Rev 154 | Rev 176 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 96 | pmbaty | 1 | /* | 
| 169 | pmbaty | 2 |   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 | 
| 96 | pmbaty | 3 |   Copyright (c) 2013 Ronald de Man | 
| 169 | pmbaty | 4 |   Copyright (C) 2016-2018 Marco Costalba, Lucas Braesch | 
| 96 | pmbaty | 5 | |
| 169 | pmbaty | 6 |   Stockfish is free software: you can redistribute it and/or modify | 
| 7 |   it under the terms of the GNU General Public License as published by | ||
| 8 |   the Free Software Foundation, either version 3 of the License, or | ||
| 9 |   (at your option) any later version. | ||
| 10 | |||
| 11 |   Stockfish is distributed in the hope that it will be useful, | ||
| 12 |   but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
| 14 |   GNU General Public License for more details. | ||
| 15 | |||
| 16 |   You should have received a copy of the GNU General Public License | ||
| 17 |   along with this program.  If not, see <http://www.gnu.org/licenses/>. | ||
| 96 | pmbaty | 18 | */ | 
| 19 | |||
| 20 | #include <algorithm> | ||
| 169 | pmbaty | 21 | #include <atomic> | 
| 22 | #include <cstdint> | ||
| 23 | #include <cstring>   // For std::memset | ||
| 24 | #include <deque> | ||
| 25 | #include <fstream> | ||
| 26 | #include <iostream> | ||
| 27 | #include <list> | ||
| 28 | #include <sstream> | ||
| 29 | #include <type_traits> | ||
| 96 | pmbaty | 30 | |
| 169 | pmbaty | 31 | #include "../bitboard.h" | 
| 32 | #include "../movegen.h" | ||
| 96 | pmbaty | 33 | #include "../position.h" | 
| 34 | #include "../search.h" | ||
| 169 | pmbaty | 35 | #include "../thread_win32.h" | 
| 36 | #include "../types.h" | ||
| 96 | pmbaty | 37 | |
| 38 | #include "tbprobe.h" | ||
| 39 | |||
| 169 | pmbaty | 40 | #ifndef _WIN32 | 
| 41 | #include <fcntl.h> | ||
| 42 | #include <unistd.h> | ||
| 43 | #include <sys/mman.h> | ||
| 44 | #include <sys/stat.h> | ||
| 45 | #else | ||
| 46 | #define WIN32_LEAN_AND_MEAN | ||
| 47 | #define NOMINMAX | ||
| 48 | #include <windows.h> | ||
| 49 | #endif | ||
| 96 | pmbaty | 50 | |
| 169 | pmbaty | 51 | using namespace Tablebases; | 
| 96 | pmbaty | 52 | |
| 169 | pmbaty | 53 | int Tablebases::MaxCardinality; | 
| 96 | pmbaty | 54 | |
| 169 | pmbaty | 55 | namespace { | 
| 96 | pmbaty | 56 | |
| 169 | pmbaty | 57 | // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables | 
| 58 | enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 }; | ||
| 96 | pmbaty | 59 | |
| 169 | pmbaty | 60 | inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } | 
| 61 | inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } | ||
| 62 | inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } | ||
| 96 | pmbaty | 63 | |
| 169 | pmbaty | 64 | // DTZ tables don't store valid scores for moves that reset the rule50 counter | 
| 65 | // like captures and pawn moves but we can easily recover the correct dtz of the | ||
| 66 | // previous move if we know the position's WDL score. | ||
| 67 | int dtz_before_zeroing(WDLScore wdl) { | ||
| 68 | return wdl == WDLWin ? 1 : | ||
| 69 | wdl == WDLCursedWin ? 101 : | ||
| 70 | wdl == WDLBlessedLoss ? -101 : | ||
| 71 | wdl == WDLLoss ? -1 : 0; | ||
| 72 | } | ||
| 96 | pmbaty | 73 | |
| 169 | pmbaty | 74 | // Return the sign of a number (-1, 0, 1) | 
| 75 | template <typename T> int sign_of(T val) { | ||
| 76 | return (T(0) < val) - (val < T(0)); | ||
| 96 | pmbaty | 77 | } | 
| 78 | |||
| 169 | pmbaty | 79 | // Numbers in little endian used by sparseIndex[] to point into blockLength[] | 
| 80 | struct SparseEntry { | ||
| 81 | char block[4]; // Number of block | ||
| 82 | char offset[2]; // Offset within the block | ||
| 83 | }; | ||
| 96 | pmbaty | 84 | |
| 169 | pmbaty | 85 | static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); | 
| 96 | pmbaty | 86 | |
| 169 | pmbaty | 87 | typedef uint16_t Sym; // Huffman symbol | 
| 96 | pmbaty | 88 | |
| 169 | pmbaty | 89 | struct LR { | 
| 90 | enum Side { Left, Right, Value }; | ||
| 96 | pmbaty | 91 | |
| 169 | pmbaty | 92 | uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 | 
| 93 |                    // bits is the right-hand symbol. If symbol has length 1, | ||
| 94 |                    // then the first byte is the stored value. | ||
| 95 | template<Side S> | ||
| 96 | Sym get() { | ||
| 97 | return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] : | ||
| 98 | S == Right ? (lr[2] << 4) | (lr[1] >> 4) : | ||
| 99 | S == Value ? lr[0] : (assert(false), Sym(-1)); | ||
| 100 |     } | ||
| 101 | }; | ||
| 102 | |||
| 103 | static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes"); | ||
| 104 | |||
| 105 | const int TBPIECES = 6; | ||
| 106 | |||
| 107 | struct PairsData { | ||
| 108 | int flags; | ||
| 109 | size_t sizeofBlock; // Block size in bytes | ||
| 110 | size_t span; // About every span values there is a SparseIndex[] entry | ||
| 111 | int blocksNum; // Number of blocks in the TB file | ||
| 112 | int maxSymLen; // Maximum length in bits of the Huffman symbols | ||
| 113 | int minSymLen; // Minimum length in bits of the Huffman symbols | ||
| 114 | Sym* lowestSym; // lowestSym[l] is the symbol of length l with the lowest value | ||
| 115 | LR* btree; // btree[sym] stores the left and right symbols that expand sym | ||
| 116 | uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536 | ||
| 117 | int blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum | ||
| 118 | SparseEntry* sparseIndex; // Partial indices into blockLength[] | ||
| 119 | size_t sparseIndexSize; // Size of SparseIndex[] table | ||
| 120 | uint8_t* data; // Start of Huffman compressed data | ||
| 121 | std::vector<uint64_t> base64; // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l | ||
| 122 | std::vector<uint8_t> symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256 | ||
| 123 | Piece pieces[TBPIECES]; // Position pieces: the order of pieces defines the groups | ||
| 124 | uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces | ||
| 125 | int groupLen[TBPIECES+1]; // Number of pieces in a given group: KRKN -> (3, 1) | ||
| 126 | }; | ||
| 127 | |||
| 128 | // Helper struct to avoid manually defining entry copy constructor as we | ||
| 129 | // should because the default one is not compatible with std::atomic_bool. | ||
| 130 | struct Atomic { | ||
| 131 | Atomic() = default; | ||
| 132 | Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body | ||
| 133 | std::atomic_bool ready; | ||
| 134 | }; | ||
| 135 | |||
| 136 | // We define types for the different parts of the WDLEntry and DTZEntry with | ||
| 137 | // corresponding specializations for pieces or pawns. | ||
| 138 | |||
| 139 | struct WDLEntryPiece { | ||
| 140 | PairsData* precomp; | ||
| 141 | }; | ||
| 142 | |||
| 143 | struct WDLEntryPawn { | ||
| 144 | uint8_t pawnCount[2]; // [Lead color / other color] | ||
| 145 | WDLEntryPiece file[2][4]; // [wtm / btm][FILE_A..FILE_D] | ||
| 146 | }; | ||
| 147 | |||
| 148 | struct DTZEntryPiece { | ||
| 149 | PairsData* precomp; | ||
| 150 | uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss | ||
| 151 | uint8_t* map; | ||
| 152 | }; | ||
| 153 | |||
| 154 | struct DTZEntryPawn { | ||
| 155 | uint8_t pawnCount[2]; | ||
| 156 | DTZEntryPiece file[4]; | ||
| 157 | uint8_t* map; | ||
| 158 | }; | ||
| 159 | |||
| 160 | struct TBEntry : public Atomic { | ||
| 161 | void* baseAddress; | ||
| 162 | uint64_t mapping; | ||
| 163 |     Key key; | ||
| 164 |     Key key2; | ||
| 165 | int pieceCount; | ||
| 166 | bool hasPawns; | ||
| 167 | bool hasUniquePieces; | ||
| 168 | }; | ||
| 169 | |||
| 170 | // Now the main types: WDLEntry and DTZEntry | ||
| 171 | struct WDLEntry : public TBEntry { | ||
| 172 | WDLEntry(const std::string& code); | ||
| 173 | ~WDLEntry(); | ||
| 174 | union { | ||
| 175 | WDLEntryPiece pieceTable[2]; // [wtm / btm] | ||
| 176 |         WDLEntryPawn  pawnTable; | ||
| 177 | }; | ||
| 178 | }; | ||
| 179 | |||
| 180 | struct DTZEntry : public TBEntry { | ||
| 181 | DTZEntry(const WDLEntry& wdl); | ||
| 182 | ~DTZEntry(); | ||
| 183 | union { | ||
| 184 |         DTZEntryPiece pieceTable; | ||
| 185 |         DTZEntryPawn  pawnTable; | ||
| 186 | }; | ||
| 187 | }; | ||
| 188 | |||
| 189 | typedef decltype(WDLEntry::pieceTable) WDLPieceTable; | ||
| 190 | typedef decltype(DTZEntry::pieceTable) DTZPieceTable; | ||
| 191 | typedef decltype(WDLEntry::pawnTable ) WDLPawnTable; | ||
| 192 | typedef decltype(DTZEntry::pawnTable ) DTZPawnTable; | ||
| 193 | |||
| 194 | auto item(WDLPieceTable& e, int stm, int ) -> decltype(e[stm])& { return e[stm]; } | ||
| 195 | auto item(DTZPieceTable& e, int , int ) -> decltype(e)& { return e; } | ||
| 196 | auto item(WDLPawnTable& e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; } | ||
| 197 | auto item(DTZPawnTable& e, int , int f) -> decltype(e.file[f])& { return e.file[f]; } | ||
| 198 | |||
| 199 | template<typename E> struct Ret { typedef int type; }; | ||
| 200 | template<> struct Ret<WDLEntry> { typedef WDLScore type; }; | ||
| 201 | |||
| 202 | int MapPawns[SQUARE_NB]; | ||
| 203 | int MapB1H1H7[SQUARE_NB]; | ||
| 204 | int MapA1D1D4[SQUARE_NB]; | ||
| 205 | int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] | ||
| 206 | |||
| 207 | // Comparison function to sort leading pawns in ascending MapPawns[] order | ||
| 208 | bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } | ||
| 209 | int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } | ||
| 210 | |||
| 211 | const Value WDL_to_value[] = { | ||
| 212 | -VALUE_MATE + MAX_PLY + 1, | ||
| 213 | VALUE_DRAW - 2, | ||
| 214 | VALUE_DRAW, | ||
| 215 | VALUE_DRAW + 2, | ||
| 216 | VALUE_MATE - MAX_PLY - 1 | ||
| 217 | }; | ||
| 218 | |||
| 219 | const std::string PieceToChar = " PNBRQK pnbrqk"; | ||
| 220 | |||
