Rev 96 | Rev 169 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 96 | pmbaty | 1 | /* | 
| 2 |   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 | ||
| 3 |   Copyright (C) 2004-2008 Tord Romstad (Glaurung author) | ||
| 4 |   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad | ||
| 5 |   Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad | ||
| 6 | |||
| 7 |   Stockfish is free software: you can redistribute it and/or modify | ||
| 8 |   it under the terms of the GNU General Public License as published by | ||
| 9 |   the Free Software Foundation, either version 3 of the License, or | ||
| 10 |   (at your option) any later version. | ||
| 11 | |||
| 12 |   Stockfish is distributed in the hope that it will be useful, | ||
| 13 |   but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 14 |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
| 15 |   GNU General Public License for more details. | ||
| 16 | |||
| 17 |   You should have received a copy of the GNU General Public License | ||
| 18 |   along with this program.  If not, see <http://www.gnu.org/licenses/>. | ||
| 19 | */ | ||
| 20 | |||
| 21 | #include <algorithm> | ||
| 22 | #include <cassert> | ||
| 154 | pmbaty | 23 | #include <cstddef> // For offsetof() | 
| 24 | #include <cstring> // For std::memset, std::memcmp | ||
| 96 | pmbaty | 25 | #include <iomanip> | 
| 26 | #include <sstream> | ||
| 27 | |||
| 154 | pmbaty | 28 | #include "bitboard.h" | 
| 96 | pmbaty | 29 | #include "misc.h" | 
| 30 | #include "movegen.h" | ||
| 31 | #include "position.h" | ||
| 32 | #include "thread.h" | ||
| 33 | #include "tt.h" | ||
| 34 | #include "uci.h" | ||
| 35 | |||
| 36 | using std::string; | ||
| 37 | |||
| 154 | pmbaty | 38 | namespace PSQT { | 
| 39 | extern Score psq[PIECE_NB][SQUARE_NB]; | ||
| 40 | } | ||
| 96 | pmbaty | 41 | |
| 42 | namespace Zobrist { | ||
| 43 | |||
| 154 | pmbaty | 44 | Key psq[PIECE_NB][SQUARE_NB]; | 
| 96 | pmbaty | 45 | Key enpassant[FILE_NB]; | 
| 46 | Key castling[CASTLING_RIGHT_NB]; | ||
| 47 |   Key side; | ||
| 48 | } | ||
| 49 | |||
| 50 | namespace { | ||
| 51 | |||
| 52 | const string PieceToChar(" PNBRQK pnbrqk"); | ||
| 53 | |||
| 54 | // min_attacker() is a helper function used by see() to locate the least | ||
| 55 | // valuable attacker for the side to move, remove the attacker we just found | ||
| 56 | // from the bitboards and scan for new X-ray attacks behind it. | ||
| 57 | |||
| 58 | template<int Pt> | ||
| 59 | PieceType min_attacker(const Bitboard* bb, Square to, Bitboard stmAttackers, | ||
| 60 | Bitboard& occupied, Bitboard& attackers) { | ||
| 61 | |||
| 62 | Bitboard b = stmAttackers & bb[Pt]; | ||
| 63 | if (!b) | ||
| 64 | return min_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers); | ||
| 65 | |||
| 66 | occupied ^= b & ~(b - 1); | ||
| 67 | |||
| 68 | if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN) | ||
| 69 | attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]); | ||
| 70 | |||
| 71 | if (Pt == ROOK || Pt == QUEEN) | ||
| 72 | attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]); | ||
| 73 | |||
| 74 | attackers &= occupied; // After X-ray that may add already processed pieces | ||
| 75 | return (PieceType)Pt; | ||
| 76 | } | ||
| 77 | |||
| 78 | template<> | ||
| 79 | PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) { | ||
| 80 | return KING; // No need to update bitboards: it is the last cycle | ||
| 81 | } | ||
| 82 | |||
| 83 | } // namespace | ||
| 84 | |||
| 85 | |||
| 86 | /// operator<<(Position) returns an ASCII representation of the position | ||
| 87 | |||
| 88 | std::ostream& operator<<(std::ostream& os, const Position& pos) { | ||
| 89 | |||
| 90 | os << "\n +---+---+---+---+---+---+---+---+\n"; | ||
| 91 | |||
| 92 | for (Rank r = RANK_8; r >= RANK_1; --r) | ||
| 93 |   { | ||
| 94 | for (File f = FILE_A; f <= FILE_H; ++f) | ||
| 95 | os << " | " << PieceToChar[pos.piece_on(make_square(f, r))]; | ||
| 96 | |||
| 97 | os << " |\n +---+---+---+---+---+---+---+---+\n"; | ||
| 98 |   } | ||
| 99 | |||
| 100 | os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase | ||
| 101 | << std::setfill('0') << std::setw(16) << pos.key() << std::dec << "\nCheckers: "; | ||
| 102 | |||
| 103 | for (Bitboard b = pos.checkers(); b; ) | ||
| 104 | os << UCI::square(pop_lsb(&b)) << " "; | ||
| 105 | |||
| 106 | return os; | ||
| 107 | } | ||
| 108 | |||
| 109 | |||
| 110 | /// Position::init() initializes at startup the various arrays used to compute | ||
| 111 | /// hash keys. | ||
| 112 | |||
| 113 | void Position::init() { | ||
| 114 | |||
| 115 | PRNG rng(1070372); | ||
| 116 | |||
| 154 | pmbaty | 117 | for (Piece pc : Pieces) | 
| 118 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | ||
| 119 | Zobrist::psq[pc][s] = rng.rand<Key>(); | ||
| 96 | pmbaty | 120 | |
| 121 | for (File f = FILE_A; f <= FILE_H; ++f) | ||
| 122 | Zobrist::enpassant[f] = rng.rand<Key>(); | ||
| 123 | |||
| 124 | for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr) | ||
| 125 |   { | ||
| 126 | Zobrist::castling[cr] = 0; | ||
| 127 | Bitboard b = cr; | ||
| 128 | while (b) | ||
| 129 |       { | ||
| 130 | Key k = Zobrist::castling[1ULL << pop_lsb(&b)]; | ||
| 131 | Zobrist::castling[cr] ^= k ? k : rng.rand<Key>(); | ||
| 132 |       } | ||
| 133 |   } | ||
| 134 | |||
| 135 | Zobrist::side = rng.rand<Key>(); | ||
| 136 | } | ||
| 137 | |||
| 138 | |||
| 139 | /// Position::set() initializes the position object with the given FEN string. | ||
| 140 | /// This function is not very robust - make sure that input FENs are correct, | ||
| 141 | /// this is assumed to be the responsibility of the GUI. | ||
| 142 | |||
| 154 | pmbaty | 143 | Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) { | 
| 96 | pmbaty | 144 | /* | 
| 145 |    A FEN string defines a particular position using only the ASCII character set. | ||
| 146 | |||
| 147 |    A FEN string contains six fields separated by a space. The fields are: | ||
| 148 | |||
| 149 |    1) Piece placement (from white's perspective). Each rank is described, starting | ||
| 150 |       with rank 8 and ending with rank 1. Within each rank, the contents of each | ||
