Rev 169 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 96 | pmbaty | 1 | /* | 
| 2 |   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 | ||
| 3 |   Copyright (C) 2004-2008 Tord Romstad (Glaurung author) | ||
| 4 |   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad | ||
| 185 | pmbaty | 5 |   Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad | 
| 96 | pmbaty | 6 | |
| 7 |   Stockfish is free software: you can redistribute it and/or modify | ||
| 8 |   it under the terms of the GNU General Public License as published by | ||
| 9 |   the Free Software Foundation, either version 3 of the License, or | ||
| 10 |   (at your option) any later version. | ||
| 11 | |||
| 12 |   Stockfish is distributed in the hope that it will be useful, | ||
| 13 |   but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 14 |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
| 15 |   GNU General Public License for more details. | ||
| 16 | |||
| 17 |   You should have received a copy of the GNU General Public License | ||
| 18 |   along with this program.  If not, see <http://www.gnu.org/licenses/>. | ||
| 19 | */ | ||
| 20 | |||
| 21 | #include <algorithm> | ||
| 22 | #include <cfloat> | ||
| 23 | #include <cmath> | ||
| 24 | |||
| 25 | #include "search.h" | ||
| 26 | #include "timeman.h" | ||
| 27 | #include "uci.h" | ||
| 28 | |||
| 29 | TimeManagement Time; // Our global time management object | ||
| 30 | |||
| 31 | namespace { | ||
| 32 | |||
| 33 | enum TimeType { OptimumTime, MaxTime }; | ||
| 34 | |||
| 185 | pmbaty | 35 | constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead | 
| 36 | constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio | ||
| 37 | constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio | ||
| 96 | pmbaty | 38 | |
| 39 | |||
| 40 |   // move_importance() is a skew-logistic function based on naive statistical | ||
| 41 |   // analysis of "how many games are still undecided after n half-moves". Game | ||
| 42 |   // is considered "undecided" as long as neither side has >275cp advantage. | ||
| 43 |   // Data was extracted from the CCRL game database with some simple filtering criteria. | ||
| 44 | |||
| 45 | double move_importance(int ply) { | ||
| 46 | |||
| 185 | pmbaty | 47 | constexpr double XScale = 6.85; | 
| 48 | constexpr double XShift = 64.5; | ||
| 49 | constexpr double Skew = 0.171; | ||
| 96 | pmbaty | 50 | |
| 51 | return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero | ||
| 52 |   } | ||
| 53 | |||
| 54 | template<TimeType T> | ||
| 185 | pmbaty | 55 | TimePoint remaining(TimePoint myTime, int movesToGo, int ply, TimePoint slowMover) { | 
| 154 | pmbaty | 56 | |
| 185 | pmbaty | 57 | constexpr double TMaxRatio = (T == OptimumTime ? 1.0 : MaxRatio); | 
| 58 | constexpr double TStealRatio = (T == OptimumTime ? 0.0 : StealRatio); | ||
| 96 | pmbaty | 59 | |
| 185 | pmbaty | 60 | double moveImportance = (move_importance(ply) * slowMover) / 100.0; | 
| 61 | double otherMovesImportance = 0.0; | ||
| 96 | pmbaty | 62 | |
| 63 | for (int i = 1; i < movesToGo; ++i) | ||
| 64 | otherMovesImportance += move_importance(ply + 2 * i); | ||
| 65 | |||
| 66 | double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); | ||
| 67 | double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); | ||
| 68 | |||
| 185 | pmbaty | 69 | return TimePoint(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast | 
| 96 | pmbaty | 70 |   } | 
| 71 | |||
| 72 | } // namespace | ||
| 73 | |||
| 74 | |||
| 75 | /// init() is called at the beginning of the search and calculates the allowed | ||
| 76 | /// thinking time out of the time control and current game ply. We support four | ||
| 77 | /// different kinds of time controls, passed in 'limits': | ||
| 78 | /// | ||
| 79 | ///  inc == 0 && movestogo == 0 means: x basetime  [sudden death!] | ||
| 80 | ///  inc == 0 && movestogo != 0 means: x moves in y minutes | ||
| 81 | ///  inc >  0 && movestogo == 0 means: x basetime + z increment | ||
| 82 | ///  inc >  0 && movestogo != 0 means: x moves in y minutes + z increment | ||
| 83 | |||
| 154 | pmbaty | 84 | void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { | 
| 85 | |||
| 185 | pmbaty | 86 | TimePoint minThinkingTime = Options["Minimum Thinking Time"]; | 
| 87 | TimePoint moveOverhead = Options["Move Overhead"]; | ||
| 88 | TimePoint slowMover = Options["Slow Mover"]; | ||
| 89 | TimePoint npmsec = Options["nodestime"]; | ||
| 90 |   TimePoint hypMyTime; | ||
| 96 | pmbaty | 91 | |
| 92 |   // If we have to play in 'nodes as time' mode, then convert from time | ||
| 93 |   // to nodes, and use resulting values in time management formulas. | ||
| 185 | pmbaty | 94 |   // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) | 
| 95 |   // must be much lower than the real engine speed. | ||
| 96 | pmbaty | 96 | if (npmsec) | 
| 97 |   { | ||
| 98 | if (!availableNodes) // Only once at game start | ||
| 99 | availableNodes = npmsec * limits.time[us]; // Time is in msec | ||
| 100 | |||
| 185 | pmbaty | 101 |       // Convert from milliseconds to nodes | 
| 102 | limits.time[us] = TimePoint(availableNodes); | ||
| 96 | pmbaty | 103 | limits.inc[us] *= npmsec; | 
| 104 | limits.npmsec = npmsec; | ||
| 105 |   } | ||
| 106 | |||
| 107 | startTime = limits.startTime; | ||
| 108 | optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); | ||
| 109 | |||
| 185 | pmbaty | 110 | const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; | 
| 96 | pmbaty | 111 | |
| 185 | pmbaty | 112 |   // We calculate optimum time usage for different hypothetical "moves to go" values | 
| 96 | pmbaty | 113 |   // and choose the minimum of calculated search time values. Usually the greatest | 
| 114 |   // hypMTG gives the minimum values. | ||
| 185 | pmbaty | 115 | for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG) | 
| 96 | pmbaty | 116 |   { | 
| 117 |       // Calculate thinking time for hypothetical "moves to go"-value | ||
| 185 | pmbaty | 118 | hypMyTime = limits.time[us] | 
| 119 | + limits.inc[us] * (hypMTG - 1) | ||
| 120 | - moveOverhead * (2 + std::min(hypMTG, 40)); | ||
| 96 | pmbaty | 121 | |
| 185 | pmbaty | 122 | hypMyTime = std::max(hypMyTime, TimePoint(0)); | 
| 96 | pmbaty | 123 | |
| 185 | pmbaty | 124 | TimePoint t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, ply, slowMover); | 
| 125 | TimePoint t2 = minThinkingTime + remaining<MaxTime >(hypMyTime, hypMTG, ply, slowMover); | ||
| 96 | pmbaty | 126 | |
| 127 | optimumTime = std::min(t1, optimumTime); | ||
| 128 | maximumTime = std::min(t2, maximumTime); | ||
| 129 |   } | ||
| 130 | |||
| 131 | if (Options["Ponder"]) | ||
| 132 | optimumTime += optimumTime / 4; | ||
| 133 | } |