| 221 | int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements | ||
| 222 | int LeadPawnIdx[5][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB] | ||
| 223 | int LeadPawnsSize[5][4]; // [leadPawnsCnt][FILE_A..FILE_D] | ||
| 224 | |||
| 225 | enum { BigEndian, LittleEndian }; | ||
| 226 | |||
| 227 | template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1> | ||
| 228 | inline void swap_byte(T& x) | ||
| 96 | pmbaty | 229 | { | 
| 169 | pmbaty | 230 | char tmp, *c = (char*)&x; | 
| 231 | for (int i = 0; i < Half; ++i) | ||
| 232 | tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; | ||
| 96 | pmbaty | 233 | } | 
| 169 | pmbaty | 234 | template<> inline void swap_byte<uint8_t, 0, 0>(uint8_t&) {} | 
| 96 | pmbaty | 235 | |
| 169 | pmbaty | 236 | template<typename T, int LE> T number(void* addr) | 
| 96 | pmbaty | 237 | { | 
| 169 | pmbaty | 238 | const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; | 
| 239 | const bool IsLittleEndian = (Le.c[0] == 4); | ||
| 96 | pmbaty | 240 | |
| 169 | pmbaty | 241 |     T v; | 
| 96 | pmbaty | 242 | |
| 169 | pmbaty | 243 | if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) | 
| 244 | std::memcpy(&v, addr, sizeof(T)); | ||
| 245 |     else | ||
| 246 | v = *((T*)addr); | ||
| 96 | pmbaty | 247 | |
| 169 | pmbaty | 248 | if (LE != IsLittleEndian) | 
| 249 | swap_byte(v); | ||
| 250 | return v; | ||
| 251 | } | ||
| 252 | |||
| 253 | class HashTable { | ||
| 254 | |||
| 255 | typedef std::pair<WDLEntry*, DTZEntry*> EntryPair; | ||
| 256 | typedef std::pair<Key, EntryPair> Entry; | ||
| 257 | |||
| 258 | static const int TBHASHBITS = 10; | ||
| 259 | static const int HSHMAX = 5; | ||
| 260 | |||
| 261 | Entry hashTable[1 << TBHASHBITS][HSHMAX]; | ||
| 262 | |||
| 263 | std::deque<WDLEntry> wdlTable; | ||
| 264 | std::deque<DTZEntry> dtzTable; | ||
| 265 | |||
| 266 | void insert(Key key, WDLEntry* wdl, DTZEntry* dtz) { | ||
| 267 | Entry* entry = hashTable[key >> (64 - TBHASHBITS)]; | ||
| 268 | |||
| 269 | for (int i = 0; i < HSHMAX; ++i, ++entry) | ||
| 270 | if (!entry->second.first || entry->first == key) { | ||
| 271 | *entry = std::make_pair(key, std::make_pair(wdl, dtz)); | ||
| 272 | return; | ||
| 273 |             } | ||
| 274 | |||
| 275 | std::cerr << "HSHMAX too low!" << std::endl; | ||
| 276 | exit(1); | ||
| 277 |     } | ||
| 278 | |||
| 279 | public: | ||
| 280 | template<typename E, int I = std::is_same<E, WDLEntry>::value ? 0 : 1> | ||
| 281 | E* get(Key key) { | ||
| 282 | Entry* entry = hashTable[key >> (64 - TBHASHBITS)]; | ||
| 283 | |||
| 284 | for (int i = 0; i < HSHMAX; ++i, ++entry) | ||
| 285 | if (entry->first == key) | ||
| 286 | return std::get<I>(entry->second); | ||
| 287 | |||
| 288 | return nullptr; | ||
| 96 | pmbaty | 289 |   } | 
| 290 | |||
| 169 | pmbaty | 291 | void clear() { | 
| 292 | std::memset(hashTable, 0, sizeof(hashTable)); | ||
| 293 | wdlTable.clear(); | ||
| 294 | dtzTable.clear(); | ||
| 295 |   } | ||
| 296 | size_t size() const { return wdlTable.size(); } | ||
| 297 | void insert(const std::vector<PieceType>& pieces); | ||
| 298 | }; | ||
| 299 | |||
| 300 | HashTable EntryTable; | ||
| 301 | |||
| 302 | class TBFile : public std::ifstream { | ||
| 303 | |||
| 304 | std::string fname; | ||
| 305 | |||
| 306 | public: | ||
| 307 |     // Look for and open the file among the Paths directories where the .rtbw | ||
| 308 |     // and .rtbz files can be found. Multiple directories are separated by ";" | ||
| 309 |     // on Windows and by ":" on Unix-based operating systems. | ||
| 310 |     // | ||
| 311 |     // Example: | ||
| 312 |     // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 | ||
| 313 | static std::string Paths; | ||
| 314 | |||
| 315 | TBFile(const std::string& f) { | ||
| 316 | |||
| 317 | #ifndef _WIN32 | ||
| 318 | const char SepChar = ':'; | ||
| 96 | pmbaty | 319 | #else | 
| 169 | pmbaty | 320 | const char SepChar = ';'; | 
| 96 | pmbaty | 321 | #endif | 
| 169 | pmbaty | 322 | std::stringstream ss(Paths); | 
| 323 | std::string path; | ||
| 324 | |||
| 325 | while (std::getline(ss, path, SepChar)) { | ||
| 326 | fname = path + "/" + f; | ||
| 327 | std::ifstream::open(fname); | ||
| 328 | if (is_open()) | ||
| 329 | return; | ||
| 330 |         } | ||
| 96 | pmbaty | 331 |     } | 
| 332 | |||
| 169 | pmbaty | 333 |     // Memory map the file and check it. File should be already open and will be | 
| 334 |     // closed after mapping. | ||
| 335 | uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t* TB_MAGIC) { | ||
| 336 | |||
| 337 | assert(is_open()); | ||
| 338 | |||
| 339 | close(); // Need to re-open to get native file descriptor | ||
| 340 | |||
| 341 | #ifndef _WIN32 | ||
| 342 | struct stat statbuf; | ||
| 343 | int fd = ::open(fname.c_str(), O_RDONLY); | ||
| 344 | |||
| 345 | if (fd == -1) | ||
| 346 | return *baseAddress = nullptr, nullptr; | ||
| 347 | |||
| 348 | fstat(fd, &statbuf); | ||
| 349 | *mapping = statbuf.st_size; | ||
| 350 | *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); | ||
| 351 | ::close(fd); | ||
| 352 | |||
| 353 | if (*baseAddress == MAP_FAILED) { | ||
| 354 | std::cerr << "Could not mmap() " << fname << std::endl; | ||
| 355 | exit(1); | ||
| 356 |         } | ||
| 357 | #else | ||
| 358 | HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, | ||
| 359 | OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); | ||
| 360 | |||
| 361 | if (fd == INVALID_HANDLE_VALUE) | ||
| 362 | return *baseAddress = nullptr, nullptr; | ||
| 363 | |||
| 364 |         DWORD size_high; | ||
| 365 | DWORD size_low = GetFileSize(fd, &size_high); | ||
| 366 | HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); | ||
| 367 | CloseHandle(fd); | ||
| 368 | |||
| 369 | if (!mmap) { | ||
| 370 | std::cerr << "CreateFileMapping() failed" << std::endl; | ||
| 371 | exit(1); | ||
| 372 |         } | ||
| 373 | |||
| 374 | *mapping = (uint64_t)mmap; | ||
| 375 | *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); | ||
| 376 | |||
| 377 | if (!*baseAddress) { | ||
| 378 | std::cerr << "MapViewOfFile() failed, name = " << fname | ||
| 379 | << ", error = " << GetLastError() << std::endl; | ||
| 380 | exit(1); | ||
| 381 |         } | ||
| 382 | #endif | ||
| 383 | uint8_t* data = (uint8_t*)*baseAddress; | ||
| 384 | |||
| 385 | if ( *data++ != *TB_MAGIC++ | ||
| 386 | || *data++ != *TB_MAGIC++ | ||
| 387 | || *data++ != *TB_MAGIC++ | ||
| 388 | || *data++ != *TB_MAGIC) { | ||
| 389 | std::cerr << "Corrupted table in file " << fname << std::endl; | ||
| 390 | unmap(*baseAddress, *mapping); | ||
| 391 | return *baseAddress = nullptr, nullptr; | ||
| 392 |         } | ||
| 393 | |||
| 394 | return data; | ||
| 96 | pmbaty | 395 |     } | 
| 396 | |||
| 169 | pmbaty | 397 | static void unmap(void* baseAddress, uint64_t mapping) { | 
| 398 | |||
| 399 | #ifndef _WIN32 | ||
| 400 | munmap(baseAddress, mapping); | ||
| 401 | #else | ||
| 402 | UnmapViewOfFile(baseAddress); | ||
| 403 | CloseHandle((HANDLE)mapping); | ||
| 404 | #endif | ||
| 96 | pmbaty | 405 |     } | 
| 169 | pmbaty | 406 | }; | 
| 407 | |||
| 408 | std::string TBFile::Paths; | ||
| 409 | |||
| 410 | WDLEntry::WDLEntry(const std::string& code) { | ||
| 411 | |||
| 412 |     StateInfo st; | ||
| 413 |     Position pos; | ||
| 414 | |||
| 415 | memset(this, 0, sizeof(WDLEntry)); | ||
| 416 | |||
| 417 | ready = false; | ||
| 418 | key = pos.set(code, WHITE, &st).material_key(); | ||
| 419 | pieceCount = popcount(pos.pieces()); | ||
| 420 | hasPawns = pos.pieces(PAWN); | ||
| 421 | |||
| 422 | for (Color c = WHITE; c <= BLACK; ++c) | ||
| 423 | for (PieceType pt = PAWN; pt < KING; ++pt) | ||
| 424 | if (popcount(pos.pieces(c, pt)) == 1) | ||
| 425 | hasUniquePieces = true; | ||
| 426 | |||
| 427 | if (hasPawns) { | ||
| 428 |         // Set the leading color. In case both sides have pawns the leading color | ||
| 429 |         // is the side with less pawns because this leads to better compression. | ||
| 430 | bool c = !pos.count<PAWN>(BLACK) | ||
| 431 | || ( pos.count<PAWN>(WHITE) | ||
| 432 | && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE)); | ||
| 433 | |||
| 434 | pawnTable.pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK); | ||
| 435 | pawnTable.pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE); | ||
| 96 | pmbaty | 436 |     } | 
| 437 | |||
| 169 | pmbaty | 438 | key2 = pos.set(code, BLACK, &st).material_key(); | 
| 96 | pmbaty | 439 | } | 
| 440 | |||
| 169 | pmbaty | 441 | WDLEntry::~WDLEntry() { | 
| 96 | pmbaty | 442 | |
| 169 | pmbaty | 443 | if (baseAddress) | 
| 444 | TBFile::unmap(baseAddress, mapping); | ||
| 96 | pmbaty | 445 | |
| 169 | pmbaty | 446 | for (int i = 0; i < 2; ++i) | 
| 447 | if (hasPawns) | ||
| 448 | for (File f = FILE_A; f <= FILE_D; ++f) | ||
| 449 | delete pawnTable.file[i][f].precomp; | ||
| 450 |         else | ||
| 451 | delete pieceTable[i].precomp; | ||
| 452 | } | ||
| 453 | |||
| 454 | DTZEntry::DTZEntry(const WDLEntry& wdl) { | ||
| 455 | |||
| 456 | memset(this, 0, sizeof(DTZEntry)); | ||
| 457 | |||
| 458 | ready = false; | ||
| 459 | key = wdl.key; | ||
| 460 | key2 = wdl.key2; | ||
| 461 | pieceCount = wdl.pieceCount; | ||
| 462 | hasPawns = wdl.hasPawns; | ||
| 463 | hasUniquePieces = wdl.hasUniquePieces; | ||
| 464 | |||
| 465 | if (hasPawns) { | ||
| 466 | pawnTable.pawnCount[0] = wdl.pawnTable.pawnCount[0]; | ||
| 467 | pawnTable.pawnCount[1] = wdl.pawnTable.pawnCount[1]; | ||
| 96 | pmbaty | 468 |     } | 
| 169 | pmbaty | 469 | } | 
| 96 | pmbaty | 470 | |
| 169 | pmbaty | 471 | DTZEntry::~DTZEntry() { | 
| 96 | pmbaty | 472 | |
| 169 | pmbaty | 473 | if (baseAddress) | 
| 474 | TBFile::unmap(baseAddress, mapping); | ||
| 475 | |||
| 476 | if (hasPawns) | ||
| 477 | for (File f = FILE_A; f <= FILE_D; ++f) | ||