| 151 |       square are described from file A through file H. Following the Standard | ||
| 152 |       Algebraic Notation (SAN), each piece is identified by a single letter taken | ||
| 153 |       from the standard English names. White pieces are designated using upper-case | ||
| 154 |       letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are | ||
| 155 |       noted using digits 1 through 8 (the number of blank squares), and "/" | ||
| 156 |       separates ranks. | ||
| 157 | |||
| 158 |    2) Active color. "w" means white moves next, "b" means black. | ||
| 159 | |||
| 160 |    3) Castling availability. If neither side can castle, this is "-". Otherwise, | ||
| 161 |       this has one or more letters: "K" (White can castle kingside), "Q" (White | ||
| 162 |       can castle queenside), "k" (Black can castle kingside), and/or "q" (Black | ||
| 163 |       can castle queenside). | ||
| 164 | |||
| 165 |    4) En passant target square (in algebraic notation). If there's no en passant | ||
| 166 |       target square, this is "-". If a pawn has just made a 2-square move, this | ||
| 167 |       is the position "behind" the pawn. This is recorded regardless of whether | ||
| 168 |       there is a pawn in position to make an en passant capture. | ||
| 169 | |||
| 170 |    5) Halfmove clock. This is the number of halfmoves since the last pawn advance | ||
| 171 |       or capture. This is used to determine if a draw can be claimed under the | ||
| 172 |       fifty-move rule. | ||
| 173 | |||
| 174 |    6) Fullmove number. The number of the full move. It starts at 1, and is | ||
| 175 |       incremented after Black's move. | ||
| 176 | */ | ||
| 177 | |||
| 178 | unsigned char col, row, token; | ||
| 179 | size_t idx; | ||
| 180 | Square sq = SQ_A8; | ||
| 181 | std::istringstream ss(fenStr); | ||
| 182 | |||
| 154 | pmbaty | 183 | std::memset(this, 0, sizeof(Position)); | 
| 184 | std::memset(si, 0, sizeof(StateInfo)); | ||
| 185 | std::fill_n(&pieceList[0][0], sizeof(pieceList) / sizeof(Square), SQ_NONE); | ||
| 186 | st = si; | ||
| 187 | |||
| 96 | pmbaty | 188 | ss >> std::noskipws; | 
| 189 | |||
| 190 |   // 1. Piece placement | ||
| 191 | while ((ss >> token) && !isspace(token)) | ||
| 192 |   { | ||
| 193 | if (isdigit(token)) | ||
| 194 | sq += Square(token - '0'); // Advance the given number of files | ||
| 195 | |||
| 196 | else if (token == '/') | ||
| 197 | sq -= Square(16); | ||
| 198 | |||
| 199 | else if ((idx = PieceToChar.find(token)) != string::npos) | ||
| 200 |       { | ||
| 154 | pmbaty | 201 | put_piece(Piece(idx), sq); | 
| 96 | pmbaty | 202 | ++sq; | 
| 203 |       } | ||
| 204 |   } | ||
| 205 | |||
| 206 |   // 2. Active color | ||
| 207 | ss >> token; | ||
| 208 | sideToMove = (token == 'w' ? WHITE : BLACK); | ||
| 209 | ss >> token; | ||
| 210 | |||
| 211 |   // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, | ||
| 212 |   // Shredder-FEN that uses the letters of the columns on which the rooks began | ||
| 213 |   // the game instead of KQkq and also X-FEN standard that, in case of Chess960, | ||
| 214 |   // if an inner rook is associated with the castling right, the castling tag is | ||
| 215 |   // replaced by the file letter of the involved rook, as for the Shredder-FEN. | ||
| 216 | while ((ss >> token) && !isspace(token)) | ||
| 217 |   { | ||
| 218 |       Square rsq; | ||
| 219 | Color c = islower(token) ? BLACK : WHITE; | ||
| 220 | Piece rook = make_piece(c, ROOK); | ||
| 221 | |||
| 222 | token = char(toupper(token)); | ||
| 223 | |||
| 224 | if (token == 'K') | ||
| 225 | for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {} | ||
| 226 | |||
| 227 | else if (token == 'Q') | ||
| 228 | for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {} | ||
| 229 | |||
| 230 | else if (token >= 'A' && token <= 'H') | ||
| 231 | rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); | ||
| 232 | |||
| 233 |       else | ||
| 234 | continue; | ||
| 235 | |||
| 236 | set_castling_right(c, rsq); | ||
| 237 |   } | ||
| 238 | |||
| 239 |   // 4. En passant square. Ignore if no pawn capture is possible | ||
| 240 | if ( ((ss >> col) && (col >= 'a' && col <= 'h')) | ||
| 241 | && ((ss >> row) && (row == '3' || row == '6'))) | ||
| 242 |   { | ||
| 243 | st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); | ||
| 244 | |||
| 245 | if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN))) | ||
| 246 | st->epSquare = SQ_NONE; | ||
| 247 |   } | ||
| 154 | pmbaty | 248 |   else | 
| 249 | st->epSquare = SQ_NONE; | ||
| 96 | pmbaty | 250 | |
| 251 |   // 5-6. Halfmove clock and fullmove number | ||
| 252 | ss >> std::skipws >> st->rule50 >> gamePly; | ||
| 253 | |||
| 254 |   // Convert from fullmove starting from 1 to ply starting from 0, | ||
| 255 |   // handle also common incorrect FEN with fullmove = 0. | ||
| 256 | gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); | ||
| 257 | |||
| 258 | chess960 = isChess960; | ||
| 259 | thisThread = th; | ||
| 260 | set_state(st); | ||
| 261 | |||
| 262 | assert(pos_is_ok()); | ||
| 154 | pmbaty | 263 | |
| 264 | return *this; | ||
| 96 | pmbaty | 265 | } | 
| 266 | |||
| 267 | |||
| 268 | /// Position::set_castling_right() is a helper function used to set castling | ||
| 269 | /// rights given the corresponding color and the rook starting square. | ||
| 270 | |||
| 271 | void Position::set_castling_right(Color c, Square rfrom) { | ||
| 272 | |||
| 273 | Square kfrom = square<KING>(c); | ||
| 274 | CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE; | ||
| 275 | CastlingRight cr = (c | cs); | ||
| 276 | |||
| 277 | st->castlingRights |= cr; | ||
| 278 | castlingRightsMask[kfrom] |= cr; | ||
| 279 | castlingRightsMask[rfrom] |= cr; | ||
| 280 | castlingRookSquare[cr] = rfrom; | ||
| 281 | |||
| 282 | Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1); | ||
| 283 | Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1); | ||
| 284 | |||
| 285 | for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s) | ||
| 286 | if (s != kfrom && s != rfrom) | ||
| 287 | castlingPath[cr] |= s; | ||
| 288 | |||
| 289 | for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s) | ||
