Subversion Repositories Games.Chess Giants

Rev

Rev 169 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
169 pmbaty 2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
96 pmbaty 3
  Copyright (c) 2013 Ronald de Man
169 pmbaty 4
  Copyright (C) 2016-2018 Marco Costalba, Lucas Braesch
96 pmbaty 5
 
169 pmbaty 6
  Stockfish is free software: you can redistribute it and/or modify
7
  it under the terms of the GNU General Public License as published by
8
  the Free Software Foundation, either version 3 of the License, or
9
  (at your option) any later version.
10
 
11
  Stockfish is distributed in the hope that it will be useful,
12
  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
  GNU General Public License for more details.
15
 
16
  You should have received a copy of the GNU General Public License
17
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
96 pmbaty 18
*/
19
 
20
#include <algorithm>
169 pmbaty 21
#include <atomic>
22
#include <cstdint>
23
#include <cstring>   // For std::memset
24
#include <deque>
25
#include <fstream>
26
#include <iostream>
27
#include <list>
28
#include <sstream>
29
#include <type_traits>
96 pmbaty 30
 
169 pmbaty 31
#include "../bitboard.h"
32
#include "../movegen.h"
96 pmbaty 33
#include "../position.h"
34
#include "../search.h"
169 pmbaty 35
#include "../thread_win32.h"
36
#include "../types.h"
96 pmbaty 37
 
38
#include "tbprobe.h"
39
 
169 pmbaty 40
#ifndef _WIN32
41
#include <fcntl.h>
42
#include <unistd.h>
43
#include <sys/mman.h>
44
#include <sys/stat.h>
45
#else
46
#define WIN32_LEAN_AND_MEAN
47
#define NOMINMAX
48
#include <windows.h>
49
#endif
96 pmbaty 50
 
169 pmbaty 51
using namespace Tablebases;
96 pmbaty 52
 
169 pmbaty 53
int Tablebases::MaxCardinality;
96 pmbaty 54
 
169 pmbaty 55
namespace {
96 pmbaty 56
 
169 pmbaty 57
// Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables
58
enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 };
96 pmbaty 59
 
169 pmbaty 60
inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); }
61
inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); }
62
inline Square operator^(Square s, int i) { return Square(int(s) ^ i); }
96 pmbaty 63
 
169 pmbaty 64
// DTZ tables don't store valid scores for moves that reset the rule50 counter
65
// like captures and pawn moves but we can easily recover the correct dtz of the
66
// previous move if we know the position's WDL score.
67
int dtz_before_zeroing(WDLScore wdl) {
68
    return wdl == WDLWin         ?  1   :
69
           wdl == WDLCursedWin   ?  101 :
70
           wdl == WDLBlessedLoss ? -101 :
71
           wdl == WDLLoss        ? -1   : 0;
72
}
96 pmbaty 73
 
169 pmbaty 74
// Return the sign of a number (-1, 0, 1)
75
template <typename T> int sign_of(T val) {
76
    return (T(0) < val) - (val < T(0));
96 pmbaty 77
}
78
 
169 pmbaty 79
// Numbers in little endian used by sparseIndex[] to point into blockLength[]
80
struct SparseEntry {
81
    char block[4];   // Number of block
82
    char offset[2];  // Offset within the block
83
};
96 pmbaty 84
 
169 pmbaty 85
static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes");
96 pmbaty 86
 
169 pmbaty 87
typedef uint16_t Sym; // Huffman symbol
96 pmbaty 88
 
169 pmbaty 89
struct LR {
90
    enum Side { Left, Right, Value };
96 pmbaty 91
 
169 pmbaty 92
    uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12
93
                   // bits is the right-hand symbol. If symbol has length 1,
94
                   // then the first byte is the stored value.
95
    template<Side S>
96
    Sym get() {
97
        return S == Left  ? ((lr[1] & 0xF) << 8) | lr[0] :
98
               S == Right ?  (lr[2] << 4) | (lr[1] >> 4) :
99
               S == Value ?   lr[0] : (assert(false), Sym(-1));
100
    }
101
};
102
 
103
static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes");
104
 
105
const int TBPIECES = 6;
106
 
107
struct PairsData {
108
    int flags;
109
    size_t sizeofBlock;            // Block size in bytes
110
    size_t span;                   // About every span values there is a SparseIndex[] entry
111
    int blocksNum;                 // Number of blocks in the TB file
112
    int maxSymLen;                 // Maximum length in bits of the Huffman symbols
113
    int minSymLen;                 // Minimum length in bits of the Huffman symbols
114
    Sym* lowestSym;                // lowestSym[l] is the symbol of length l with the lowest value
115
    LR* btree;                     // btree[sym] stores the left and right symbols that expand sym
116
    uint16_t* blockLength;         // Number of stored positions (minus one) for each block: 1..65536
117
    int blockLengthSize;           // Size of blockLength[] table: padded so it's bigger than blocksNum
118
    SparseEntry* sparseIndex;      // Partial indices into blockLength[]
119
    size_t sparseIndexSize;        // Size of SparseIndex[] table
120
    uint8_t* data;                 // Start of Huffman compressed data
121
    std::vector<uint64_t> base64;  // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l
122
    std::vector<uint8_t> symlen;   // Number of values (-1) represented by a given Huffman symbol: 1..256
123
    Piece pieces[TBPIECES];        // Position pieces: the order of pieces defines the groups
124
    uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces
125
    int groupLen[TBPIECES+1];      // Number of pieces in a given group: KRKN -> (3, 1)
126
};
127
 
128
// Helper struct to avoid manually defining entry copy constructor as we
129
// should because the default one is not compatible with std::atomic_bool.
130
struct Atomic {
131
    Atomic() = default;
132
    Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body
133
    std::atomic_bool ready;
134
};
135
 
136
// We define types for the different parts of the WDLEntry and DTZEntry with
137
// corresponding specializations for pieces or pawns.
138
 
139
struct WDLEntryPiece {
140
    PairsData* precomp;
141
};
142
 
143
struct WDLEntryPawn {
144
    uint8_t pawnCount[2];     // [Lead color / other color]
145
    WDLEntryPiece file[2][4]; // [wtm / btm][FILE_A..FILE_D]
146
};
147
 
148
struct DTZEntryPiece {
149
    PairsData* precomp;
150
    uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss
151
    uint8_t* map;
152
};
153
 
154
struct DTZEntryPawn {
155
    uint8_t pawnCount[2];
156
    DTZEntryPiece file[4];
157
    uint8_t* map;
158
};
159
 
160
struct TBEntry : public Atomic {
161
    void* baseAddress;
162
    uint64_t mapping;
163
    Key key;
164
    Key key2;
165
    int pieceCount;
166
    bool hasPawns;
167
    bool hasUniquePieces;
168
};
169
 
170
// Now the main types: WDLEntry and DTZEntry
171
struct WDLEntry : public TBEntry {
172
    WDLEntry(const std::string& code);
173
   ~WDLEntry();
174
    union {
175
        WDLEntryPiece pieceTable[2]; // [wtm / btm]
176
        WDLEntryPawn  pawnTable;
177
    };
178
};
179
 
180
struct DTZEntry : public TBEntry {
181
    DTZEntry(const WDLEntry& wdl);
182
   ~DTZEntry();
183
    union {
184
        DTZEntryPiece pieceTable;
185
        DTZEntryPawn  pawnTable;
186
    };
187
};
188
 
189
typedef decltype(WDLEntry::pieceTable) WDLPieceTable;
190
typedef decltype(DTZEntry::pieceTable) DTZPieceTable;
191
typedef decltype(WDLEntry::pawnTable ) WDLPawnTable;
192
typedef decltype(DTZEntry::pawnTable ) DTZPawnTable;
193
 
194
auto item(WDLPieceTable& e, int stm, int  ) -> decltype(e[stm])& { return e[stm]; }
195
auto item(DTZPieceTable& e, int    , int  ) -> decltype(e)& { return e; }
196
auto item(WDLPawnTable&  e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; }
197
auto item(DTZPawnTable&  e, int    , int f) -> decltype(e.file[f])& { return e.file[f]; }
198
 
199
template<typename E> struct Ret { typedef int type; };
200
template<> struct Ret<WDLEntry> { typedef WDLScore type; };
201
 
202
int MapPawns[SQUARE_NB];
203
int MapB1H1H7[SQUARE_NB];
204
int MapA1D1D4[SQUARE_NB];
205
int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB]
206
 
207
// Comparison function to sort leading pawns in ascending MapPawns[] order
208
bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; }
209
int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); }
210
 
211
const Value WDL_to_value[] = {
212
   -VALUE_MATE + MAX_PLY + 1,
213
    VALUE_DRAW - 2,
214
    VALUE_DRAW,
215
    VALUE_DRAW + 2,
216
    VALUE_MATE - MAX_PLY - 1
217
};
218
 