| 478 | delete pawnTable.file[f].precomp; | ||
| 479 |     else | ||
| 480 | delete pieceTable.precomp; | ||
| 481 | } | ||
| 482 | |||
| 483 | void HashTable::insert(const std::vector<PieceType>& pieces) { | ||
| 484 | |||
| 485 | std::string code; | ||
| 486 | |||
| 487 | for (PieceType pt : pieces) | ||
| 488 | code += PieceToChar[pt]; | ||
| 489 | |||
| 490 | TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK | ||
| 491 | |||
| 492 | if (!file.is_open()) // Only WDL file is checked | ||
| 493 | return; | ||
| 494 | |||
| 495 | file.close(); | ||
| 496 | |||
| 497 | MaxCardinality = std::max((int)pieces.size(), MaxCardinality); | ||
| 498 | |||
| 499 | wdlTable.emplace_back(code); | ||
| 500 | dtzTable.emplace_back(wdlTable.back()); | ||
| 501 | |||
| 502 | insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back()); | ||
| 503 | insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back()); | ||
| 504 | } | ||
| 505 | |||
| 506 | // TB tables are compressed with canonical Huffman code. The compressed data is divided into | ||
| 507 | // blocks of size d->sizeofBlock, and each block stores a variable number of symbols. | ||
| 508 | // Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols | ||
| 509 | // (recursively). If you keep expanding the symbols in a block, you end up with up to 65536 | ||
| 510 | // WDL or DTZ values. Each symbol represents up to 256 values and will correspond after | ||
| 511 | // Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most | ||
| 512 | // 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly | ||
| 513 | // of draws or mostly of wins, but such tables are actually quite common. In principle, the | ||
| 514 | // blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for | ||
| 515 | // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so | ||
| 516 | // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long. | ||
| 517 | // The generator picks the size that leads to the smallest table. The "book" of symbols and | ||
| 518 | // Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file | ||
| 519 | // will have one table for wtm and one for btm, a TB file with pawns will have tables per | ||
| 520 | // file a,b,c,d also in this case one set for wtm and one for btm. | ||
| 521 | int decompress_pairs(PairsData* d, uint64_t idx) { | ||
| 522 | |||
| 523 |     // Special case where all table positions store the same value | ||
| 524 | if (d->flags & TBFlag::SingleValue) | ||
| 525 | return d->minSymLen; | ||
| 526 | |||
| 527 |     // First we need to locate the right block that stores the value at index "idx". | ||
| 528 |     // Because each block n stores blockLength[n] + 1 values, the index i of the block | ||
| 529 |     // that contains the value at position idx is: | ||
| 530 |     // | ||
| 531 |     //                    for (i = -1, sum = 0; sum <= idx; i++) | ||
| 532 |     //                        sum += blockLength[i + 1] + 1; | ||
| 533 |     // | ||
| 534 |     // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that | ||
| 535 |     // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry | ||
| 536 |     // that stores the blockLength[] index and the offset within that block of the value | ||
| 537 |     // with index I(k), where: | ||
| 538 |     // | ||
| 539 |     //       I(k) = k * d->span + d->span / 2      (1) | ||
| 540 | |||
| 541 |     // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1) | ||
| 542 | uint32_t k = (uint32_t) (idx / d->span); // Pierre-Marie Baty -- added type cast | ||
| 543 | |||
| 544 |     // Then we read the corresponding SparseIndex[] entry | ||
| 545 | uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block); | ||
| 546 | int offset = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset); | ||
| 547 | |||
| 548 |     // Now compute the difference idx - I(k). From definition of k we know that | ||
| 549 |     // | ||
| 550 |     //       idx = k * d->span + idx % d->span    (2) | ||
| 551 |     // | ||
| 552 |     // So from (1) and (2) we can compute idx - I(K): | ||
| 553 | int diff = idx % d->span - d->span / 2; | ||
| 554 | |||
| 555 |     // Sum the above to offset to find the offset corresponding to our idx | ||
| 556 | offset += diff; | ||
| 557 | |||
| 558 |     // Move to previous/next block, until we reach the correct block that contains idx, | ||
| 559 |     // that is when 0 <= offset <= d->blockLength[block] | ||
| 560 | while (offset < 0) | ||
| 561 | offset += d->blockLength[--block] + 1; | ||
| 562 | |||
| 563 | while (offset > d->blockLength[block]) | ||
| 564 | offset -= d->blockLength[block++] + 1; | ||
| 565 | |||
| 566 |     // Finally, we find the start address of our block of canonical Huffman symbols | ||
| 567 | uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock); | ||
| 568 | |||
| 569 |     // Read the first 64 bits in our block, this is a (truncated) sequence of | ||
| 570 |     // unknown number of symbols of unknown length but we know the first one | ||
| 571 |     // is at the beginning of this 64 bits sequence. | ||
| 572 | uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2; | ||
| 573 | int buf64Size = 64; | ||
| 574 |     Sym sym; | ||
| 575 | |||
| 576 | while (true) { | ||
| 577 | int len = 0; // This is the symbol length - d->min_sym_len | ||
| 578 | |||
| 579 |         // Now get the symbol length. For any symbol s64 of length l right-padded | ||
| 580 |         // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we | ||
| 581 |         // can find the symbol length iterating through base64[]. | ||
| 582 | while (buf64 < d->base64[len]) | ||
| 583 | ++len; | ||
| 584 | |||
| 585 |         // All the symbols of a given length are consecutive integers (numerical | ||
| 586 |         // sequence property), so we can compute the offset of our symbol of | ||
| 587 |         // length len, stored at the beginning of buf64. | ||
| 588 | sym = (Sym) ((buf64 - d->base64[len]) >> (64 - len - d->minSymLen)); // Pierre-Marie Baty -- added type cast | ||
| 589 | |||
| 590 |         // Now add the value of the lowest symbol of length len to get our symbol | ||
| 591 | sym += number<Sym, LittleEndian>(&d->lowestSym[len]); | ||
| 592 | |||
| 593 |         // If our offset is within the number of values represented by symbol sym | ||
| 594 |         // we are done... | ||
| 595 | if (offset < d->symlen[sym] + 1) | ||
| 596 | break; | ||
| 597 | |||
| 598 |         // ...otherwise update the offset and continue to iterate | ||
| 599 | offset -= d->symlen[sym] + 1; | ||
| 600 | len += d->minSymLen; // Get the real length | ||
| 601 | buf64 <<= len; // Consume the just processed symbol | ||
| 602 | buf64Size -= len; | ||
| 603 | |||
| 604 | if (buf64Size <= 32) { // Refill the buffer | ||
| 605 | buf64Size += 32; | ||
| 606 | buf64 |= (uint64_t)number<uint32_t, BigEndian>(ptr++) << (64 - buf64Size); | ||
| 607 |         } | ||
| 96 | pmbaty | 608 |     } | 
| 609 | |||
| 169 | pmbaty | 610 |     // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols. | 
| 611 |     // We binary-search for our value recursively expanding into the left and | ||
| 612 |     // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1 | ||
| 613 |     // that will store the value we need. | ||
| 614 | while (d->symlen[sym]) { | ||
| 615 | |||
| 616 | Sym left = d->btree[sym].get<LR::Left>(); | ||
| 617 | |||
| 618 |         // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and | ||
| 619 |         // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then | ||
| 620 |         // we know that, for instance the ten-th value (offset = 10) will be on | ||
| 621 |         // the left side because in Recursive Pairing child symbols are adjacent. | ||
| 622 | if (offset < d->symlen[left] + 1) | ||
| 623 | sym = left; | ||
| 624 | else { | ||
| 625 | offset -= d->symlen[left] + 1; | ||
| 626 | sym = d->btree[sym].get<LR::Right>(); | ||
| 627 |         } | ||
| 96 | pmbaty | 628 |     } | 
| 629 | |||
| 169 | pmbaty | 630 | return d->btree[sym].get<LR::Value>(); | 
| 631 | } | ||
| 96 | pmbaty | 632 | |
| 169 | pmbaty | 633 | bool check_dtz_stm(WDLEntry*, int, File) { return true; } | 
| 634 | |||
| 635 | bool check_dtz_stm(DTZEntry* entry, int stm, File f) { | ||
| 636 | |||
| 637 | int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags | ||
| 638 | : entry->pieceTable.precomp->flags; | ||
| 639 | |||
| 640 | return (flags & TBFlag::STM) == stm | ||
| 641 | || ((entry->key == entry->key2) && !entry->hasPawns); | ||
| 642 | } | ||
| 643 | |||
| 644 | // DTZ scores are sorted by frequency of occurrence and then assigned the | ||
| 645 | // values 0, 1, 2, ... in order of decreasing frequency. This is done for each | ||
| 646 | // of the four WDLScore values. The mapping information necessary to reconstruct | ||
| 647 | // the original values is stored in the TB file and read during map[] init. | ||
| 648 | WDLScore map_score(WDLEntry*, File, int value, WDLScore) { return WDLScore(value - 2); } | ||
| 649 | |||
| 650 | int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) { | ||
| 651 | |||
| 652 | const int WDLMap[] = { 1, 3, 0, 2, 0 }; | ||
| 653 | |||
| 654 | int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags | ||
| 655 | : entry->pieceTable.precomp->flags; | ||
| 656 | |||
| 657 | uint8_t* map = entry->hasPawns ? entry->pawnTable.map | ||
| 658 | : entry->pieceTable.map; | ||
| 659 | |||
| 660 | uint16_t* idx = entry->hasPawns ? entry->pawnTable.file[f].map_idx | ||
| 661 | : entry->pieceTable.map_idx; | ||
| 662 | if (flags & TBFlag::Mapped) | ||
| 663 | value = map[idx[WDLMap[wdl + 2]] + value]; | ||
| 664 | |||
| 665 |     // DTZ tables store distance to zero in number of moves or plies. We | ||
| 666 |     // want to return plies, so we have convert to plies when needed. | ||