| 290 | if (s != kfrom && s != rfrom) | ||
| 291 | castlingPath[cr] |= s; | ||
| 292 | } | ||
| 293 | |||
| 294 | |||
| 154 | pmbaty | 295 | /// Position::set_check_info() sets king attacks to detect if a move gives check | 
| 296 | |||
| 297 | void Position::set_check_info(StateInfo* si) const { | ||
| 298 | |||
| 299 | si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square<KING>(WHITE), si->pinnersForKing[WHITE]); | ||
| 300 | si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square<KING>(BLACK), si->pinnersForKing[BLACK]); | ||
| 301 | |||
| 302 | Square ksq = square<KING>(~sideToMove); | ||
| 303 | |||
| 304 | si->checkSquares[PAWN] = attacks_from<PAWN>(ksq, ~sideToMove); | ||
| 305 | si->checkSquares[KNIGHT] = attacks_from<KNIGHT>(ksq); | ||
| 306 | si->checkSquares[BISHOP] = attacks_from<BISHOP>(ksq); | ||
| 307 | si->checkSquares[ROOK] = attacks_from<ROOK>(ksq); | ||
| 308 | si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK]; | ||
| 309 | si->checkSquares[KING] = 0; | ||
| 310 | } | ||
| 311 | |||
| 312 | |||
| 96 | pmbaty | 313 | /// Position::set_state() computes the hash keys of the position, and other | 
| 314 | /// data that once computed is updated incrementally as moves are made. | ||
| 315 | /// The function is only used when a new position is set up, and to verify | ||
| 316 | /// the correctness of the StateInfo data when running in debug mode. | ||
| 317 | |||
| 318 | void Position::set_state(StateInfo* si) const { | ||
| 319 | |||
| 320 | si->key = si->pawnKey = si->materialKey = 0; | ||
| 321 | si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; | ||
| 322 | si->psq = SCORE_ZERO; | ||
| 323 | si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove); | ||
| 324 | |||
| 154 | pmbaty | 325 | set_check_info(si); | 
| 326 | |||
| 96 | pmbaty | 327 | for (Bitboard b = pieces(); b; ) | 
| 328 |   { | ||
| 329 | Square s = pop_lsb(&b); | ||
| 330 | Piece pc = piece_on(s); | ||
| 154 | pmbaty | 331 | si->key ^= Zobrist::psq[pc][s]; | 
| 332 | si->psq += PSQT::psq[pc][s]; | ||
| 96 | pmbaty | 333 |   } | 
| 334 | |||
| 335 | if (si->epSquare != SQ_NONE) | ||
| 336 | si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; | ||
| 337 | |||
| 338 | if (sideToMove == BLACK) | ||
| 339 | si->key ^= Zobrist::side; | ||
| 340 | |||
| 341 | si->key ^= Zobrist::castling[si->castlingRights]; | ||
| 342 | |||
| 343 | for (Bitboard b = pieces(PAWN); b; ) | ||
| 344 |   { | ||
| 345 | Square s = pop_lsb(&b); | ||
| 154 | pmbaty | 346 | si->pawnKey ^= Zobrist::psq[piece_on(s)][s]; | 
| 96 | pmbaty | 347 |   } | 
| 348 | |||
| 154 | pmbaty | 349 | for (Piece pc : Pieces) | 
| 350 |   { | ||
| 351 | if (type_of(pc) != PAWN && type_of(pc) != KING) | ||
| 352 | si->nonPawnMaterial[color_of(pc)] += pieceCount[pc] * PieceValue[MG][pc]; | ||
| 96 | pmbaty | 353 | |
| 154 | pmbaty | 354 | for (int cnt = 0; cnt < pieceCount[pc]; ++cnt) | 
| 355 | si->materialKey ^= Zobrist::psq[pc][cnt]; | ||
| 356 |   } | ||
| 96 | pmbaty | 357 | } | 
| 358 | |||
| 359 | |||
| 360 | /// Position::fen() returns a FEN representation of the position. In case of | ||
| 361 | /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. | ||
| 362 | |||
| 363 | const string Position::fen() const { | ||
| 364 | |||
| 365 | int emptyCnt; | ||
| 366 | std::ostringstream ss; | ||
| 367 | |||
| 368 | for (Rank r = RANK_8; r >= RANK_1; --r) | ||
| 369 |   { | ||
| 370 | for (File f = FILE_A; f <= FILE_H; ++f) | ||
| 371 |       { | ||
| 372 | for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) | ||
| 373 | ++emptyCnt; | ||
| 374 | |||
| 375 | if (emptyCnt) | ||
| 376 | ss << emptyCnt; | ||
| 377 | |||
| 378 | if (f <= FILE_H) | ||
| 379 | ss << PieceToChar[piece_on(make_square(f, r))]; | ||
| 380 |       } | ||
| 381 | |||
| 382 | if (r > RANK_1) | ||
| 383 | ss << '/'; | ||
| 384 |   } | ||
| 385 | |||
| 386 | ss << (sideToMove == WHITE ? " w " : " b "); | ||
| 387 | |||
| 388 | if (can_castle(WHITE_OO)) | ||
| 389 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K'); | ||
| 390 | |||
| 391 | if (can_castle(WHITE_OOO)) | ||
| 392 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q'); | ||
| 393 | |||
| 394 | if (can_castle(BLACK_OO)) | ||
| 395 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k'); | ||
| 396 | |||
| 397 | if (can_castle(BLACK_OOO)) | ||
| 398 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q'); | ||
| 399 | |||
| 400 | if (!can_castle(WHITE) && !can_castle(BLACK)) | ||
| 401 | ss << '-'; | ||
| 402 | |||
| 403 | ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ") | ||
| 404 | << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; | ||
| 405 | |||
| 406 | return ss.str(); | ||
| 407 | } | ||
| 408 | |||
| 409 | |||
| 410 | /// Position::game_phase() calculates the game phase interpolating total non-pawn | ||
| 411 | /// material between endgame and midgame limits. | ||
| 412 | |||
| 413 | Phase Position::game_phase() const { | ||
| 414 | |||
| 415 | Value npm = st->nonPawnMaterial[WHITE] + st->nonPawnMaterial[BLACK]; | ||
| 416 | |||
| 417 | npm = std::max(EndgameLimit, std::min(npm, MidgameLimit)); | ||
| 418 | |||
| 419 | return Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit)); | ||
| 420 | } | ||
| 421 | |||
| 422 | |||
| 154 | pmbaty | 423 | /// Position::slider_blockers() returns a bitboard of all the pieces (both colors) | 
| 424 | /// that are blocking attacks on the square 's' from 'sliders'. A piece blocks a | ||
| 425 | /// slider if removing that piece from the board would result in a position where | ||
| 426 | /// square 's' is attacked. For example, a king-attack blocking piece can be either | ||
| 427 | /// a pinned or a discovered check piece, according if its color is the opposite | ||
| 428 | /// or the same of the color of the slider. | ||
| 96 | pmbaty | 429 | |
| 154 | pmbaty | 430 | Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const { | 
| 96 | pmbaty | 431 | |
| 154 | pmbaty | 432 | Bitboard result = 0; | 
| 433 | pinners = 0; | ||
| 96 | pmbaty | 434 | |
| 154 | pmbaty | 435 |   // Snipers are sliders that attack 's' when a piece is removed | 
| 436 | Bitboard snipers = ( (PseudoAttacks[ROOK ][s] & pieces(QUEEN, ROOK)) | ||