219
const std::string PieceToChar = " PNBRQK  pnbrqk";
220
 
221
int Binomial[6][SQUARE_NB];    // [k][n] k elements from a set of n elements
222
int LeadPawnIdx[5][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB]
223
int LeadPawnsSize[5][4];       // [leadPawnsCnt][FILE_A..FILE_D]
224
 
225
enum { BigEndian, LittleEndian };
226
 
227
template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1>
228
inline void swap_byte(T& x)
96 pmbaty 229
{
169 pmbaty 230
    char tmp, *c = (char*)&x;
231
    for (int i = 0; i < Half; ++i)
232
        tmp = c[i], c[i] = c[End - i], c[End - i] = tmp;
96 pmbaty 233
}
169 pmbaty 234
template<> inline void swap_byte<uint8_t, 0, 0>(uint8_t&) {}
96 pmbaty 235
 
169 pmbaty 236
template<typename T, int LE> T number(void* addr)
96 pmbaty 237
{
169 pmbaty 238
    const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
239
    const bool IsLittleEndian = (Le.c[0] == 4);
96 pmbaty 240
 
169 pmbaty 241
    T v;
96 pmbaty 242
 
169 pmbaty 243
    if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare)
244
        std::memcpy(&v, addr, sizeof(T));
245
    else
246
        v = *((T*)addr);
96 pmbaty 247
 
169 pmbaty 248
    if (LE != IsLittleEndian)
249
        swap_byte(v);
250
    return v;
251
}
252
 
253
class HashTable {
254
 
255
    typedef std::pair<WDLEntry*, DTZEntry*> EntryPair;
256
    typedef std::pair<Key, EntryPair> Entry;
257
 
258
    static const int TBHASHBITS = 10;
259
    static const int HSHMAX     = 5;
260
 
261
    Entry hashTable[1 << TBHASHBITS][HSHMAX];
262
 
263
    std::deque<WDLEntry> wdlTable;
264
    std::deque<DTZEntry> dtzTable;
265
 
266
    void insert(Key key, WDLEntry* wdl, DTZEntry* dtz) {
267
        Entry* entry = hashTable[key >> (64 - TBHASHBITS)];
268
 
269
        for (int i = 0; i < HSHMAX; ++i, ++entry)
270
            if (!entry->second.first || entry->first == key) {
271
                *entry = std::make_pair(key, std::make_pair(wdl, dtz));
272
                return;
273
            }
274
 
275
        std::cerr << "HSHMAX too low!" << std::endl;
276
        exit(1);
277
    }
278
 
279
public:
280
    template<typename E, int I = std::is_same<E, WDLEntry>::value ? 0 : 1>
281
    E* get(Key key) {
282
      Entry* entry = hashTable[key >> (64 - TBHASHBITS)];
283
 
284
      for (int i = 0; i < HSHMAX; ++i, ++entry)
285
          if (entry->first == key)
286
              return std::get<I>(entry->second);
287
 
288
      return nullptr;
96 pmbaty 289
  }
290
 
169 pmbaty 291
  void clear() {
292
      std::memset(hashTable, 0, sizeof(hashTable));
293
      wdlTable.clear();
294
      dtzTable.clear();
295
  }
296
  size_t size() const { return wdlTable.size(); }
297
  void insert(const std::vector<PieceType>& pieces);
298
};
299
 
300
HashTable EntryTable;
301
 
302
class TBFile : public std::ifstream {
303
 
304
    std::string fname;
305
 
306
public:
307
    // Look for and open the file among the Paths directories where the .rtbw
308
    // and .rtbz files can be found. Multiple directories are separated by ";"
309
    // on Windows and by ":" on Unix-based operating systems.
310
    //
311
    // Example:
312
    // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6
313
    static std::string Paths;
314
 
315
    TBFile(const std::string& f) {
316
 
317
#ifndef _WIN32
318
        const char SepChar = ':';
96 pmbaty 319
#else
169 pmbaty 320
        const char SepChar = ';';
96 pmbaty 321
#endif
169 pmbaty 322
        std::stringstream ss(Paths);
323
        std::string path;
324
 
325
        while (std::getline(ss, path, SepChar)) {
326
            fname = path + "/" + f;
327
            std::ifstream::open(fname);
328
            if (is_open())
329
                return;
330
        }
96 pmbaty 331
    }
332
 
169 pmbaty 333
    // Memory map the file and check it. File should be already open and will be
334
    // closed after mapping.
335
    uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t* TB_MAGIC) {
336
 
337
        assert(is_open());
338
 
339
        close(); // Need to re-open to get native file descriptor
340
 
341
#ifndef _WIN32
342
        struct stat statbuf;
343
        int fd = ::open(fname.c_str(), O_RDONLY);
344
 
345
        if (fd == -1)
346
            return *baseAddress = nullptr, nullptr;
347
 
348
        fstat(fd, &statbuf);
349
        *mapping = statbuf.st_size;
350
        *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0);
351
        ::close(fd);
352
 
353
        if (*baseAddress == MAP_FAILED) {
354
            std::cerr << "Could not mmap() " << fname << std::endl;
355
            exit(1);
356
        }
357
#else
358
        HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr,
359
                               OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
360
 
361
        if (fd == INVALID_HANDLE_VALUE)
362
            return *baseAddress = nullptr, nullptr;
363
 
364
        DWORD size_high;
365
        DWORD size_low = GetFileSize(fd, &size_high);
366
        HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr);
367
        CloseHandle(fd);
368
 
369
        if (!mmap) {
370
            std::cerr << "CreateFileMapping() failed" << std::endl;
371
            exit(1);
372
        }
373
 
374
        *mapping = (uint64_t)mmap;
375
        *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0);
376
 
377
        if (!*baseAddress) {
378
            std::cerr << "MapViewOfFile() failed, name = " << fname
379
                      << ", error = " << GetLastError() << std::endl;
380
            exit(1);
381
        }
382
#endif
383
        uint8_t* data = (uint8_t*)*baseAddress;
384
 
385
        if (   *data++ != *TB_MAGIC++
386
            || *data++ != *TB_MAGIC++
387
            || *data++ != *TB_MAGIC++
388
            || *data++ != *TB_MAGIC) {
389
            std::cerr << "Corrupted table in file " << fname << std::endl;
390
            unmap(*baseAddress, *mapping);
391
            return *baseAddress = nullptr, nullptr;
392
        }
393
 
394
        return data;
96 pmbaty 395
    }
396
 
169 pmbaty 397
    static void unmap(void* baseAddress, uint64_t mapping) {
398
 
399
#ifndef _WIN32
400
        munmap(baseAddress, mapping);
401
#else
402
        UnmapViewOfFile(baseAddress);
403
        CloseHandle((HANDLE)mapping);
404
#endif
96 pmbaty 405
    }
169 pmbaty 406
};
407
 
408
std::string TBFile::Paths;
409
 
410
WDLEntry::WDLEntry(const std::string& code) {
411
 
412
    StateInfo st;
413
    Position pos;
414
 
415
    memset(this, 0, sizeof(WDLEntry));
416
 
417
    ready = false;
418
    key = pos.set(code, WHITE, &st).material_key();
419
    pieceCount = popcount(pos.pieces());
420
    hasPawns = pos.pieces(PAWN);
421
 
422
    for (Color c = WHITE; c <= BLACK; ++c)
423
        for (PieceType pt = PAWN; pt < KING; ++pt)
424
            if (popcount(pos.pieces(c, pt)) == 1)
425
                hasUniquePieces = true;
426
 
427
    if (hasPawns) {
428
        // Set the leading color. In case both sides have pawns the leading color
429
        // is the side with less pawns because this leads to better compression.
430
        bool c =   !pos.count<PAWN>(BLACK)
431
                || (   pos.count<PAWN>(WHITE)
432
                    && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE));
433
 
434
        pawnTable.pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK);
435
        pawnTable.pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE);
96 pmbaty 436
    }
437
 
169 pmbaty 438
    key2 = pos.set(code, BLACK, &st).material_key();
96 pmbaty 439
}
440
 
169 pmbaty 441
WDLEntry::~WDLEntry() {
96 pmbaty 442
 
169 pmbaty 443
    if (baseAddress)
444
        TBFile::unmap(baseAddress, mapping);
96 pmbaty 445
 
169 pmbaty 446
    for (int i = 0; i < 2; ++i)
447
        if (hasPawns)
448
            for (File f = FILE_A; f <= FILE_D; ++f)
449
                delete pawnTable.file[i][f].precomp;
450
        else
451
            delete pieceTable[i].precomp;
452
}
453
 