| 667 | if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) | ||
| 668 | || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) | ||
| 669 | || wdl == WDLCursedWin | ||
| 670 | || wdl == WDLBlessedLoss) | ||
| 671 | value *= 2; | ||
| 672 | |||
| 673 | return value + 1; | ||
| 674 | } | ||
| 675 | |||
| 676 | // Compute a unique index out of a position and use it to probe the TB file. To | ||
| 677 | // encode k pieces of same type and color, first sort the pieces by square in | ||
| 678 | // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: | ||
| 679 | // | ||
| 680 | //      idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] | ||
| 681 | // | ||
| 682 | template<typename Entry, typename T = typename Ret<Entry>::type> | ||
| 683 | T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* result) { | ||
| 684 | |||
| 685 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; | ||
| 686 | |||
| 687 | Square squares[TBPIECES]; | ||
| 688 | Piece pieces[TBPIECES]; | ||
| 689 | uint64_t idx; | ||
| 690 | int next = 0, size = 0, leadPawnsCnt = 0; | ||
| 691 | PairsData* d; | ||
| 692 | Bitboard b, leadPawns = 0; | ||
| 693 | File tbFile = FILE_A; | ||
| 694 | |||
| 695 |     // A given TB entry like KRK has associated two material keys: KRvk and Kvkr. | ||
| 696 |     // If both sides have the same pieces keys are equal. In this case TB tables | ||
| 697 |     // only store the 'white to move' case, so if the position to lookup has black | ||
| 698 |     // to move, we need to switch the color and flip the squares before to lookup. | ||
| 699 | bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move()); | ||
| 700 | |||
| 701 |     // TB files are calculated for white as stronger side. For instance we have | ||
| 702 |     // KRvK, not KvKR. A position where stronger side is white will have its | ||
| 703 |     // material key == entry->key, otherwise we have to switch the color and | ||
| 704 |     // flip the squares before to lookup. | ||
| 705 | bool blackStronger = (pos.material_key() != entry->key); | ||
| 706 | |||
| 707 | int flipColor = (symmetricBlackToMove || blackStronger) * 8; | ||
| 708 | int flipSquares = (symmetricBlackToMove || blackStronger) * 070; | ||
| 709 | int stm = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move(); | ||
| 710 | |||
| 711 |     // For pawns, TB files store 4 separate tables according if leading pawn is on | ||
| 712 |     // file a, b, c or d after reordering. The leading pawn is the one with maximum | ||
| 713 |     // MapPawns[] value, that is the one most toward the edges and with lowest rank. | ||
| 714 | if (entry->hasPawns) { | ||
| 715 | |||
| 716 |         // In all the 4 tables, pawns are at the beginning of the piece sequence and | ||
| 717 |         // their color is the reference one. So we just pick the first one. | ||
| 718 | Piece pc = Piece(item(entry->pawnTable, 0, 0).precomp->pieces[0] ^ flipColor); | ||
| 719 | |||
| 720 | assert(type_of(pc) == PAWN); | ||
| 721 | |||
| 722 | leadPawns = b = pos.pieces(color_of(pc), PAWN); | ||
| 723 |         do | ||
| 724 | squares[size++] = pop_lsb(&b) ^ flipSquares; | ||
| 725 | while (b); | ||
| 726 | |||
| 727 | leadPawnsCnt = size; | ||
| 728 | |||
| 729 | std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); | ||
| 730 | |||
| 731 | tbFile = file_of(squares[0]); | ||
| 732 | if (tbFile > FILE_D) | ||
| 733 | tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 | ||
| 734 | |||
| 735 | d = item(entry->pawnTable , stm, tbFile).precomp; | ||
| 736 | } else | ||
| 737 | d = item(entry->pieceTable, stm, tbFile).precomp; | ||
| 738 | |||
| 739 |     // DTZ tables are one-sided, i.e. they store positions only for white to | ||
| 740 |     // move or only for black to move, so check for side to move to be stm, | ||
| 741 |     // early exit otherwise. | ||
| 742 | if (!IsWDL && !check_dtz_stm(entry, stm, tbFile)) | ||
| 743 | return *result = CHANGE_STM, T(); | ||
| 744 | |||
| 745 |     // Now we are ready to get all the position pieces (but the lead pawns) and | ||
| 746 |     // directly map them to the correct color and square. | ||
| 747 | b = pos.pieces() ^ leadPawns; | ||
| 96 | pmbaty | 748 | do { | 
| 169 | pmbaty | 749 | Square s = pop_lsb(&b); | 
| 750 | squares[size] = s ^ flipSquares; | ||
| 751 | pieces[size++] = Piece(pos.piece_on(s) ^ flipColor); | ||
| 752 | } while (b); | ||
| 753 | |||
| 754 | assert(size >= 2); | ||
| 755 | |||
| 756 |     // Then we reorder the pieces to have the same sequence as the one stored | ||
| 757 |     // in precomp->pieces[i]: the sequence that ensures the best compression. | ||
| 758 | for (int i = leadPawnsCnt; i < size; ++i) | ||
| 759 | for (int j = i; j < size; ++j) | ||
| 760 | if (d->pieces[i] == pieces[j]) | ||
| 761 |             { | ||
| 762 | std::swap(pieces[i], pieces[j]); | ||
| 763 | std::swap(squares[i], squares[j]); | ||
| 764 | break; | ||
| 765 |             } | ||
| 766 | |||
| 767 |     // Now we map again the squares so that the square of the lead piece is in | ||
| 768 |     // the triangle A1-D1-D4. | ||
| 769 | if (file_of(squares[0]) > FILE_D) | ||
| 770 | for (int i = 0; i < size; ++i) | ||
| 771 | squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1 | ||
| 772 | |||
| 773 |     // Encode leading pawns starting with the one with minimum MapPawns[] and | ||
| 774 |     // proceeding in ascending order. | ||
| 775 | if (entry->hasPawns) { | ||
| 776 | idx = LeadPawnIdx[leadPawnsCnt][squares[0]]; | ||
| 777 | |||
| 778 | std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp); | ||
| 779 | |||
| 780 | for (int i = 1; i < leadPawnsCnt; ++i) | ||
| 781 | idx += Binomial[i][MapPawns[squares[i]]]; | ||
| 782 | |||
| 783 | goto encode_remaining; // With pawns we have finished special treatments | ||
| 96 | pmbaty | 784 |     } | 
| 169 | pmbaty | 785 | |
| 786 |     // In positions withouth pawns, we further flip the squares to ensure leading | ||
| 787 |     // piece is below RANK_5. | ||
| 788 | if (rank_of(squares[0]) > RANK_4) | ||
| 789 | for (int i = 0; i < size; ++i) | ||
| 790 | squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1 | ||
| 791 | |||
| 792 |     // Look for the first piece of the leading group not on the A1-D4 diagonal | ||
| 793 |     // and ensure it is mapped below the diagonal. | ||
| 794 | for (int i = 0; i < d->groupLen[0]; ++i) { | ||
| 795 | if (!off_A1H8(squares[i])) | ||
| 796 | continue; | ||
| 797 | |||
| 798 | if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3 | ||
| 799 | for (int j = i; j < size; ++j) | ||
| 800 | squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63); | ||
| 801 | break; | ||
| 96 | pmbaty | 802 |     } | 
| 803 | |||
| 169 | pmbaty | 804 |     // Encode the leading group. | 
| 805 |     // | ||
| 806 |     // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR | ||
| 807 |     // and bK (each 0...63). The simplest way to map this position to an index | ||
| 808 |     // is like this: | ||
| 809 |     // | ||
| 810 |     //   index = wK * 64 * 64 + wR * 64 + bK; | ||
| 811 |     // | ||
| 812 |     // But this way the TB is going to have 64*64*64 = 262144 positions, with | ||
| 813 |     // lots of positions being equivalent (because they are mirrors of each | ||
| 814 |     // other) and lots of positions being invalid (two pieces on one square, | ||
| 815 |     // adjacent kings, etc.). | ||
| 816 |     // Usually the first step is to take the wK and bK together. There are just | ||
| 817 |     // 462 ways legal and not-mirrored ways to place the wK and bK on the board. | ||
| 818 |     // Once we have placed the wK and bK, there are 62 squares left for the wR | ||
| 819 |     // Mapping its square from 0..63 to available squares 0..61 can be done like: | ||
| 820 |     // | ||
| 821 |     //   wR -= (wR > wK) + (wR > bK); | ||
| 822 |     // | ||
| 823 |     // In words: if wR "comes later" than wK, we deduct 1, and the same if wR | ||
| 824 |     // "comes later" than bK. In case of two same pieces like KRRvK we want to | ||
| 825 |     // place the two Rs "together". If we have 62 squares left, we can place two | ||
| 826 |     // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be | ||
| 827 |     // swapped and still get the same position.) | ||
| 828 |     // | ||
| 829 |     // In case we have at least 3 unique pieces (inlcuded kings) we encode them | ||
| 830 |     // together. | ||
| 831 | if (entry->hasUniquePieces) { | ||
| 96 | pmbaty | 832 | |
| 169 | pmbaty | 833 | int adjust1 = squares[1] > squares[0]; | 
| 834 | int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]); | ||
| 96 | pmbaty | 835 | |
| 169 | pmbaty | 836 |         // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3 | 
| 837 |         // triangle to 0...5. There are 63 squares for second piece and and 62 | ||
| 838 |         // (mapped to 0...61) for the third. | ||
| 839 | if (off_A1H8(squares[0])) | ||
| 840 | idx = ( MapA1D1D4[squares[0]] * 63 | ||
| 841 | + (squares[1] - adjust1)) * 62 | ||
| 842 | + squares[2] - adjust2; | ||
| 843 | |||
| 844 |         // First piece is on a1-h8 diagonal, second below: map this occurence to | ||
| 845 |         // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal | ||
| 846 |         // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27. | ||
| 847 | else if (off_A1H8(squares[1])) | ||
| 848 | idx = ( 6 * 63 + rank_of(squares[0]) * 28 | ||
| 849 | + MapB1H1H7[squares[1]]) * 62 | ||
| 850 | + squares[2] - adjust2; | ||
| 851 | |||
| 852 |         // First two pieces are on a1-h8 diagonal, third below | ||
| 853 | else if (off_A1H8(squares[2])) | ||
| 854 | idx = 6 * 63 * 62 + 4 * 28 * 62 | ||
| 855 | + rank_of(squares[0]) * 7 * 28 | ||
| 856 | + (rank_of(squares[1]) - adjust1) * 28 | ||
| 857 | + MapB1H1H7[squares[2]]; | ||