| 437 | | (PseudoAttacks[BISHOP][s] & pieces(QUEEN, BISHOP))) & sliders; | ||
| 96 | pmbaty | 438 | |
| 154 | pmbaty | 439 | while (snipers) | 
| 96 | pmbaty | 440 |   { | 
| 154 | pmbaty | 441 | Square sniperSq = pop_lsb(&snipers); | 
| 442 | Bitboard b = between_bb(s, sniperSq) & pieces(); | ||
| 96 | pmbaty | 443 | |
| 154 | pmbaty | 444 | if (!more_than_one(b)) | 
| 445 |     { | ||
| 446 | result |= b; | ||
| 447 | if (b & pieces(color_of(piece_on(s)))) | ||
| 448 | pinners |= sniperSq; | ||
| 449 |     } | ||
| 96 | pmbaty | 450 |   } | 
| 451 | return result; | ||
| 452 | } | ||
| 453 | |||
| 454 | |||
| 455 | /// Position::attackers_to() computes a bitboard of all pieces which attack a | ||
| 456 | /// given square. Slider attacks use the occupied bitboard to indicate occupancy. | ||
| 457 | |||
| 458 | Bitboard Position::attackers_to(Square s, Bitboard occupied) const { | ||
| 459 | |||
| 460 | return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN)) | ||
| 461 | | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN)) | ||
| 462 | | (attacks_from<KNIGHT>(s) & pieces(KNIGHT)) | ||
| 463 | | (attacks_bb<ROOK >(s, occupied) & pieces(ROOK, QUEEN)) | ||
| 464 | | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN)) | ||
| 465 | | (attacks_from<KING>(s) & pieces(KING)); | ||
| 466 | } | ||
| 467 | |||
| 468 | |||
| 469 | /// Position::legal() tests whether a pseudo-legal move is legal | ||
| 470 | |||
| 154 | pmbaty | 471 | bool Position::legal(Move m) const { | 
| 96 | pmbaty | 472 | |
| 473 | assert(is_ok(m)); | ||
| 474 | |||
| 475 | Color us = sideToMove; | ||
| 476 | Square from = from_sq(m); | ||
| 477 | |||
| 478 | assert(color_of(moved_piece(m)) == us); | ||
| 479 | assert(piece_on(square<KING>(us)) == make_piece(us, KING)); | ||
| 480 | |||
| 481 |   // En passant captures are a tricky special case. Because they are rather | ||
| 482 |   // uncommon, we do it simply by testing whether the king is attacked after | ||
| 483 |   // the move is made. | ||
| 484 | if (type_of(m) == ENPASSANT) | ||
| 485 |   { | ||
| 486 | Square ksq = square<KING>(us); | ||
| 487 | Square to = to_sq(m); | ||
| 488 | Square capsq = to - pawn_push(us); | ||
| 489 | Bitboard occupied = (pieces() ^ from ^ capsq) | to; | ||
| 490 | |||
| 491 | assert(to == ep_square()); | ||
| 492 | assert(moved_piece(m) == make_piece(us, PAWN)); | ||
| 493 | assert(piece_on(capsq) == make_piece(~us, PAWN)); | ||
| 494 | assert(piece_on(to) == NO_PIECE); | ||
| 495 | |||
| 496 | return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK)) | ||
| 497 | && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP)); | ||
| 498 |   } | ||
| 499 | |||
| 500 |   // If the moving piece is a king, check whether the destination | ||
| 501 |   // square is attacked by the opponent. Castling moves are checked | ||
| 502 |   // for legality during move generation. | ||
| 503 | if (type_of(piece_on(from)) == KING) | ||
| 504 | return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us)); | ||
| 505 | |||
| 506 |   // A non-king move is legal if and only if it is not pinned or it | ||
| 507 |   // is moving along the ray towards or away from the king. | ||
| 154 | pmbaty | 508 | return !(pinned_pieces(us) & from) | 
| 96 | pmbaty | 509 | || aligned(from, to_sq(m), square<KING>(us)); | 
| 510 | } | ||
| 511 | |||
| 512 | |||
| 513 | /// Position::pseudo_legal() takes a random move and tests whether the move is | ||
| 514 | /// pseudo legal. It is used to validate moves from TT that can be corrupted | ||
| 515 | /// due to SMP concurrent access or hash position key aliasing. | ||
| 516 | |||
| 517 | bool Position::pseudo_legal(const Move m) const { | ||
| 518 | |||
| 519 | Color us = sideToMove; | ||
| 520 | Square from = from_sq(m); | ||
| 521 | Square to = to_sq(m); | ||
| 522 | Piece pc = moved_piece(m); | ||
| 523 | |||
| 524 |   // Use a slower but simpler function for uncommon cases | ||
| 525 | if (type_of(m) != NORMAL) | ||
| 526 | return MoveList<LEGAL>(*this).contains(m); | ||
| 527 | |||
| 528 |   // Is not a promotion, so promotion piece must be empty | ||
| 529 | if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) | ||
| 530 | return false; | ||
| 531 | |||
| 532 |   // If the 'from' square is not occupied by a piece belonging to the side to | ||
| 533 |   // move, the move is obviously not legal. | ||
| 534 | if (pc == NO_PIECE || color_of(pc) != us) | ||
| 535 | return false; | ||
| 536 | |||
| 537 |   // The destination square cannot be occupied by a friendly piece | ||
| 538 | if (pieces(us) & to) | ||
| 539 | return false; | ||
| 540 | |||
| 541 |   // Handle the special case of a pawn move | ||
| 542 | if (type_of(pc) == PAWN) | ||
| 543 |   { | ||
| 544 |       // We have already handled promotion moves, so destination | ||
| 545 |       // cannot be on the 8th/1st rank. | ||
| 546 | if (rank_of(to) == relative_rank(us, RANK_8)) | ||
| 547 | return false; | ||
| 548 | |||
| 549 | if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture | ||
| 550 | && !((from + pawn_push(us) == to) && empty(to)) // Not a single push | ||
| 551 | && !( (from + 2 * pawn_push(us) == to) // Not a double push | ||
| 552 | && (rank_of(from) == relative_rank(us, RANK_2)) | ||
| 553 | && empty(to) | ||
| 554 | && empty(to - pawn_push(us)))) | ||
| 555 | return false; | ||
| 556 |   } | ||
| 557 | else if (!(attacks_from(pc, from) & to)) | ||
| 558 | return false; | ||
| 559 | |||
| 560 |   // Evasions generator already takes care to avoid some kind of illegal moves | ||
| 561 |   // and legal() relies on this. We therefore have to take care that the same | ||
| 562 |   // kind of moves are filtered out here. | ||
| 563 | if (checkers()) | ||
| 564 |   { | ||
| 565 | if (type_of(pc) != KING) | ||
| 566 |       { | ||
| 567 |           // Double check? In this case a king move is required | ||
| 568 | if (more_than_one(checkers())) | ||
| 569 | return false; | ||
| 570 | |||
| 571 |           // Our move must be a blocking evasion or a capture of the checking piece | ||
| 572 | if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to)) | ||
| 573 | return false; | ||