454
DTZEntry::DTZEntry(const WDLEntry& wdl) {
455
 
456
    memset(this, 0, sizeof(DTZEntry));
457
 
458
    ready = false;
459
    key = wdl.key;
460
    key2 = wdl.key2;
461
    pieceCount = wdl.pieceCount;
462
    hasPawns = wdl.hasPawns;
463
    hasUniquePieces = wdl.hasUniquePieces;
464
 
465
    if (hasPawns) {
466
        pawnTable.pawnCount[0] = wdl.pawnTable.pawnCount[0];
467
        pawnTable.pawnCount[1] = wdl.pawnTable.pawnCount[1];
96 pmbaty 468
    }
169 pmbaty 469
}
96 pmbaty 470
 
169 pmbaty 471
DTZEntry::~DTZEntry() {
96 pmbaty 472
 
169 pmbaty 473
    if (baseAddress)
474
        TBFile::unmap(baseAddress, mapping);
475
 
476
    if (hasPawns)
477
        for (File f = FILE_A; f <= FILE_D; ++f)
478
            delete pawnTable.file[f].precomp;
479
    else
480
        delete pieceTable.precomp;
481
}
482
 
483
void HashTable::insert(const std::vector<PieceType>& pieces) {
484
 
485
    std::string code;
486
 
487
    for (PieceType pt : pieces)
488
        code += PieceToChar[pt];
489
 
490
    TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK
491
 
492
    if (!file.is_open()) // Only WDL file is checked
493
        return;
494
 
495
    file.close();
496
 
497
    MaxCardinality = std::max((int)pieces.size(), MaxCardinality);
498
 
499
    wdlTable.emplace_back(code);
500
    dtzTable.emplace_back(wdlTable.back());
501
 
502
    insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back());
503
    insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back());
504
}
505
 
506
// TB tables are compressed with canonical Huffman code. The compressed data is divided into
507
// blocks of size d->sizeofBlock, and each block stores a variable number of symbols.
508
// Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols
509
// (recursively). If you keep expanding the symbols in a block, you end up with up to 65536
510
// WDL or DTZ values. Each symbol represents up to 256 values and will correspond after
511
// Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most
512
// 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly
513
// of draws or mostly of wins, but such tables are actually quite common. In principle, the
514
// blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for
515
// mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so
516
// in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long.
517
// The generator picks the size that leads to the smallest table. The "book" of symbols and
518
// Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file
519
// will have one table for wtm and one for btm, a TB file with pawns will have tables per
520
// file a,b,c,d also in this case one set for wtm and one for btm.
521
int decompress_pairs(PairsData* d, uint64_t idx) {
522
 
523
    // Special case where all table positions store the same value
524
    if (d->flags & TBFlag::SingleValue)
525
        return d->minSymLen;
526
 
527
    // First we need to locate the right block that stores the value at index "idx".
528
    // Because each block n stores blockLength[n] + 1 values, the index i of the block
529
    // that contains the value at position idx is:
530
    //
531
    //                    for (i = -1, sum = 0; sum <= idx; i++)
532
    //                        sum += blockLength[i + 1] + 1;
533
    //
534
    // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that
535
    // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry
536
    // that stores the blockLength[] index and the offset within that block of the value
537
    // with index I(k), where:
538
    //
539
    //       I(k) = k * d->span + d->span / 2      (1)
540
 
541
    // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1)
542
    uint32_t k = (uint32_t) (idx / d->span); // Pierre-Marie Baty -- added type cast
543
 
544
    // Then we read the corresponding SparseIndex[] entry
545
    uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block);
546
    int offset     = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset);
547
 
548
    // Now compute the difference idx - I(k). From definition of k we know that
549
    //
550
    //       idx = k * d->span + idx % d->span    (2)
551
    //
552
    // So from (1) and (2) we can compute idx - I(K):
553
    int diff = idx % d->span - d->span / 2;
554
 
555
    // Sum the above to offset to find the offset corresponding to our idx
556
    offset += diff;
557
 
558
    // Move to previous/next block, until we reach the correct block that contains idx,
559
    // that is when 0 <= offset <= d->blockLength[block]
560
    while (offset < 0)
561
        offset += d->blockLength[--block] + 1;
562
 
563
    while (offset > d->blockLength[block])
564
        offset -= d->blockLength[block++] + 1;
565
 
566
    // Finally, we find the start address of our block of canonical Huffman symbols
567
    uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock);
568
 
569
    // Read the first 64 bits in our block, this is a (truncated) sequence of
570
    // unknown number of symbols of unknown length but we know the first one
571
    // is at the beginning of this 64 bits sequence.
572
    uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2;
573
    int buf64Size = 64;
574
    Sym sym;
575
 
576
    while (true) {
577
        int len = 0; // This is the symbol length - d->min_sym_len
578
 
579
        // Now get the symbol length. For any symbol s64 of length l right-padded
580
        // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we
581
        // can find the symbol length iterating through base64[].
582
        while (buf64 < d->base64[len])
583
            ++len;
584
 
585
        // All the symbols of a given length are consecutive integers (numerical
586
        // sequence property), so we can compute the offset of our symbol of
587
        // length len, stored at the beginning of buf64.
588
        sym = (Sym) ((buf64 - d->base64[len]) >> (64 - len - d->minSymLen)); // Pierre-Marie Baty -- added type cast
589
 
590
        // Now add the value of the lowest symbol of length len to get our symbol
591
        sym += number<Sym, LittleEndian>(&d->lowestSym[len]);
592
 
593
        // If our offset is within the number of values represented by symbol sym
594
        // we are done...
595
        if (offset < d->symlen[sym] + 1)
596
            break;
597
 
598
        // ...otherwise update the offset and continue to iterate
599
        offset -= d->symlen[sym] + 1;
600
        len += d->minSymLen; // Get the real length
601
        buf64 <<= len;       // Consume the just processed symbol
602
        buf64Size -= len;
603
 
604
        if (buf64Size <= 32) { // Refill the buffer
605
            buf64Size += 32;
606
            buf64 |= (uint64_t)number<uint32_t, BigEndian>(ptr++) << (64 - buf64Size);
607
        }
96 pmbaty 608
    }
609
 
169 pmbaty 610
    // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols.
611
    // We binary-search for our value recursively expanding into the left and
612
    // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1
613
    // that will store the value we need.
614
    while (d->symlen[sym]) {
615
 
616
        Sym left = d->btree[sym].get<LR::Left>();
617
 
618
        // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and
619
        // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then
620
        // we know that, for instance the ten-th value (offset = 10) will be on
621
        // the left side because in Recursive Pairing child symbols are adjacent.
622
        if (offset < d->symlen[left] + 1)
623
            sym = left;
624
        else {
625
            offset -= d->symlen[left] + 1;
626
            sym = d->btree[sym].get<LR::Right>();
627
        }
96 pmbaty 628
    }
629
 
169 pmbaty 630
    return d->btree[sym].get<LR::Value>();
631
}
96 pmbaty 632
 
169 pmbaty 633
bool check_dtz_stm(WDLEntry*, int, File) { return true; }
634
 
635
bool check_dtz_stm(DTZEntry* entry, int stm, File f) {
636
 
637
    int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags
638
                                : entry->pieceTable.precomp->flags;
639
 
640
    return   (flags & TBFlag::STM) == stm
641
          || ((entry->key == entry->key2) && !entry->hasPawns);
642
}
643
 
644
// DTZ scores are sorted by frequency of occurrence and then assigned the
645
// values 0, 1, 2, ... in order of decreasing frequency. This is done for each
646
// of the four WDLScore values. The mapping information necessary to reconstruct
647
// the original values is stored in the TB file and read during map[] init.
648
WDLScore map_score(WDLEntry*, File, int value, WDLScore) { return WDLScore(value - 2); }
649
 
650
int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) {
651
 
652
    const int WDLMap[] = { 1, 3, 0, 2, 0 };
653
 
654
    int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags
655
                                : entry->pieceTable.precomp->flags;
656
 
657
    uint8_t* map = entry->hasPawns ? entry->pawnTable.map
658
                                   : entry->pieceTable.map;
659
 
660
    uint16_t* idx = entry->hasPawns ? entry->pawnTable.file[f].map_idx
661
                                    : entry->pieceTable.map_idx;
662
    if (flags & TBFlag::Mapped)
663
        value = map[idx[WDLMap[wdl + 2]] + value];
664
 
665
    // DTZ tables store distance to zero in number of moves or plies. We
666
    // want to return plies, so we have convert to plies when needed.
667
    if (   (wdl == WDLWin  && !(flags & TBFlag::WinPlies))
668
        || (wdl == WDLLoss && !(flags & TBFlag::LossPlies))
669
        ||  wdl == WDLCursedWin
670
        ||  wdl == WDLBlessedLoss)
671
        value *= 2;
672
 