| 858 | |||
| 859 |         // All 3 pieces on the diagonal a1-h8 | ||
| 860 |         else | ||
| 861 | idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28 | ||
| 862 | + rank_of(squares[0]) * 7 * 6 | ||
| 863 | + (rank_of(squares[1]) - adjust1) * 6 | ||
| 864 | + (rank_of(squares[2]) - adjust2); | ||
| 865 | } else | ||
| 866 |         // We don't have at least 3 unique pieces, like in KRRvKBB, just map | ||
| 867 |         // the kings. | ||
| 868 | idx = MapKK[MapA1D1D4[squares[0]]][squares[1]]; | ||
| 869 | |||
| 870 | encode_remaining: | ||
| 871 | idx *= d->groupIdx[0]; | ||
| 872 | Square* groupSq = squares + d->groupLen[0]; | ||
| 873 | |||
| 874 |     // Encode remainig pawns then pieces according to square, in ascending order | ||
| 875 | bool remainingPawns = entry->hasPawns && entry->pawnTable.pawnCount[1]; | ||
| 876 | |||
| 877 | while (d->groupLen[++next]) | ||
| 878 |     { | ||
| 879 | std::sort(groupSq, groupSq + d->groupLen[next]); | ||
| 880 | uint64_t n = 0; | ||
| 881 | |||
| 882 |         // Map down a square if "comes later" than a square in the previous | ||
| 883 |         // groups (similar to what done earlier for leading group pieces). | ||
| 884 | for (int i = 0; i < d->groupLen[next]; ++i) | ||
| 885 |         { | ||
| 886 | auto f = [&](Square s) { return groupSq[i] > s; }; | ||
| 887 | auto adjust = std::count_if(squares, groupSq, f); | ||
| 888 | n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns]; | ||
| 889 |         } | ||
| 890 | |||
| 891 | remainingPawns = false; | ||
| 892 | idx += n * d->groupIdx[next]; | ||
| 893 | groupSq += d->groupLen[next]; | ||
| 894 |     } | ||
| 895 | |||
| 896 |     // Now that we have the index, decompress the pair and get the score | ||
| 897 | return map_score(entry, tbFile, decompress_pairs(d, idx), wdl); | ||
| 96 | pmbaty | 898 | } | 
| 899 | |||
| 169 | pmbaty | 900 | // Group together pieces that will be encoded together. The general rule is that | 
| 901 | // a group contains pieces of same type and color. The exception is the leading | ||
| 902 | // group that, in case of positions withouth pawns, can be formed by 3 different | ||
| 903 | // pieces (default) or by the king pair when there is not a unique piece apart | ||
| 904 | // from the kings. When there are pawns, pawns are always first in pieces[]. | ||
| 905 | // | ||
| 906 | // As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K | ||
| 907 | // | ||
| 908 | // The actual grouping depends on the TB generator and can be inferred from the | ||
| 909 | // sequence of pieces in piece[] array. | ||
| 910 | template<typename T> | ||
| 911 | void set_groups(T& e, PairsData* d, int order[], File f) { | ||
| 96 | pmbaty | 912 | |
| 169 | pmbaty | 913 | int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2; | 
| 914 | d->groupLen[n] = 1; | ||
| 915 | |||
| 916 |     // Number of pieces per group is stored in groupLen[], for instance in KRKN | ||
| 917 |     // the encoder will default on '111', so groupLen[] will be (3, 1). | ||
| 918 | for (int i = 1; i < e.pieceCount; ++i) | ||
| 919 | if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1]) | ||
| 920 | d->groupLen[n]++; | ||
| 921 |         else | ||
| 922 | d->groupLen[++n] = 1; | ||
| 923 | |||
| 924 | d->groupLen[++n] = 0; // Zero-terminated | ||
| 925 | |||
| 926 |     // The sequence in pieces[] defines the groups, but not the order in which | ||
| 927 |     // they are encoded. If the pieces in a group g can be combined on the board | ||
| 928 |     // in N(g) different ways, then the position encoding will be of the form: | ||
| 929 |     // | ||
| 930 |     //           g1 * N(g2) * N(g3) + g2 * N(g3) + g3 | ||
| 931 |     // | ||
| 932 |     // This ensures unique encoding for the whole position. The order of the | ||
| 933 |     // groups is a per-table parameter and could not follow the canonical leading | ||
| 934 |     // pawns/pieces -> remainig pawns -> remaining pieces. In particular the | ||
| 935 |     // first group is at order[0] position and the remaining pawns, when present, | ||
| 936 |     // are at order[1] position. | ||
| 937 | bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides | ||
| 938 | int next = pp ? 2 : 1; | ||
| 939 | int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0); | ||
| 940 | uint64_t idx = 1; | ||
| 941 | |||
| 942 | for (int k = 0; next < n || k == order[0] || k == order[1]; ++k) | ||
| 943 | if (k == order[0]) // Leading pawns or pieces | ||
| 944 |         { | ||
| 945 | d->groupIdx[0] = idx; | ||
| 946 | idx *= e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f] | ||
| 947 | : e.hasUniquePieces ? 31332 : 462; | ||
| 948 |         } | ||
| 949 | else if (k == order[1]) // Remaining pawns | ||
| 950 |         { | ||
| 951 | d->groupIdx[1] = idx; | ||
| 952 | idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]]; | ||
| 953 |         } | ||
| 954 | else // Remainig pieces | ||
| 955 |         { | ||
| 956 | d->groupIdx[next] = idx; | ||
| 957 | idx *= Binomial[d->groupLen[next]][freeSquares]; | ||
| 958 | freeSquares -= d->groupLen[next++]; | ||
| 959 |         } | ||
| 960 | |||
| 961 | d->groupIdx[n] = idx; | ||
| 962 | } | ||
| 963 | |||
| 964 | // In Recursive Pairing each symbol represents a pair of childern symbols. So | ||
| 965 | // read d->btree[] symbols data and expand each one in his left and right child | ||
| 966 | // symbol until reaching the leafs that represent the symbol value. | ||
| 967 | uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) { | ||
| 968 | |||
| 969 | visited[s] = true; // We can set it now because tree is acyclic | ||
| 970 | Sym sr = d->btree[s].get<LR::Right>(); | ||
| 971 | |||
| 972 | if (sr == 0xFFF) | ||
| 973 | return 0; | ||
| 974 | |||
| 975 | Sym sl = d->btree[s].get<LR::Left>(); | ||
| 976 | |||
| 977 | if (!visited[sl]) | ||
| 978 | d->symlen[sl] = set_symlen(d, sl, visited); | ||
| 979 | |||
| 980 | if (!visited[sr]) | ||
| 981 | d->symlen[sr] = set_symlen(d, sr, visited); | ||
| 982 | |||
| 983 | return d->symlen[sl] + d->symlen[sr] + 1; | ||
| 984 | } | ||
| 985 | |||
| 986 | uint8_t* set_sizes(PairsData* d, uint8_t* data) { | ||
| 987 | |||
| 988 | d->flags = *data++; | ||
| 989 | |||
| 990 | if (d->flags & TBFlag::SingleValue) { | ||
| 991 | d->blocksNum = d->blockLengthSize = 0; | ||
| 992 | d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init | ||
| 993 | d->minSymLen = *data++; // Here we store the single value | ||
| 994 | return data; | ||
| 96 | pmbaty | 995 |     } | 
| 996 | |||
| 169 | pmbaty | 997 |     // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[] | 
| 998 |     // element stores the biggest index that is the tb size. | ||
| 999 | uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen]; | ||
| 1000 | |||
| 1001 | d->sizeofBlock = 1ULL << *data++; | ||
| 1002 | d->span = 1ULL << *data++; | ||
| 1003 | d->sparseIndexSize = (size_t) ((tbSize + d->span - 1) / d->span); // Round up // Pierre-Marie Baty -- added type cast | ||
| 1004 | int padding = number<uint8_t, LittleEndian>(data++); | ||
| 1005 | d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t); | ||
| 1006 | d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] | ||
| 1007 |                                                  // does not point out of range. | ||
| 1008 | d->maxSymLen = *data++; | ||
| 1009 | d->minSymLen = *data++; | ||
| 1010 | d->lowestSym = (Sym*)data; | ||
| 1011 | d->base64.resize(d->maxSymLen - d->minSymLen + 1); | ||
| 1012 | |||
| 1013 |     // The canonical code is ordered such that longer symbols (in terms of | ||
| 1014 |     // the number of bits of their Huffman code) have lower numeric value, | ||
| 1015 |     // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). | ||
| 1016 |     // Starting from this we compute a base64[] table indexed by symbol length | ||
| 1017 |     // and containing 64 bit values so that d->base64[i] >= d->base64[i+1]. | ||
| 1018 |     // See http://www.eecs.harvard.edu/~michaelm/E210/huffman.pdf | ||
| 1019 | for (int i = d->base64.size() - 2; i >= 0; --i) { | ||
| 1020 | d->base64[i] = (d->base64[i + 1] + number<Sym, LittleEndian>(&d->lowestSym[i]) | ||
| 1021 | - number<Sym, LittleEndian>(&d->lowestSym[i + 1])) / 2; | ||
| 1022 | |||
| 1023 | assert(d->base64[i] * 2 >= d->base64[i+1]); | ||
| 1024 |     } | ||
| 1025 | |||
| 1026 |     // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more | ||
| 1027 |     // than d->base64[i+1] and given the above assert condition, we ensure that | ||
| 1028 |     // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i | ||
| 1029 |     // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i]. | ||
| 1030 | for (size_t i = 0; i < d->base64.size(); ++i) | ||
| 1031 | d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits | ||
| 1032 | |||
| 1033 | data += d->base64.size() * sizeof(Sym); | ||
| 1034 | d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t); | ||
| 1035 | d->btree = (LR*)data; | ||
| 1036 | |||
| 1037 |     // The comrpession scheme used is "Recursive Pairing", that replaces the most | ||
| 1038 |     // frequent adjacent pair of symbols in the source message by a new symbol, | ||
| 1039 |     // reevaluating the frequencies of all of the symbol pairs with respect to | ||
| 1040 |     // the extended alphabet, and then repeating the process. | ||
| 1041 |     // See http://www.larsson.dogma.net/dcc99.pdf | ||
| 1042 | std::vector<bool> visited(d->symlen.size()); | ||
| 1043 | |||
| 1044 | for (Sym sym = 0; sym < d->symlen.size(); ++sym) | ||
| 1045 | if (!visited[sym]) | ||
| 1046 | d->symlen[sym] = set_symlen(d, sym, visited); | ||
| 1047 | |||
| 1048 | return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); | ||
| 96 | pmbaty | 1049 | } | 
| 1050 | |||
| 169 | pmbaty | 1051 | template<typename T> | 