| 574 |       } | ||
| 575 |       // In case of king moves under check we have to remove king so as to catch | ||
| 576 |       // invalid moves like b1a1 when opposite queen is on c1. | ||
| 577 | else if (attackers_to(to, pieces() ^ from) & pieces(~us)) | ||
| 578 | return false; | ||
| 579 |   } | ||
| 580 | |||
| 581 | return true; | ||
| 582 | } | ||
| 583 | |||
| 584 | |||
| 585 | /// Position::gives_check() tests whether a pseudo-legal move gives a check | ||
| 586 | |||
| 154 | pmbaty | 587 | bool Position::gives_check(Move m) const { | 
| 96 | pmbaty | 588 | |
| 589 | assert(is_ok(m)); | ||
| 590 | assert(color_of(moved_piece(m)) == sideToMove); | ||
| 591 | |||
| 592 | Square from = from_sq(m); | ||
| 593 | Square to = to_sq(m); | ||
| 594 | |||
| 595 |   // Is there a direct check? | ||
| 154 | pmbaty | 596 | if (st->checkSquares[type_of(piece_on(from))] & to) | 
| 96 | pmbaty | 597 | return true; | 
| 598 | |||
| 599 |   // Is there a discovered check? | ||
| 154 | pmbaty | 600 | if ( (discovered_check_candidates() & from) | 
| 601 | && !aligned(from, to, square<KING>(~sideToMove))) | ||
| 96 | pmbaty | 602 | return true; | 
| 603 | |||
| 604 | switch (type_of(m)) | ||
| 605 |   { | ||
| 606 | case NORMAL: | ||
| 607 | return false; | ||
| 608 | |||
| 609 | case PROMOTION: | ||
| 154 | pmbaty | 610 | return attacks_bb(Piece(promotion_type(m)), to, pieces() ^ from) & square<KING>(~sideToMove); | 
| 96 | pmbaty | 611 | |
| 612 |   // En passant capture with check? We have already handled the case | ||
| 613 |   // of direct checks and ordinary discovered check, so the only case we | ||
| 614 |   // need to handle is the unusual case of a discovered check through | ||
| 615 |   // the captured pawn. | ||
| 616 | case ENPASSANT: | ||
| 617 |   { | ||
| 618 | Square capsq = make_square(file_of(to), rank_of(from)); | ||
| 619 | Bitboard b = (pieces() ^ from ^ capsq) | to; | ||
| 620 | |||
| 154 | pmbaty | 621 | return (attacks_bb< ROOK>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK)) | 
| 622 | | (attacks_bb<BISHOP>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP)); | ||
| 96 | pmbaty | 623 |   } | 
| 624 | case CASTLING: | ||
| 625 |   { | ||
| 626 | Square kfrom = from; | ||
| 627 | Square rfrom = to; // Castling is encoded as 'King captures the rook' | ||
| 628 | Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1); | ||
| 629 | Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1); | ||
| 630 | |||
| 154 | pmbaty | 631 | return (PseudoAttacks[ROOK][rto] & square<KING>(~sideToMove)) | 
| 632 | && (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & square<KING>(~sideToMove)); | ||
| 96 | pmbaty | 633 |   } | 
| 634 | default: | ||
| 635 | assert(false); | ||
| 636 | return false; | ||
| 637 |   } | ||
| 638 | } | ||
| 639 | |||
| 640 | |||
| 641 | /// Position::do_move() makes a move, and saves all information necessary | ||
| 642 | /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal | ||
| 643 | /// moves should be filtered out before this function is called. | ||
| 644 | |||
| 645 | void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { | ||
| 646 | |||
| 647 | assert(is_ok(m)); | ||
| 648 | assert(&newSt != st); | ||
| 649 | |||
| 650 | ++nodes; | ||
| 651 | Key k = st->key ^ Zobrist::side; | ||
| 652 | |||
| 653 |   // Copy some fields of the old state to our new StateInfo object except the | ||
| 654 |   // ones which are going to be recalculated from scratch anyway and then switch | ||
| 655 |   // our state pointer to point to the new (ready to be updated) state. | ||
| 656 | std::memcpy(&newSt, st, offsetof(StateInfo, key)); | ||
| 657 | newSt.previous = st; | ||
| 658 | st = &newSt; | ||
| 659 | |||
| 660 |   // Increment ply counters. In particular, rule50 will be reset to zero later on | ||
| 661 |   // in case of a capture or a pawn move. | ||
| 662 | ++gamePly; | ||
| 663 | ++st->rule50; | ||
| 664 | ++st->pliesFromNull; | ||
| 665 | |||
| 666 | Color us = sideToMove; | ||
| 667 | Color them = ~us; | ||
| 668 | Square from = from_sq(m); | ||
| 669 | Square to = to_sq(m); | ||
| 154 | pmbaty | 670 | Piece pc = piece_on(from); | 
| 671 | Piece captured = type_of(m) == ENPASSANT ? make_piece(them, PAWN) : piece_on(to); | ||
| 96 | pmbaty | 672 | |
| 154 | pmbaty | 673 | assert(color_of(pc) == us); | 
| 674 | assert(captured == NO_PIECE || color_of(captured) == (type_of(m) != CASTLING ? them : us)); | ||
| 675 | assert(type_of(captured) != KING); | ||
| 96 | pmbaty | 676 | |
| 677 | if (type_of(m) == CASTLING) | ||
| 678 |   { | ||
| 154 | pmbaty | 679 | assert(pc == make_piece(us, KING)); | 
| 680 | assert(captured == make_piece(us, ROOK)); | ||
| 96 | pmbaty | 681 | |
| 682 |       Square rfrom, rto; | ||
| 683 | do_castling<true>(us, from, to, rfrom, rto); | ||
| 684 | |||
| 154 | pmbaty | 685 | st->psq += PSQT::psq[captured][rto] - PSQT::psq[captured][rfrom]; | 
| 686 | k ^= Zobrist::psq[captured][rfrom] ^ Zobrist::psq[captured][rto]; | ||
| 687 | captured = NO_PIECE; | ||
| 96 | pmbaty | 688 |   } | 
| 689 | |||
| 690 | if (captured) | ||
| 691 |   { | ||
| 692 | Square capsq = to; | ||
| 693 | |||
| 694 |       // If the captured piece is a pawn, update pawn hash key, otherwise | ||
| 695 |       // update non-pawn material. | ||
| 154 | pmbaty | 696 | if (type_of(captured) == PAWN) | 
| 96 | pmbaty | 697 |       { | 
| 698 | if (type_of(m) == ENPASSANT) | ||
| 699 |           { | ||
| 700 | capsq -= pawn_push(us); | ||
| 701 | |||
| 154 | pmbaty | 702 | assert(pc == make_piece(us, PAWN)); | 
| 96 | pmbaty | 703 | assert(to == st->epSquare); | 
| 704 | assert(relative_rank(us, to) == RANK_6); | ||
| 705 | assert(piece_on(to) == NO_PIECE); | ||
| 706 | assert(piece_on(capsq) == make_piece(them, PAWN)); | ||
| 707 | |||
| 708 | board[capsq] = NO_PIECE; // Not done by remove_piece() | ||
| 709 |           } | ||
| 710 | |||
| 154 | pmbaty | 711 | st->pawnKey ^= Zobrist::psq[captured][capsq]; | 
| 96 | pmbaty | 712 |       } | 
| 713 |       else | ||
| 714 | st->nonPawnMaterial[them] -= PieceValue[MG][captured]; | ||
| 715 | |||
| 716 |       // Update board and piece lists | ||
| 154 | pmbaty | 717 | remove_piece(captured, capsq); | 