673
    return value + 1;
674
}
675
 
676
// Compute a unique index out of a position and use it to probe the TB file. To
677
// encode k pieces of same type and color, first sort the pieces by square in
678
// ascending order s1 <= s2 <= ... <= sk then compute the unique index as:
679
//
680
//      idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk]
681
//
682
template<typename Entry, typename T = typename Ret<Entry>::type>
683
T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* result) {
684
 
685
    const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
686
 
687
    Square squares[TBPIECES];
688
    Piece pieces[TBPIECES];
689
    uint64_t idx;
690
    int next = 0, size = 0, leadPawnsCnt = 0;
691
    PairsData* d;
692
    Bitboard b, leadPawns = 0;
693
    File tbFile = FILE_A;
694
 
695
    // A given TB entry like KRK has associated two material keys: KRvk and Kvkr.
696
    // If both sides have the same pieces keys are equal. In this case TB tables
697
    // only store the 'white to move' case, so if the position to lookup has black
698
    // to move, we need to switch the color and flip the squares before to lookup.
699
    bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move());
700
 
701
    // TB files are calculated for white as stronger side. For instance we have
702
    // KRvK, not KvKR. A position where stronger side is white will have its
703
    // material key == entry->key, otherwise we have to switch the color and
704
    // flip the squares before to lookup.
705
    bool blackStronger = (pos.material_key() != entry->key);
706
 
707
    int flipColor   = (symmetricBlackToMove || blackStronger) * 8;
708
    int flipSquares = (symmetricBlackToMove || blackStronger) * 070;
709
    int stm         = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move();
710
 
711
    // For pawns, TB files store 4 separate tables according if leading pawn is on
712
    // file a, b, c or d after reordering. The leading pawn is the one with maximum
713
    // MapPawns[] value, that is the one most toward the edges and with lowest rank.
714
    if (entry->hasPawns) {
715
 
716
        // In all the 4 tables, pawns are at the beginning of the piece sequence and
717
        // their color is the reference one. So we just pick the first one.
718
        Piece pc = Piece(item(entry->pawnTable, 0, 0).precomp->pieces[0] ^ flipColor);
719
 
720
        assert(type_of(pc) == PAWN);
721
 
722
        leadPawns = b = pos.pieces(color_of(pc), PAWN);
723
        do
724
            squares[size++] = pop_lsb(&b) ^ flipSquares;
725
        while (b);
726
 
727
        leadPawnsCnt = size;
728
 
729
        std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp));
730
 
731
        tbFile = file_of(squares[0]);
732
        if (tbFile > FILE_D)
733
            tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1
734
 
735
        d = item(entry->pawnTable , stm, tbFile).precomp;
736
    } else
737
        d = item(entry->pieceTable, stm, tbFile).precomp;
738
 
739
    // DTZ tables are one-sided, i.e. they store positions only for white to
740
    // move or only for black to move, so check for side to move to be stm,
741
    // early exit otherwise.
742
    if (!IsWDL && !check_dtz_stm(entry, stm, tbFile))
743
        return *result = CHANGE_STM, T();
744
 
745
    // Now we are ready to get all the position pieces (but the lead pawns) and
746
    // directly map them to the correct color and square.
747
    b = pos.pieces() ^ leadPawns;
96 pmbaty 748
    do {
169 pmbaty 749
        Square s = pop_lsb(&b);
750
        squares[size] = s ^ flipSquares;
751
        pieces[size++] = Piece(pos.piece_on(s) ^ flipColor);
752
    } while (b);
753
 
754
    assert(size >= 2);
755
 
756
    // Then we reorder the pieces to have the same sequence as the one stored
757
    // in precomp->pieces[i]: the sequence that ensures the best compression.
758
    for (int i = leadPawnsCnt; i < size; ++i)
759
        for (int j = i; j < size; ++j)
760
            if (d->pieces[i] == pieces[j])
761
            {
762
                std::swap(pieces[i], pieces[j]);
763
                std::swap(squares[i], squares[j]);
764
                break;
765
            }
766
 
767
    // Now we map again the squares so that the square of the lead piece is in
768
    // the triangle A1-D1-D4.
769
    if (file_of(squares[0]) > FILE_D)
770
        for (int i = 0; i < size; ++i)
771
            squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1
772
 
773
    // Encode leading pawns starting with the one with minimum MapPawns[] and
774
    // proceeding in ascending order.
775
    if (entry->hasPawns) {
776
        idx = LeadPawnIdx[leadPawnsCnt][squares[0]];
777
 
778
        std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp);
779
 
780
        for (int i = 1; i < leadPawnsCnt; ++i)
781
            idx += Binomial[i][MapPawns[squares[i]]];
782
 
783
        goto encode_remaining; // With pawns we have finished special treatments
96 pmbaty 784
    }
169 pmbaty 785
 
786
    // In positions withouth pawns, we further flip the squares to ensure leading
787
    // piece is below RANK_5.
788
    if (rank_of(squares[0]) > RANK_4)
789
        for (int i = 0; i < size; ++i)
790
            squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1
791
 
792
    // Look for the first piece of the leading group not on the A1-D4 diagonal
793
    // and ensure it is mapped below the diagonal.
794
    for (int i = 0; i < d->groupLen[0]; ++i) {
795
        if (!off_A1H8(squares[i]))
796
            continue;
797
 
798
        if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3
799
            for (int j = i; j < size; ++j)
800
                squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63);
801
        break;
96 pmbaty 802
    }
803
 
169 pmbaty 804
    // Encode the leading group.
805
    //
806
    // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR
807
    // and bK (each 0...63). The simplest way to map this position to an index
808
    // is like this:
809
    //
810
    //   index = wK * 64 * 64 + wR * 64 + bK;
811
    //
812
    // But this way the TB is going to have 64*64*64 = 262144 positions, with
813
    // lots of positions being equivalent (because they are mirrors of each
814
    // other) and lots of positions being invalid (two pieces on one square,
815
    // adjacent kings, etc.).
816
    // Usually the first step is to take the wK and bK together. There are just
817
    // 462 ways legal and not-mirrored ways to place the wK and bK on the board.
818
    // Once we have placed the wK and bK, there are 62 squares left for the wR
819
    // Mapping its square from 0..63 to available squares 0..61 can be done like:
820
    //
821
    //   wR -= (wR > wK) + (wR > bK);
822
    //
823
    // In words: if wR "comes later" than wK, we deduct 1, and the same if wR
824
    // "comes later" than bK. In case of two same pieces like KRRvK we want to
825
    // place the two Rs "together". If we have 62 squares left, we can place two
826
    // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be
827
    // swapped and still get the same position.)
828
    //
829
    // In case we have at least 3 unique pieces (inlcuded kings) we encode them
830
    // together.
831
    if (entry->hasUniquePieces) {
96 pmbaty 832
 
169 pmbaty 833
        int adjust1 =  squares[1] > squares[0];
834
        int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]);
96 pmbaty 835
 
169 pmbaty 836
        // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3
837
        // triangle to 0...5. There are 63 squares for second piece and and 62
838
        // (mapped to 0...61) for the third.
839
        if (off_A1H8(squares[0]))
840
            idx = (   MapA1D1D4[squares[0]]  * 63
841
                   + (squares[1] - adjust1)) * 62
842
                   +  squares[2] - adjust2;
843
 
844
        // First piece is on a1-h8 diagonal, second below: map this occurence to
845
        // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal
846
        // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27.
847
        else if (off_A1H8(squares[1]))
848
            idx = (  6 * 63 + rank_of(squares[0]) * 28
849
                   + MapB1H1H7[squares[1]])       * 62
850
                   + squares[2] - adjust2;
851
 
852
        // First two pieces are on a1-h8 diagonal, third below
853
        else if (off_A1H8(squares[2]))
854
            idx =  6 * 63 * 62 + 4 * 28 * 62
855
                 +  rank_of(squares[0])        * 7 * 28
856
                 + (rank_of(squares[1]) - adjust1) * 28
857
                 +  MapB1H1H7[squares[2]];
858
 
859
        // All 3 pieces on the diagonal a1-h8
860
        else
861
            idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28
862
                 +  rank_of(squares[0])         * 7 * 6
863
                 + (rank_of(squares[1]) - adjust1)  * 6
864
                 + (rank_of(squares[2]) - adjust2);
865
    } else
866
        // We don't have at least 3 unique pieces, like in KRRvKBB, just map
867
        // the kings.
868
        idx = MapKK[MapA1D1D4[squares[0]]][squares[1]];
869
 
870
encode_remaining:
871
    idx *= d->groupIdx[0];
872
    Square* groupSq = squares + d->groupLen[0];
873
 
874
    // Encode remainig pawns then pieces according to square, in ascending order
875
    bool remainingPawns = entry->hasPawns && entry->pawnTable.pawnCount[1];
876
 