| 1052 | uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; } | ||
| 96 | pmbaty | 1053 | |
| 169 | pmbaty | 1054 | template<typename T> | 
| 1055 | uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) { | ||
| 96 | pmbaty | 1056 | |
| 169 | pmbaty | 1057 | p.map = data; | 
| 1058 | |||
| 1059 | for (File f = FILE_A; f <= maxFile; ++f) { | ||
| 1060 | if (item(p, 0, f).precomp->flags & TBFlag::Mapped) | ||
| 1061 | for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x | ||
| 1062 | item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1); | ||
| 1063 | data += *data + 1; | ||
| 1064 |             } | ||
| 96 | pmbaty | 1065 |     } | 
| 1066 | |||
| 169 | pmbaty | 1067 | return data += (uintptr_t)data & 1; // Word alignment | 
| 96 | pmbaty | 1068 | } | 
| 1069 | |||
| 169 | pmbaty | 1070 | template<typename Entry, typename T> | 
| 1071 | void do_init(Entry& e, T& p, uint8_t* data) { | ||
| 96 | pmbaty | 1072 | |
| 169 | pmbaty | 1073 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; | 
| 96 | pmbaty | 1074 | |
| 169 | pmbaty | 1075 | PairsData* d; | 
| 96 | pmbaty | 1076 | |
| 169 | pmbaty | 1077 | enum { Split = 1, HasPawns = 2 }; | 
| 96 | pmbaty | 1078 | |
| 169 | pmbaty | 1079 | assert(e.hasPawns == !!(*data & HasPawns)); | 
| 1080 | assert((e.key != e.key2) == !!(*data & Split)); | ||
| 96 | pmbaty | 1081 | |
| 169 | pmbaty | 1082 | data++; // First byte stores flags | 
| 1083 | |||
| 1084 | const int Sides = IsWDL && (e.key != e.key2) ? 2 : 1; | ||
| 1085 | const File MaxFile = e.hasPawns ? FILE_D : FILE_A; | ||
| 1086 | |||
| 1087 | bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides | ||
| 1088 | |||
| 1089 | assert(!pp || e.pawnTable.pawnCount[0]); | ||
| 1090 | |||
| 1091 | for (File f = FILE_A; f <= MaxFile; ++f) { | ||
| 1092 | |||
| 1093 | for (int i = 0; i < Sides; i++) | ||
| 1094 | item(p, i, f).precomp = new PairsData(); | ||
| 1095 | |||
| 1096 | int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, | ||
| 1097 | { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; | ||
| 1098 | data += 1 + pp; | ||
| 1099 | |||
| 1100 | for (int k = 0; k < e.pieceCount; ++k, ++data) | ||
| 1101 | for (int i = 0; i < Sides; i++) | ||
| 1102 | item(p, i, f).precomp->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF); | ||
| 1103 | |||
| 1104 | for (int i = 0; i < Sides; ++i) | ||
| 1105 | set_groups(e, item(p, i, f).precomp, order[i], f); | ||
| 1106 |     } | ||
| 1107 | |||
| 1108 | data += (uintptr_t)data & 1; // Word alignment | ||
| 1109 | |||
| 1110 | for (File f = FILE_A; f <= MaxFile; ++f) | ||
| 1111 | for (int i = 0; i < Sides; i++) | ||
| 1112 | data = set_sizes(item(p, i, f).precomp, data); | ||
| 1113 | |||
| 1114 | if (!IsWDL) | ||
| 1115 | data = set_dtz_map(e, p, data, MaxFile); | ||
| 1116 | |||
| 1117 | for (File f = FILE_A; f <= MaxFile; ++f) | ||
| 1118 | for (int i = 0; i < Sides; i++) { | ||
| 1119 | (d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data; | ||
| 1120 | data += d->sparseIndexSize * sizeof(SparseEntry); | ||
| 96 | pmbaty | 1121 |         } | 
| 169 | pmbaty | 1122 | |
| 1123 | for (File f = FILE_A; f <= MaxFile; ++f) | ||
| 1124 | for (int i = 0; i < Sides; i++) { | ||
| 1125 | (d = item(p, i, f).precomp)->blockLength = (uint16_t*)data; | ||
| 1126 | data += d->blockLengthSize * sizeof(uint16_t); | ||
| 1127 |         } | ||
| 1128 | |||
| 1129 | for (File f = FILE_A; f <= MaxFile; ++f) | ||
| 1130 | for (int i = 0; i < Sides; i++) { | ||
| 1131 | data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment | ||
| 1132 | (d = item(p, i, f).precomp)->data = data; | ||
| 1133 | data += d->blocksNum * d->sizeofBlock; | ||
| 1134 |         } | ||
| 1135 | } | ||
| 1136 | |||
| 1137 | template<typename Entry> | ||
| 1138 | void* init(Entry& e, const Position& pos) { | ||
| 1139 | |||
| 1140 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; | ||
| 1141 | |||
| 1142 | static Mutex mutex; | ||
| 1143 | |||
| 1144 |     // Avoid a thread reads 'ready' == true while another is still in do_init(), | ||
| 1145 |     // this could happen due to compiler reordering. | ||
| 1146 | if (e.ready.load(std::memory_order_acquire)) | ||
| 1147 | return e.baseAddress; | ||
| 1148 | |||
| 1149 | std::unique_lock<Mutex> lk(mutex); | ||
| 1150 | |||
| 1151 | if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock | ||
| 1152 | return e.baseAddress; | ||
| 1153 | |||
| 1154 |     // Pieces strings in decreasing order for each color, like ("KPP","KR") | ||
| 1155 | std::string fname, w, b; | ||
| 1156 | for (PieceType pt = KING; pt >= PAWN; --pt) { | ||
| 1157 | w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); | ||
| 1158 | b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); | ||
| 96 | pmbaty | 1159 |     } | 
| 1160 | |||
| 169 | pmbaty | 1161 | const uint8_t TB_MAGIC[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 }, | 
| 1162 | { 0x71, 0xE8, 0x23, 0x5D } }; | ||
| 1163 | |||
| 1164 | fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) | ||
| 1165 | + (IsWDL ? ".rtbw" : ".rtbz"); | ||
| 1166 | |||
| 1167 | uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, TB_MAGIC[IsWDL]); | ||
| 1168 | if (data) | ||
| 1169 | e.hasPawns ? do_init(e, e.pawnTable, data) : do_init(e, e.pieceTable, data); | ||
| 1170 | |||
| 1171 | e.ready.store(true, std::memory_order_release); | ||
| 1172 | return e.baseAddress; | ||
| 96 | pmbaty | 1173 | } | 
| 1174 | |||
| 169 | pmbaty | 1175 | template<typename E, typename T = typename Ret<E>::type> | 
| 1176 | T probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) { | ||
| 96 | pmbaty | 1177 | |
| 169 | pmbaty | 1178 | if (!(pos.pieces() ^ pos.pieces(KING))) | 
| 1179 | return T(WDLDraw); // KvK | ||
| 96 | pmbaty | 1180 | |
| 169 | pmbaty | 1181 | E* entry = EntryTable.get<E>(pos.material_key()); | 
| 96 | pmbaty | 1182 | |
| 169 | pmbaty | 1183 | if (!entry || !init(*entry, pos)) | 
| 1184 | return *result = FAIL, T(); | ||
| 96 | pmbaty | 1185 | |
| 169 | pmbaty | 1186 | return do_probe_table(pos, entry, wdl, result); | 
| 1187 | } | ||
| 96 | pmbaty | 1188 | |
| 169 | pmbaty | 1189 | // For a position where the side to move has a winning capture it is not necessary | 
| 1190 | // to store a winning value so the generator treats such positions as "don't cares" | ||
| 1191 | // and tries to assign to it a value that improves the compression ratio. Similarly, | ||
| 1192 | // if the side to move has a drawing capture, then the position is at least drawn. | ||
| 1193 | // If the position is won, then the TB needs to store a win value. But if the | ||
| 1194 | // position is drawn, the TB may store a loss value if that is better for compression. | ||
| 1195 | // All of this means that during probing, the engine must look at captures and probe | ||
| 1196 | // their results and must probe the position itself. The "best" result of these | ||
| 1197 | // probes is the correct result for the position. | ||
| 1198 | // DTZ table don't store values when a following move is a zeroing winning move | ||
| 1199 | // (winning capture or winning pawn move). Also DTZ store wrong values for positions | ||
| 1200 | // where the best move is an ep-move (even if losing). So in all these cases set | ||
| 1201 | // the state to ZEROING_BEST_MOVE. | ||
| 1202 | template<bool CheckZeroingMoves = false> | ||
| 1203 | WDLScore search(Position& pos, ProbeState* result) { | ||
| 1204 | |||
| 1205 | WDLScore value, bestValue = WDLLoss; | ||
| 1206 |     StateInfo st; | ||
| 1207 | |||
| 1208 | auto moveList = MoveList<LEGAL>(pos); | ||
| 1209 | size_t totalCount = moveList.size(), moveCount = 0; | ||
| 1210 | |||
| 1211 | for (const Move& move : moveList) | ||
| 1212 |     { | ||
| 1213 | if ( !pos.capture(move) | ||
| 1214 | && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN)) | ||
| 1215 | continue; | ||
| 1216 | |||
| 1217 | moveCount++; | ||
| 1218 | |||
| 1219 | pos.do_move(move, st); | ||
| 1220 | value = -search(pos, result); | ||
| 1221 | pos.undo_move(move); | ||
| 1222 | |||
| 1223 | if (*result == FAIL) | ||
| 1224 | return WDLDraw; | ||
| 1225 | |||
| 1226 | if (value > bestValue) | ||
| 1227 |         { | ||
| 1228 | bestValue = value; | ||
| 1229 | |||
| 1230 | if (value >= WDLWin) | ||
| 1231 |             { | ||
| 1232 | *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move | ||
| 1233 | return value; | ||
| 1234 |             } | ||
| 1235 |         } | ||
| 1236 |     } | ||
| 1237 | |||
| 1238 |     // In case we have already searched all the legal moves we don't have to probe | ||
| 1239 |     // the TB because the stored score could be wrong. For instance TB tables | ||
| 1240 |     // do not contain information on position with ep rights, so in this case | ||
| 1241 |     // the result of probe_wdl_table is wrong. Also in case of only capture | ||
| 1242 |     // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to | ||
| 1243 |     // return with ZEROING_BEST_MOVE set. | ||
| 1244 | bool noMoreMoves = (moveCount && moveCount == totalCount); | ||
| 1245 | |||
| 1246 | if (noMoreMoves) | ||
| 1247 | value = bestValue; | ||
| 96 | pmbaty | 1248 |     else | 
| 169 | pmbaty | 1249 |     { | 
| 1250 | value = probe_table<WDLEntry>(pos, result); | ||
| 96 | pmbaty | 1251 | |
| 169 | pmbaty | 1252 | if (*result == FAIL) | 
| 1253 | return WDLDraw; | ||
| 96 | pmbaty | 1254 |     } | 
| 1255 | |||
| 169 | pmbaty | 1256 |     // DTZ stores a "don't care" value if bestValue is a win | 
| 1257 | if (bestValue >= value) | ||
| 1258 | return *result = ( bestValue > WDLDraw | ||
| 1259 | || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue; | ||
| 96 | pmbaty | 1260 | |
| 169 | pmbaty | 1261 | return *result = OK, value; | 
| 1262 | } | ||
| 1263 | |||
| 1264 | } // namespace | ||