| 96 | pmbaty | 718 | |
| 719 |       // Update material hash key and prefetch access to materialTable | ||
| 154 | pmbaty | 720 | k ^= Zobrist::psq[captured][capsq]; | 
| 721 | st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]]; | ||
| 96 | pmbaty | 722 | prefetch(thisThread->materialTable[st->materialKey]); | 
| 723 | |||
| 724 |       // Update incremental scores | ||
| 154 | pmbaty | 725 | st->psq -= PSQT::psq[captured][capsq]; | 
| 96 | pmbaty | 726 | |
| 727 |       // Reset rule 50 counter | ||
| 728 | st->rule50 = 0; | ||
| 729 |   } | ||
| 730 | |||
| 731 |   // Update hash key | ||
| 154 | pmbaty | 732 | k ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; | 
| 96 | pmbaty | 733 | |
| 734 |   // Reset en passant square | ||
| 735 | if (st->epSquare != SQ_NONE) | ||
| 736 |   { | ||
| 737 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; | ||
| 738 | st->epSquare = SQ_NONE; | ||
| 739 |   } | ||
| 740 | |||
| 741 |   // Update castling rights if needed | ||
| 742 | if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to])) | ||
| 743 |   { | ||
| 744 | int cr = castlingRightsMask[from] | castlingRightsMask[to]; | ||
| 745 | k ^= Zobrist::castling[st->castlingRights & cr]; | ||
| 746 | st->castlingRights &= ~cr; | ||
| 747 |   } | ||
| 748 | |||
| 749 |   // Move the piece. The tricky Chess960 castling is handled earlier | ||
| 750 | if (type_of(m) != CASTLING) | ||
| 154 | pmbaty | 751 | move_piece(pc, from, to); | 
| 96 | pmbaty | 752 | |
| 753 |   // If the moving piece is a pawn do some special extra work | ||
| 154 | pmbaty | 754 | if (type_of(pc) == PAWN) | 
| 96 | pmbaty | 755 |   { | 
| 756 |       // Set en-passant square if the moved pawn can be captured | ||
| 757 | if ( (int(to) ^ int(from)) == 16 | ||
| 758 | && (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN))) | ||
| 759 |       { | ||
| 760 | st->epSquare = (from + to) / 2; | ||
| 761 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; | ||
| 762 |       } | ||
| 763 | |||
| 764 | else if (type_of(m) == PROMOTION) | ||
| 765 |       { | ||
| 154 | pmbaty | 766 | Piece promotion = make_piece(us, promotion_type(m)); | 
| 96 | pmbaty | 767 | |
| 768 | assert(relative_rank(us, to) == RANK_8); | ||
| 154 | pmbaty | 769 | assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN); | 
| 96 | pmbaty | 770 | |
| 154 | pmbaty | 771 | remove_piece(pc, to); | 
| 772 | put_piece(promotion, to); | ||
| 96 | pmbaty | 773 | |
| 774 |           // Update hash keys | ||
| 154 | pmbaty | 775 | k ^= Zobrist::psq[pc][to] ^ Zobrist::psq[promotion][to]; | 
| 776 | st->pawnKey ^= Zobrist::psq[pc][to]; | ||
| 777 | st->materialKey ^= Zobrist::psq[promotion][pieceCount[promotion]-1] | ||
| 778 | ^ Zobrist::psq[pc][pieceCount[pc]]; | ||
| 96 | pmbaty | 779 | |
| 780 |           // Update incremental score | ||
| 154 | pmbaty | 781 | st->psq += PSQT::psq[promotion][to] - PSQT::psq[pc][to]; | 
| 96 | pmbaty | 782 | |
| 783 |           // Update material | ||
| 784 | st->nonPawnMaterial[us] += PieceValue[MG][promotion]; | ||
| 785 |       } | ||
| 786 | |||
| 787 |       // Update pawn hash key and prefetch access to pawnsTable | ||
| 154 | pmbaty | 788 | st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; | 
| 96 | pmbaty | 789 | prefetch(thisThread->pawnsTable[st->pawnKey]); | 
| 790 | |||
| 791 |       // Reset rule 50 draw counter | ||
| 792 | st->rule50 = 0; | ||
| 793 |   } | ||
| 794 | |||
| 795 |   // Update incremental scores | ||
| 154 | pmbaty | 796 | st->psq += PSQT::psq[pc][to] - PSQT::psq[pc][from]; | 
| 96 | pmbaty | 797 | |
| 798 |   // Set capture piece | ||
| 154 | pmbaty | 799 | st->capturedPiece = captured; | 
| 96 | pmbaty | 800 | |
| 801 |   // Update the key with the final value | ||
| 802 | st->key = k; | ||
| 803 | |||
| 804 |   // Calculate checkers bitboard (if move gives check) | ||
| 805 | st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0; | ||
| 806 | |||
| 807 | sideToMove = ~sideToMove; | ||
| 808 | |||
| 154 | pmbaty | 809 |   // Update king attacks used for fast check detection | 
| 810 | set_check_info(st); | ||
| 811 | |||
| 96 | pmbaty | 812 | assert(pos_is_ok()); | 
| 813 | } | ||
| 814 | |||
| 815 | |||
| 816 | /// Position::undo_move() unmakes a move. When it returns, the position should | ||
| 817 | /// be restored to exactly the same state as before the move was made. | ||
| 818 | |||
| 819 | void Position::undo_move(Move m) { | ||
| 820 | |||
| 821 | assert(is_ok(m)); | ||
| 822 | |||
| 823 | sideToMove = ~sideToMove; | ||
| 824 | |||
| 825 | Color us = sideToMove; | ||
| 826 | Square from = from_sq(m); | ||
| 827 | Square to = to_sq(m); | ||
| 154 | pmbaty | 828 | Piece pc = piece_on(to); | 
| 96 | pmbaty | 829 | |
| 830 | assert(empty(from) || type_of(m) == CASTLING); | ||
| 154 | pmbaty | 831 | assert(type_of(st->capturedPiece) != KING); | 
| 96 | pmbaty | 832 | |
| 833 | if (type_of(m) == PROMOTION) | ||
| 834 |   { | ||
| 835 | assert(relative_rank(us, to) == RANK_8); | ||
| 154 | pmbaty | 836 | assert(type_of(pc) == promotion_type(m)); | 
| 837 | assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN); | ||
| 96 | pmbaty | 838 | |
| 154 | pmbaty | 839 | remove_piece(pc, to); | 
| 840 | pc = make_piece(us, PAWN); | ||
| 841 | put_piece(pc, to); | ||
| 96 | pmbaty | 842 |   } | 
| 843 | |||
| 844 | if (type_of(m) == CASTLING) | ||
| 845 |   { | ||
| 846 |       Square rfrom, rto; | ||
| 847 | do_castling<false>(us, from, to, rfrom, rto); | ||
| 848 |   } | ||
| 849 |   else | ||
| 850 |   { | ||
| 154 | pmbaty | 851 | move_piece(pc, to, from); // Put the piece back at the source square | 
| 96 | pmbaty | 852 | |
| 154 | pmbaty | 853 | if (st->capturedPiece) | 
| 96 | pmbaty | 854 |       { | 
| 855 | Square capsq = to; | ||
| 856 | |||
| 857 | if (type_of(m) == ENPASSANT) | ||
| 858 |           { | ||
| 859 | capsq -= pawn_push(us); | ||
| 860 | |||
| 154 | pmbaty | 861 | assert(type_of(pc) == PAWN); | 
| 96 | pmbaty | 862 | assert(to == st->previous->epSquare); | 
| 863 | assert(relative_rank(us, to) == RANK_6); | ||
| 864 | assert(piece_on(capsq) == NO_PIECE); | ||
| 154 | pmbaty | 865 | assert(st->capturedPiece == make_piece(~us, PAWN)); | 