877
    while (d->groupLen[++next])
878
    {
879
        std::sort(groupSq, groupSq + d->groupLen[next]);
880
        uint64_t n = 0;
881
 
882
        // Map down a square if "comes later" than a square in the previous
883
        // groups (similar to what done earlier for leading group pieces).
884
        for (int i = 0; i < d->groupLen[next]; ++i)
885
        {
886
            auto f = [&](Square s) { return groupSq[i] > s; };
887
            auto adjust = std::count_if(squares, groupSq, f);
888
            n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns];
889
        }
890
 
891
        remainingPawns = false;
892
        idx += n * d->groupIdx[next];
893
        groupSq += d->groupLen[next];
894
    }
895
 
896
    // Now that we have the index, decompress the pair and get the score
897
    return map_score(entry, tbFile, decompress_pairs(d, idx), wdl);
96 pmbaty 898
}
899
 
169 pmbaty 900
// Group together pieces that will be encoded together. The general rule is that
901
// a group contains pieces of same type and color. The exception is the leading
902
// group that, in case of positions withouth pawns, can be formed by 3 different
903
// pieces (default) or by the king pair when there is not a unique piece apart
904
// from the kings. When there are pawns, pawns are always first in pieces[].
905
//
906
// As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K
907
//
908
// The actual grouping depends on the TB generator and can be inferred from the
909
// sequence of pieces in piece[] array.
910
template<typename T>
911
void set_groups(T& e, PairsData* d, int order[], File f) {
96 pmbaty 912
 
169 pmbaty 913
    int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2;
914
    d->groupLen[n] = 1;
915
 
916
    // Number of pieces per group is stored in groupLen[], for instance in KRKN
917
    // the encoder will default on '111', so groupLen[] will be (3, 1).
918
    for (int i = 1; i < e.pieceCount; ++i)
919
        if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1])
920
            d->groupLen[n]++;
921
        else
922
            d->groupLen[++n] = 1;
923
 
924
    d->groupLen[++n] = 0; // Zero-terminated
925
 
926
    // The sequence in pieces[] defines the groups, but not the order in which
927
    // they are encoded. If the pieces in a group g can be combined on the board
928
    // in N(g) different ways, then the position encoding will be of the form:
929
    //
930
    //           g1 * N(g2) * N(g3) + g2 * N(g3) + g3
931
    //
932
    // This ensures unique encoding for the whole position. The order of the
933
    // groups is a per-table parameter and could not follow the canonical leading
934
    // pawns/pieces -> remainig pawns -> remaining pieces. In particular the
935
    // first group is at order[0] position and the remaining pawns, when present,
936
    // are at order[1] position.
937
    bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides
938
    int next = pp ? 2 : 1;
939
    int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0);
940
    uint64_t idx = 1;
941
 
942
    for (int k = 0; next < n || k == order[0] || k == order[1]; ++k)
943
        if (k == order[0]) // Leading pawns or pieces
944
        {
945
            d->groupIdx[0] = idx;
946
            idx *=         e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f]
947
                  : e.hasUniquePieces ? 31332 : 462;
948
        }
949
        else if (k == order[1]) // Remaining pawns
950
        {
951
            d->groupIdx[1] = idx;
952
            idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]];
953
        }
954
        else // Remainig pieces
955
        {
956
            d->groupIdx[next] = idx;
957
            idx *= Binomial[d->groupLen[next]][freeSquares];
958
            freeSquares -= d->groupLen[next++];
959
        }
960
 
961
    d->groupIdx[n] = idx;
962
}
963
 
964
// In Recursive Pairing each symbol represents a pair of childern symbols. So
965
// read d->btree[] symbols data and expand each one in his left and right child
966
// symbol until reaching the leafs that represent the symbol value.
967
uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) {
968
 
969
    visited[s] = true; // We can set it now because tree is acyclic
970
    Sym sr = d->btree[s].get<LR::Right>();
971
 
972
    if (sr == 0xFFF)
973
        return 0;
974
 
975
    Sym sl = d->btree[s].get<LR::Left>();
976
 
977
    if (!visited[sl])
978
        d->symlen[sl] = set_symlen(d, sl, visited);
979
 
980
    if (!visited[sr])
981
        d->symlen[sr] = set_symlen(d, sr, visited);
982
 
983
    return d->symlen[sl] + d->symlen[sr] + 1;
984
}
985
 
986
uint8_t* set_sizes(PairsData* d, uint8_t* data) {
987
 
988
    d->flags = *data++;
989
 
990
    if (d->flags & TBFlag::SingleValue) {
991
        d->blocksNum = d->blockLengthSize = 0;
992
        d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init
993
        d->minSymLen = *data++; // Here we store the single value
994
        return data;
96 pmbaty 995
    }
996
 
169 pmbaty 997
    // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[]
998
    // element stores the biggest index that is the tb size.
999
    uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen];
1000
 
1001
    d->sizeofBlock = 1ULL << *data++;
1002
    d->span = 1ULL << *data++;
1003
    d->sparseIndexSize = (size_t) ((tbSize + d->span - 1) / d->span); // Round up // Pierre-Marie Baty -- added type cast
1004
    int padding = number<uint8_t, LittleEndian>(data++);
1005
    d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t);
1006
    d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[]
1007
                                                 // does not point out of range.
1008
    d->maxSymLen = *data++;
1009
    d->minSymLen = *data++;
1010
    d->lowestSym = (Sym*)data;
1011
    d->base64.resize(d->maxSymLen - d->minSymLen + 1);
1012
 
1013
    // The canonical code is ordered such that longer symbols (in terms of
1014
    // the number of bits of their Huffman code) have lower numeric value,
1015
    // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian).
1016
    // Starting from this we compute a base64[] table indexed by symbol length
1017
    // and containing 64 bit values so that d->base64[i] >= d->base64[i+1].
1018
    // See http://www.eecs.harvard.edu/~michaelm/E210/huffman.pdf
1019
    for (int i = d->base64.size() - 2; i >= 0; --i) {
1020
        d->base64[i] = (d->base64[i + 1] + number<Sym, LittleEndian>(&d->lowestSym[i])
1021
                                         - number<Sym, LittleEndian>(&d->lowestSym[i + 1])) / 2;
1022
 
1023
        assert(d->base64[i] * 2 >= d->base64[i+1]);
1024
    }
1025
 
1026
    // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more
1027
    // than d->base64[i+1] and given the above assert condition, we ensure that
1028
    // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i
1029
    // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i].
1030
    for (size_t i = 0; i < d->base64.size(); ++i)
1031
        d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits
1032
 
1033
    data += d->base64.size() * sizeof(Sym);
1034
    d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t);
1035
    d->btree = (LR*)data;
1036
 
1037
    // The comrpession scheme used is "Recursive Pairing", that replaces the most
1038
    // frequent adjacent pair of symbols in the source message by a new symbol,
1039
    // reevaluating the frequencies of all of the symbol pairs with respect to
1040
    // the extended alphabet, and then repeating the process.
1041
    // See http://www.larsson.dogma.net/dcc99.pdf
1042
    std::vector<bool> visited(d->symlen.size());
1043
 
1044
    for (Sym sym = 0; sym < d->symlen.size(); ++sym)
1045
        if (!visited[sym])
1046
            d->symlen[sym] = set_symlen(d, sym, visited);
1047
 
1048
    return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1);
96 pmbaty 1049
}
1050
 
169 pmbaty 1051
template<typename T>
1052
uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; }
96 pmbaty 1053
 
169 pmbaty 1054
template<typename T>
1055
uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) {
96 pmbaty 1056
 
169 pmbaty 1057
    p.map = data;
1058
 
1059
    for (File f = FILE_A; f <= maxFile; ++f) {
1060
        if (item(p, 0, f).precomp->flags & TBFlag::Mapped)
1061
            for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x
1062
                item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1);
1063
                data += *data + 1;
1064
            }
96 pmbaty 1065
    }
1066
 
169 pmbaty 1067
    return data += (uintptr_t)data & 1; // Word alignment
96 pmbaty 1068
}
1069
 
169 pmbaty 1070
template<typename Entry, typename T>
1071
void do_init(Entry& e, T& p, uint8_t* data) {
96 pmbaty 1072
 
169 pmbaty 1073
    const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
96 pmbaty 1074
 
169 pmbaty 1075
    PairsData* d;
96 pmbaty 1076
 
169 pmbaty 1077
    enum { Split = 1, HasPawns = 2 };
96 pmbaty 1078
 
169 pmbaty 1079
    assert(e.hasPawns        == !!(*data & HasPawns));
1080
    assert((e.key != e.key2) == !!(*data & Split));
96 pmbaty 1081
 
169 pmbaty 1082
    data++; // First byte stores flags
1083
 
1084
    const int Sides = IsWDL && (e.key != e.key2) ? 2 : 1;
1085
    const File MaxFile = e.hasPawns ? FILE_D : FILE_A;
1086
 