| 1265 | |||
| 1266 | void Tablebases::init(const std::string& paths) { | ||
| 1267 | |||
| 1268 | EntryTable.clear(); | ||
| 1269 | MaxCardinality = 0; | ||
| 1270 | TBFile::Paths = paths; | ||
| 1271 | |||
| 1272 | if (paths.empty() || paths == "<empty>") | ||
| 1273 | return; | ||
| 1274 | |||
| 1275 |     // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 | ||
| 1276 | int code = 0; | ||
| 1277 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | ||
| 1278 | if (off_A1H8(s) < 0) | ||
| 1279 | MapB1H1H7[s] = code++; | ||
| 1280 | |||
| 1281 |     // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9 | ||
| 1282 | std::vector<Square> diagonal; | ||
| 1283 | code = 0; | ||
| 1284 | for (Square s = SQ_A1; s <= SQ_D4; ++s) | ||
| 1285 | if (off_A1H8(s) < 0 && file_of(s) <= FILE_D) | ||
| 1286 | MapA1D1D4[s] = code++; | ||
| 1287 | |||
| 1288 | else if (!off_A1H8(s) && file_of(s) <= FILE_D) | ||
| 1289 | diagonal.push_back(s); | ||
| 1290 | |||
| 1291 |     // Diagonal squares are encoded as last ones | ||
| 1292 | for (auto s : diagonal) | ||
| 1293 | MapA1D1D4[s] = code++; | ||
| 1294 | |||
| 1295 |     // MapKK[] encodes all the 461 possible legal positions of two kings where | ||
| 1296 |     // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 | ||
| 1297 |     // diagonal, the other one shall not to be above the a1-h8 diagonal. | ||
| 1298 | std::vector<std::pair<int, Square>> bothOnDiagonal; | ||
| 1299 | code = 0; | ||
| 1300 | for (int idx = 0; idx < 10; idx++) | ||
| 1301 | for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1) | ||
| 1302 | if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0 | ||
| 1303 |             { | ||
| 1304 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) | ||
| 1305 | if ((PseudoAttacks[KING][s1] | s1) & s2) | ||
| 1306 | continue; // Illegal position | ||
| 1307 | |||
| 1308 | else if (!off_A1H8(s1) && off_A1H8(s2) > 0) | ||
| 1309 | continue; // First on diagonal, second above | ||
| 1310 | |||
| 1311 | else if (!off_A1H8(s1) && !off_A1H8(s2)) | ||
| 1312 | bothOnDiagonal.push_back(std::make_pair(idx, s2)); | ||
| 1313 | |||
| 1314 |                     else | ||
| 1315 | MapKK[idx][s2] = code++; | ||
| 1316 |             } | ||
| 1317 | |||
| 1318 |     // Legal positions with both kings on diagonal are encoded as last ones | ||
| 1319 | for (auto p : bothOnDiagonal) | ||
| 1320 | MapKK[p.first][p.second] = code++; | ||
| 1321 | |||
| 1322 |     // Binomial[] stores the Binomial Coefficents using Pascal rule. There | ||
| 1323 |     // are Binomial[k][n] ways to choose k elements from a set of n elements. | ||
| 1324 | Binomial[0][0] = 1; | ||
| 1325 | |||
| 1326 | for (int n = 1; n < 64; n++) // Squares | ||
| 1327 | for (int k = 0; k < 6 && k <= n; ++k) // Pieces | ||
| 1328 | Binomial[k][n] = (k > 0 ? Binomial[k - 1][n - 1] : 0) | ||
| 1329 | + (k < n ? Binomial[k ][n - 1] : 0); | ||
| 1330 | |||
| 1331 |     // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible | ||
| 1332 |     // available squares when the leading one is in 's'. Moreover the pawn with | ||
| 1333 |     // highest MapPawns[] is the leading pawn, the one nearest the edge and, | ||
| 1334 |     // among pawns with same file, the one with lowest rank. | ||
| 1335 | int availableSquares = 47; // Available squares when lead pawn is in a2 | ||
| 1336 | |||
| 1337 |     // Init the tables for the encoding of leading pawns group: with 6-men TB we | ||
| 1338 |     // can have up to 4 leading pawns (KPPPPK). | ||
| 1339 | for (int leadPawnsCnt = 1; leadPawnsCnt <= 4; ++leadPawnsCnt) | ||
| 1340 | for (File f = FILE_A; f <= FILE_D; ++f) | ||
| 1341 |         { | ||
| 1342 |             // Restart the index at every file because TB table is splitted | ||
| 1343 |             // by file, so we can reuse the same index for different files. | ||
| 1344 | int idx = 0; | ||
| 1345 | |||
| 1346 |             // Sum all possible combinations for a given file, starting with | ||
| 1347 |             // the leading pawn on rank 2 and increasing the rank. | ||
| 1348 | for (Rank r = RANK_2; r <= RANK_7; ++r) | ||
| 1349 |             { | ||
| 1350 | Square sq = make_square(f, r); | ||
| 1351 | |||
| 1352 |                 // Compute MapPawns[] at first pass. | ||
| 1353 |                 // If sq is the leading pawn square, any other pawn cannot be | ||
| 1354 |                 // below or more toward the edge of sq. There are 47 available | ||
| 1355 |                 // squares when sq = a2 and reduced by 2 for any rank increase | ||
| 1356 |                 // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45 | ||
| 1357 | if (leadPawnsCnt == 1) | ||
| 1358 |                 { | ||
| 1359 | MapPawns[sq] = availableSquares--; | ||
| 1360 | MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip | ||
| 1361 |                 } | ||
| 1362 | LeadPawnIdx[leadPawnsCnt][sq] = idx; | ||
| 1363 | idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]]; | ||
| 1364 |             } | ||
| 1365 |             // After a file is traversed, store the cumulated per-file index | ||
| 1366 | LeadPawnsSize[leadPawnsCnt][f] = idx; | ||
| 96 | pmbaty | 1367 |         } | 
| 169 | pmbaty | 1368 | |
| 1369 | for (PieceType p1 = PAWN; p1 < KING; ++p1) { | ||
| 1370 | EntryTable.insert({KING, p1, KING}); | ||
| 1371 | |||
| 1372 | for (PieceType p2 = PAWN; p2 <= p1; ++p2) { | ||
| 1373 | EntryTable.insert({KING, p1, p2, KING}); | ||
| 1374 | EntryTable.insert({KING, p1, KING, p2}); | ||
| 1375 | |||
| 1376 | for (PieceType p3 = PAWN; p3 < KING; ++p3) | ||
| 1377 | EntryTable.insert({KING, p1, p2, KING, p3}); | ||
| 1378 | |||
| 1379 | for (PieceType p3 = PAWN; p3 <= p2; ++p3) { | ||
| 1380 | EntryTable.insert({KING, p1, p2, p3, KING}); | ||
| 1381 | |||
| 1382 | for (PieceType p4 = PAWN; p4 <= p3; ++p4) | ||
| 1383 | EntryTable.insert({KING, p1, p2, p3, p4, KING}); | ||
| 1384 | |||
| 1385 | for (PieceType p4 = PAWN; p4 < KING; ++p4) | ||
| 1386 | EntryTable.insert({KING, p1, p2, p3, KING, p4}); | ||
| 1387 |             } | ||
| 1388 | |||
| 1389 | for (PieceType p3 = PAWN; p3 <= p1; ++p3) | ||
| 1390 | for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) | ||
| 1391 | EntryTable.insert({KING, p1, p2, KING, p3, p4}); | ||
| 1392 |         } | ||
| 96 | pmbaty | 1393 |     } | 
| 169 | pmbaty | 1394 | |
| 1395 | sync_cout << "info string Found " << EntryTable.size() << " tablebases" << sync_endl; | ||
| 96 | pmbaty | 1396 | } | 
| 1397 | |||
| 169 | pmbaty | 1398 | // Probe the WDL table for a particular position. | 
| 1399 | // If *result != FAIL, the probe was successful. | ||
| 1400 | // The return value is from the point of view of the side to move: | ||
| 1401 | // -2 : loss | ||
| 1402 | // -1 : loss, but draw under 50-move rule | ||
| 1403 | //  0 : draw | ||
| 1404 | //  1 : win, but draw under 50-move rule | ||
| 1405 | //  2 : win | ||
| 1406 | WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { | ||
| 96 | pmbaty | 1407 | |
| 169 | pmbaty | 1408 | *result = OK; | 
| 1409 | return search(pos, result); | ||
| 1410 | } | ||
| 1411 | |||
| 96 | pmbaty | 1412 | // Probe the DTZ table for a particular position. | 
| 169 | pmbaty | 1413 | // If *result != FAIL, the probe was successful. | 
| 96 | pmbaty | 1414 | // The return value is from the point of view of the side to move: | 
| 1415 | //         n < -100 : loss, but draw under 50-move rule | ||
| 1416 | // -100 <= n < -1   : loss in n ply (assuming 50-move counter == 0) | ||
| 1417 | //         0        : draw | ||
| 1418 | //     1 < n <= 100 : win in n ply (assuming 50-move counter == 0) | ||
| 1419 | //   100 < n        : win, but draw under 50-move rule | ||
| 1420 | // | ||
| 1421 | // The return value n can be off by 1: a return value -n can mean a loss | ||
| 1422 | // in n+1 ply and a return value +n can mean a win in n+1 ply. This | ||
| 1423 | // cannot happen for tables with positions exactly on the "edge" of | ||
| 1424 | // the 50-move rule. | ||
| 1425 | // | ||
| 1426 | // This implies that if dtz > 0 is returned, the position is certainly | ||
| 1427 | // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine | ||
| 1428 | // picks moves that preserve dtz + 50-move-counter <= 99. | ||
| 1429 | // | ||
| 1430 | // If n = 100 immediately after a capture or pawn move, then the position | ||
| 1431 | // is also certainly a win, and during the whole phase until the next | ||
| 1432 | // capture or pawn move, the inequality to be preserved is | ||
| 1433 | // dtz + 50-movecounter <= 100. | ||
| 1434 | // | ||
| 1435 | // In short, if a move is available resulting in dtz + 50-move-counter <= 99, | ||
| 1436 | // then do not accept moves leading to dtz + 50-move-counter == 100. | ||
| 169 | pmbaty | 1437 | int Tablebases::probe_dtz(Position& pos, ProbeState* result) { | 
| 96 | pmbaty | 1438 | |
| 169 | pmbaty | 1439 | *result = OK; | 
| 1440 | WDLScore wdl = search<true>(pos, result); | ||
| 96 | pmbaty | 1441 | |
| 169 | pmbaty | 1442 | if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws | 
| 1443 | return 0; | ||
| 96 | pmbaty | 1444 | |
| 169 | pmbaty | 1445 |     // DTZ stores a 'don't care' value in this case, or even a plain wrong | 
| 1446 |     // one as in case the best move is a losing ep, so it cannot be probed. | ||
| 1447 | if (*result == ZEROING_BEST_MOVE) | ||
| 1448 | return dtz_before_zeroing(wdl); | ||
| 96 | pmbaty | 1449 | |
| 169 | pmbaty | 1450 | int dtz = probe_table<DTZEntry>(pos, result, wdl); | 
| 96 | pmbaty | 1451 | |
| 169 | pmbaty | 1452 | if (*result == FAIL) | 
| 1453 | return 0; | ||
| 1454 | |||
| 1455 | if (*result != CHANGE_STM) | ||
| 1456 | return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl); | ||
| 1457 | |||
| 1458 |     // DTZ stores results for the other side, so we need to do a 1-ply search and | ||