| 96 | pmbaty | 866 |           } | 
| 867 | |||
| 154 | pmbaty | 868 | put_piece(st->capturedPiece, capsq); // Restore the captured piece | 
| 96 | pmbaty | 869 |       } | 
| 870 |   } | ||
| 871 | |||
| 872 |   // Finally point our state pointer back to the previous state | ||
| 873 | st = st->previous; | ||
| 874 | --gamePly; | ||
| 875 | |||
| 876 | assert(pos_is_ok()); | ||
| 877 | } | ||
| 878 | |||
| 879 | |||
| 880 | /// Position::do_castling() is a helper used to do/undo a castling move. This | ||
| 154 | pmbaty | 881 | /// is a bit tricky in Chess960 where from/to squares can overlap. | 
| 96 | pmbaty | 882 | template<bool Do> | 
| 883 | void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { | ||
| 884 | |||
| 885 | bool kingSide = to > from; | ||
| 886 | rfrom = to; // Castling is encoded as "king captures friendly rook" | ||
| 887 | rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); | ||
| 888 | to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); | ||
| 889 | |||
| 890 |   // Remove both pieces first since squares could overlap in Chess960 | ||
| 154 | pmbaty | 891 | remove_piece(make_piece(us, KING), Do ? from : to); | 
| 892 | remove_piece(make_piece(us, ROOK), Do ? rfrom : rto); | ||
| 96 | pmbaty | 893 | board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us | 
| 154 | pmbaty | 894 | put_piece(make_piece(us, KING), Do ? to : from); | 
| 895 | put_piece(make_piece(us, ROOK), Do ? rto : rfrom); | ||
| 96 | pmbaty | 896 | } | 
| 897 | |||
| 898 | |||
| 899 | /// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips | ||
| 900 | /// the side to move without executing any move on the board. | ||
| 901 | |||
| 902 | void Position::do_null_move(StateInfo& newSt) { | ||
| 903 | |||
| 904 | assert(!checkers()); | ||
| 905 | assert(&newSt != st); | ||
| 906 | |||
| 907 | std::memcpy(&newSt, st, sizeof(StateInfo)); | ||
| 908 | newSt.previous = st; | ||
| 909 | st = &newSt; | ||
| 910 | |||
| 911 | if (st->epSquare != SQ_NONE) | ||
| 912 |   { | ||
| 913 | st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; | ||
| 914 | st->epSquare = SQ_NONE; | ||
| 915 |   } | ||
| 916 | |||
| 917 | st->key ^= Zobrist::side; | ||
| 918 | prefetch(TT.first_entry(st->key)); | ||
| 919 | |||
| 920 | ++st->rule50; | ||
| 921 | st->pliesFromNull = 0; | ||
| 922 | |||
| 923 | sideToMove = ~sideToMove; | ||
| 924 | |||
| 154 | pmbaty | 925 | set_check_info(st); | 
| 926 | |||
| 96 | pmbaty | 927 | assert(pos_is_ok()); | 
| 928 | } | ||
| 929 | |||
| 930 | void Position::undo_null_move() { | ||
| 931 | |||
| 932 | assert(!checkers()); | ||
| 933 | |||
| 934 | st = st->previous; | ||
| 935 | sideToMove = ~sideToMove; | ||
| 936 | } | ||
| 937 | |||
| 938 | |||
| 939 | /// Position::key_after() computes the new hash key after the given move. Needed | ||
| 940 | /// for speculative prefetch. It doesn't recognize special moves like castling, | ||
| 941 | /// en-passant and promotions. | ||
| 942 | |||
| 943 | Key Position::key_after(Move m) const { | ||
| 944 | |||
| 945 | Square from = from_sq(m); | ||
| 946 | Square to = to_sq(m); | ||
| 154 | pmbaty | 947 | Piece pc = piece_on(from); | 
| 948 | Piece captured = piece_on(to); | ||
| 96 | pmbaty | 949 | Key k = st->key ^ Zobrist::side; | 
| 950 | |||
| 951 | if (captured) | ||
| 154 | pmbaty | 952 | k ^= Zobrist::psq[captured][to]; | 
| 96 | pmbaty | 953 | |
| 154 | pmbaty | 954 | return k ^ Zobrist::psq[pc][to] ^ Zobrist::psq[pc][from]; | 
| 96 | pmbaty | 955 | } | 
| 956 | |||
| 957 | |||
| 154 | pmbaty | 958 | /// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the | 
| 959 | /// SEE value of move is greater or equal to the given value. We'll use an | ||
| 960 | /// algorithm similar to alpha-beta pruning with a null window. | ||
| 96 | pmbaty | 961 | |
| 154 | pmbaty | 962 | bool Position::see_ge(Move m, Value v) const { | 
| 96 | pmbaty | 963 | |
| 964 | assert(is_ok(m)); | ||
| 965 | |||
| 154 | pmbaty | 966 |   // Castling moves are implemented as king capturing the rook so cannot be | 
| 967 |   // handled correctly. Simply assume the SEE value is VALUE_ZERO that is always | ||
| 968 |   // correct unless in the rare case the rook ends up under attack. | ||
| 969 | if (type_of(m) == CASTLING) | ||
| 970 | return VALUE_ZERO >= v; | ||
| 96 | pmbaty | 971 | |
| 154 | pmbaty | 972 | Square from = from_sq(m), to = to_sq(m); | 
| 973 | PieceType nextVictim = type_of(piece_on(from)); | ||
| 974 | Color stm = ~color_of(piece_on(from)); // First consider opponent's move | ||
| 975 | Value balance; // Values of the pieces taken by us minus opponent's ones | ||
| 976 |   Bitboard occupied, stmAttackers; | ||
| 96 | pmbaty | 977 | |
| 154 | pmbaty | 978 | if (type_of(m) == ENPASSANT) | 
| 979 |   { | ||
| 980 | occupied = SquareBB[to - pawn_push(~stm)]; // Remove the captured pawn | ||
| 981 | balance = PieceValue[MG][PAWN]; | ||
| 982 |   } | ||
| 983 |   else | ||
| 984 |   { | ||
| 985 | balance = PieceValue[MG][piece_on(to)]; | ||
| 986 | occupied = 0; | ||
| 987 |   } | ||
| 96 | pmbaty | 988 | |
| 154 | pmbaty | 989 | if (balance < v) | 
| 990 | return false; | ||
| 96 | pmbaty | 991 | |
| 154 | pmbaty | 992 | if (nextVictim == KING) | 
| 993 | return true; | ||
| 96 | pmbaty | 994 | |
| 154 | pmbaty | 995 | balance -= PieceValue[MG][nextVictim]; | 
| 96 | pmbaty | 996 | |
| 154 | pmbaty | 997 | if (balance >= v) | 
| 998 | return true; | ||
| 96 | pmbaty | 999 | |
| 154 | pmbaty | 1000 | bool relativeStm = true; // True if the opponent is to move | 
| 1001 | occupied ^= pieces() ^ from ^ to; | ||
| 1002 | |||
| 1003 |   // Find all attackers to the destination square, with the moving piece removed, | ||
| 1004 |   // but possibly an X-ray attacker added behind it. | ||
| 1005 | Bitboard attackers = attackers_to(to, occupied) & occupied; | ||
| 1006 | |||
| 1007 | while (true) | ||
| 96 | pmbaty | 1008 |   { | 
| 154 | pmbaty | 1009 | stmAttackers = attackers & pieces(stm); | 
| 96 | pmbaty | 1010 | |
| 154 | pmbaty | 1011 |       // Don't allow pinned pieces to attack pieces except the king as long all | 
| 1012 |       // pinners are on their original square. | ||