1087
    bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides
1088
 
1089
    assert(!pp || e.pawnTable.pawnCount[0]);
1090
 
1091
    for (File f = FILE_A; f <= MaxFile; ++f) {
1092
 
1093
        for (int i = 0; i < Sides; i++)
1094
            item(p, i, f).precomp = new PairsData();
1095
 
1096
        int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF },
1097
                           { *data >>  4, pp ? *(data + 1) >>  4 : 0xF } };
1098
        data += 1 + pp;
1099
 
1100
        for (int k = 0; k < e.pieceCount; ++k, ++data)
1101
            for (int i = 0; i < Sides; i++)
1102
                item(p, i, f).precomp->pieces[k] = Piece(i ? *data >>  4 : *data & 0xF);
1103
 
1104
        for (int i = 0; i < Sides; ++i)
1105
            set_groups(e, item(p, i, f).precomp, order[i], f);
1106
    }
1107
 
1108
    data += (uintptr_t)data & 1; // Word alignment
1109
 
1110
    for (File f = FILE_A; f <= MaxFile; ++f)
1111
        for (int i = 0; i < Sides; i++)
1112
            data = set_sizes(item(p, i, f).precomp, data);
1113
 
1114
    if (!IsWDL)
1115
        data = set_dtz_map(e, p, data, MaxFile);
1116
 
1117
    for (File f = FILE_A; f <= MaxFile; ++f)
1118
        for (int i = 0; i < Sides; i++) {
1119
            (d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data;
1120
            data += d->sparseIndexSize * sizeof(SparseEntry);
96 pmbaty 1121
        }
169 pmbaty 1122
 
1123
    for (File f = FILE_A; f <= MaxFile; ++f)
1124
        for (int i = 0; i < Sides; i++) {
1125
            (d = item(p, i, f).precomp)->blockLength = (uint16_t*)data;
1126
            data += d->blockLengthSize * sizeof(uint16_t);
1127
        }
1128
 
1129
    for (File f = FILE_A; f <= MaxFile; ++f)
1130
        for (int i = 0; i < Sides; i++) {
1131
            data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment
1132
            (d = item(p, i, f).precomp)->data = data;
1133
            data += d->blocksNum * d->sizeofBlock;
1134
        }
1135
}
1136
 
1137
template<typename Entry>
1138
void* init(Entry& e, const Position& pos) {
1139
 
1140
    const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
1141
 
1142
    static Mutex mutex;
1143
 
1144
    // Avoid a thread reads 'ready' == true while another is still in do_init(),
1145
    // this could happen due to compiler reordering.
1146
    if (e.ready.load(std::memory_order_acquire))
1147
        return e.baseAddress;
1148
 
1149
    std::unique_lock<Mutex> lk(mutex);
1150
 
1151
    if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock
1152
        return e.baseAddress;
1153
 
1154
    // Pieces strings in decreasing order for each color, like ("KPP","KR")
1155
    std::string fname, w, b;
1156
    for (PieceType pt = KING; pt >= PAWN; --pt) {
1157
        w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]);
1158
        b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]);
96 pmbaty 1159
    }
1160
 
169 pmbaty 1161
    const uint8_t TB_MAGIC[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 },
1162
                                    { 0x71, 0xE8, 0x23, 0x5D } };
1163
 
1164
    fname =  (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w)
1165
           + (IsWDL ? ".rtbw" : ".rtbz");
1166
 
1167
    uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, TB_MAGIC[IsWDL]);
1168
    if (data)
1169
        e.hasPawns ? do_init(e, e.pawnTable, data) : do_init(e, e.pieceTable, data);
1170
 
1171
    e.ready.store(true, std::memory_order_release);
1172
    return e.baseAddress;
96 pmbaty 1173
}
1174
 
169 pmbaty 1175
template<typename E, typename T = typename Ret<E>::type>
1176
T probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) {
96 pmbaty 1177
 
169 pmbaty 1178
    if (!(pos.pieces() ^ pos.pieces(KING)))
1179
        return T(WDLDraw); // KvK
96 pmbaty 1180
 
169 pmbaty 1181
    E* entry = EntryTable.get<E>(pos.material_key());
96 pmbaty 1182
 
169 pmbaty 1183
    if (!entry || !init(*entry, pos))
1184
        return *result = FAIL, T();
96 pmbaty 1185
 
169 pmbaty 1186
    return do_probe_table(pos, entry, wdl, result);
1187
}
96 pmbaty 1188
 
169 pmbaty 1189
// For a position where the side to move has a winning capture it is not necessary
1190
// to store a winning value so the generator treats such positions as "don't cares"
1191
// and tries to assign to it a value that improves the compression ratio. Similarly,
1192
// if the side to move has a drawing capture, then the position is at least drawn.
1193
// If the position is won, then the TB needs to store a win value. But if the
1194
// position is drawn, the TB may store a loss value if that is better for compression.
1195
// All of this means that during probing, the engine must look at captures and probe
1196
// their results and must probe the position itself. The "best" result of these
1197
// probes is the correct result for the position.
1198
// DTZ table don't store values when a following move is a zeroing winning move
1199
// (winning capture or winning pawn move). Also DTZ store wrong values for positions
1200
// where the best move is an ep-move (even if losing). So in all these cases set
1201
// the state to ZEROING_BEST_MOVE.
1202
template<bool CheckZeroingMoves = false>
1203
WDLScore search(Position& pos, ProbeState* result) {
1204
 
1205
    WDLScore value, bestValue = WDLLoss;
1206
    StateInfo st;
1207
 
1208
    auto moveList = MoveList<LEGAL>(pos);
1209
    size_t totalCount = moveList.size(), moveCount = 0;
1210
 
1211
    for (const Move& move : moveList)
1212
    {
1213
        if (   !pos.capture(move)
1214
            && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN))
1215
            continue;
1216
 
1217
        moveCount++;
1218
 
1219
        pos.do_move(move, st);
1220
        value = -search(pos, result);
1221
        pos.undo_move(move);
1222
 
1223
        if (*result == FAIL)
1224
            return WDLDraw;
1225
 
1226
        if (value > bestValue)
1227
        {
1228
            bestValue = value;
1229
 
1230
            if (value >= WDLWin)
1231
            {
1232
                *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move
1233
                return value;
1234
            }
1235
        }
1236
    }
1237
 
1238
    // In case we have already searched all the legal moves we don't have to probe
1239
    // the TB because the stored score could be wrong. For instance TB tables
1240
    // do not contain information on position with ep rights, so in this case
1241
    // the result of probe_wdl_table is wrong. Also in case of only capture
1242
    // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to
1243
    // return with ZEROING_BEST_MOVE set.
1244
    bool noMoreMoves = (moveCount && moveCount == totalCount);
1245
 
1246
    if (noMoreMoves)
1247
        value = bestValue;
96 pmbaty 1248
    else
169 pmbaty 1249
    {
1250
        value = probe_table<WDLEntry>(pos, result);
96 pmbaty 1251
 
169 pmbaty 1252
        if (*result == FAIL)
1253
            return WDLDraw;
96 pmbaty 1254
    }
1255
 
169 pmbaty 1256
    // DTZ stores a "don't care" value if bestValue is a win
1257
    if (bestValue >= value)
1258
        return *result = (   bestValue > WDLDraw
1259
                          || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue;
96 pmbaty 1260
 
169 pmbaty 1261
    return *result = OK, value;
1262
}
1263
 
1264
} // namespace
1265
 
1266
void Tablebases::init(const std::string& paths) {
1267
 
1268
    EntryTable.clear();
1269
    MaxCardinality = 0;
1270
    TBFile::Paths = paths;
1271
 
176 pmbaty 1272
    if (paths.empty() || paths == "") // Pierre-Marie Baty -- was: || paths == "<empty>"
169 pmbaty 1273
        return;
1274
 
1275
    // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27
1276
    int code = 0;
1277
    for (Square s = SQ_A1; s <= SQ_H8; ++s)
1278
        if (off_A1H8(s) < 0)
1279
            MapB1H1H7[s] = code++;
1280
 
1281
    // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9
1282
    std::vector<Square> diagonal;
1283
    code = 0;
1284
    for (Square s = SQ_A1; s <= SQ_D4; ++s)
1285
        if (off_A1H8(s) < 0 && file_of(s) <= FILE_D)
1286
            MapA1D1D4[s] = code++;
1287
 
1288
        else if (!off_A1H8(s) && file_of(s) <= FILE_D)
1289
            diagonal.push_back(s);
1290
 
1291
    // Diagonal squares are encoded as last ones
1292
    for (auto s : diagonal)
1293
        MapA1D1D4[s] = code++;
1294
 
