37 | constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio |
||
| 96 | pmbaty | 38 | |
| 39 | |||
| 40 | // move_importance() is a skew-logistic function based on naive statistical |
||
| 41 | // analysis of "how many games are still undecided after n half-moves". Game |
||
| 42 | // is considered "undecided" as long as neither side has >275cp advantage. |
||
| 43 | // Data was extracted from the CCRL game database with some simple filtering criteria. |
||
| 44 | |||
| 45 | double move_importance(int ply) { |
||
| 46 | |||
| 185 | pmbaty | 47 | constexpr double XScale = 6.85; |
| 48 | constexpr double XShift = 64.5; |
||
| 49 | constexpr double Skew = 0.171; |
||
| 96 | pmbaty | 50 | |
| 51 | return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero |
||
| 52 | } |
||
| 53 | |||
| 54 | template<TimeType T> |
||
| 185 | pmbaty | 55 | TimePoint remaining(TimePoint myTime, int movesToGo, int ply, TimePoint slowMover) { |
| 154 | pmbaty | 56 | |
| 185 | pmbaty | 57 | constexpr double TMaxRatio = (T == OptimumTime ? 1.0 : MaxRatio); |
| 58 | constexpr double TStealRatio = (T == OptimumTime ? 0.0 : StealRatio); |
||
| 96 | pmbaty | 59 | |
| 185 | pmbaty | 60 | double moveImportance = (move_importance(ply) * slowMover) / 100.0; |
| 61 | double otherMovesImportance = 0.0; |
||
| 96 | pmbaty | 62 | |
| 63 | for (int i = 1; i < movesToGo; ++i) |
||
| 64 | otherMovesImportance += move_importance(ply + 2 * i); |
||
| 65 | |||
| 66 | double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); |
||
| 67 | double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); |
||
| 68 | |||
| 185 | pmbaty | 69 | return TimePoint(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast |
| 96 | pmbaty | 70 | } |
| 71 | |||
| 72 | } // namespace |
||
| 73 | |||
| 74 | |||
| 75 | /// init() is called at the beginning of the search and calculates the allowed |
||
| 76 | /// thinking time out of the time control and current game ply. We support four |
||
| 77 | /// different kinds of time controls, passed in 'limits': |
||
| 78 | /// |
||
| 79 | /// inc == 0 && movestogo == 0 means: x basetime [sudden death!] |
||
| 80 | /// inc == 0 && movestogo != 0 means: x moves in y minutes |
||
| 81 | /// inc > 0 && movestogo == 0 means: x basetime + z increment |
||
| 82 | /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment |
||
| 83 | |||
| 154 | pmbaty | 84 | void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { |
| 85 | |||
| 185 | pmbaty | 86 | TimePoint minThinkingTime = Options["Minimum Thinking Time"]; |
| 87 | TimePoint moveOverhead = Options["Move Overhead"]; |
||
| 88 | TimePoint slowMover = Options["Slow Mover"]; |
||
| 89 | TimePoint npmsec = Options["nodestime"]; |
||
| 90 | TimePoint hypMyTime; |
||
| 96 | pmbaty | 91 | |
| 92 | // If we have to play in 'nodes as time' mode, then convert from time |
||
| 93 | // to nodes, and use resulting values in time management formulas. |
||
| 185 | pmbaty | 94 | // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) |
| 95 | // must be much lower than the real engine speed. |
||
| 96 | pmbaty | 96 | if (npmsec) |
| 97 | { |
||
| 98 | if (!availableNodes) // Only once at game start |
||
| 99 | availableNodes = npmsec * limits.time[us]; // Time is in msec |
||
| 100 | |||
| 185 | pmbaty | 101 | // Convert from milliseconds to nodes |
| 102 | limits.time[us] = TimePoint(availableNodes); |
||
| 96 | pmbaty | 103 | limits.inc[us] *= npmsec; |
| 104 | limits.npmsec = npmsec; |
||
| 105 | } |
||
| 106 | |||
| 107 | startTime = limits.startTime; |
||
| 108 | optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); |
||
| 109 | |||
| 185 | pmbaty | 110 | const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; |
| 96 | pmbaty | 111 | |
| 185 | pmbaty | 112 | // We calculate optimum time usage for different hypothetical "moves to go" values |
| 96 | pmbaty | 113 | // and choose the minimum of calculated search time values. Usually the greatest |
| 114 | // hypMTG gives the minimum values. |
||
| 185 | pmbaty | 115 | for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG) |
| 96 | pmbaty | 116 | { |
| 117 | // Calculate thinking time for hypothetical "moves to go"-value |
||
| 185 | pmbaty | 118 | hypMyTime = limits.time[us] |
| 119 | + limits.inc[us] * (hypMTG - 1) |
||
| 120 | - moveOverhead * (2 + std::min(hypMTG, 40)); |
||
| 96 | pmbaty | 121 | |
| 185 | pmbaty | 122 | hypMyTime = std::max(hypMyTime, TimePoint(0)); |
| 96 | pmbaty | 123 | |
| 185 | pmbaty | 124 | TimePoint t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, ply, slowMover); |
| 125 | TimePoint t2 = minThinkingTime + remaining<MaxTime >(hypMyTime, hypMTG, ply, slowMover); |
||
| 96 | pmbaty | 126 | |
| 127 | optimumTime = std::min(t1, optimumTime); |
||
| 128 | maximumTime = std::min(t2, maximumTime); |
||
| 129 | } |
||
| 130 | |||
| 131 | if (Options["Ponder"]) |
||
| 132 | optimumTime += optimumTime / 4; |
||
| 133 | } |