| 1013 | if (!(st->pinnersForKing[stm] & ~occupied)) | ||
| 1014 | stmAttackers &= ~st->blockersForKing[stm]; | ||
| 96 | pmbaty | 1015 | |
| 154 | pmbaty | 1016 | if (!stmAttackers) | 
| 1017 | return relativeStm; | ||
| 96 | pmbaty | 1018 | |
| 154 | pmbaty | 1019 |       // Locate and remove the next least valuable attacker | 
| 1020 | nextVictim = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers); | ||
| 96 | pmbaty | 1021 | |
| 154 | pmbaty | 1022 | if (nextVictim == KING) | 
| 1023 | return relativeStm == bool(attackers & pieces(~stm)); | ||
| 96 | pmbaty | 1024 | |
| 154 | pmbaty | 1025 | balance += relativeStm ? PieceValue[MG][nextVictim] | 
| 1026 | : -PieceValue[MG][nextVictim]; | ||
| 96 | pmbaty | 1027 | |
| 154 | pmbaty | 1028 | relativeStm = !relativeStm; | 
| 96 | pmbaty | 1029 | |
| 154 | pmbaty | 1030 | if (relativeStm == (balance >= v)) | 
| 1031 | return relativeStm; | ||
| 96 | pmbaty | 1032 | |
| 154 | pmbaty | 1033 | stm = ~stm; | 
| 1034 |   } | ||
| 96 | pmbaty | 1035 | } | 
| 1036 | |||
| 1037 | |||
| 1038 | /// Position::is_draw() tests whether the position is drawn by 50-move rule | ||
| 1039 | /// or by repetition. It does not detect stalemates. | ||
| 1040 | |||
| 1041 | bool Position::is_draw() const { | ||
| 1042 | |||
| 1043 | if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size())) | ||
| 1044 | return true; | ||
| 1045 | |||
| 1046 | StateInfo* stp = st; | ||
| 1047 | for (int i = 2, e = std::min(st->rule50, st->pliesFromNull); i <= e; i += 2) | ||
| 1048 |   { | ||
| 1049 | stp = stp->previous->previous; | ||
| 1050 | |||
| 1051 | if (stp->key == st->key) | ||
| 1052 | return true; // Draw at first repetition | ||
| 1053 |   } | ||
| 1054 | |||
| 1055 | return false; | ||
| 1056 | } | ||
| 1057 | |||
| 1058 | |||
| 1059 | /// Position::flip() flips position with the white and black sides reversed. This | ||
| 1060 | /// is only useful for debugging e.g. for finding evaluation symmetry bugs. | ||
| 1061 | |||
| 1062 | void Position::flip() { | ||
| 1063 | |||
| 1064 |   string f, token; | ||
| 1065 | std::stringstream ss(fen()); | ||
| 1066 | |||
| 1067 | for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement | ||
| 1068 |   { | ||
| 1069 | std::getline(ss, token, r > RANK_1 ? '/' : ' '); | ||
| 1070 | f.insert(0, token + (f.empty() ? " " : "/")); | ||
| 1071 |   } | ||
| 1072 | |||
| 1073 | ss >> token; // Active color | ||
| 1074 | f += (token == "w" ? "B " : "W "); // Will be lowercased later | ||
| 1075 | |||
| 1076 | ss >> token; // Castling availability | ||
| 1077 | f += token + " "; | ||
| 1078 | |||
| 1079 | std::transform(f.begin(), f.end(), f.begin(), | ||
| 1080 | [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); }); | ||
| 1081 | |||
| 1082 | ss >> token; // En passant square | ||
| 1083 | f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3")); | ||
| 1084 | |||
| 1085 | std::getline(ss, token); // Half and full moves | ||
| 1086 | f += token; | ||
| 1087 | |||
| 154 | pmbaty | 1088 | set(f, is_chess960(), st, this_thread()); | 
| 96 | pmbaty | 1089 | |
| 1090 | assert(pos_is_ok()); | ||
| 1091 | } | ||
| 1092 | |||
| 1093 | |||
| 1094 | /// Position::pos_is_ok() performs some consistency checks for the position object. | ||
| 1095 | /// This is meant to be helpful when debugging. | ||
| 1096 | |||
| 1097 | bool Position::pos_is_ok(int* failedStep) const { | ||
| 1098 | |||
| 1099 | const bool Fast = true; // Quick (default) or full check? | ||
| 1100 | |||
| 1101 | enum { Default, King, Bitboards, State, Lists, Castling }; | ||
| 1102 | |||
| 1103 | for (int step = Default; step <= (Fast ? Default : Castling); step++) | ||
| 1104 |   { | ||
| 1105 | if (failedStep) | ||
| 1106 | *failedStep = step; | ||
| 1107 | |||
| 1108 | if (step == Default) | ||
| 1109 | if ( (sideToMove != WHITE && sideToMove != BLACK) | ||
| 1110 | || piece_on(square<KING>(WHITE)) != W_KING | ||
| 1111 | || piece_on(square<KING>(BLACK)) != B_KING | ||
| 1112 | || ( ep_square() != SQ_NONE | ||
| 1113 | && relative_rank(sideToMove, ep_square()) != RANK_6)) | ||
| 1114 | return false; | ||
| 1115 | |||
| 1116 | if (step == King) | ||
| 1117 | if ( std::count(board, board + SQUARE_NB, W_KING) != 1 | ||
| 1118 | || std::count(board, board + SQUARE_NB, B_KING) != 1 | ||
| 1119 | || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove)) | ||
| 1120 | return false; | ||
| 1121 | |||
| 1122 | if (step == Bitboards) | ||
| 1123 |       { | ||
| 1124 | if ( (pieces(WHITE) & pieces(BLACK)) | ||
| 1125 | ||(pieces(WHITE) | pieces(BLACK)) != pieces()) | ||
| 1126 | return false; | ||
| 1127 | |||
| 1128 | for (PieceType p1 = PAWN; p1 <= KING; ++p1) | ||
| 1129 | for (PieceType p2 = PAWN; p2 <= KING; ++p2) | ||
| 1130 | if (p1 != p2 && (pieces(p1) & pieces(p2))) | ||
| 1131 | return false; | ||
| 1132 |       } | ||
| 1133 | |||
| 1134 | if (step == State) | ||
| 1135 |       { | ||
| 1136 | StateInfo si = *st; | ||
| 1137 | set_state(&si); | ||
| 1138 | if (std::memcmp(&si, st, sizeof(StateInfo))) | ||
| 1139 | return false; | ||
| 1140 |       } | ||
| 1141 | |||
| 1142 | if (step == Lists) | ||
| 154 | pmbaty | 1143 | for (Piece pc : Pieces) | 
| 1144 |           { | ||
| 1145 | if (pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc)))) | ||
| 1146 | return false; | ||
| 1147 | |||
| 1148 | for (int i = 0; i < pieceCount[pc]; ++i) | ||
| 1149 | if (board[pieceList[pc][i]] != pc || index[pieceList[pc][i]] != i) | ||
| 96 | pmbaty | 1150 | return false; | 
| 154 | pmbaty | 1151 |           } | 
| 96 | pmbaty | 1152 | |
| 1153 | if (step == Castling) | ||
| 1154 | for (Color c = WHITE; c <= BLACK; ++c) | ||
| 1155 | for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1)) | ||
| 1156 |               { | ||
| 1157 | if (!can_castle(c | s)) | ||
| 1158 | continue; | ||
| 1159 | |||
| 1160 | if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK) | ||
| 1161 | || castlingRightsMask[castlingRookSquare[c | s]] != (c | s) | ||
| 1162 | ||(castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s)) | ||
| 1163 | return false; | ||
| 1164 |               } | ||
| 1165 |   } | ||
| 1166 | |||
| 1167 | return true; | ||
| 1168 | } |