1295
    // MapKK[] encodes all the 461 possible legal positions of two kings where
1296
    // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4
1297
    // diagonal, the other one shall not to be above the a1-h8 diagonal.
1298
    std::vector<std::pair<int, Square>> bothOnDiagonal;
1299
    code = 0;
1300
    for (int idx = 0; idx < 10; idx++)
1301
        for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1)
1302
            if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0
1303
            {
1304
                for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
1305
                    if ((PseudoAttacks[KING][s1] | s1) & s2)
1306
                        continue; // Illegal position
1307
 
1308
                    else if (!off_A1H8(s1) && off_A1H8(s2) > 0)
1309
                        continue; // First on diagonal, second above
1310
 
1311
                    else if (!off_A1H8(s1) && !off_A1H8(s2))
1312
                        bothOnDiagonal.push_back(std::make_pair(idx, s2));
1313
 
1314
                    else
1315
                        MapKK[idx][s2] = code++;
1316
            }
1317
 
1318
    // Legal positions with both kings on diagonal are encoded as last ones
1319
    for (auto p : bothOnDiagonal)
1320
        MapKK[p.first][p.second] = code++;
1321
 
1322
    // Binomial[] stores the Binomial Coefficents using Pascal rule. There
1323
    // are Binomial[k][n] ways to choose k elements from a set of n elements.
1324
    Binomial[0][0] = 1;
1325
 
1326
    for (int n = 1; n < 64; n++) // Squares
1327
        for (int k = 0; k < 6 && k <= n; ++k) // Pieces
1328
            Binomial[k][n] =  (k > 0 ? Binomial[k - 1][n - 1] : 0)
1329
                            + (k < n ? Binomial[k    ][n - 1] : 0);
1330
 
1331
    // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible
1332
    // available squares when the leading one is in 's'. Moreover the pawn with
1333
    // highest MapPawns[] is the leading pawn, the one nearest the edge and,
1334
    // among pawns with same file, the one with lowest rank.
1335
    int availableSquares = 47; // Available squares when lead pawn is in a2
1336
 
1337
    // Init the tables for the encoding of leading pawns group: with 6-men TB we
1338
    // can have up to 4 leading pawns (KPPPPK).
1339
    for (int leadPawnsCnt = 1; leadPawnsCnt <= 4; ++leadPawnsCnt)
1340
        for (File f = FILE_A; f <= FILE_D; ++f)
1341
        {
1342
            // Restart the index at every file because TB table is splitted
1343
            // by file, so we can reuse the same index for different files.
1344
            int idx = 0;
1345
 
1346
            // Sum all possible combinations for a given file, starting with
1347
            // the leading pawn on rank 2 and increasing the rank.
1348
            for (Rank r = RANK_2; r <= RANK_7; ++r)
1349
            {
1350
                Square sq = make_square(f, r);
1351
 
1352
                // Compute MapPawns[] at first pass.
1353
                // If sq is the leading pawn square, any other pawn cannot be
1354
                // below or more toward the edge of sq. There are 47 available
1355
                // squares when sq = a2 and reduced by 2 for any rank increase
1356
                // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45
1357
                if (leadPawnsCnt == 1)
1358
                {
1359
                    MapPawns[sq] = availableSquares--;
1360
                    MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip
1361
                }
1362
                LeadPawnIdx[leadPawnsCnt][sq] = idx;
1363
                idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]];
1364
            }
1365
            // After a file is traversed, store the cumulated per-file index
1366
            LeadPawnsSize[leadPawnsCnt][f] = idx;
96 pmbaty 1367
        }
169 pmbaty 1368
 
1369
    for (PieceType p1 = PAWN; p1 < KING; ++p1) {
1370
        EntryTable.insert({KING, p1, KING});
1371
 
1372
        for (PieceType p2 = PAWN; p2 <= p1; ++p2) {
1373
            EntryTable.insert({KING, p1, p2, KING});
1374
            EntryTable.insert({KING, p1, KING, p2});
1375
 
1376
            for (PieceType p3 = PAWN; p3 < KING; ++p3)
1377
                EntryTable.insert({KING, p1, p2, KING, p3});
1378
 
1379
            for (PieceType p3 = PAWN; p3 <= p2; ++p3) {
1380
                EntryTable.insert({KING, p1, p2, p3, KING});
1381
 
1382
                for (PieceType p4 = PAWN; p4 <= p3; ++p4)
1383
                    EntryTable.insert({KING, p1, p2, p3, p4, KING});
1384
 
1385
                for (PieceType p4 = PAWN; p4 < KING; ++p4)
1386
                    EntryTable.insert({KING, p1, p2, p3, KING, p4});
1387
            }
1388
 
1389
            for (PieceType p3 = PAWN; p3 <= p1; ++p3)
1390
                for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4)
1391
                    EntryTable.insert({KING, p1, p2, KING, p3, p4});
1392
        }
96 pmbaty 1393
    }
169 pmbaty 1394
 
1395
    sync_cout << "info string Found " << EntryTable.size() << " tablebases" << sync_endl;
96 pmbaty 1396
}
1397
 
169 pmbaty 1398
// Probe the WDL table for a particular position.
1399
// If *result != FAIL, the probe was successful.
1400
// The return value is from the point of view of the side to move:
1401
// -2 : loss
1402
// -1 : loss, but draw under 50-move rule
1403
//  0 : draw
1404
//  1 : win, but draw under 50-move rule
1405
//  2 : win
1406
WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) {
96 pmbaty 1407
 
169 pmbaty 1408
    *result = OK;
1409
    return search(pos, result);
1410
}
1411
 
96 pmbaty 1412
// Probe the DTZ table for a particular position.
169 pmbaty 1413
// If *result != FAIL, the probe was successful.
96 pmbaty 1414
// The return value is from the point of view of the side to move:
1415
//         n < -100 : loss, but draw under 50-move rule
1416
// -100 <= n < -1   : loss in n ply (assuming 50-move counter == 0)
1417
//         0        : draw
1418
//     1 < n <= 100 : win in n ply (assuming 50-move counter == 0)
1419
//   100 < n        : win, but draw under 50-move rule
1420
//
1421
// The return value n can be off by 1: a return value -n can mean a loss
1422
// in n+1 ply and a return value +n can mean a win in n+1 ply. This
1423
// cannot happen for tables with positions exactly on the "edge" of
1424
// the 50-move rule.
1425
//
1426
// This implies that if dtz > 0 is returned, the position is certainly
1427
// a win if dtz + 50-move-counter <= 99. Care must be taken that the engine
1428
// picks moves that preserve dtz + 50-move-counter <= 99.
1429
//
1430
// If n = 100 immediately after a capture or pawn move, then the position
1431
// is also certainly a win, and during the whole phase until the next
1432
// capture or pawn move, the inequality to be preserved is
1433
// dtz + 50-movecounter <= 100.
1434
//
1435
// In short, if a move is available resulting in dtz + 50-move-counter <= 99,
1436
// then do not accept moves leading to dtz + 50-move-counter == 100.
169 pmbaty 1437
int Tablebases::probe_dtz(Position& pos, ProbeState* result) {
96 pmbaty 1438
 
169 pmbaty 1439
    *result = OK;
1440
    WDLScore wdl = search<true>(pos, result);
96 pmbaty 1441
 
169 pmbaty 1442
    if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws
1443
        return 0;
96 pmbaty 1444
 
169 pmbaty 1445
    // DTZ stores a 'don't care' value in this case, or even a plain wrong
1446
    // one as in case the best move is a losing ep, so it cannot be probed.
1447
    if (*result == ZEROING_BEST_MOVE)
1448
        return dtz_before_zeroing(wdl);
96 pmbaty 1449
 
169 pmbaty 1450
    int dtz = probe_table<DTZEntry>(pos, result, wdl);
96 pmbaty 1451
 
169 pmbaty 1452
    if (*result == FAIL)
1453
        return 0;
1454
 
1455
    if (*result != CHANGE_STM)
1456
        return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl);
1457
 
1458
    // DTZ stores results for the other side, so we need to do a 1-ply search and
1459
    // find the winning move that minimizes DTZ.
1460
    StateInfo st;
1461
    int minDTZ = 0xFFFF;
1462
 
1463
    for (const Move& move : MoveList<LEGAL>(pos))
1464
    {
1465
        bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN;
1466
 
1467
        pos.do_move(move, st);
1468
 
1469
        // For zeroing moves we want the dtz of the move _before_ doing it,
1470
        // otherwise we will get the dtz of the next move sequence. Search the
1471
        // position after the move to get the score sign (because even in a
1472
        // winning position we could make a losing capture or going for a draw).
1473
        dtz = zeroing ? -dtz_before_zeroing(search(pos, result))
1474
                      : -probe_dtz(pos, result);
1475
 