| 1459 |     // find the winning move that minimizes DTZ. | ||
| 1460 |     StateInfo st; | ||
| 1461 | int minDTZ = 0xFFFF; | ||
| 1462 | |||
| 1463 | for (const Move& move : MoveList<LEGAL>(pos)) | ||
| 1464 |     { | ||
| 1465 | bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN; | ||
| 1466 | |||
| 1467 | pos.do_move(move, st); | ||
| 1468 | |||
| 1469 |         // For zeroing moves we want the dtz of the move _before_ doing it, | ||
| 1470 |         // otherwise we will get the dtz of the next move sequence. Search the | ||
| 1471 |         // position after the move to get the score sign (because even in a | ||
| 1472 |         // winning position we could make a losing capture or going for a draw). | ||
| 1473 | dtz = zeroing ? -dtz_before_zeroing(search(pos, result)) | ||
| 1474 | : -probe_dtz(pos, result); | ||
| 1475 | |||
| 1476 | pos.undo_move(move); | ||
| 1477 | |||
| 1478 | if (*result == FAIL) | ||
| 1479 | return 0; | ||
| 1480 | |||
| 1481 |         // Convert result from 1-ply search. Zeroing moves are already accounted | ||
| 1482 |         // by dtz_before_zeroing() that returns the DTZ of the previous move. | ||
| 1483 | if (!zeroing) | ||
| 1484 | dtz += sign_of(dtz); | ||
| 1485 | |||
| 1486 |         // Skip the draws and if we are winning only pick positive dtz | ||
| 1487 | if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) | ||
| 1488 | minDTZ = dtz; | ||
| 96 | pmbaty | 1489 |     } | 
| 1490 | |||
| 169 | pmbaty | 1491 |     // Special handle a mate position, when there are no legal moves, in this | 
| 1492 |     // case return value is somewhat arbitrary, so stick to the original TB code | ||
| 1493 |     // that returns -1 in this case. | ||
| 1494 | return minDTZ == 0xFFFF ? -1 : minDTZ; | ||
| 96 | pmbaty | 1495 | } | 
| 1496 | |||
| 1497 | // Check whether there has been at least one repetition of positions | ||
| 1498 | // since the last capture or pawn move. | ||
| 1499 | static int has_repeated(StateInfo *st) | ||
| 1500 | { | ||
| 169 | pmbaty | 1501 | while (1) { | 
| 1502 | int i = 4, e = std::min(st->rule50, st->pliesFromNull); | ||
| 1503 | |||
| 1504 | if (e < i) | ||
| 1505 | return 0; | ||
| 1506 | |||
| 1507 | StateInfo *stp = st->previous->previous; | ||
| 1508 | |||
| 1509 | do { | ||
| 1510 | stp = stp->previous->previous; | ||
| 1511 | |||
| 1512 | if (stp->key == st->key) | ||
| 1513 | return 1; | ||
| 1514 | |||
| 1515 | i += 2; | ||
| 1516 | } while (i <= e); | ||
| 1517 | |||
| 1518 | st = st->previous; | ||
| 1519 |     } | ||
| 96 | pmbaty | 1520 | } | 
| 1521 | |||
| 1522 | // Use the DTZ tables to filter out moves that don't preserve the win or draw. | ||
| 1523 | // If the position is lost, but DTZ is fairly high, only keep moves that | ||
| 1524 | // maximise DTZ. | ||
| 1525 | // | ||
| 1526 | // A return value false indicates that not all probes were successful and that | ||
| 1527 | // no moves were filtered out. | ||
| 154 | pmbaty | 1528 | bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score) | 
| 96 | pmbaty | 1529 | { | 
| 169 | pmbaty | 1530 | assert(rootMoves.size()); | 
| 96 | pmbaty | 1531 | |
| 169 | pmbaty | 1532 |     ProbeState result; | 
| 1533 | int dtz = probe_dtz(pos, &result); | ||
| 96 | pmbaty | 1534 | |
| 169 | pmbaty | 1535 | if (result == FAIL) | 
| 1536 | return false; | ||
| 96 | pmbaty | 1537 | |
| 169 | pmbaty | 1538 |     StateInfo st; | 
| 1539 | |||
| 1540 |     // Probe each move | ||
| 1541 | for (size_t i = 0; i < rootMoves.size(); ++i) { | ||
| 1542 | Move move = rootMoves[i].pv[0]; | ||
| 1543 | pos.do_move(move, st); | ||
| 1544 | int v = 0; | ||
| 1545 | |||
| 1546 | if (pos.checkers() && dtz > 0) { | ||
| 1547 | ExtMove s[MAX_MOVES]; | ||
| 1548 | |||
| 1549 | if (generate<LEGAL>(pos, s) == s) | ||
| 1550 | v = 1; | ||
| 1551 |         } | ||
| 1552 | |||
| 1553 | if (!v) { | ||
| 1554 | if (st.rule50 != 0) { | ||
| 1555 | v = -probe_dtz(pos, &result); | ||
| 1556 | |||
| 1557 | if (v > 0) | ||
| 1558 | ++v; | ||
| 1559 | else if (v < 0) | ||
| 1560 | --v; | ||
| 1561 | } else { | ||
| 1562 | v = -probe_wdl(pos, &result); | ||
| 1563 | v = dtz_before_zeroing(WDLScore(v)); | ||
| 1564 |             } | ||
| 1565 |         } | ||
| 1566 | |||
| 1567 | pos.undo_move(move); | ||
| 1568 | |||
| 1569 | if (result == FAIL) | ||
| 1570 | return false; | ||
| 1571 | |||
| 1572 | rootMoves[i].score = (Value)v; | ||
| 96 | pmbaty | 1573 |     } | 
| 1574 | |||
| 169 | pmbaty | 1575 |     // Obtain 50-move counter for the root position. | 
| 1576 |     // In Stockfish there seems to be no clean way, so we do it like this: | ||
| 1577 | int cnt50 = st.previous ? st.previous->rule50 : 0; | ||
| 96 | pmbaty | 1578 | |
| 169 | pmbaty | 1579 |     // Use 50-move counter to determine whether the root position is | 
| 1580 |     // won, lost or drawn. | ||
| 1581 | WDLScore wdl = WDLDraw; | ||
| 96 | pmbaty | 1582 | |
| 169 | pmbaty | 1583 | if (dtz > 0) | 
| 1584 | wdl = (dtz + cnt50 <= 100) ? WDLWin : WDLCursedWin; | ||
| 1585 | else if (dtz < 0) | ||
| 1586 | wdl = (-dtz + cnt50 <= 100) ? WDLLoss : WDLBlessedLoss; | ||
| 96 | pmbaty | 1587 | |
| 169 | pmbaty | 1588 |     // Determine the score to report to the user. | 
| 1589 | score = WDL_to_value[wdl + 2]; | ||
| 1590 | |||
| 1591 |     // If the position is winning or losing, but too few moves left, adjust the | ||
| 1592 |     // score to show how close it is to winning or losing. | ||
| 1593 |     // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). | ||
| 1594 | if (wdl == WDLCursedWin && dtz <= 100) | ||
| 1595 | score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200); | ||
| 1596 | else if (wdl == WDLBlessedLoss && dtz >= -100) | ||
| 1597 | score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200); | ||
| 1598 | |||
| 1599 |     // Now be a bit smart about filtering out moves. | ||
| 1600 | size_t j = 0; | ||
| 1601 | |||
| 1602 | if (dtz > 0) { // winning (or 50-move rule draw) | ||
| 1603 | int best = 0xffff; | ||
| 1604 | |||
| 1605 | for (size_t i = 0; i < rootMoves.size(); ++i) { | ||
| 1606 | int v = rootMoves[i].score; | ||
| 1607 | |||
| 1608 | if (v > 0 && v < best) | ||
| 1609 | best = v; | ||
| 1610 |         } | ||
| 1611 | |||
| 1612 | int max = best; | ||
| 1613 | |||
| 1614 |         // If the current phase has not seen repetitions, then try all moves | ||
| 1615 |         // that stay safely within the 50-move budget, if there are any. | ||
| 1616 | if (!has_repeated(st.previous) && best + cnt50 <= 99) | ||
| 1617 | max = 99 - cnt50; | ||
| 1618 | |||
| 1619 | for (size_t i = 0; i < rootMoves.size(); ++i) { | ||
| 1620 | int v = rootMoves[i].score; | ||
| 1621 | |||
| 1622 | if (v > 0 && v <= max) | ||
| 1623 | rootMoves[j++] = rootMoves[i]; | ||
| 1624 |         } | ||
| 1625 | } else if (dtz < 0) { // losing (or 50-move rule draw) | ||
| 1626 | int best = 0; | ||
| 1627 | |||
| 1628 | for (size_t i = 0; i < rootMoves.size(); ++i) { | ||
| 1629 | int v = rootMoves[i].score; | ||
| 1630 | |||
| 1631 | if (v < best) | ||
| 1632 | best = v; | ||
| 1633 |         } | ||
| 1634 | |||
| 1635 |         // Try all moves, unless we approach or have a 50-move rule draw. | ||
| 1636 | if (-best * 2 + cnt50 < 100) | ||
| 1637 | return true; | ||
| 1638 | |||
| 1639 | for (size_t i = 0; i < rootMoves.size(); ++i) { | ||
| 1640 | if (rootMoves[i].score == best) | ||
| 1641 | rootMoves[j++] = rootMoves[i]; | ||
| 1642 |         } | ||
| 1643 | } else { // drawing | ||
| 1644 |         // Try all moves that preserve the draw. | ||
| 1645 | for (size_t i = 0; i < rootMoves.size(); ++i) { | ||
| 1646 | if (rootMoves[i].score == 0) | ||
| 1647 | rootMoves[j++] = rootMoves[i]; | ||
| 1648 |         } | ||
| 96 | pmbaty | 1649 |     } | 
| 1650 | |||
| 169 | pmbaty | 1651 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); | 
| 1652 | |||
| 1653 | return true; | ||
| 96 | pmbaty | 1654 | } | 
| 1655 | |||
| 1656 | // Use the WDL tables to filter out moves that don't preserve the win or draw. | ||
| 1657 | // This is a fallback for the case that some or all DTZ tables are missing. | ||
| 1658 | // | ||
| 1659 | // A return value false indicates that not all probes were successful and that | ||
| 1660 | // no moves were filtered out. | ||
| 154 | pmbaty | 1661 | bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score) | 
| 96 | pmbaty | 1662 | { | 
| 169 | pmbaty | 1663 |     ProbeState result; | 
| 96 | pmbaty | 1664 | |
| 169 | pmbaty | 1665 | WDLScore wdl = Tablebases::probe_wdl(pos, &result); | 
| 96 | pmbaty | 1666 | |
| 169 | pmbaty | 1667 | if (result == FAIL) | 
| 1668 | return false; | ||
| 96 | pmbaty | 1669 | |
| 169 | pmbaty | 1670 | score = WDL_to_value[wdl + 2]; | 
| 96 | pmbaty | 1671 | |
| 169 | pmbaty | 1672 |     StateInfo st; | 
| 96 | pmbaty | 1673 | |
| 169 | pmbaty | 1674 | int best = WDLLoss; | 
| 96 | pmbaty | 1675 | |
| 169 | pmbaty | 1676 |     // Probe each move | 
| 1677 | for (size_t i = 0; i < rootMoves.size(); ++i) { | ||
| 1678 | Move move = rootMoves[i].pv[0]; | ||
| 1679 | pos.do_move(move, st); | ||
| 1680 | WDLScore v = -Tablebases::probe_wdl(pos, &result); | ||
| 1681 | pos.undo_move(move); | ||
| 1682 | |||
| 1683 | if (result == FAIL) | ||
| 1684 | return false; | ||
| 1685 | |||
| 1686 | rootMoves[i].score = (Value)v; | ||
| 1687 | |||
| 1688 | if (v > best) | ||
| 1689 | best = v; | ||
| 1690 |     } | ||
| 1691 | |||
| 1692 | size_t j = 0; | ||
| 1693 | |||
| 1694 | for (size_t i = 0; i < rootMoves.size(); ++i) { | ||
| 1695 | if (rootMoves[i].score == best) | ||
| 1696 | rootMoves[j++] = rootMoves[i]; | ||
| 1697 |     } | ||
| 1698 | |||
| 1699 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); | ||
| 1700 | |||
| 1701 | return true; | ||
| 96 | pmbaty | 1702 | } |