1476
        pos.undo_move(move);
1477
 
1478
        if (*result == FAIL)
1479
            return 0;
1480
 
1481
        // Convert result from 1-ply search. Zeroing moves are already accounted
1482
        // by dtz_before_zeroing() that returns the DTZ of the previous move.
1483
        if (!zeroing)
1484
            dtz += sign_of(dtz);
1485
 
1486
        // Skip the draws and if we are winning only pick positive dtz
1487
        if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl))
1488
            minDTZ = dtz;
96 pmbaty 1489
    }
1490
 
169 pmbaty 1491
    // Special handle a mate position, when there are no legal moves, in this
1492
    // case return value is somewhat arbitrary, so stick to the original TB code
1493
    // that returns -1 in this case.
1494
    return minDTZ == 0xFFFF ? -1 : minDTZ;
96 pmbaty 1495
}
1496
 
1497
// Check whether there has been at least one repetition of positions
1498
// since the last capture or pawn move.
1499
static int has_repeated(StateInfo *st)
1500
{
169 pmbaty 1501
    while (1) {
1502
        int i = 4, e = std::min(st->rule50, st->pliesFromNull);
1503
 
1504
        if (e < i)
1505
            return 0;
1506
 
1507
        StateInfo *stp = st->previous->previous;
1508
 
1509
        do {
1510
            stp = stp->previous->previous;
1511
 
1512
            if (stp->key == st->key)
1513
                return 1;
1514
 
1515
            i += 2;
1516
        } while (i <= e);
1517
 
1518
        st = st->previous;
1519
    }
96 pmbaty 1520
}
1521
 
1522
// Use the DTZ tables to filter out moves that don't preserve the win or draw.
1523
// If the position is lost, but DTZ is fairly high, only keep moves that
1524
// maximise DTZ.
1525
//
1526
// A return value false indicates that not all probes were successful and that
1527
// no moves were filtered out.
154 pmbaty 1528
bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score)
96 pmbaty 1529
{
169 pmbaty 1530
    assert(rootMoves.size());
96 pmbaty 1531
 
169 pmbaty 1532
    ProbeState result;
1533
    int dtz = probe_dtz(pos, &result);
96 pmbaty 1534
 
169 pmbaty 1535
    if (result == FAIL)
1536
        return false;
96 pmbaty 1537
 
169 pmbaty 1538
    StateInfo st;
1539
 
1540
    // Probe each move
1541
    for (size_t i = 0; i < rootMoves.size(); ++i) {
1542
        Move move = rootMoves[i].pv[0];
1543
        pos.do_move(move, st);
1544
        int v = 0;
1545
 
1546
        if (pos.checkers() && dtz > 0) {
1547
            ExtMove s[MAX_MOVES];
1548
 
1549
            if (generate<LEGAL>(pos, s) == s)
1550
                v = 1;
1551
        }
1552
 
1553
        if (!v) {
1554
            if (st.rule50 != 0) {
1555
                v = -probe_dtz(pos, &result);
1556
 
1557
                if (v > 0)
1558
                    ++v;
1559
                else if (v < 0)
1560
                    --v;
1561
            } else {
1562
                v = -probe_wdl(pos, &result);
1563
                v = dtz_before_zeroing(WDLScore(v));
1564
            }
1565
        }
1566
 
1567
        pos.undo_move(move);
1568
 
1569
        if (result == FAIL)
1570
            return false;
1571
 
1572
        rootMoves[i].score = (Value)v;
96 pmbaty 1573
    }
1574
 
169 pmbaty 1575
    // Obtain 50-move counter for the root position.
1576
    // In Stockfish there seems to be no clean way, so we do it like this:
1577
    int cnt50 = st.previous ? st.previous->rule50 : 0;
96 pmbaty 1578
 
169 pmbaty 1579
    // Use 50-move counter to determine whether the root position is
1580
    // won, lost or drawn.
1581
    WDLScore wdl = WDLDraw;
96 pmbaty 1582
 
169 pmbaty 1583
    if (dtz > 0)
1584
        wdl = (dtz + cnt50 <= 100) ? WDLWin : WDLCursedWin;
1585
    else if (dtz < 0)
1586
        wdl = (-dtz + cnt50 <= 100) ? WDLLoss : WDLBlessedLoss;
96 pmbaty 1587
 
169 pmbaty 1588
    // Determine the score to report to the user.
1589
    score = WDL_to_value[wdl + 2];
1590
 
1591
    // If the position is winning or losing, but too few moves left, adjust the
1592
    // score to show how close it is to winning or losing.
1593
    // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci().
1594
    if (wdl == WDLCursedWin && dtz <= 100)
1595
        score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200);
1596
    else if (wdl == WDLBlessedLoss && dtz >= -100)
1597
        score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200);
1598
 
1599
    // Now be a bit smart about filtering out moves.
1600
    size_t j = 0;
1601
 
1602
    if (dtz > 0) { // winning (or 50-move rule draw)
1603
        int best = 0xffff;
1604
 
1605
        for (size_t i = 0; i < rootMoves.size(); ++i) {
1606
            int v = rootMoves[i].score;
1607
 
1608
            if (v > 0 && v < best)
1609
                best = v;
1610
        }
1611
 
1612
        int max = best;
1613
 
1614
        // If the current phase has not seen repetitions, then try all moves
1615
        // that stay safely within the 50-move budget, if there are any.
1616
        if (!has_repeated(st.previous) && best + cnt50 <= 99)
1617
            max = 99 - cnt50;
1618
 
1619
        for (size_t i = 0; i < rootMoves.size(); ++i) {
1620
            int v = rootMoves[i].score;
1621
 
1622
            if (v > 0 && v <= max)
1623
                rootMoves[j++] = rootMoves[i];
1624
        }
1625
    } else if (dtz < 0) { // losing (or 50-move rule draw)
1626
        int best = 0;
1627
 
1628
        for (size_t i = 0; i < rootMoves.size(); ++i) {
1629
            int v = rootMoves[i].score;
1630
 
1631
            if (v < best)
1632
                best = v;
1633
        }
1634
 
1635
        // Try all moves, unless we approach or have a 50-move rule draw.
1636
        if (-best * 2 + cnt50 < 100)
1637
            return true;
1638
 
1639
        for (size_t i = 0; i < rootMoves.size(); ++i) {
1640
            if (rootMoves[i].score == best)
1641
                rootMoves[j++] = rootMoves[i];
1642
        }
1643
    } else { // drawing
1644
        // Try all moves that preserve the draw.
1645
        for (size_t i = 0; i < rootMoves.size(); ++i) {
1646
            if (rootMoves[i].score == 0)
1647
                rootMoves[j++] = rootMoves[i];
1648
        }
96 pmbaty 1649
    }
1650
 
169 pmbaty 1651
    rootMoves.resize(j, Search::RootMove(MOVE_NONE));
1652
 
1653
    return true;
96 pmbaty 1654
}
1655
 
1656
// Use the WDL tables to filter out moves that don't preserve the win or draw.
1657
// This is a fallback for the case that some or all DTZ tables are missing.
1658
//
1659
// A return value false indicates that not all probes were successful and that
1660
// no moves were filtered out.
154 pmbaty 1661
bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score)
96 pmbaty 1662
{
169 pmbaty 1663
    ProbeState result;
96 pmbaty 1664
 
169 pmbaty 1665
    WDLScore wdl = Tablebases::probe_wdl(pos, &result);
96 pmbaty 1666
 
169 pmbaty 1667
    if (result == FAIL)
1668
        return false;
96 pmbaty 1669
 
169 pmbaty 1670
    score = WDL_to_value[wdl + 2];
96 pmbaty 1671
 
169 pmbaty 1672
    StateInfo st;
96 pmbaty 1673
 
169 pmbaty 1674
    int best = WDLLoss;
96 pmbaty 1675
 
169 pmbaty 1676
    // Probe each move
1677
    for (size_t i = 0; i < rootMoves.size(); ++i) {
1678
        Move move = rootMoves[i].pv[0];
1679
        pos.do_move(move, st);
1680
        WDLScore v = -Tablebases::probe_wdl(pos, &result);
1681
        pos.undo_move(move);
1682
 
1683
        if (result == FAIL)
1684
            return false;
1685
 
1686
        rootMoves[i].score = (Value)v;
1687
 
1688
        if (v > best)
1689
            best = v;
1690
    }
1691
 
1692
    size_t j = 0;
1693
 
1694
    for (size_t i = 0; i < rootMoves.size(); ++i) {
1695
        if (rootMoves[i].score == best)
1696
            rootMoves[j++] = rootMoves[i];
1697
    }
1698
 
1699
    rootMoves.resize(j, Search::RootMove(MOVE_NONE));
1700
 
1701
    return true;
96 pmbaty 1702
}